JP2004083958A - Alloy cast iron continuously cast bar for glass mold - Google Patents

Alloy cast iron continuously cast bar for glass mold Download PDF

Info

Publication number
JP2004083958A
JP2004083958A JP2002243833A JP2002243833A JP2004083958A JP 2004083958 A JP2004083958 A JP 2004083958A JP 2002243833 A JP2002243833 A JP 2002243833A JP 2002243833 A JP2002243833 A JP 2002243833A JP 2004083958 A JP2004083958 A JP 2004083958A
Authority
JP
Japan
Prior art keywords
cast iron
cast
rod
alloy cast
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002243833A
Other languages
Japanese (ja)
Inventor
Yutaka Tsuchida
土田 裕
Yoshikatsu Furuno
古野 好克
Toru Niinuma
新沼 透
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAKUYOO KK
Nippon Chuzo Co Ltd
Original Assignee
HAKUYOO KK
Nippon Chuzo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAKUYOO KK, Nippon Chuzo Co Ltd filed Critical HAKUYOO KK
Priority to JP2002243833A priority Critical patent/JP2004083958A/en
Publication of JP2004083958A publication Critical patent/JP2004083958A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alloy cast iron continuously cast bar for a glass mold which has satisfactory creep properties at high temperature, has suppressed formation of chill structure, and has satisfactory machinability. <P>SOLUTION: The alloy cast iron continuously cast bar for a glass mold has a componential composition comprising, by mass, 2.70 to 3.85% C, 2.3 to 3.2% Si, 0.1 to 0.8% Mn, 0.1 to 0.4% Ti, 0.3 to 1.0% Ni, and 0.3 to 1.0% Mo, and in which the ratio of Ni/Mo satisfies 0.70 to 1.30, and the balance Fe with inevitable impurities. Further, the molten metal of alloy cast iron having the above componential composition is prepared, and is cast using a horizontal continuous casting apparatus to obtain a cast bar, and next, the obtained cast bar is annealed in the temperature range of 800 to 900°C, so that the alloy cast iron continuously cast bar for a glass mold is produced. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ガラスびん成形用金型の素材である合金鋳鉄連続鋳造棒及びその製造方法に関するものである。
【0002】
【従来の技術】
ガラスびん成形用の金型は、成形開始時には溶融ガラスと接する内側の温度が約650℃にまで急速加熱され、成形終了後には急冷される熱サイクルを連続的に受ける。ガラスびん成形用の金型は、このような厳しい条件の使用に耐える必要がある。そのため、素材には次のような特性が求められる。
【0003】
▲1▼ 適当な硬度を持ち、加工性(被削性)が良好なこと。
▲2▼ 熱伝導率が高いこと。
▲3▼ 熱サイクルによる寸法変化が少ないこと。
▲4▼ 高温でのクラック発生が少ないこと。
▲5▼ メンテナンスが容易なこと。
▲6▼ 経済的な価格で入手しやすいこと。
【0004】
上記の特性を勘案して、古くから金型素材の主流になっているのが鋳鉄鋳物である。ガラスびん成形用金型に使用される鋳物は、金型の作業面から10mm厚みの金属組織について、例えば、ガラスびん表面の平滑性を確保する目的で組織を細かくする必要があるために、鋳造時に冷やし金を用いて急冷する方法を用いている。また、成分については、C、Si、Mn、S、Pの5元素の配合割合を適量にするとともに、高温での耐酸化性等を向上させる目的としてNi、Crを添加している。
【0005】
特開昭52−46322号公報には、成分がC、Si、Mn、Ti、Mo,Vのガラス成形金型用合金鋳鉄であり、共晶点付近の組成として微細な黒鉛組織とすることで過激な温度条件下で使用しても熱によるクラックの発生がないこと、また、金型として重要な靭性、加工性を備え、従来のニッケルクローム鋳鉄に比べて長期耐用できるという技術内容の記載がある。
【0006】
【発明が解決しようとする課題】
ところで、金型はガラスびん成形時に約650℃の高温の溶融ガラスと接するだけでなく、繰り返しクリープ変形を受ける。そのため、従来の砂型鋳物を用いて製造した金型は高温での耐用性が十分でなく、また、個々の砂型に鋳込むために鋳物品質のばらつきも少なくない。
【0007】
一方、通常の砂型鋳物に比べて冷却速度の大きい連続鋳造法を用いると、金属組織を細かく分散することが可能であり、品質のばらつきもほとんど無い金型を作製できるが、硬くて切削性の悪いチル組織が発生しやすい。Moを鋳鉄鋳物に添加した場合、Moは高温でのクリープ特性を向上させる元素であるが、逆にチル化を促進させる元素でもあるため、連続鋳造法による製造を難かしくしていた。
【0008】
従って、本発明は、高温におけるクリープ特性がよく、チル組織の生成を抑制した被削性の良好なガラス成形用合金鋳鉄連続鋳造棒を提供することを目的とする。
【0009】
【課題を解決するための手段】
前記課題を解決するために本発明の第1の態様は、成分組成(成分組成はmass%である)が、C:2.70〜3.85%、Si:2.3〜3.2%、Mn:0.1〜0.8%、Ti:0.1〜0.4%、Ni:0.3〜1.0%、Mo:0.3〜1.0%を含有し、かつ、Ni/Mo比が0.70〜1.30を満たし、残部がFe及び不可避的不純物からなることを特徴とするガラス成形金型用合金鋳鉄連続鋳造棒である。
【0010】
本発明の第2の態様は、下記工程を備えたことを特徴とするガラス成形金型用合金鋳鉄連続鋳造棒の製造方法である。
(a) 成分組成(成分組成はmass%である)が、C:2.70〜3.85%、Si:2.3〜3.2%、Mn:0.1〜0.8%、Ti:0.1〜0.4%、Ni:0.3〜1.0%、Mo:0.3〜1.0%を含有し、かつ、Ni/Mo比が0.70〜1.30を満たし、残部がFe及び不可避的不純物からなる合金鋳鉄溶湯を用意し、
(b)前記合金鋳鉄溶湯を水平連続鋳造装置を用いて鋳造して鋳造棒を得、
(c)次いで得た鋳造棒を850〜900℃の温度範囲で焼鈍する。
【0011】
【発明の実施の形態】
以下に本発明の実施の形態について説明する。本発明者は、共晶黒鉛鋳鉄に適量のMoを添加することが、高温におけるクリープ特性の向上に効果的であること、また、Moを添加するとチル組織を発生し易いので適量のNiを添加し、さらに、Mo量とNi量の比を最適化することにより、チル組織も片状黒鉛も発生しないことを見出し本発明を完成することができた。
【0012】
本発明の合金鋳鉄連続鋳造棒は下記の成分組成(成分組成は以下mass%である)を備えている。すなわち、C:2.70〜3.85%、Si:2.3〜3.2%、Mn:0.1〜0.8%、Ti:0.1〜0.4%、Ni:0.3〜1.0%、Mo:0.3〜1.0%を含有し、かつ、Ni/Mo比が0.70〜1.30を満たし、残部がFe及び不可避的不純物からなる。
【0013】
本発明において、合金鋳鉄連続鋳造棒の成分組成、および成分組成を規定した理由について以下に説明する。
【0014】
Cは、Siと共に重要な元素であり、鋳鉄の凝固形態や金属組織、および材料特性に大きな影響を及ぼす。Cの含有量が2.70%未満では、オーステナイト晶出時の凝固収縮量と黒鉛晶出時の膨脹量のバランスが悪くなるため、鋳型と凝固殻との接触が不良となり連続鋳造が困難になる。また、黒鉛の分散も不均一となる。一方、Cの含有量が3.85%を超えると、黒鉛組織が粗大化して機械的性質は劣化する。従って、Cの含有量を2.70〜3.85%の範囲とする。
【0015】
Siは、鋳鉄溶湯からの黒鉛の晶出を促進する元素であり、含有量が2.3%未満では、共晶状黒鉛の生成や均一な分散を妨げたり、あるいは準安定系のセメンタイトが先に晶出して白銑化したりする。また、含有量が3.2%を超えるとと、粗大な片状黒鉛が晶出して切削性や機械的性質が劣化し、焼き入れ性も阻害する。従って、Siの含有量は2.3〜3.2%の範囲とする。
【0016】
Mnは、材料強度を左右すると共に炭化物生成を促進させる元素であり、含有量が0.1%未満では引張強さや硬さ等の機械的性質が確保できず、また0.8%を越えると硬い炭化物が優先的に生成して黒鉛化を阻害する。従って、Mnの含有量は0.1〜0.8%の範囲とする。
【0017】
Tiは、凝固過程に於いて共晶状黒鉛組織を得る目的で添加するものであり、0.1%未満では微細な共晶状黒鉛を得難く、0.4%を越えてもその効果は変わらない。従って、Tiの含有量は0.1〜0.4%の範囲とする。また、共晶状黒鉛とする目的は、微細な黒鉛を均一分布させることで良好な切削性、平滑性及び機械的性質を確保するためである。
【0018】
Niは、黒鉛が優先的に晶出するのを促進する元素であり、Mo添加に伴うチル組織の生成を抑制するために添加するが、0.3%未満ではその効果がなく、また、1.0%を超えて添加すると片状黒鉛を生成する。従って、Niの含有量は、0.3〜1.0の範囲とする。
【0019】
Moは、高温クリープ特性を向上させる作用を有するが、0.3%未満ではその効果が無く、また1.0%を超えても効果が大きく変わらない。従って、添加量は0.3〜1.0%の範囲とする。
【0020】
また、チル組織と片状黒鉛の両組織の生成を抑制し、所望の共晶状黒鉛を得るためには、含有するMoに応じてNiの添加量を上記範囲の中で調整する。すなわち、Ni/Mo=0.70〜1.30の範囲であることが必要である。この理由は、後述する図5の実施例に基づき上述の範囲とした。
【0021】
本発明の実施の形態では、合金鋳鉄連続鋳造棒はガラス成形用金型に用いることができる。すなわち、後述するガラス成形用金型に必要な特性、例えば、高温での耐クリープ性と耐酸化性を備えており、ガラス成形用金型として十分に用いることができる。
【0022】
また、本実施の形態では、成分組成(成分組成はmass%である)が、C:2.70〜3.85%、Si:2.3〜3.2%、Mn:0.1〜0.8%、Ti:0.1〜0.4%、Ni:0.3〜1.0%、Mo:0.3〜1.0%を含有し、かつ、Ni/Mo比が0.70〜1.30を満たし、残部がFe及び不可避的不純物からなる合金鋳鉄溶湯を用意し、合金鋳鉄溶湯を水平連続鋳造装置を用いて鋳造して鋳造棒を得、次いで得た鋳造棒を800〜900℃の温度範囲で焼鈍することを特徴とする。
【0023】
本発明は、連続鋳造設備を用いることによって、組織が微細かつ均質で、金型としての品質のバラツキも少ないというメリットが発揮される。連続鋳造設備は、公知の水平型の鋳造設備を用いることが望ましい。
【0024】
さらに、本発明では鋳造のあと、鋳造棒を焼鈍する。焼鈍は、温度が800〜900℃で行うことにより、熱応力が除去されるとともに、硬いセメンタイト組織を黒鉛組織に改善できる。
【0025】
【実施例】
(実施例1)
Moによる高温クリープ特性の改善効果を把握するため、ほぼ同一成分組成の母溶湯鋳鉄にMoを0.1%から1.5%まで変化させて添加した。また、チル組織の発生を抑制するため、Moと同量のNiを添加した。次に、水平連続鋳造設備を用いて直径130mmの合金鋳鉄連続鋳造棒を製造した。その後、1水準につき1本のクリープ試験片を採取して高温クリープ特性を調査した。
【0026】
図1としての表1には、試験片の化学成分を示した。図2には、650℃でのクリープ試験において、10時間で試験片が破断する応力とMo添加量との関係を示した。この結果から、Mo添加量が0.3%未満では、クリープ特性はほとんど向上しない。Mo添加量が0.3〜1.0%では破断応力はほぼ直線的に増加し、Mo無添加材に比べて破断応力が1.4〜1.6倍となり、クリープ特性の改善効果が著しいことが分かる。
【0027】
しかし、Mo添加量を1.0%超え〜1.5%の範囲まで増やしても破断応力は急増せず、Mo無添加材の1.7倍以下程度である。すなわち、Moが高価な金属であることを考慮すると、工業的に最も経済的かつ効果的に高温のクリープ特性を向上させるMoの添加量は0.3〜1.0%が適量である。もちろん、0.3〜1.5%の範囲まで添加してもかまわない。
【0028】
(実施例2)
連続鋳造法を用いると、砂型鋳物に比べて冷却速度が大きいために硬くて切削性の悪い、いわゆるチル組織が発生しやすい。特に、Moを添加した場合には、Mo添加量と他元素との組合わせが重要となる。本発明では、Niを同時に添加する。Niは、黒鉛の優先的晶出を促進する元素であり、チル組織の生成を抑制する。ところが、過剰に添加すると粗大な片状黒鉛が生成するので好ましくない。
【0029】
連続鋳造で鋳造棒を製造する際、Moを添加することによるチル化傾向と片状黒鉛の形成条件とを把握して適正な添加量を決定するために、MoおよびNiをそれぞれ0.3〜1.0%の範囲で添加して鋳造した。元湯となる鋳鉄溶湯の成分は、Cが2.70〜3.85%の範囲、Siが2.3〜3.2%の範囲、Mnが0.1〜0.8%の範囲、Tiが0.1〜0.4%の範囲、残部がFeと不可避的不純物からなるものである。
【0030】
水平連続鋳造設備を用いて製造した鋳造棒の直径は130mmである。なお、MoとNiの添加量を0.3〜1.0%に限定したのは、この範囲が最も経済的かつ効果的であるとの実施例1の結果に基づくものである。
【0031】
図3としての表2、図4としての表3には、上記の方法で鋳造した鋳造棒の化学成分と鋳造棒の金属組織の関係を示したものである。なお、金属組織は直径130mmの鋳鉄棒の横断面について、光学顕微鏡で観察したものである。表2、表3に示した○、△、×について、○は共晶黒鉛が全面に分布している場合、△は微量のチル組織、又は微量の片状黒鉛が発生した場合、×は多量のチル組織、又は多量の片状黒鉛が発生した場合を意味する。なお、表2には、○の評価のみを示し、表3には、△及び×の評価のものについて示した。
【0032】
図5には、Ni、Moの添加量、およびNi/Moの比の値と鋳造棒断面の金属組織との関係を示した。図において、○は共晶黒鉛が全面に分布している場合、△は微量のチル組織、又は微量の片状黒鉛が発生した場合、×は多量のチル組織、又は多量の片状黒鉛が発生した場合を意味する。また、Ni/Moの比の値が、1.30と0.70に該当する線を合せて示した。
【0033】
すなわち、MoとNiを各0.3〜1.0%添加した場合、チル組織、片状黒鉛、共晶黒鉛の生成する条件は、Ni/Moの比の値に依存し、所望の共晶黒鉛を生成する条件はNi/Moの比の値が0.70〜1.30の範囲にある。
【0034】
(実施例3)
水平連続鋳造設備を用い直径が130mmの鋳造棒を製造し、機械的性質、硬さ、および破断応力について試験を実施した。鋳造棒の化学成分は、図6としての表4に示したものである。
【0035】
図6としての表4には、650℃において実施した本発明材と従来材の引張強さ、伸び、硬さ試験および破断応力の結果を示した。表から、本発明材は、従来材と比較して、高温の引張り強さが約10%、硬さが約15%、破断応力が約45%改善されていることが分かる。
【0036】
(実施例4)
実施例3で製造した本発明材の鋳造棒を材料として、ガラスびん成形用金型を製作した。この金型の金属組織は、微細な共晶状黒鉛が均一に分散していた。そして、この金型を使用して清涼飲料水のガラスびんを製造した結果、従来材(MoやNiが無添加)の30〜50万本に対して、80〜100万本を製造することができた。
【発明の効果】
連続鋳造で鋳造棒を製造する際、MoおよびNiを添加して鋳造する。Ni、Moの添加量、およびNi/Moの比の値を調整することで、チル組織も片状黒鉛も発生せず、共晶黒鉛が全面に分布した組織とすることができる。その結果、高温におけるクリープ特性、表面の平滑性及び被削性の優れた鋳造棒を得ることができた。また、これをガラスびん成形用金型として用いた場合、従来材に比べ格段に寿命が延長できた。
【図面の簡単な説明】
【図1】図1として示した表1であり、実施例1について成分組成および破断応力値を示した一覧表である。
【図2】Mo添加量と破断応力との関係を示した。
【図3】図3として示した表2であり、実施例2について成分組成および組織を示した一覧表である。
【図4】図4として示した表3であり、実施例2について成分組成および別の組織を示した一覧表である。
【図5】実施例2についてNi、Mo添加量と金属組織の関係を示した。
【図6】表4であり、高温650℃での機械特性の比較結果を示した。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an alloy cast iron continuous cast rod used as a material for a glass bottle forming die and a method for producing the same.
[0002]
[Prior art]
The mold for forming a glass bottle is subjected to a heat cycle in which the inside temperature in contact with the molten glass is rapidly heated to about 650 ° C. at the start of forming, and is rapidly cooled after the forming is completed. The glass bottle mold needs to withstand the use of such severe conditions. Therefore, the following properties are required for the material.
[0003]
(1) Have appropriate hardness and good workability (machinability).
(2) High thermal conductivity.
(3) Dimensional change due to heat cycle is small.
(4) The occurrence of cracks at high temperatures is small.
(5) Easy maintenance.
(6) Be easily available at economical prices.
[0004]
In view of the above characteristics, cast iron castings have long been the mainstream of mold materials. The casting used for the glass bottle forming mold is a metal structure having a thickness of 10 mm from the working surface of the mold. For example, it is necessary to make the structure fine in order to ensure the smoothness of the glass bottle surface. Sometimes a method of rapid cooling using a chill is used. Regarding the components, Ni and Cr are added for the purpose of improving the compounding ratio of the five elements C, Si, Mn, S, and P and improving the oxidation resistance at high temperatures and the like.
[0005]
Japanese Patent Application Laid-Open No. 52-46322 discloses an alloy cast iron for a glass molding die having a component of C, Si, Mn, Ti, Mo, V, and a fine graphite structure having a composition near the eutectic point. It states that there is no cracking due to heat even when used under extreme temperature conditions, and that it has important toughness and workability as a mold and can be used for a long time compared to conventional nickel chrome cast iron. is there.
[0006]
[Problems to be solved by the invention]
Incidentally, the mold not only comes into contact with the molten glass having a high temperature of about 650 ° C. at the time of forming the glass bottle, but also repeatedly undergoes creep deformation. Therefore, molds manufactured using conventional sand castings do not have sufficient durability at high temperatures, and casting quality varies due to casting into individual sand castings.
[0007]
On the other hand, using a continuous casting method with a large cooling rate compared to a normal sand casting allows the metal structure to be finely dispersed and a mold with almost no variation in quality to be produced. Bad chill tissue is likely to occur. When Mo is added to a cast iron casting, Mo is an element that improves the creep properties at high temperatures, but is also an element that promotes chilling, which makes production by continuous casting difficult.
[0008]
Accordingly, an object of the present invention is to provide an alloy cast iron continuous cast rod for glass forming having good creep characteristics at high temperatures and suppressed generation of a chill structure and excellent machinability.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, in a first aspect of the present invention, the component composition (the component composition is mass%) is as follows: C: 2.70 to 3.85%, Si: 2.3 to 3.2% , Mn: 0.1 to 0.8%, Ti: 0.1 to 0.4%, Ni: 0.3 to 1.0%, Mo: 0.3 to 1.0%, and An alloy cast iron continuous casting rod for a glass forming die, wherein the Ni / Mo ratio satisfies 0.70 to 1.30, and the balance consists of Fe and unavoidable impurities.
[0010]
A second aspect of the present invention is a method for producing an alloy cast iron continuous cast rod for a glass forming die, comprising the following steps.
(A) The component composition (the component composition is mass%) is as follows: C: 2.70 to 3.85%, Si: 2.3 to 3.2%, Mn: 0.1 to 0.8%, Ti : 0.1 to 0.4%, Ni: 0.3 to 1.0%, Mo: 0.3 to 1.0%, and the Ni / Mo ratio is 0.70 to 1.30. Fill, the balance prepares a cast iron melt consisting of Fe and inevitable impurities,
(B) casting the molten alloy cast iron using a horizontal continuous casting apparatus to obtain a cast rod;
(C) Next, the obtained cast rod is annealed in a temperature range of 850 to 900 ° C.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described. The inventor of the present invention has found that adding an appropriate amount of Mo to eutectic graphite cast iron is effective in improving the creep characteristics at high temperatures. In addition, when Mo is added, a chill structure is easily generated. Furthermore, by optimizing the ratio of the amount of Mo to the amount of Ni, it was found that neither a chill structure nor flake graphite was generated, and the present invention could be completed.
[0012]
The alloy cast iron continuous cast rod of the present invention has the following composition (the composition is hereinafter referred to as mass%). That is, C: 2.70 to 3.85%, Si: 2.3 to 3.2%, Mn: 0.1 to 0.8%, Ti: 0.1 to 0.4%, Ni: 0. It contains 3 to 1.0%, Mo: 0.3 to 1.0%, the Ni / Mo ratio satisfies 0.70 to 1.30, and the balance consists of Fe and inevitable impurities.
[0013]
In the present invention, the component composition of the alloy cast iron continuous cast rod and the reason for defining the component composition will be described below.
[0014]
C is an important element together with Si, and has a great effect on the solidification form, metal structure, and material properties of cast iron. If the C content is less than 2.70%, the balance between the amount of solidification shrinkage during crystallization of austenite and the amount of expansion during crystallization of graphite becomes poor, resulting in poor contact between the mold and the solidified shell, making continuous casting difficult. Become. In addition, the dispersion of graphite becomes uneven. On the other hand, if the content of C exceeds 3.85%, the graphite structure becomes coarse and the mechanical properties deteriorate. Therefore, the content of C is set in the range of 2.70 to 3.85%.
[0015]
Si is an element that promotes crystallization of graphite from molten cast iron. If the content is less than 2.3%, the formation or uniform dispersion of eutectic graphite is prevented, or metastable cementite is first used. And crystallize into white iron. On the other hand, if the content exceeds 3.2%, coarse flaky graphite is crystallized, whereby the machinability and mechanical properties are deteriorated, and the hardenability is impaired. Therefore, the content of Si is set in the range of 2.3 to 3.2%.
[0016]
Mn is an element that affects the material strength and promotes carbide formation. If the content is less than 0.1%, mechanical properties such as tensile strength and hardness cannot be secured, and if it exceeds 0.8%, the content exceeds 0.8%. Hard carbides are preferentially formed to inhibit graphitization. Therefore, the content of Mn is set in the range of 0.1 to 0.8%.
[0017]
Ti is added for the purpose of obtaining a eutectic graphite structure in the solidification process. If it is less than 0.1%, it is difficult to obtain fine eutectic graphite. does not change. Therefore, the content of Ti is set in the range of 0.1 to 0.4%. The purpose of eutectic graphite is to ensure good machinability, smoothness and mechanical properties by uniformly distributing fine graphite.
[0018]
Ni is an element that promotes the preferential crystallization of graphite, and is added to suppress the formation of a chill structure due to the addition of Mo. If added in excess of 0.0%, flaky graphite is produced. Therefore, the Ni content is in the range of 0.3 to 1.0.
[0019]
Mo has the effect of improving the high-temperature creep properties, but if it is less than 0.3%, it has no effect, and if it exceeds 1.0%, the effect does not change much. Therefore, the addition amount is in the range of 0.3 to 1.0%.
[0020]
Further, in order to suppress the formation of both the chill structure and the flaky graphite and obtain a desired eutectic graphite, the amount of Ni added is adjusted within the above range in accordance with the contained Mo. That is, it is necessary that Ni / Mo = 0.70 to 1.30. The reason is set in the above range based on the embodiment of FIG. 5 described later.
[0021]
In the embodiment of the present invention, the alloy cast iron continuous cast rod can be used for a glass forming mold. That is, it has characteristics required for a glass molding die described later, for example, creep resistance and oxidation resistance at high temperatures, and can be sufficiently used as a glass molding die.
[0022]
In the present embodiment, the component composition (the component composition is mass%) is as follows: C: 2.70 to 3.85%, Si: 2.3 to 3.2%, Mn: 0.1 to 0. 0.8%, Ti: 0.1-0.4%, Ni: 0.3-1.0%, Mo: 0.3-1.0%, and the Ni / Mo ratio is 0.70. A molten alloy cast iron, which satisfies 1.30, the balance being Fe and unavoidable impurities, is prepared, and the molten alloy cast iron is cast using a horizontal continuous casting apparatus to obtain a cast rod. Annealing is performed in a temperature range of 900 ° C.
[0023]
ADVANTAGE OF THE INVENTION This invention demonstrates the merit that a structure | tissue is fine and homogeneous and there is little variation in quality as a metal mold by using a continuous casting equipment. As the continuous casting facility, it is desirable to use a known horizontal casting facility.
[0024]
Further, in the present invention, the cast rod is annealed after casting. By performing the annealing at a temperature of 800 to 900 ° C., the thermal stress can be removed and the hard cementite structure can be improved to a graphite structure.
[0025]
【Example】
(Example 1)
In order to grasp the effect of improving the high-temperature creep characteristics by Mo, Mo was added to the molten cast iron having substantially the same component composition while changing from 0.1% to 1.5%. Further, in order to suppress the generation of a chill structure, the same amount of Ni as Mo was added. Next, an alloy cast iron continuous casting rod having a diameter of 130 mm was manufactured using a horizontal continuous casting facility. Thereafter, one creep test piece per level was sampled and the high temperature creep characteristics were investigated.
[0026]
Table 1 as FIG. 1 shows the chemical components of the test pieces. FIG. 2 shows the relationship between the stress at which the test piece breaks in 10 hours and the amount of Mo added in the creep test at 650 ° C. From this result, when the amount of Mo added is less than 0.3%, the creep characteristics are hardly improved. When the amount of Mo added is 0.3 to 1.0%, the rupture stress increases almost linearly, and the rupture stress becomes 1.4 to 1.6 times that of the material without Mo, and the effect of improving the creep characteristics is remarkable. You can see that.
[0027]
However, even if the amount of Mo added is increased to a range of more than 1.0% to 1.5%, the rupture stress does not increase rapidly, and is about 1.7 times or less of the Mo-free material. That is, considering that Mo is an expensive metal, a suitable amount of Mo to improve the creep characteristics at a high temperature in an industrially most economical and effective manner is 0.3 to 1.0%. Of course, it may be added up to the range of 0.3 to 1.5%.
[0028]
(Example 2)
When a continuous casting method is used, a so-called chill structure, which is hard and has poor machinability, that is, a so-called chill structure is easily generated because the cooling rate is higher than that of a sand casting. In particular, when Mo is added, the combination of the amount of Mo added and other elements becomes important. In the present invention, Ni is added at the same time. Ni is an element that promotes preferential crystallization of graphite and suppresses generation of a chill structure. However, excessive addition is not preferable because coarse flake graphite is generated.
[0029]
When manufacturing a cast rod by continuous casting, in order to determine the chilling tendency due to the addition of Mo and the formation conditions of flake graphite and determine an appropriate addition amount, each of Mo and Ni is 0.3 to 0.3%. Casting was performed with addition in the range of 1.0%. The components of the cast iron melt that will become the original molten metal include C in the range of 2.70 to 3.85%, Si in the range of 2.3 to 3.2%, Mn in the range of 0.1 to 0.8%, Ti Is in the range of 0.1 to 0.4%, with the balance being Fe and unavoidable impurities.
[0030]
The diameter of the cast bar manufactured using the horizontal continuous casting equipment is 130 mm. Note that the addition amounts of Mo and Ni are limited to 0.3 to 1.0% based on the result of Example 1 that this range is the most economical and effective.
[0031]
Table 2 as FIG. 3 and Table 3 as FIG. 4 show the relationship between the chemical composition of the cast rod cast by the above method and the metal structure of the cast rod. The metallographic structure was obtained by observing a cross section of a 130 mm diameter cast iron rod with an optical microscope. Regarding ○, Δ, and × shown in Tables 2 and 3, ○ indicates that eutectic graphite is distributed over the entire surface, Δ indicates a small amount of chilled structure, or a small amount of flake graphite, and X indicates a large amount. Means a large amount of flake structure or a large amount of flake graphite. Table 2 shows only evaluations of ○, and Table 3 shows evaluations of △ and ×.
[0032]
FIG. 5 shows the relationship between the addition amounts of Ni and Mo, the value of the ratio of Ni / Mo, and the metal structure of the cross section of the cast rod. In the figure, ○ indicates that eutectic graphite is distributed over the entire surface, Δ indicates that a small amount of chilled structure or a small amount of flaky graphite is generated, and X indicates that a large amount of chilled structure or a large amount of flaky graphite is generated. Means if you do. Also, the lines corresponding to the values of the Ni / Mo ratio of 1.30 and 0.70 are shown together.
[0033]
That is, when Mo and Ni are added in amounts of 0.3 to 1.0%, the conditions under which the chill structure, flaky graphite, and eutectic graphite are formed depend on the value of the Ni / Mo ratio. The conditions for producing graphite are such that the value of the ratio of Ni / Mo is in the range of 0.70 to 1.30.
[0034]
(Example 3)
Using a horizontal continuous casting facility, a cast rod having a diameter of 130 mm was manufactured and tested for mechanical properties, hardness, and breaking stress. The chemical composition of the cast rod is shown in Table 4 as FIG.
[0035]
Table 4 as FIG. 6 shows the results of the tensile strength, elongation, hardness test, and breaking stress of the material of the present invention and the conventional material performed at 650 ° C. From the table, it can be seen that the material of the present invention is improved in tensile strength at high temperature by about 10%, hardness by about 15% and rupture stress by about 45% as compared with the conventional material.
[0036]
(Example 4)
Using the casting rod of the material of the present invention manufactured in Example 3, a mold for forming a glass bottle was manufactured. In the metal structure of this mold, fine eutectic graphite was uniformly dispersed. Then, as a result of producing a glass bottle of soft drink using this mold, it is possible to produce 800 to 1,000,000 bottles in comparison with 300,000 to 500,000 bottles of the conventional material (without adding Mo or Ni). did it.
【The invention's effect】
When manufacturing a cast rod by continuous casting, Mo and Ni are added and cast. By adjusting the amounts of Ni and Mo added and the value of the ratio of Ni / Mo, a structure in which neither chilled structure nor flaky graphite is generated and eutectic graphite is distributed over the entire surface can be obtained. As a result, a cast rod excellent in creep characteristics, surface smoothness and machinability at high temperatures could be obtained. Also, when this was used as a glass bottle molding die, the service life was significantly extended compared to conventional materials.
[Brief description of the drawings]
FIG. 1 is Table 1 shown in FIG. 1, and is a list showing a component composition and a breaking stress value of Example 1.
FIG. 2 shows the relationship between the amount of Mo added and the breaking stress.
FIG. 3 is Table 2 shown as FIG. 3, and is a list showing the component composition and the structure of Example 2.
FIG. 4 is Table 3 shown as FIG. 4, and is a list showing the component composition and another structure for Example 2.
FIG. 5 shows the relationship between the amounts of Ni and Mo added and the metal structure for Example 2.
FIG. 6 is a table 4 showing comparison results of mechanical properties at a high temperature of 650 ° C.

Claims (2)

成分組成(成分組成はmass%である)が、C:2.70〜3.85%、Si:2.3〜3.2%、Mn:0.1〜0.8%、Ti:0.1〜0.4%、Ni:0.3〜1.0%、Mo:0.3〜1.0%を含有し、かつ、Ni/Mo比が0.70〜1.30を満たし、残部がFe及び不可避的不純物からなることを特徴とするガラス成形金型用合金鋳鉄連続鋳造棒。The component composition (the component composition is mass%) is as follows: C: 2.70 to 3.85%, Si: 2.3 to 3.2%, Mn: 0.1 to 0.8%, Ti: 0.1 to 0.8%. 1 to 0.4%, Ni: 0.3 to 1.0%, Mo: 0.3 to 1.0%, and the Ni / Mo ratio satisfies 0.70 to 1.30, with the balance being the balance. Is an alloy cast iron continuous casting rod for a glass molding die, wherein the rod comprises Fe and inevitable impurities. 下記工程を備えたことを特徴とするガラス成形金型用合金鋳鉄連続鋳造棒の製造方法。
(a) 成分組成(成分組成はmass%である)が、C:2.70〜3.85%、Si:2.3〜3.2%、Mn:0.1〜0.8%、Ti:0.1〜0.4%、Ni:0.3〜1.0%、Mo:0.3〜1.0%を含有し、かつ、Ni/Mo比が0.70〜1.30を満たし、残部がFe及び不可避的不純物からなる合金鋳鉄溶湯を用意し、
(b)前記合金鋳鉄溶湯を水平連続鋳造装置を用いて鋳造して鋳造棒を得、
(c)次いで得た鋳造棒を800〜900℃の温度範囲で焼鈍する。
A method for producing an alloy cast iron continuous cast rod for a glass forming die, comprising the following steps.
(A) Component composition (component composition is mass%): C: 2.70 to 3.85%, Si: 2.3 to 3.2%, Mn: 0.1 to 0.8%, Ti : 0.1 to 0.4%, Ni: 0.3 to 1.0%, Mo: 0.3 to 1.0%, and the Ni / Mo ratio is 0.70 to 1.30. Fill, the balance prepares a cast iron melt consisting of Fe and unavoidable impurities,
(B) casting the molten alloy cast iron using a horizontal continuous casting apparatus to obtain a cast rod;
(C) Next, the obtained cast rod is annealed in a temperature range of 800 to 900 ° C.
JP2002243833A 2002-08-23 2002-08-23 Alloy cast iron continuously cast bar for glass mold Pending JP2004083958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002243833A JP2004083958A (en) 2002-08-23 2002-08-23 Alloy cast iron continuously cast bar for glass mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002243833A JP2004083958A (en) 2002-08-23 2002-08-23 Alloy cast iron continuously cast bar for glass mold

Publications (1)

Publication Number Publication Date
JP2004083958A true JP2004083958A (en) 2004-03-18

Family

ID=32052497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002243833A Pending JP2004083958A (en) 2002-08-23 2002-08-23 Alloy cast iron continuously cast bar for glass mold

Country Status (1)

Country Link
JP (1) JP2004083958A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104131215A (en) * 2014-07-14 2014-11-05 常熟市精工模具制造有限公司 Micro-alloyed cast iron glass die and making method thereof
CN104985118A (en) * 2015-06-18 2015-10-21 河北安迪模具有限公司 Method for casting and producing glass mould roughcast by V-process molding process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104131215A (en) * 2014-07-14 2014-11-05 常熟市精工模具制造有限公司 Micro-alloyed cast iron glass die and making method thereof
CN104131215B (en) * 2014-07-14 2016-04-20 常熟市精工模具制造有限公司 Microalloying cast iron glass mold and manufacture method thereof
CN104985118A (en) * 2015-06-18 2015-10-21 河北安迪模具有限公司 Method for casting and producing glass mould roughcast by V-process molding process

Similar Documents

Publication Publication Date Title
EP2799565B1 (en) Spheroidal graphite cast iron having exceptional strength and ductility and method for manufacturing same
CN101082097A (en) High chromium cast iron having excellent fatigue crack resistance and process for producing the same
KR20100036973A (en) Forging and crankshaft manufactured from the same
CN105088091A (en) High-carbon graphitic steel roller ring for profile steel universal mill and manufacturing method of high-carbon graphitic steel roller ring
TW201739931A (en) Rolling rod outer layer and composite rolling rod
KR101605905B1 (en) Cgi cast iron and preparation method thereof
WO2011145194A1 (en) Heat-resistant cast iron type metallic short fiber, and process for production thereof
AU661529B2 (en) Utilization of a hardenable copper alloy
JP3735658B2 (en) High strength ductile cast iron
JP3654899B2 (en) Manufacturing method of high strength low expansion cast iron
JP4849473B2 (en) Abrasion resistant high Cr cast iron and method for producing the same
JP2004083958A (en) Alloy cast iron continuously cast bar for glass mold
JP4922971B2 (en) Composite roll for hot rolling and manufacturing method thereof
JP2001123242A (en) Fe SERIES ALLOY MATERIAL FOR THIXOCASTING
JP2006326595A (en) Bore pin for casting cylinder block
JP4109761B2 (en) Method for producing high Young&#39;s modulus high toughness Fe-based member
KR101056653B1 (en) Spherical graphite cast iron for bushing of dummy bars of continuous casting machines
JP5453480B2 (en) Cast iron billet for thixocasting and manufacturing method thereof
KR20130073811A (en) Preparation method of high strength flake graphite iron and flake graphite iron preparaed by the same method, and engine body for internal combustion engine comprising the same
JP4020277B2 (en) Cast iron composite manufacturing method
KR100728099B1 (en) Cast iron billet excelling in workability and process for producing the same
JP3904335B2 (en) Fe-based alloy material for thixocasting and casting method using the same
JPS63114936A (en) Low thermal expansion cast iron and its production
JP2002146467A (en) Continuously cast cast-iron bar having excellent wear resistance, and its manufacturing method
CN108048751A (en) A kind of high-temperature resistance die and preparation method thereof