JP2004084092A - Nonwoven fabric, method for producing the same and synthetic resin laminate material containing the same as substrate - Google Patents

Nonwoven fabric, method for producing the same and synthetic resin laminate material containing the same as substrate Download PDF

Info

Publication number
JP2004084092A
JP2004084092A JP2002244072A JP2002244072A JP2004084092A JP 2004084092 A JP2004084092 A JP 2004084092A JP 2002244072 A JP2002244072 A JP 2002244072A JP 2002244072 A JP2002244072 A JP 2002244072A JP 2004084092 A JP2004084092 A JP 2004084092A
Authority
JP
Japan
Prior art keywords
layer
fiber layer
organic fiber
nonwoven fabric
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002244072A
Other languages
Japanese (ja)
Inventor
Kiyoji Kakiya
柿谷 喜代治
Kazuo Kawabata
川端 和夫
Seikichi Terawaki
寺脇 誠吉
Shigemitsu Yoshimoto
葭本 重満
Shigeki Yamazaki
山崎 重樹
Tomotaka Katsube
勝部 友貴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ORIBESUTO KK
ORIENTAL ASBEST
Original Assignee
ORIBESUTO KK
ORIENTAL ASBEST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ORIBESUTO KK, ORIENTAL ASBEST filed Critical ORIBESUTO KK
Priority to JP2002244072A priority Critical patent/JP2004084092A/en
Priority to KR1020020053624A priority patent/KR20040018073A/en
Publication of JP2004084092A publication Critical patent/JP2004084092A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/16Drying; Softening; Cleaning
    • B32B38/164Drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Paper (AREA)
  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a nonwoven fabric which has an organic fiber layer in spite of being a light-weight inorganic fiber nonwoven fabric, high interlayer strength between the inorganic fiber layer and the organic fiber layer, excellent dimensional stability in the case of forming a laminate such as a floor material for building by providing a synthetic resin layer and causes no warpage to be an obstacle in application, and to provide a method for producing the same. <P>SOLUTION: The method for producing the nonwoven fabric in which the inorganic fiber layer and the organic fiber layer coexist in an interface for bringing the inorganic fiber layer into contact with the organic fiber layers comprises applying an organic fiber-containing dispersion to a wire cloth, dehydrating the applied organic fiber-containing dispersion layer through the wire cloth, applying an inorganic fiber-containing dispersion to the dehydrated organic fiber-containing dispersion layer, dehydrating the organic fiber-containing dispersion layer and the inorganic fiber-containing dispersion layer applied to the organic fiber-containing dispersion layer through the wire cloth to form the organic fiber layer and the inorganic fiber layer. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、不織布、その製造方法およびそれを基材として含んでなるなる合成樹脂積層材に関し、より詳しくは、無機繊維層と有機繊維層とを含み、その層間で無機繊維と有機繊維が混合状態にある不織布、その製造方法、並びに該不織布を基材として含んでなる合成樹脂積層材に関する。
【0002】
【従来の技術】
従来より、建築用床材等(タイルカーペットやクッションフロアなど)のような合成樹脂積層材の基材として、無機繊維不織布(特にガラス繊維不織布)が使用されている。この場合、無機繊維不織布は合成樹脂(特に塩化ビニル系樹脂)が含浸又は塗布されたシートにされ、これに他の合成樹脂層(シート)や化粧層(タフト生地など)等が積層されて使用されている。
【0003】
しかしながら、従来の無機繊維不織布では、上記のような合成樹脂積層材に使用した場合、合成樹脂層に対する無機繊維不織布の量の割合が一定以上なければ、該合成樹脂積層材に充分な寸法安定性が与えられない。すなわち、タイルカーペットやクッションフロアなどの建築用床材等の用途に用いられる合成樹脂積層材においては、基材として使用されている無機繊維不織布が大きな坪量でなければ、積層されている合成樹脂層や化粧層の収縮の影響により、歩行面(積層材表面)側方向への反りが大きくなり、床面への施工が困難となる。
【0004】
そこで、これまでは、積層される他の合成樹脂層及び化粧層の収縮量に対応できるような高坪量の無機繊維不織布を使用することによって寸法安定性を確保していた。
しかし、坪量の大きな無機繊維不織布を使用すると、合成樹脂積層材表面にガラス繊維の跡が付き、該表面の平滑性や加工性が低下するなどの問題が生じる。
【0005】
また、上記のような建築用床材等の合成樹脂積層材の反りによる施工不良を無くす方法としては、合成樹脂が含浸又は塗布された無機繊維不織布、他の合成樹脂層(シート)、化粧層(タフト生地など)などと共に、合成繊維などの有機繊維の不織布やネットを施工面(積層材裏面)側に積層する方法がある。
施工面側に積層される有機繊維の収縮により、施工面側に反りが発生し、歩行面側に積層されている化粧層や合成樹脂層の収縮により発生する反りと相殺されることにより、施工を容易にするのである。
しかし、有機繊維の不織布やネットの効果を充分発揮させるためには、施工面側の合成樹脂層などに貼り付け又は含浸させることが必要である。そのため、建築用床材等の積層材の製造において、製造工程が増えることになり、コストアップになる。
【0006】
そこで、上記のような無機繊維不織布と合成繊維の不織布又はネットを併用する方法の代わりに、無機繊維不織布上に有機繊維の層を設けることも試みられている。すわわち、不織布の片面を無機繊維層とし、もう片面を有機繊維層とする方法である。
このような有機繊維層を設けた無機繊維不織布の製造方法として、例えば、特開昭53−9808号公報に開示されているように、無機繊維不織布と有機繊維不織布をドライシートまたはウエットシート状態で貼り合わせる方法がある。しかし、このような貼り合わせは、製造工程が増えるためにコスト面で不利である上に、無機繊維と有機繊維との熱膨張率等の違いによるバイメタル効果により無機繊維不織布に反りが発生しやすくなる。また、無機繊維層と有機繊維層の層間では両層の構成繊維の絡み合いがないため、層間剥離強度が弱い。
【0007】
また、上記のような従来の無機繊維不織布を使用した場合、合成樹脂で完全に含浸してしまわない限り、合成樹脂積層材の表面に多数の無機繊維が露出することになる。これが作業者等の皮膚に刺激を与えて問題となっている。これを防止するためには繊維径の細い無機繊維を使用することが考えられる。しかし、繊維径の細い無機繊維を使用した不織布を使用した合成樹脂積層材は剛性が低下する。また、繊維径の細い無機繊維は値段も高く、その結果、不織布自体が高価になってしまうという問題もある。
さらに、有機繊維を混抄することにより、不織布に含有される無機繊維の含有比率を低くして皮膚への刺激を解消する方法もあるが、無機繊維の含有比率を下げれば、当然、無機繊維不織布の物性が悪くなり、所望の性能が得られない。
【0008】
また、上記の特開昭53−9808号公報に開示されているような
無機繊維と有機繊維の貼り合わせ不織布のように、無機繊維層の片面に有機繊維層を設ければ無機繊維による皮膚刺激性を回避することができる。しかし、上記で述べたように、このような貼り合わせ不織布は物性及びコストの点で不利である。
【0009】
【発明が解決しようとする課題】
本発明の1つの目的は、低坪量でありながら、有機繊維層を有し、無機繊維層と有機繊維層の層間強度が高い無機繊維不織布を提供することである。
この無機繊維不織布は、合成樹脂層を設けて、建築用床材などのような用途に用いる積層材にした場合、低坪量の基材でありながら寸法安定性が良好であり、施工の際の障害となる反りが発生しない。
また、従来の貼り合わせ不織布に比べて低コストで製造でき、積層材表面に露出した無機繊維による皮膚刺激性もないのである。
本発明のさらに別の目的は、上記のような不織布を製造する新規な方法を提供することにある。
【0010】
【課題を解決するための手段】
前記課題を達成するために種々の検討を行った結果、まず有機繊維含有分散液から該分散液の層を形成し、有機繊維含有分散液の層が未だ流動状態を保っている間に、有機繊維含有分散液の層の上に無機繊維含有分散液を供給して、無機繊維層を形成することにより、更に、形成された有機繊維層と無機繊維層を特定の条件で乾燥することにより、一方の面(表面)が無機繊維からなり、他方の面(裏面)が有機繊維からなり、両者の界面部分では、有機繊維と無機繊維とが混在しているため、層間剥離強度が高く、不織布自体の反りも少なく、また床材や壁紙の基材として優れた物性を有する不織布が得られることを見いだし、本発明を完成するに至った。
【0011】
即ち、本発明によれば、上記課題は、
(1)無機繊維層および有機繊維層からなる不織布であって、該無機繊維層と該有機繊維層とが接触する界面において、無機繊維と有機繊維とが混在していることを特徴とする不織布;
(2)抄網に有機繊維含有分散液を適用し、
適用された有機繊維含有分散液の層を、抄網を介して脱水し、
脱水されている有機繊維含有分散液の層の上に、無機繊維含有分散液を適用し、
有機繊維含有分散液の層およびその上に適用された無機繊維含有分散液の層を、抄網を介して脱水して、有機繊維層および無機繊維層を形成する
工程を含んでなる不織布の製造方法:
並びに
(3)上記(1)に記載の不織布を基材として含んでなる合成樹脂積層材
により解決される。
【0012】
【発明の実施の形態】
本発明の不織布は、有機繊維層および無機繊維層を含み、両層の界面部分には、有機繊維と無機繊維とが混在している。従って、裏面が実質的に有機繊維からなる層であり、ほとんど無機繊維が存在していないために、床材などに合成樹脂積層材に加工した場合には無機繊維が不織布外部に露出することがなく、人体に刺激を与えることはない。
なお、本発明の不織布は有機繊維層および無機繊維層を含んでいるのであるが、有機繊維層、特に界面に近い部分が少量の無機繊維を含み、および/または無機繊維層、特に界面に近い部分が有機繊維を含むことを排除するものではない。
【0013】
また、本発明の不織布は、有機繊維層と無機繊維層との間に、両繊維が混在する界面部分を有しているので、有機繊維層と無機繊維層との間に明確な境界はない。よって、層間剥離強度が弱いということはなく、しかも、製造時に反りが発生し難い。さらに、温度および湿度変化による有機繊維層と無機繊維層との間の伸縮率の違いに起因するバイメタル効果による反りを起こすことがない。
【0014】
以下、本発明の不織布の製造方法の一具体例を、図面を参照して説明する。
本発明の不織布の製造には、図1に模式的に示す傾斜ワイヤー(抄網)方式の長網湿式抄紙機を使用するが、本発明の製造方法は、原料繊維の供給方法に特徴がある。
【0015】
本発明では、抄網1の上流部に、有機繊維含有分散液を供給する複数のノズル2を設け、該ノズル2から有機繊維含有分散液を抄網1上に供給する。ノズル2の本数は、製造する不織布の幅に応じて選択すればよい。ノズル先端周囲には、フード21を設けて、有機繊維含有分散液と、後に供給する無機繊維含有混合物との早期の混合を防止するのが好ましい。
【0016】
ノズルの近傍および下流部分の抄網1の下に設けた脱水装置3(サクション装置)の第1セクション31(第1脱水箱)を使用して、有機繊維含有分散液の層を脱水し、薄い有機繊維層を抄網1上に形成する。
【0017】
抄網1は、図1の右側から左側(矢印Aの方向)に移動しているので、脱水されながら有機繊維含有分散液の層が下流領域に移動した時点で、有機繊維含有分散液の層が脱水される前に、即ち、有機繊維含有分散液の層が未だ流動状態を保っている間に、該層の上へ、無機繊維含有分散液を供給口4から供給し、無機繊維分散液の層を形成する。
次いで、有機繊維含有分散液の層およびその上に形成された無機繊維含有分散液の層を、抄網1を介して、脱水装置3の第2〜5セクション32,33,34,35(第2〜5脱水箱)により脱水して、有機繊維層および無機繊維層を形成する。
【0018】
上記方法では、有機繊維含有分散液の層が脱水されて有機繊維層が形成される前に無機繊維層の形成が始まるので、有機繊維層と無機繊維層の層間において無機繊維と有機繊維とが混合される。そのため、有機繊維の薄い層を有しながら、従来の貼り合わせにより製造した2層構造の不織布に比べて層間強度の強い不織布が得られる。
【0019】
有機繊維層および無機繊維層の積層物を形成した後、これを乾燥する。乾燥は通常の方法により行うことができるが、有機繊維層および無機繊維層の熱膨張率の違いによる反りを低減するために、乾燥は以下の方法により行うのが好ましい。
【0020】
乾燥手段としてエアスルードライヤーを用い、積層物の上下から熱風を吹き付ける。
この場合、上部(無機繊維層側)からの熱風の温度よりも、下部(有機繊維側)からの熱風の温度を低くすることによって、無機繊維層と有機繊維層との熱膨張率の違いによる反りをより小さくすることができる。例えば、上部からの熱風の温度は、200〜250℃とし、下部からの熱風の温度は、150〜180℃とする。
【0021】
さらに、有機繊維層と無機繊維層の熱膨張率による反りを更に小さくするために、不織布の有機繊維層側を熱ドラムドライヤーの表面(表面温度:120〜180℃)に押し当てることが好ましい。この場合の線圧は、通常、30〜60kgf/cmである。
【0022】
次に、本発明の不織布に用いられる有機繊維および無機繊維について説明する。
まず本発明に用いる無機繊維であるが、本発明の所望の効果を損なわない限り、無機繊維不織布に一般的に用いられるものであればいずれも使用できる。例えば、ガラス繊維、ロックウール繊維などの鉱物繊維、セラミック繊維、炭素繊維、アルミナ繊維、金属繊維などが好ましい。中でも、ガラス繊維が、価格や入手のしやすさなどから最も好適である。
【0023】
使用される無機繊維の繊維径は、好ましくは4μm以上である。繊維径が4μm以下のものは皮膚刺激性が少ないが、非常に高価である。
繊維長は、好ましくは3mm〜50mmである。繊維の分散性の面からは、6〜25mmの長さのものが好適である。また、本発明の所望の効果を損ねない範囲で、例えば6μm径と9μm径のような異なった繊維径のものを混合して使用しても良い。
無機繊維としては、とりわけ、溶融紡糸法により製造された連続フィラメントを規定の長さにカットしたものが、繊維径および繊維長のバラツキがなく、好適である。
【0024】
本発明において、有機繊維として、ポリエステル系、アクリル系、ウレタン系、塩化ビニル系、ポリアミド系、レーヨン、ビニロンなどの合成繊維や木材パルプ、綿などの天然繊維が使用できる。形態的には棒状のストレートな形状のものから、パルプ状のものまで利用可能であるが、供給時の分散性や不織布の物性を損なわないものであれば、本発明の所望の効果を得られる範囲で、異なる複数の有機繊維を目的に応じた比率で使用することができる。
【0025】
本発明の不織布における有機繊維層と無機繊維層の厚さおよび両者の比率は、不織布の使用目的に応じて適宜設定すればよい。本発明によれば、有機繊維層の厚さを可及的に小さくすることができる。
【0026】
本発明の無機繊維層と有機繊維層とを有する不織布の繊維を結合する為に、バインダーを供給することができる。
本発明で使用するバインダーは、不織布に通常用いられる樹脂バインダーであってよく、例えばポリビニルアルコール系樹脂、各種アクリル酸エステル系樹脂、ポリ酢酸ビニル系樹脂、エポキシ系樹脂、ウレタン系樹脂、スチレン・ブタジエン共重合体系樹脂などであり、これらは、水溶液、エマルジョン、ディスパージョン等の液体状、または粉末状、粒子状、繊維状等の固体状で用いることができる。
【0027】
バインダーを供給する方法は、不織布の製造で行われる通常のバインダーの供給方法で行われ、特にスプレー法、含浸法、カーテンコーター法などの外添法が好適である。
【0028】
さらに、本発明の不織布では、同一種類のバインダーを前記外添法などにより、従来の不織布の場合と同様に供給でき、各繊維交点を同一種類のバインダーで結合することができる。
また、本発明の不織布では、同一種類のバインダーで各繊維間を結合した場合、不織布の反りが一層効果的に抑制され、寸法精度などの物性を一層向上することができる。
【0029】
また、粉末状の樹脂バインダーを内添法によって供給することも可能である。この場合には、本発明の不織布の所望の特性を損なわないように、抄紙の際の各原料分散液における粉末状樹脂バインダーの混合比率について充分配慮する必要がある。
【0030】
本発明の不織布には、含浸又は塗布される合成樹脂層に対する目詰め効果を有する成分(以下、単に「目詰め成分」」という。)を含有させることができる。このような目詰め成分としては、無機質充填材、有機繊維、合成樹脂などを単独で、または2種以上を組み合わせて使用することができる。
【0031】
無機質充填材としては、一般的に合成樹脂層に対する目詰めのために使用できるものであれば、いずれも使用できる。無機充填材の好ましい例は、タルク、炭酸カルシウム、カオリン、クレー、水酸化アルミニウム、水酸化マグネシウム、マイカ、シリカなどの無機質粉末や、セピオライトなの微細繊維などである。
【0032】
また、有機繊維としては、一般的に合成樹脂に対する目詰めのために使用できるものであれば、いずれも使用できる。
好ましく使用できる有機繊維としては、例えば、本発明の不織布に含まれる有機繊維層を形成する有機繊維として先に挙げた有機繊維が例示できる。但し、この場合の有機繊維は、合成樹脂に対する目詰め効果を得るためだけに含有させるものであり、本発明の所望の効果を損ねないようにしなければならない。
【0033】
目詰め成分である合成樹脂としては、合成樹脂層に対する目詰めのために使用できるものであれば、いずれも使用できる。
好ましい合成樹脂の例は、ポリビニルアルコール系樹脂、各種アクリル酸エステル系樹脂、ポリ酢酸ビニル系樹脂、ウレタン系樹脂、スチレン・ブタジエン共重合体系樹脂などが例示でき、これらは、液状(水溶液、エマルジョン、ディスパージョン等)で好ましく用いられる。
【0034】
目詰め成分を不織布に含有させる方法は、特に限定されない。好ましい方法としては、無機繊維層及び/又は有機繊維層に混抄する方法、塗沫液として湿紙状態及び乾紙状態の不織布に塗布又は含浸する方法などがある。
【0035】
本発明の不織布は、床材や壁紙などの各種建材用途に好ましく用いられるが、内装材、天井材、ルーフィングなどの屋根材、FRPなどの基材として用いることができる。この場合、常套の方法により、本発明の不織布のいずれかの表面、好ましくは無機繊維層側の表面に、合成樹脂層を形成する。
さらには、本発明の不織布は、フィルターなどの濾過材や支持体としても用いることもできる。
【0036】
【実施例】
以下に実施例を挙げて本発明をより詳しく説明するが、本発明はこれら実施例に限定されるものではない。
【0037】
実施例および比較例において、物性および適性は以下の手順で測定・評価した。
(1)不織布の反り
不織布試料(幅250mm、長さ400mm)を、温度20℃、湿度65%の雰囲気下に48時間放置後、試料を水平面上に置き、水平面から両端部の最高点までの高さを測定した。
(2)不織布を基材として含んでなる合成樹脂積層材(タイルカーペット)の反り
不織布に塩化ビニル系樹脂ゾル(塩化ビニル樹脂ペースト100質量部、可塑剤60質量部、および無機充填材10質量部を混練して調製)を含浸又は塗布して坪量約300g/mシートとした。
その後、発泡塩化ビニル樹脂シート(塩化ビニル樹脂ペースト100質量部、可塑剤60質量部、発泡剤2質量部および無機質充填剤10質量部を混練して調製。坪量300g/m、厚さ約 2.0mmでこの塩化ビニル樹脂塗布不織布シートの両面(無機繊維層側及び有機繊維層側)に積層し、さらにタフト生地を上側(無機繊維層側)の発泡塩化ビニル樹脂層に積層してタイルカーペット試料を作製した。
該タイルカーペット試料(厚さ8mm、幅400mm、長さ400mm)を温度20℃、湿度65%の雰囲気下に2週間放置後、試料を水平面上に置き、水平面から両端部の最高点までの高さを測定した。
【0038】
(3)不織布を基材として含んでなる合成樹脂積層材(クッションフロア)の反り
上記(2)と同様の塩化ビニル樹脂含浸無機繊維不織布シートを作製した。
その後、上記(2)と同様の発泡塩化ビニル樹脂シートで該塩化ビニル樹脂含浸不織布シートの上下(無機繊維層側及び有機繊維層側)に積層してクッションフロア試料を作製した。
該クッションフロア試料(厚さ5mm、幅400mm、長さ400mm)を温度20℃、湿度65%の雰囲気下に2週間放置後、試料を水平面上に置き、水平面から両端部の最高点までの高さを測定した。
【0039】
(4)不織布を基材として含んでなる合成樹脂積層材(タイルカーペット)の寸法安定性
上記(2)と同様のタイルカーペット試料(厚さmm、幅400mm
、長さ400mm)を温度20℃、湿度65%の雰囲気下に24時間以上調湿した後、該タイルカーペット試料を180℃の恒温熱風乾燥機中に3分間放置後、試料の長さ方向及び幅方向の伸縮率を測定した。
(5)不織布を基材として含んでなる合成樹脂積層材(クッションフロア)の寸法安定性
上記(3)と同様のクッションフロア試料(厚さ8mm、幅400mm
、長さ400mmを温度20℃、湿度65%の雰囲気下に24時間以上調湿した後、該クッションフロア試料を180℃の恒温熱風乾燥機中に3分間放置後、試料の長さ方向及び厚さ方向の伸縮率を測定した。
【0040】
(6)不織布の層間剥離強度
JIS−L−1023に準じ、引張試験機(株式会社島津製作所製)を用いて、層間剥離強度を測定した。
(7)不織布の皮膚刺激性
不織布の有機繊維層側の面をヒトの手で触って、無機繊維による皮膚刺激性がないものを○(良好)と判定し、皮膚刺激性が認められたものを×(不良)と判定した。
(8)不織布を基材として含んでなる合成樹脂積層材の表面状態
上記(3)で作製したクッションフロア試料の無機繊維層側の表面を目視で観察し、ガラス繊維跡などの表面粗さを調べた。表面粗さが
少ないものを○と判定し、多いものを×と判定した。
【0041】
実施例1
図1に示す湿式長網抄紙機を用いて、有機繊維層および無機繊維層を有する下記の不織布を抄造した。
無機繊維層には、(無機繊維層全体100質量部に対して)ガラス繊維(繊維径13μm×繊維長25mm)95質量部とポバール系樹脂粒子状バインダー5質量部を配合し、有機繊維層には、(有機繊維層全体100質量部に対して)ポリエステル繊維(繊維径60μm×繊維長10mm)100質量部を配合した。
【0042】
上記の無機繊維層原材料の所定量を、分散剤および分散助剤の存在下に水に分散して、原料濃度0.02質量%の無機繊維含有分散液を調製した。一方、有機繊維層原材料の所定量を、分散剤および分散助剤の存在下に水に分散して、0.1質量%の有機繊維含有分散液を調製した。
【0043】
図1に示す長網抄紙機において、矢印Aの方向に速度60m/分で移動している抄網1上に、ノズル2から上記の有機繊維含有分散液を所定の流量(有機繊維層が坪量8g/mの乾燥シートを形成するのに相当する量)で供給し、脱水装置3の第1セクションにより、有機繊維含有分散液の層を脱水し、該層の分散液濃度を約10質量%にした。
続いて、有機繊維含有分散液の層を脱水が完全に終了する前に、該有機繊維含有分散液の層の上に、供給口4から上記の無機繊維含有分散液を所定の流量(無機繊維層が坪量30g/mの乾燥シートを形成するのに相当する量)で供給して無機繊維含有分散液の層を形成した。積層された2つの分散液層を、脱水装置3の第2〜5セクションにより十分に脱水した。得られた積層物に液状のアクリル系樹脂バインダーを付与して坪量40g/mの不織布を得た。この不織布には有機繊維層が確認された。
抄造した不織布を、エアースルードライヤーを用い、上部(無機繊維層側)からの熱風の温度を240℃とし、下部(有機繊維層側)からの熱風の温度を180℃として、乾燥した。
【0044】
実施例2
実施例1と同様の配合及び条件にて、無機繊維層と有機繊維層を有する不織布を抄造し、乾燥した。乾燥後、有機繊維層に熱ドラムタッチ(表面:温度160℃、押圧30kgf/cm)を行った。
【0045】
実施例3
エアスルードライヤーによる乾燥を、上部(無機繊維層側)及び下部(有機繊維層側)共に熱風の温度を220℃として行った以外は、実施例1と同様の配合及び条件にて、無機繊維層と有機繊維層を有する不織布を製造した。
【0046】
実施例4
図1に示す湿式長網抄紙機を用いて、有機繊維層および無機繊維層を有する下記の不織布を抄造した。
無機繊維層には、(無機繊維層全体100質量部に対して)ガラス繊維(繊維径10μm×繊維長13mm)75質量部、木材パルプ(NBKP)20質量部およびポバール系樹脂粒子状バインダー5質量部を配合し、有機繊維層には、(有機繊維層全体100質量部に対して)ポリエステル繊維(繊維径60μm×繊維長10mm)100質量部を配合した。
【0047】
上記の無機繊維層原材料の所定量を、分散剤および分散助剤の存在下に水に分散して、原料濃度0.02質量%の無機繊維含有分散液を調製した。一方、上記の有機繊維層原材料の所定量を、分散剤および分散助剤の存在下に水に分散して、0.1質量%の有機繊維含有分散液を調製した。
【0048】
図1に示す長網抄紙機において、矢印Aの方向に速度50m/分 で移動している抄網1の上に、ノズル2から上記の有機繊維含有分散液を所定の流量(有機繊維層が坪量8g/mの乾燥シートを形成するのに相当する量)で供給し、脱水装置3の第1セクションにより、有機繊維含有分散液の層を脱水し、該層の分散液濃度を約6質量%にした。
続いて、有機繊維含有分散液の層の脱水が完全に終了する前に、該有機繊維含有分散液の層の上に、供給口4から上記の無機繊維含有分散液を所定の流量(無機繊維層が坪量30g/mの乾燥シートを形成するのに相当する量)で供給して無機繊維含有分散液の層を形成した。積層された2つの分散液層を、脱水装置3の第2〜5セクションにより十分に脱水した。得られた積層物に液状のアクリル系樹脂バインダーを付与して坪量40g/mの不織布を得た。この不織布にはポリエステル繊維からなる有機繊維層が確認された。
抄造した不織布を、エアースルードライヤーを用い、上部(無機繊維層側)からの熱風の温度を250℃とし、下部(有機繊維層側)からの熱風の温度を170℃として、乾燥した。
【0049】
比較例1
無機繊維層は、ガラス繊維(繊維径13μm×25mm)95質量部とポバール系樹脂粒子状バインダー5質量部から形成し、一方、有機繊維層は形成せず、液状のアクリル系樹脂バインダーを付与すること以外は、実施例1と同様の方法を繰返して、坪量80g/mの無機繊維不織布を得た。
抄造した不織布を、エアスルードライヤーを用い、上部(無機繊維層側)及び下部(有機繊維層側)からの熱風の温度を共に220℃にして、乾燥した。
【0050】
比較例2
無機繊維層は、ガラス繊維(繊維径10μm×13mm)75質量部、木材パルプ(NBKP)20質量部およびポバール系樹脂粒子状バインダー5質量部から形成し、一方、有機繊維層は形成せず、液状のポバール系樹脂バインダー及びアクリル系樹脂バインダーの混合バインダーを付与する以外は、実施例1と同様の方法を繰返して、坪量80g/mの無機繊維不織布を得た。
抄造した不織布を、エアスルードライヤーを用い、上部(無機繊維層側)及び下部(有機繊維層側)からの熱風の温度を共に240℃にして、乾燥した。
【0051】
比較例3
貼り合わせ不織布用長網及び丸網を組み合わせた抄紙機、または丸網を2基備えた抄紙機を用いて不織布を製造した。
無機繊維層には、ガラス繊維(繊維径13μm×繊維長25mm)95質量部、ポバール系樹脂粒子状バインダー5質量部を配合し、湿潤シート(坪量30g/mの乾燥シートに相当)を長網または丸網で抄造した後、さらに有機繊維層として、ポリエステル繊維(繊維径60μm×繊維長10mm)100質量部を配合して、湿潤シート(坪量8g/mの乾燥シートに相当)を丸網抄紙機を用いて抄造し、抄網上で湿潤状態で貼り合わせた。この場合、有機繊維層を形成する段階では、先に形成した無機繊維層も、有機繊維層も流動性を失った状態であった。
その後、液状のアクリル系樹脂バインダーを付与して、220℃で乾燥し、坪量40g/mの不織布を得た。
【0052】
実施例および比較例で製造した不織布の物性および適性試験の結果を下記表1にまとめて示す。
【0053】
【表1】

Figure 2004084092

【図面の簡単な説明】
【図1】本発明の不織布の製造方法で使用する長網湿式抄紙機の断面図である。
【符号の説明】
1…抄網、2…ノズル、3…脱水装置、4…供給口[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a nonwoven fabric, a method for producing the same, and a synthetic resin laminate comprising the same as a base material, and more particularly, includes an inorganic fiber layer and an organic fiber layer, and the inorganic fiber and the organic fiber are mixed between the layers. The present invention relates to a nonwoven fabric in a state, a method for producing the same, and a synthetic resin laminate containing the nonwoven fabric as a base material.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, inorganic fiber nonwoven fabric (particularly, glass fiber nonwoven fabric) has been used as a base material of a synthetic resin laminate such as a flooring material for building (tile carpet, cushion floor, etc.). In this case, the inorganic fiber non-woven fabric is made into a sheet impregnated or coated with a synthetic resin (especially vinyl chloride resin), and another synthetic resin layer (sheet) or a decorative layer (such as tuft cloth) is laminated on the sheet. Have been.
[0003]
However, in the conventional inorganic fiber nonwoven fabric, when used in the synthetic resin laminate as described above, if the ratio of the amount of the inorganic fiber nonwoven fabric to the synthetic resin layer is not equal to or more than a certain value, the synthetic resin laminate has sufficient dimensional stability. Is not given. That is, in a synthetic resin laminated material used for applications such as flooring materials for buildings such as tile carpets and cushion floors, the synthetic resin laminated material used as a base material is not required unless the inorganic fiber nonwoven fabric used as the base material has a large basis weight. Due to the effect of the shrinkage of the layer and the decorative layer, the warp in the direction of the walking surface (the surface of the laminated material) becomes large, and it becomes difficult to construct the floor surface.
[0004]
So far, dimensional stability has been ensured by using a high basis weight inorganic fiber nonwoven fabric that can cope with the shrinkage of the other synthetic resin layer and decorative layer to be laminated.
However, when an inorganic fiber nonwoven fabric having a large basis weight is used, traces of glass fibers are formed on the surface of the synthetic resin laminate, and problems such as a decrease in smoothness and workability of the surface occur.
[0005]
As a method of eliminating the construction failure due to warpage of a synthetic resin laminate such as a flooring material for a building as described above, inorganic fiber non-woven fabric impregnated or coated with a synthetic resin, another synthetic resin layer (sheet), a decorative layer There is a method of laminating a nonwoven fabric or a net of an organic fiber such as a synthetic fiber on the construction surface (the back surface of the laminated material) together with (taft fabric or the like).
Due to the shrinkage of the organic fibers laminated on the construction surface side, warpage occurs on the construction surface side, offset by the warpage generated by shrinkage of the decorative layer or synthetic resin layer laminated on the walking surface side, construction It makes it easier.
However, in order to sufficiently exhibit the effects of the organic fiber nonwoven fabric and the net, it is necessary to attach or impregnate the synthetic resin layer or the like on the construction surface side. Therefore, in the production of a laminated material such as a flooring material for a building, the number of production steps is increased, and the cost is increased.
[0006]
Therefore, instead of the method of using the inorganic fiber non-woven fabric and the synthetic fiber non-woven fabric or net together as described above, an attempt has been made to provide an organic fiber layer on the inorganic fiber non-woven fabric. In other words, this is a method in which one surface of the nonwoven fabric is an inorganic fiber layer and the other surface is an organic fiber layer.
As a method for producing an inorganic fiber nonwoven fabric provided with such an organic fiber layer, for example, as disclosed in JP-A-53-9808, an inorganic fiber nonwoven fabric and an organic fiber nonwoven fabric are dried in a dry sheet or wet sheet state. There is a method of bonding. However, such bonding is disadvantageous in terms of cost due to an increase in the number of manufacturing steps, and in addition, the inorganic fiber nonwoven fabric is likely to be warped due to a bimetal effect due to a difference in thermal expansion coefficient between the inorganic fiber and the organic fiber. Become. Further, since there is no entanglement of the constituent fibers of the two layers between the inorganic fiber layer and the organic fiber layer, the delamination strength is low.
[0007]
In addition, when the conventional inorganic fiber nonwoven fabric as described above is used, a large number of inorganic fibers are exposed on the surface of the synthetic resin laminate unless completely impregnated with the synthetic resin. This is a problem because it irritates the skin of workers and the like. In order to prevent this, it is conceivable to use inorganic fibers having a small fiber diameter. However, the rigidity of a synthetic resin laminated material using a nonwoven fabric using an inorganic fiber having a small fiber diameter decreases. Further, there is also a problem that inorganic fibers having a small fiber diameter are expensive, and as a result, the nonwoven fabric itself becomes expensive.
Furthermore, there is a method of reducing the content of inorganic fibers contained in the nonwoven fabric to eliminate irritation to the skin by blending organic fibers, but if the content ratio of inorganic fibers is reduced, naturally, the inorganic fiber nonwoven fabric is used. Have poor physical properties, and the desired performance cannot be obtained.
[0008]
Further, as disclosed in the above-mentioned JP-A-53-9808,
If an organic fiber layer is provided on one side of the inorganic fiber layer, such as a bonded nonwoven fabric of inorganic fibers and organic fibers, skin irritation caused by the inorganic fibers can be avoided. However, as described above, such a bonded nonwoven fabric is disadvantageous in physical properties and cost.
[0009]
[Problems to be solved by the invention]
An object of the present invention is to provide an inorganic fiber nonwoven fabric having an organic fiber layer and a high interlayer strength between an inorganic fiber layer and an organic fiber layer while having a low basis weight.
When this inorganic fiber non-woven fabric is provided with a synthetic resin layer and is used as a laminate material for applications such as flooring for construction, etc., it has good dimensional stability despite being a low basis weight base material. No warping that hinders the operation of the camera.
Further, it can be manufactured at a lower cost than conventional bonded nonwoven fabrics, and there is no skin irritation due to inorganic fibers exposed on the surface of the laminated material.
Yet another object of the present invention is to provide a novel method for producing such a nonwoven fabric.
[0010]
[Means for Solving the Problems]
As a result of conducting various studies to achieve the above-described object, first, a layer of the organic fiber-containing dispersion was formed from the organic fiber-containing dispersion. By supplying the inorganic fiber-containing dispersion on the layer of the fiber-containing dispersion, by forming an inorganic fiber layer, by further drying the formed organic fiber layer and the inorganic fiber layer under specific conditions, One surface (front surface) is made of inorganic fibers, and the other surface (back surface) is made of organic fibers. At the interface between the two, organic fibers and inorganic fibers are mixed, so that the delamination strength is high and the nonwoven fabric The inventors have found that a nonwoven fabric having less warpage and excellent physical properties as a base material for flooring and wallpaper can be obtained, and the present invention has been completed.
[0011]
That is, according to the present invention, the above-mentioned problems are:
(1) A nonwoven fabric comprising an inorganic fiber layer and an organic fiber layer, wherein an inorganic fiber and an organic fiber are mixed at an interface where the inorganic fiber layer and the organic fiber layer are in contact with each other. ;
(2) applying the organic fiber-containing dispersion to the papermaking net;
The layer of the applied organic fiber-containing dispersion is dehydrated through a paper net,
On the layer of the organic fiber-containing dispersion that has been dehydrated, apply the inorganic fiber-containing dispersion,
The layer of the organic fiber-containing dispersion and the layer of the inorganic fiber-containing dispersion applied thereon are dehydrated through a paper net to form an organic fiber layer and an inorganic fiber layer.
A method for producing a nonwoven fabric comprising the steps of:
And
(3) A synthetic resin laminate comprising the nonwoven fabric according to (1) above as a base material
Is solved by
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The nonwoven fabric of the present invention includes an organic fiber layer and an inorganic fiber layer, and an organic fiber and an inorganic fiber are mixed at an interface between the two layers. Therefore, the back surface is a layer substantially made of organic fibers, and since there are almost no inorganic fibers, when processed into a synthetic resin laminate for flooring or the like, the inorganic fibers may be exposed outside the nonwoven fabric. It does not irritate the human body.
Although the nonwoven fabric of the present invention contains an organic fiber layer and an inorganic fiber layer, a portion near the organic fiber layer, particularly near the interface, contains a small amount of inorganic fibers and / or an inorganic fiber layer, particularly near the interface. It does not exclude that the parts contain organic fibers.
[0013]
Further, since the nonwoven fabric of the present invention has an interface portion where both fibers are mixed between the organic fiber layer and the inorganic fiber layer, there is no clear boundary between the organic fiber layer and the inorganic fiber layer. . Therefore, the delamination strength is not low, and warpage hardly occurs during manufacturing. Furthermore, there is no warping caused by a bimetal effect caused by a difference in expansion and contraction rate between the organic fiber layer and the inorganic fiber layer due to a change in temperature and humidity.
[0014]
Hereinafter, a specific example of the method for producing a nonwoven fabric of the present invention will be described with reference to the drawings.
For manufacturing the nonwoven fabric of the present invention, a fourdrinier wet-type paper machine schematically shown in FIG. 1 is used. The manufacturing method of the present invention is characterized by a method of supplying raw material fibers. .
[0015]
In the present invention, a plurality of nozzles 2 for supplying an organic fiber-containing dispersion are provided upstream of the papermaking net 1, and the organic fiber-containing dispersion is supplied onto the papermaking net 1 from the nozzles 2. The number of nozzles 2 may be selected according to the width of the nonwoven fabric to be manufactured. A hood 21 is preferably provided around the nozzle tip to prevent early mixing of the organic fiber-containing dispersion and the inorganic fiber-containing mixture to be supplied later.
[0016]
The layer of the organic fiber-containing dispersion is dehydrated using the first section 31 (first dehydration box) of the dehydration device 3 (suction device) provided near the nozzle and below the papermaking net 1 in the downstream part, and is thinned. An organic fiber layer is formed on the papermaking net 1.
[0017]
Since the papermaking net 1 is moving from the right side to the left side (in the direction of arrow A) in FIG. 1, the layer of the organic fiber-containing dispersion is moved when the layer of the organic fiber-containing dispersion is moved to the downstream region while being dewatered. Before dewatering, that is, while the layer of the organic fiber-containing dispersion is still in a fluid state, supplying the inorganic fiber-containing dispersion from the supply port 4 onto the layer, Is formed.
Next, the layer of the organic fiber-containing dispersion and the layer of the inorganic fiber-containing dispersion formed thereon are connected to the second to fifth sections 32, 33, 34, 35 (the (2-5 dehydration boxes) to form an organic fiber layer and an inorganic fiber layer.
[0018]
In the above method, since the formation of the inorganic fiber layer starts before the layer of the organic fiber-containing dispersion is dehydrated and the organic fiber layer is formed, the inorganic fiber and the organic fiber are interposed between the organic fiber layer and the inorganic fiber layer. Mixed. For this reason, a nonwoven fabric having a higher interlayer strength than a two-layer nonwoven fabric manufactured by conventional lamination while having a thin layer of organic fibers can be obtained.
[0019]
After forming the laminate of the organic fiber layer and the inorganic fiber layer, this is dried. Drying can be performed by a usual method, but drying is preferably performed by the following method in order to reduce warpage due to a difference in thermal expansion coefficient between the organic fiber layer and the inorganic fiber layer.
[0020]
Using an air-through dryer as a drying means, hot air is blown from above and below the laminate.
In this case, by making the temperature of the hot air from the lower part (organic fiber side) lower than the temperature of the hot air from the upper part (inorganic fiber layer side), the difference in the thermal expansion coefficient between the inorganic fiber layer and the organic fiber layer is caused. Warpage can be reduced. For example, the temperature of the hot air from the upper part is 200 to 250 ° C., and the temperature of the hot air from the lower part is 150 to 180 ° C.
[0021]
Furthermore, in order to further reduce the warpage due to the coefficient of thermal expansion between the organic fiber layer and the inorganic fiber layer, it is preferable to press the organic fiber layer side of the nonwoven fabric against the surface (surface temperature: 120 to 180 ° C.) of the thermal drum dryer. The linear pressure in this case is usually 30 to 60 kgf / cm.
[0022]
Next, organic fibers and inorganic fibers used in the nonwoven fabric of the present invention will be described.
First, the inorganic fiber used in the present invention is not particularly limited as long as the desired effect of the present invention is not impaired. For example, mineral fibers such as glass fibers and rock wool fibers, ceramic fibers, carbon fibers, alumina fibers, and metal fibers are preferable. Among them, glass fiber is most preferable in terms of price, availability, and the like.
[0023]
The fiber diameter of the inorganic fiber used is preferably 4 μm or more. Those having a fiber diameter of 4 μm or less have little skin irritation, but are very expensive.
The fiber length is preferably 3 mm to 50 mm. From the viewpoint of fiber dispersibility, those having a length of 6 to 25 mm are suitable. In addition, different fiber diameters such as 6 μm diameter and 9 μm diameter may be mixed and used as long as the desired effects of the present invention are not impaired.
As the inorganic fibers, particularly, those obtained by cutting continuous filaments produced by a melt spinning method to a specified length are preferable because there is no variation in fiber diameter and fiber length.
[0024]
In the present invention, synthetic fibers such as polyester, acrylic, urethane, vinyl chloride, polyamide, rayon, and vinylon, and natural fibers such as wood pulp and cotton can be used as the organic fibers. Morphologically, from a rod-like straight shape to a pulp-like shape, the desired effects of the present invention can be obtained as long as the dispersibility at the time of supply and the physical properties of the nonwoven fabric are not impaired. In a range, a plurality of different organic fibers can be used in a ratio depending on the purpose.
[0025]
The thickness of the organic fiber layer and the inorganic fiber layer in the nonwoven fabric of the present invention and the ratio between the two may be appropriately set according to the intended use of the nonwoven fabric. According to the present invention, the thickness of the organic fiber layer can be made as small as possible.
[0026]
In order to bond the fibers of the nonwoven fabric having the inorganic fiber layer and the organic fiber layer of the present invention, a binder can be supplied.
The binder used in the present invention may be a resin binder usually used for nonwoven fabrics, for example, polyvinyl alcohol-based resin, various acrylate-based resins, polyvinyl acetate-based resin, epoxy-based resin, urethane-based resin, styrene-butadiene Copolymer resins and the like, which can be used in the form of a liquid such as an aqueous solution, an emulsion, or a dispersion, or a solid such as a powder, a particle, or a fiber.
[0027]
The method for supplying the binder is a usual method for supplying a binder used in the production of a nonwoven fabric, and an external addition method such as a spray method, an impregnation method, and a curtain coater method is particularly preferable.
[0028]
Further, in the nonwoven fabric of the present invention, the same kind of binder can be supplied by the above-mentioned external addition method in the same manner as in the case of the conventional nonwoven fabric, and each fiber intersection can be bound by the same kind of binder.
In the nonwoven fabric of the present invention, when the fibers are bonded with the same type of binder, the warpage of the nonwoven fabric is more effectively suppressed, and the physical properties such as dimensional accuracy can be further improved.
[0029]
It is also possible to supply a powdery resin binder by an internal addition method. In this case, it is necessary to give due consideration to the mixing ratio of the powdery resin binder in each raw material dispersion during papermaking so as not to impair the desired properties of the nonwoven fabric of the present invention.
[0030]
The nonwoven fabric of the present invention may contain a component having a plugging effect on the synthetic resin layer to be impregnated or applied (hereinafter, simply referred to as a “plugging component”). As such a plugging component, an inorganic filler, an organic fiber, a synthetic resin, or the like can be used alone or in combination of two or more.
[0031]
As the inorganic filler, any material can be generally used as long as it can be used for plugging the synthetic resin layer. Preferred examples of the inorganic filler include inorganic powders such as talc, calcium carbonate, kaolin, clay, aluminum hydroxide, magnesium hydroxide, mica, and silica, and fine fibers such as sepiolite.
[0032]
In addition, any organic fiber can be used as long as it can be generally used for plugging a synthetic resin.
Examples of the organic fibers that can be preferably used include, for example, the organic fibers described above as the organic fibers forming the organic fiber layer included in the nonwoven fabric of the present invention. However, in this case, the organic fiber is included only to obtain a plugging effect on the synthetic resin, and the desired effect of the present invention must not be impaired.
[0033]
As the synthetic resin as the plugging component, any synthetic resin that can be used for plugging the synthetic resin layer can be used.
Examples of preferred synthetic resins include polyvinyl alcohol-based resins, various acrylate-based resins, polyvinyl acetate-based resins, urethane-based resins, styrene-butadiene copolymer-based resins, and the like. These are liquid (aqueous solution, emulsion, Dispersion, etc.).
[0034]
The method for including the plugging component in the nonwoven fabric is not particularly limited. As a preferable method, there are a method of mixing with an inorganic fiber layer and / or an organic fiber layer, and a method of applying or impregnating a nonwoven fabric in a wet paper state and a dry paper state as a coating liquid.
[0035]
The nonwoven fabric of the present invention is preferably used for various building materials such as flooring and wallpaper, but can also be used as a base material for interior materials, ceiling materials, roofing materials such as roofing, and FRP. In this case, a synthetic resin layer is formed on any surface of the nonwoven fabric of the present invention, preferably on the surface on the inorganic fiber layer side, by a conventional method.
Furthermore, the nonwoven fabric of the present invention can also be used as a filtering material such as a filter or a support.
[0036]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
[0037]
In Examples and Comparative Examples, physical properties and suitability were measured and evaluated according to the following procedures.
(1) Non-woven fabric warpage
After leaving the nonwoven fabric sample (width 250 mm, length 400 mm) in an atmosphere of a temperature of 20 ° C. and a humidity of 65% for 48 hours, the sample was placed on a horizontal surface, and the height from the horizontal surface to the highest point at both ends was measured.
(2) Warpage of synthetic resin laminate (tile carpet) containing nonwoven fabric as base material
A non-woven fabric is impregnated or coated with a vinyl chloride resin sol (prepared by kneading 100 parts by mass of a vinyl chloride resin paste, 60 parts by mass of a plasticizer, and 10 parts by mass of an inorganic filler) to obtain a basis weight of about 300 g / m. 2 Sheet.
Thereafter, a foamed vinyl chloride resin sheet (prepared by kneading 100 parts by mass of a vinyl chloride resin paste, 60 parts by mass of a plasticizer, 2 parts by mass of a foaming agent, and 10 parts by mass of an inorganic filler. 2 About 2.0 mm in thickness, laminated on both sides (inorganic fiber layer side and organic fiber layer side) of this vinyl chloride resin coated nonwoven fabric sheet, and further tufted the upper side (inorganic fiber layer side) to the foamed vinyl chloride resin layer. Laminated to make a tile carpet sample.
After leaving the tile carpet sample (thickness 8 mm, width 400 mm, length 400 mm) in an atmosphere at a temperature of 20 ° C. and a humidity of 65% for 2 weeks, the sample is placed on a horizontal surface, and the height from the horizontal surface to the highest point at both ends is measured. Was measured.
[0038]
(3) Warpage of synthetic resin laminate (cushion floor) containing nonwoven fabric as base material
A vinyl chloride resin-impregnated inorganic fiber nonwoven fabric sheet similar to the above (2) was produced.
Thereafter, the same foamed vinyl chloride resin sheet as in the above (2) was laminated on the upper and lower sides (the inorganic fiber layer side and the organic fiber layer side) of the vinyl chloride resin-impregnated nonwoven fabric sheet to prepare a cushion floor sample.
After leaving the cushion floor sample (thickness 5 mm, width 400 mm, length 400 mm) in an atmosphere of a temperature of 20 ° C. and a humidity of 65% for 2 weeks, the sample is placed on a horizontal surface and the height from the horizontal surface to the highest point at both ends is measured. Was measured.
[0039]
(4) Dimensional stability of synthetic resin laminate (tile carpet) containing nonwoven fabric as base material
A tile carpet sample (thickness mm, width 400 mm) similar to the above (2)
, 400 mm in length) in an atmosphere of a temperature of 20 ° C. and a humidity of 65% for 24 hours or more. After that, the tile carpet sample was left in a constant-temperature hot-air dryer at 180 ° C. for 3 minutes, and the length direction of the sample was measured. The stretch ratio in the width direction was measured.
(5) Dimensional stability of synthetic resin laminate (cushion floor) containing nonwoven fabric as base material
Cushion floor sample (thickness 8 mm, width 400 mm) similar to the above (3)
After humidifying a 400 mm length in an atmosphere of a temperature of 20 ° C. and a humidity of 65% for 24 hours or more, the cushion floor sample was left in a 180 ° C. constant temperature hot air drier for 3 minutes, and the length and thickness of the sample were measured. The expansion and contraction ratio in the vertical direction was measured.
[0040]
(6) Delamination strength of non-woven fabric
The delamination strength was measured using a tensile tester (manufactured by Shimadzu Corporation) according to JIS-L-1023.
(7) Skin irritation of non-woven fabric
The surface of the nonwoven fabric on the organic fiber layer side was touched by a human hand, and those having no skin irritation due to inorganic fibers were judged as ○ (good), and those with skin irritation were judged as x (poor). .
(8) Surface condition of synthetic resin laminate including nonwoven fabric as base material
The surface on the inorganic fiber layer side of the cushion floor sample prepared in the above (3) was visually observed, and the surface roughness such as glass fiber traces was examined. Surface roughness
A small number was determined to be ○, and a large number was determined to be ×.
[0041]
Example 1
Using the wet Fourdrinier paper machine shown in FIG. 1, the following nonwoven fabric having an organic fiber layer and an inorganic fiber layer was produced.
In the inorganic fiber layer, 95 parts by mass of glass fiber (13 μm in fiber diameter × 25 mm in fiber length) and 5 parts by mass of a Povar-based resin particulate binder (based on 100 parts by mass of the entire inorganic fiber layer) are blended to form an organic fiber layer. Blended 100 parts by mass of polyester fiber (with a fiber diameter of 60 μm × fiber length of 10 mm) (based on 100 parts by mass of the whole organic fiber layer).
[0042]
A predetermined amount of the above-mentioned inorganic fiber layer raw material was dispersed in water in the presence of a dispersant and a dispersing aid to prepare an inorganic fiber-containing dispersion having a raw material concentration of 0.02% by mass. On the other hand, a predetermined amount of the organic fiber layer raw material was dispersed in water in the presence of a dispersant and a dispersing aid to prepare a 0.1% by mass organic fiber-containing dispersion.
[0043]
In the fourdrinier paper machine shown in FIG. 1, the above-mentioned organic fiber-containing dispersion is supplied from a nozzle 2 onto a netting machine 1 moving at a speed of 60 m / min in the direction of arrow A at a predetermined flow rate (when the organic fiber layer is 8 g / m 2 , And a layer of the organic fiber-containing dispersion was dehydrated by the first section of the dehydrator 3 to a concentration of about 10% by mass.
Subsequently, before the dehydration of the organic fiber-containing dispersion layer is completely completed, the inorganic fiber-containing dispersion liquid is supplied onto the organic fiber-containing dispersion layer from the supply port 4 at a predetermined flow rate (inorganic fiber The layer has a basis weight of 30 g / m 2 (An amount corresponding to the formation of a dried sheet) of the inorganic fiber-containing dispersion. The two dispersion liquid layers stacked were sufficiently dehydrated by the second to fifth sections of the dehydration device 3. A liquid acrylic resin binder was applied to the obtained laminate to obtain a basis weight of 40 g / m. 2 Was obtained. An organic fiber layer was confirmed in this nonwoven fabric.
The formed nonwoven fabric was dried using an air through drier with the temperature of hot air from the top (inorganic fiber layer side) set to 240 ° C and the temperature of hot air from the bottom (organic fiber layer side) set to 180 ° C.
[0044]
Example 2
Under the same composition and conditions as in Example 1, a nonwoven fabric having an inorganic fiber layer and an organic fiber layer was formed and dried. After drying, the organic fiber layer was subjected to thermal drum touch (surface: temperature 160 ° C., pressing 30 kgf / cm).
[0045]
Example 3
Except that drying with an air-through drier was performed at a hot air temperature of 220 ° C. for both the upper part (inorganic fiber layer side) and the lower part (organic fiber layer side), the same composition and conditions as in Example 1 were used. A nonwoven fabric having an organic fiber layer was manufactured.
[0046]
Example 4
Using the wet Fourdrinier paper machine shown in FIG. 1, the following nonwoven fabric having an organic fiber layer and an inorganic fiber layer was produced.
In the inorganic fiber layer, 75 parts by weight of glass fiber (fiber diameter 10 μm × fiber length 13 mm), 20 parts by weight of wood pulp (NBKP), and 5 parts by weight of a poval resin particulate binder (based on 100 parts by weight of the whole inorganic fiber layer) And 100 parts by mass of polyester fiber (fiber diameter 60 μm × fiber length 10 mm) (based on 100 parts by mass of the whole organic fiber layer) in the organic fiber layer.
[0047]
A predetermined amount of the above-mentioned inorganic fiber layer raw material was dispersed in water in the presence of a dispersant and a dispersing aid to prepare an inorganic fiber-containing dispersion having a raw material concentration of 0.02% by mass. On the other hand, a predetermined amount of the above-mentioned organic fiber layer raw material was dispersed in water in the presence of a dispersant and a dispersing aid to prepare a 0.1% by mass organic fiber-containing dispersion.
[0048]
In the Fourdrinier paper machine shown in FIG. 1, the above-mentioned organic fiber-containing dispersion is supplied from a nozzle 2 onto a web 1 moving at a speed of 50 m / min in the direction of arrow A at a predetermined flow rate (when the organic fiber layer is Basis weight 8g / m 2 , And a layer of the organic fiber-containing dispersion was dehydrated by the first section of the dehydration apparatus 3 so that the concentration of the dispersion in the layer was about 6% by mass.
Subsequently, before the dehydration of the organic fiber-containing dispersion layer is completely completed, the inorganic fiber-containing dispersion liquid is supplied onto the organic fiber-containing dispersion layer from the supply port 4 at a predetermined flow rate (inorganic fiber-containing dispersion liquid). The layer has a basis weight of 30 g / m 2 (An amount corresponding to the formation of a dried sheet) of the inorganic fiber-containing dispersion. The two dispersion liquid layers stacked were sufficiently dehydrated by the second to fifth sections of the dehydration device 3. A liquid acrylic resin binder was applied to the obtained laminate to obtain a basis weight of 40 g / m. 2 Was obtained. An organic fiber layer made of polyester fibers was confirmed in this nonwoven fabric.
The formed nonwoven fabric was dried using an air through drier with the temperature of hot air from the top (inorganic fiber layer side) at 250 ° C and the temperature of hot air from the bottom (organic fiber layer side) at 170 ° C.
[0049]
Comparative Example 1
The inorganic fiber layer is formed of 95 parts by mass of glass fiber (fiber diameter 13 μm × 25 mm) and 5 parts by mass of a poval resin particulate binder, while an organic fiber layer is not formed and a liquid acrylic resin binder is applied. Otherwise, the same method as in Example 1 was repeated to obtain a basis weight of 80 g / m 2. 2 Was obtained.
The nonwoven fabric was dried using an air-through drier at a temperature of 220 ° C. for both hot air from the upper part (inorganic fiber layer side) and the lower part (organic fiber layer side).
[0050]
Comparative Example 2
The inorganic fiber layer is formed from 75 parts by mass of glass fiber (fiber diameter: 10 μm × 13 mm), 20 parts by mass of wood pulp (NBKP) and 5 parts by mass of a particulate resin binder of Poval resin, while the organic fiber layer is not formed. A method similar to that of Example 1 was repeated except that a mixed binder of a liquid poval resin binder and an acrylic resin binder was applied to obtain a basis weight of 80 g / m 2. 2 Was obtained.
The temperature of the hot air from the upper part (inorganic fiber layer side) and the temperature of the lower part (organic fiber layer side) were both set to 240 ° C. using an air-through drier, and the nonwoven fabric was dried.
[0051]
Comparative Example 3
The nonwoven fabric was manufactured using a paper machine combining a long net for a bonded nonwoven fabric and a round net, or a paper machine having two round nets.
In the inorganic fiber layer, 95 parts by mass of glass fiber (fiber diameter 13 μm × fiber length 25 mm) and 5 parts by mass of a poval resin particulate binder were blended, and a wet sheet (basis weight 30 g / m 2) was added. 2 Is dried by a long net or a round net, and 100 parts by mass of polyester fiber (fiber diameter 60 μm × fiber length 10 mm) is further blended as an organic fiber layer, and the wet sheet (basis weight 8 g / m 2) is formed. 2 (Equivalent to a dried sheet) was paper-formed using a round-mesh paper machine and stuck on the net in a wet state. In this case, at the stage of forming the organic fiber layer, both the previously formed inorganic fiber layer and the organic fiber layer have lost their fluidity.
Thereafter, a liquid acrylic resin binder was applied, and dried at 220 ° C., and the basis weight was 40 g / m 2. 2 Was obtained.
[0052]
Table 1 below summarizes the results of the physical properties and suitability tests of the nonwoven fabrics produced in the examples and comparative examples.
[0053]
[Table 1]
Figure 2004084092

[Brief description of the drawings]
FIG. 1 is a sectional view of a fourdrinier wet type paper machine used in the method for producing a nonwoven fabric of the present invention.
[Explanation of symbols]
1 ... netting, 2 ... nozzle, 3 ... dewatering device, 4 ... supply port

Claims (8)

無機繊維層および有機繊維層からなる不織布であって、該無機繊維層と該有機繊維層とが接触する界面において、無機繊維と有機繊維とが混在していることを特徴とする不織布。What is claimed is: 1. A nonwoven fabric comprising an inorganic fiber layer and an organic fiber layer, wherein an inorganic fiber and an organic fiber are mixed at an interface where the inorganic fiber layer and the organic fiber layer are in contact with each other. 該無機繊維層および該有機繊維層の少なくとも一層が、該不織布に積層される合成樹脂層に対する目詰め効果を有する成分を含んでなる請求項1に記載の不織布。The nonwoven fabric according to claim 1, wherein at least one of the inorganic fiber layer and the organic fiber layer contains a component having a plugging effect on a synthetic resin layer laminated on the nonwoven fabric. 抄網に有機繊維含有分散液を適用し、
適用された有機繊維含有分散液の層を、抄網を介して脱水し、
脱水されている有機繊維含有分散液の層の上に、無機繊維含有分散液を適用し、
有機繊維含有分散液の層およびその上に適用された無機繊維含有分散液の層を、抄網を介して脱水して、有機繊維層および無機繊維層を形成する
工程を含んでなる不織布の製造方法。
Apply the organic fiber-containing dispersion to the papermaking net,
The layer of the applied organic fiber-containing dispersion is dehydrated through a paper net,
On the layer of the organic fiber-containing dispersion that has been dehydrated, apply the inorganic fiber-containing dispersion,
Production of a nonwoven fabric comprising a step of forming an organic fiber layer and an inorganic fiber layer by dehydrating a layer of an organic fiber-containing dispersion and a layer of an inorganic fiber-containing dispersion applied thereon over a papermaking net. Method.
形成された有機繊維層および無機繊維層を乾燥する工程をさらに含む請求項3に記載の製造方法。The production method according to claim 3, further comprising a step of drying the formed organic fiber layer and inorganic fiber layer. 乾燥は、形成された有機繊維層および無機繊維層に熱風を吹き付けて行う請求項4に記載の製造方法。The manufacturing method according to claim 4, wherein the drying is performed by blowing hot air onto the formed organic fiber layer and inorganic fiber layer. 熱風は、形成された有機繊維層および無機繊維層の両面から吹き付け、無機繊維層側に吹き付ける熱風の温度より、有機繊維層側に吹き付ける熱風の温度を低くする請求項5に記載の製造方法。The manufacturing method according to claim 5, wherein the hot air is blown from both sides of the formed organic fiber layer and the inorganic fiber layer, and the temperature of the hot air blown to the organic fiber layer side is lower than the temperature of the hot air blown to the inorganic fiber layer side. 乾燥後に、不織布の有機繊維層側に熱ドラムに接触させながら加熱加圧する請求項4〜6のいずれかに記載の製造方法。The method according to any one of claims 4 to 6, wherein after drying, the organic fiber layer side of the nonwoven fabric is heated and pressed while being in contact with a heat drum. 基材として、請求項1または2に記載の不織布を含んでなる合成樹脂積層材。A synthetic resin laminate comprising the nonwoven fabric according to claim 1 as a substrate.
JP2002244072A 2002-08-23 2002-08-23 Nonwoven fabric, method for producing the same and synthetic resin laminate material containing the same as substrate Pending JP2004084092A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002244072A JP2004084092A (en) 2002-08-23 2002-08-23 Nonwoven fabric, method for producing the same and synthetic resin laminate material containing the same as substrate
KR1020020053624A KR20040018073A (en) 2002-08-23 2002-09-05 Nonwoven fabric, preparing method thereof, and synthetic resin-layered material containing it as substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002244072A JP2004084092A (en) 2002-08-23 2002-08-23 Nonwoven fabric, method for producing the same and synthetic resin laminate material containing the same as substrate

Publications (1)

Publication Number Publication Date
JP2004084092A true JP2004084092A (en) 2004-03-18

Family

ID=32052672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002244072A Pending JP2004084092A (en) 2002-08-23 2002-08-23 Nonwoven fabric, method for producing the same and synthetic resin laminate material containing the same as substrate

Country Status (2)

Country Link
JP (1) JP2004084092A (en)
KR (1) KR20040018073A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015086477A (en) * 2013-10-29 2015-05-07 三菱製紙株式会社 Nonwoven fabric made of wet method and method for producing the same
JP2018126995A (en) * 2016-12-09 2018-08-16 ザ・ボーイング・カンパニーThe Boeing Company Fiber-modified interlayer for composite structure and manufacturing method
JP7540259B2 (en) 2020-09-16 2024-08-27 三菱ケミカル株式会社 Carbon fiber sheet manufacturing method, carbon fiber web manufacturing apparatus, and carbon fiber sheet manufacturing apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4847140A (en) * 1985-04-08 1989-07-11 Helmic, Inc. Nonwoven fibrous insulation material
JPH04286638A (en) * 1991-03-15 1992-10-12 Dainippon Ink & Chem Inc Laminate and manufacture thereof
JP2833635B2 (en) * 1991-09-12 1998-12-09 東レ株式会社 Insulating inorganic fiber mat
JPH06246861A (en) * 1993-02-26 1994-09-06 Sumitomo Metal Ind Ltd Fiber-reinforced resin composite laminated material
JP2001271438A (en) * 2000-03-24 2001-10-05 Bridgestone Corp Outdoor sound absorbing material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015086477A (en) * 2013-10-29 2015-05-07 三菱製紙株式会社 Nonwoven fabric made of wet method and method for producing the same
JP2018126995A (en) * 2016-12-09 2018-08-16 ザ・ボーイング・カンパニーThe Boeing Company Fiber-modified interlayer for composite structure and manufacturing method
JP7182866B2 (en) 2016-12-09 2022-12-05 ザ・ボーイング・カンパニー Fiber modified interlayer for composite structures and method of manufacture
JP7540259B2 (en) 2020-09-16 2024-08-27 三菱ケミカル株式会社 Carbon fiber sheet manufacturing method, carbon fiber web manufacturing apparatus, and carbon fiber sheet manufacturing apparatus

Also Published As

Publication number Publication date
KR20040018073A (en) 2004-03-02

Similar Documents

Publication Publication Date Title
US8187418B2 (en) Method of making multilayer nonwoven fibrous mats
US7932193B2 (en) Coated mat products, laminates and method
CN104245305B (en) Gypsum board suitable for wet or damp areas
KR101953694B1 (en) Mat and gypsum boards suitable for wet or humid areas
US8828892B2 (en) Drywall tape and drywall joint
EP1319746B1 (en) Wet-laid nonwoven reinforcing mat
JPH11506504A (en) Manufacturing method and nonwoven fabric
US20090130416A1 (en) Highly Filled Fibrous Veil
WO2007091770A1 (en) Sheet paper for interior use and preparing mehtod thereof
EP1710076A1 (en) Nonwoven fibrous mat laminate and method
US20100266835A1 (en) Wallboard tape
US20080014815A1 (en) Highly filled fibrous veil
KR0177023B1 (en) Paper products made from korean traditional paper and a method for producing the same
WO2006087426A1 (en) A method of manufacturing a carrier substrate for cv flooring, a carrier substrate for cv flooring and cv flooring
JP2004084092A (en) Nonwoven fabric, method for producing the same and synthetic resin laminate material containing the same as substrate
JP5668140B2 (en) Surface waterproof paper for inorganic board using mixed nonwoven fabric and waterproof coating layer, and method for producing the same
JP3394404B2 (en) Backing base material for flooring and method of manufacturing the same
JP4373552B2 (en) Asphalt roofing materials
US20050025949A1 (en) Deformable veil and process for manufacturing same
JP2003025503A (en) Embossed wallpaper
JPH03174086A (en) Production of glass fiber paper
JPH043039Y2 (en)
JP2680403B2 (en) Method for manufacturing glass sheet substrate
JP2017066549A (en) Nonwoven fabric for backing wall paper
JPS602237Y2 (en) Asphalt waterproof sheet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050531