JP2004083211A - Carrier device - Google Patents

Carrier device Download PDF

Info

Publication number
JP2004083211A
JP2004083211A JP2002246906A JP2002246906A JP2004083211A JP 2004083211 A JP2004083211 A JP 2004083211A JP 2002246906 A JP2002246906 A JP 2002246906A JP 2002246906 A JP2002246906 A JP 2002246906A JP 2004083211 A JP2004083211 A JP 2004083211A
Authority
JP
Japan
Prior art keywords
transport
guide cylinder
transfer
magnet
guide tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002246906A
Other languages
Japanese (ja)
Inventor
Tetsuo Okitomo
沖友 哲郎
Iwao Moriwaki
森脇 巌
Kazuji Kirihara
桐原 一二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2002246906A priority Critical patent/JP2004083211A/en
Publication of JP2004083211A publication Critical patent/JP2004083211A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact and lightweight carrier device carrying a carrying object using a magnetic force. <P>SOLUTION: A carrier guide cylinder 12 is internally installed with a piston 17 attached with a magnet 13. Air is fed to the inside of the carrier guide cylinder 12 from air ports 16 provided in the both ends of the carrier guide cylinder 12 and the magnet 13 reciprocates the inside of the carrier guide cylinder 12 by an air pressure. When the magnet 13 reciprocates, chips positioned outside the carrier guide cylinder 12 are attached to the magnet 13 and moved along the carrier guide cylinder 12. The chips reaching the carrying end part are separated from the magnet 13 by a stopper operation by a separating body 14 and fall in a delivery port 18 from the carrier guide cylinder 12. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、非磁化性の搬送ガイド筒、及び、この搬送ガイド筒の内部に位置している磁性体を備えた搬送装置、詳しくは、切削作用によって工作物から取り除かれた工作物の小片(以下、切りくずと呼称する。)などの搬送対象物を磁性体による磁力で搬送ガイド筒に沿わせて移送する搬送装置に関する。
【0002】
【従来の技術】
上記搬送装置として、従来、搬送ガイド筒の内部に磁性体を回動自在に設け、この磁性体を電動モータによって回動駆動することにより、搬送対象物が磁性体の磁力のために搬送ガイド筒の外周囲を螺旋状に回転しながら搬送ガイド筒に沿わせて移送されるものがあった。
【0003】
【発明が解決しようとする課題】
上記した従来の磁力利用の搬送装置にあっては、搬送ガイド筒に磁性体を回動自在に内装するものであることから、搬送ガイド筒が径の大きい大型筒になって搬送装置全体が大型化していた。また、搬送ガイド筒の面の他に、磁性体を搬送ガイド筒に内装する構造の面からも、搬送装置全体が重量化するとともにコスト高になっていた。
【0004】
本発明の目的は、搬送対象物を磁力によって搬送する割には、小型、軽量かつ安価に得られる搬送装置を提供することにある。
【0005】
【課題を解決するための手段】
請求項1による発明の構成、作用、効果はつぎのとおりである。
【0006】
〔構成〕
非磁化性の搬送ガイド筒、この搬送ガイド筒の内部に位置して搬送ガイド筒外の搬送対象物に対して磁力を及ぼす磁性体、前記搬送ガイド筒の搬送終端部で搬送対象物を磁性体から分離させる分離体、前記搬送ガイド筒に設けた流体ポートを備えてあるとともに、前記流体ポートは、流体供給装置からの流体を搬送ガイド筒の内部に送り込んで流体圧で磁性体を搬送ガイド筒内で往復移動させるように構成してある。
【0007】
〔作用〕
流体ポートによって搬送ガイド筒に供給された流体が磁性体を搬送ガイド筒内で搬送始端側と搬送終端側とにわたって往復移動させる。磁性体が搬送始端側から往行する際、切りくずなどの搬送対象物が磁性体の磁力のために搬送ガイド筒の外周面に引きつけられ、磁性体に付いて搬送ガイド筒に沿って移動する。搬送対象物が搬送終端部に至ると、磁性体が搬送対象物の再移送を行なうように搬送始端側に戻っていく。このとき、搬送対象物は、分離体によって磁性体から分離され、磁性体に付いて搬送始端側に戻らないものである。
これにより、内部に磁性体が往復移動自在に入り込むとともに流体が流動するだけの小径な搬送ガイド筒を採用して、かつ、磁性体を搬送ガイド筒の内部に往復動自在に位置させるだけの簡単な磁性体内装構造を採用して、磁性体の磁力で搬送対象物を搬送できる。
【0008】
〔効果〕
従って、磁力で搬送対象物を搬送するものでありながら、小径な搬送ガイド筒、及び、簡単な磁性体内装構造を採用して安価に得ることができ、かつ、装置全体を小型化及び軽量化して狭い設置スペースにも容易に設置できる。
【0009】
請求項2による発明の構成、作用、効果はつぎのとおりである。
【0010】
〔構成〕
請求項1による発明の構成において、前記分離体に、搬送ガイド筒の外周面の上向き面部分で磁性体から分離した搬送対象物を搬送ガイド筒の外周面の下向き面側に下降するように案内するガイド部を備えてある。
【0011】
〔作用〕
搬送終端部に到達した搬送対象物が搬送ガイド筒外周面の上向き面部分の上で磁性体から分離されることになっても、ガイド部によって搬送ガイド筒外周面の下向き面側に下降するように案内されて搬送ガイド筒から落下しやすくなる。これにより、搬送対象物が搬送終端部で磁性体から分離された後にも搬送ガイド筒の上に載ったままになり、搬送始端側に戻る磁性体に引きつけられて搬送始端側に戻ってしまう事態を発生しにくくしながら搬送を行なわせられる。
【0012】
〔効果〕
従って、搬送対象物が搬送終端側から搬送始端側に逆流すると、この逆流物のために搬送効率の低下や詰まりが発生しやすくなるが、この搬送トラブルが発生しにくいようにスムーズに搬送できる。
【0013】
【発明の実施の形態】
〔第1施形態〕
図1、図2に示すように、一対の工作機械1の一方の切りくず排出部2の下方から切りくず容器3の開口の上方にわたって搬送装置10を、他方の工作機械1の切りくず排出部2の下方から前記切りくず容器3の開口の上方にわたって搬送装置10をそれぞれ略水平に設け、各工作機械1が工作物の切削加工を行い、工作物から取り除いた工作物の小片、すなわち切りくずを切りくず排出部2から排出すると、この切りくずがその工作機械1に対応している搬送装置10によって切りくず容器3に搬送されて回収されるように構成してある。
【0014】
前記一対の工作機械1の一方に対応している搬送装置10も、他方に対応している搬送装置10も、図3、図4に示すように、樋状の切りくず受け体11、この切りくず受け体11の長手方向での両端側の側板11aどうしにわたって取り付けた搬送ガイド筒12、この搬送ガイド筒12の内部に配置した一対の磁石13、前記搬送ガイド筒12の一端側の外周面側に取り付けた分離体14を備えて構成してあり、搬送ガイド筒12の両端部にポートブロック15を付設して設けてある空気ポート16を空気管路20によって空気供給装置21に接続し、この空気供給装置21から空気ポート16に対して空気供給することにより、この空気圧によって作動して工作機械1の切りくず排出部2からの切りくずを搬送ガイド筒12に沿わせて搬送して切りくず容器3に供給するのであり、詳しくは、次の如く構成してある。
【0015】
搬送ガイド筒12は、非磁化性を備えるようにステンレス鋼管によって作製してある。すなわち、前記磁石13の作用で磁化しないように作製してある。
【0016】
図4に示すように、前記一対の磁石13は、搬送ガイド筒12の内部に摺動自在に設けた一つのピストン17の一対のピストン本体17aどうしの間に固定した永久磁石で成り、搬送ガイド筒12の前記分離体14が付いている搬送終端側と、これとは反対側の搬送始端側とにわたって搬送ガイド筒12の内部をピストン17と共に往復移動するようになっており、かつ、搬送ガイド筒12の内部を移動する際、搬送ガイド筒12の外側に位置する切りくずに対して搬送ガイド筒12を介して磁力を及ぼしながら移動する。すなわち、搬送ガイド筒12の外側に位置する切りくずが磁石13の磁力のために搬送ガイド筒12の円筒外周面に引きつけられてその円筒外周面に沿って磁石13に付いて移動することを可能にしている。
【0017】
前記一対の空気ポート16は、前記空気供給装置21による空気供給の自動制御のために一方が入力側ポートになっていると他方が出力側ポートになっている状態に入力側ポートと出力側ポートとに択一的に交互になるように制御される。入力側ポートになった方の空気ポート16は、空気供給装置21から管路20を介して供給される圧力空気を搬送ガイド筒12の内部に送り込み、出力側ポートになった方の空気ポート16は、搬送ガイド筒12の内部の圧力空気を管路20を介して空気供給装置21に排出する。これにより、搬送ガイド筒12の前記搬送始端側の端部に位置している方の空気ポート16は、空気供給装置21から空気供給されると、この空気を搬送ガイド筒12の内部に送り込んでこの空気圧によってピストン17を搬送ガイド筒12の搬送終端側に摺動させることにより、空気供給装置21からの空気圧で磁石13を搬送ガイド筒12の搬送始端側から搬送終端側に往行移動させる。搬送ガイド筒12の前記搬送終端側の端部に位置している方の空気ポート16は、空気供給装置21から空気供給されると、この空気を搬送ガイド筒12の内部に送り込んでこの空気圧によってピストン17を搬送ガイド筒12の搬送始端側に摺動させることにより、空気供給装置21からの空気圧で磁石13を搬送ガイド筒12の搬送終端側から搬送始端側に戻り移動させる。
【0018】
前記分離体14は、磁石13の作用で磁化しないように合成樹脂で作製して搬送ガイド筒12に外嵌させた樹脂筒によって構成してある。図5などに示すように、この分離体14の搬送ガイド筒12の搬送始端側に向かっている方の端部に、搬送ガイド筒12の円筒外周面のうちの上向き面部分の外側に位置するように配置した一対の分離操作部兼用のガイド部14a、及び、搬送ガイド筒12の円筒外周面のうちの前記上向き面部分以外の部分の外側に位置するように配置した分離操作部14bとしての端面を備えてある。切りくずが磁石13に付いて搬送ガイド筒12の円筒外周面に沿って移動して搬送ガイド筒12の搬送終端部に到達すると、前記ガイド部14aとか分離操作部14bに当接し、この後にも、磁石13が分離体14の前記ガイド部14a及び分離操作部14bを超えてさらに搬送ガイド筒12の端の方まで移送されるように構成してある。これにより、分離体14は、搬送ガイド筒12の搬送終端部に到達した切りくずを一対のガイド部14aや分離操作部14bのストッパー作用によって磁石13から分離させて搬送ガイド筒12から落下させる。
【0019】
図5に示すように、前記一対のガイド部14aは、磁石13の移動方向に対して傾斜しているとともに切りくず移送方向下手側に至るほど低レベルに位置した傾斜状態にしてある。これにより、分離体14の前記各ガイド部14aは、搬送ガイド筒12の円筒外周面の上向き部分で磁石13から分離させた切りくずをガイド部14aの前記傾斜形状のために搬送ガイド筒12の円筒外周面の下向き面側に下降するように案内し、切りくずを搬送ガイド筒12の上向き面部分から落下しやすくしている。
【0020】
切りくず受け体11は、非磁化性を備えるようにステンレス鋼板によって作製してある。この切りくず受け体11の前記分離体14の下方に位置する部分に、前記ステンレス鋼板をプレス成形して成る搬出筒を設けて搬出口18を形成してある。
【0021】
つまり、搬送ガイド筒12の搬送始端側に位置する空気ポート16が空気供給装置21からの空気を搬送ガイド筒12の内部に送り込み、この空気圧で一対の磁石13が搬送ガイド筒12の内部を搬送始端側から搬送終端側に往行移動する。すると、工作機械1の切りくず排出部2から搬送ガイド筒12の搬送始端側に落下した切りくずが磁石13の磁力のために搬送ガイド筒12の外周面に引きつけられ、磁石13に付いて搬送ガイド筒12に沿って移動する。このとき、切りくずが磁石13から分離して落下することがあっても、切りくず受け体11によって地上に零れ落ちないように受け止められる。切りくずが搬送ガイド筒12の搬送終端部に到達すると、分離体14が切りくずを磁石13から分離させる。この後、空気供給装置21による空気の供給切り換えのために、搬送終端側の空気ポート16が空気供給装置21からの空気を搬送ガイド筒12の内部に送り込み、この空気圧で一対の磁石13が搬送ガイド筒12の内部を搬送終端側から搬送始端側に戻り移動する。このとき、先に磁石13から分離した切りくずは、搬送ガイド筒12から搬出口18に落下していて磁石13に付いて搬送始端側に戻らないことにより、工作機械1から搬送始端側に排出された切りくずを磁石13の磁力で搬送終端側に移送して切りくず容器3に供給する。
【0022】
〔第2実施形態〕
図6は別の実施形態を備える搬送装置10を示し、この搬送装置10にあっては、搬送終端側ほど高レベルに位置する状態に傾斜配置した縦型の搬送ガイド筒12を備えており、切りくずを斜めに揚送するように構成してある。また、この搬送装置10にあっては、第1実施形態の搬送装置10と同様に構成した搬送ガイド筒12及び磁石13を備えており、分離体14及び搬出口18の点においてのみ第1実施形態の搬送装置10とは相違しており、分離体14及び搬出口18についてのみ、次に説明する。
【0023】
この搬送装置10における分離体14は、搬送ガイド筒12の軸芯に対して交差する方向に移動自在な一対の分割分離体14cによって構成し、一方の分割分離体14cの一端側に搬出口18を設けてある。
すなわち、各分割分離体14cにロッド側が各別に連結している一対のエヤーシリンダ22によって一対の分割分離体14cを移動操作すると、一対の分割分離対14cは、図7(ロ)に示す如く両分割分離体14cの先端14dが搬送ガイド筒12の外周面に当接するとともに両分割体14cの先端14dどうしが当接し合った閉じ状態と、図7(イ)に示す如く両分割分離体14cの先端14dが搬送ガイド筒12から離れるとともに両分割分離体14cの先端14dどうしが離れ合った開き状態とに開閉するように構成してある。磁石13が搬送ガイド筒12の内部を上昇移送され、切りくずが磁石13に付いて搬送ガイド筒12に沿って上昇移動する際、両分割分離体14cが開き状態に維持されていて、切りくずが搬送ガイド筒12と各分割分離体14cの先端14dとの間を通って搬送ガイド筒12の上端側に移動するように、この後、磁石13が搬送終端側のストロークエンドから搬送始端側に戻るように下降移送されるとき、両分割分離体14cが閉じ状態に切り換わっており、磁石13について下降しようとする切りくずが両分割分離体14cの上面側に当接するように、両分割分離体14cが開閉操作されるように構成してある。これにより、図7(ハ)に示すように、この分離体14は、搬送終端側に移送された切りくずに対して両分割分離体14cでストッパー作用することと、この後も磁石13が引き続いて下降移送されていくこととにより、搬送ガイド筒12の搬送終端部に到達した切りくずを磁石13から分離させる。
【0024】
分離体14によって磁石13から分離された切りくずは、両分割分離体14cの上面側を滑落して前記搬出口18に至り、この搬出口18から落下するように構成してある。
【0025】
〔第3実施形態〕
図8はさらに別の実施形態を備える搬送装置10を示し、この搬送装置10にあっては、屈曲した搬送ガイド筒12の内部に磁石13を往復移動自在に内装して構成してあり、切りくずを屈曲した搬送ガイド筒12に沿わせて搬送するようになっている。
【0026】
〔別実施形態〕
磁石13に替え、磁石の粉粒体を樹脂材に混在させて磁力を発揮するように構成したブロック体など、各種の磁石部材を採用して実施しても本発明の目的を達成できる。従って、このような磁石13、磁石部材などを総称して磁性体13と呼称する。
【0027】
搬送ガイド筒12及び切りくず受け体11をステンレス鋼で作製して実施する他、塩化ビニールなど、非磁化性を有する各種の素材で作製して実施すればよい。
【0028】
空気を供給して空気圧によって磁石13を往復移動させるように構成して実施する他、作動油を供給して油圧によって磁石13を往復移動させるように構成して実施してもよい。いずれの場合も、本発明の目的を達成できる。従って、空気、作動油を総称して流体と呼称し、空気ポート16を流体ポート16と呼称し、空気供給装置21を、流体供給装置21と呼称する。
【0029】
本発明は、切りくずを搬送対象物とする他、各種の鉄片などを搬送対象物とする搬送装置にも適用できる。
【図面の簡単な説明】
【図1】工作機械の切りくず回収構造を示す平面図
【図2】工作機械の切りくず回収構造を示す側面図
【図3】搬送装置の斜視図
【図4】搬送装置の断面図
【図5】分離体の平面図
【図6】第2実施形態を備える搬送装置の斜視図
【図7】(イ)は、分割分離体の開き状態を示す説明図、(ロ)は、分割分離体の閉じ態を示す説明図、(ハ)は、切りくずの分離及び排出状態を示す説明図
【図8】第3実施形態を備える搬送装置の断面図
【符号の説明】
12      搬送ガイド筒
13      磁性体
14      分離体
14a     ガイド部
16      流体ポート
21      流体供給装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a non-magnetized transport guide cylinder, and a transport device having a magnetic body located inside the transport guide cylinder, and more particularly, to a small piece of a workpiece removed from the workpiece by a cutting action ( The present invention relates to a transport device that transports an object to be transported, such as chips, along a transport guide cylinder by magnetic force of a magnetic material.
[0002]
[Prior art]
Conventionally, a magnetic body is rotatably provided inside a transport guide cylinder as the above-described transport device, and the magnetic body is rotationally driven by an electric motor, so that an object to be transported is moved by the magnetic force of the magnetic body. In some cases, the sheet is transported along a transport guide cylinder while spirally rotating the outer periphery of the sheet.
[0003]
[Problems to be solved by the invention]
In the above-described conventional transfer device using magnetic force, since the magnetic body is rotatably mounted inside the transfer guide tube, the transfer guide tube is a large-sized tube having a large diameter, and the entire transfer device is large. Had been transformed. Further, in addition to the surface of the transport guide cylinder, the weight of the entire transport apparatus and the cost are increased because of the structure in which the magnetic body is provided inside the transport guide cylinder.
[0004]
SUMMARY OF THE INVENTION An object of the present invention is to provide a small, lightweight and inexpensive transfer device for transferring a transfer target by magnetic force.
[0005]
[Means for Solving the Problems]
The configuration, operation and effect of the invention according to claim 1 are as follows.
[0006]
〔Constitution〕
A non-magnetizable transfer guide tube, a magnetic body positioned inside the transfer guide tube and exerting a magnetic force on a transfer target outside the transfer guide tube, and a transfer target magnetic material at a transfer end portion of the transfer guide tube. And a fluid port provided in the transport guide cylinder, and the fluid port feeds a fluid from a fluid supply device into the transport guide cylinder to move the magnetic material by fluid pressure to the transport guide cylinder. It is configured to reciprocate within.
[0007]
[Action]
The fluid supplied to the transport guide cylinder by the fluid port reciprocates the magnetic body between the transport start end and the transport end within the transport guide cylinder. When the magnetic material moves forward from the transport start end, the object to be transported, such as chips, is attracted to the outer peripheral surface of the transport guide cylinder due to the magnetic force of the magnetic material, and moves along the transport guide cylinder with the magnetic material. . When the transport object reaches the transport end, the magnetic body returns to the transport start end side so as to re-transport the transport object. At this time, the object to be conveyed is separated from the magnetic material by the separating body, and does not return to the conveyance start end side with respect to the magnetic material.
This makes it possible to adopt a small-diameter transport guide tube that allows the magnetic material to enter the reciprocating movement inside and allow the fluid to flow, and to simply position the magnetic material reciprocally inside the transport guide tube. By adopting a simple magnetic material interior structure, the transport target can be transported by the magnetic force of the magnetic material.
[0008]
〔effect〕
Therefore, it is possible to obtain an inexpensive device by using a small-diameter transport guide cylinder and a simple magnetic material interior structure while transporting an object to be transported by magnetic force, and to reduce the size and weight of the entire apparatus. And can be easily installed in a narrow installation space.
[0009]
The configuration, operation and effect of the invention according to claim 2 are as follows.
[0010]
〔Constitution〕
In the configuration according to the first aspect of the present invention, an object to be conveyed separated from the magnetic body at an upward surface portion of the outer peripheral surface of the transport guide cylinder is guided to the separation body so as to descend to a downward surface of the outer peripheral surface of the transport guide cylinder. It has a guide part to perform.
[0011]
[Action]
Even if the object to be transported that has reached the transport terminal end portion is separated from the magnetic material on the upwardly facing surface portion of the outer peripheral surface of the transport guide cylinder, the guide portion may be lowered to the lower surface side of the outer peripheral surface of the transport guide cylinder. And easily fall from the transport guide tube. As a result, the object to be conveyed remains on the conveyance guide cylinder even after being separated from the magnetic material at the conveyance end portion, and is attracted to the magnetic material returning to the conveyance start end side and returned to the conveyance start end side. Is transported while minimizing the occurrence of blemishes.
[0012]
〔effect〕
Therefore, when the transport object flows backward from the transport end side to the transport start end side, the transport efficiency is likely to be reduced or clogged due to the reverse flow, but the transport can be smoothly performed so that the transport trouble hardly occurs.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
[First Embodiment]
As shown in FIG. 1 and FIG. 2, the conveying device 10 is disposed above the chip opening 3 of the chip container 3 from below the chip discharging unit 2 of the pair of machine tools 1 and the chip discharging unit of the other machine tool 1. Each of the transfer devices 10 is provided substantially horizontally above the opening of the chip container 3 from below the chip 2, and each of the machine tools 1 performs cutting of the work and removes a small piece of the work, that is, a chip. When the chips are discharged from the chip discharge section 2, the chips are transferred to the chip container 3 by the transfer device 10 corresponding to the machine tool 1 and are collected.
[0014]
As shown in FIGS. 3 and 4, both the transfer device 10 corresponding to one of the pair of machine tools 1 and the transfer device 10 corresponding to the other of the pair of machine tools 1 have a gutter-shaped chip receiver 11, A transport guide tube 12 attached across side plates 11a at both ends in the longitudinal direction of the dust receiver 11, a pair of magnets 13 disposed inside the transport guide tube 12, and an outer peripheral surface on one end side of the transport guide tube 12. An air port 16 provided with port blocks 15 attached to both ends of the transport guide cylinder 12 is connected to an air supply device 21 through an air pipe 20. By supplying air from the air supply device 21 to the air port 16, the air is actuated by this air pressure to transport chips from the chip discharge portion 2 of the machine tool 1 along the transport guide tube 12. And of being supplied to the waste container 3 outright and, more particularly, are constituted as follows.
[0015]
The transport guide cylinder 12 is made of a stainless steel tube so as to have non-magnetism. That is, it is manufactured so as not to be magnetized by the action of the magnet 13.
[0016]
As shown in FIG. 4, the pair of magnets 13 are permanent magnets fixed between a pair of piston bodies 17 a of one piston 17 slidably provided inside the transport guide cylinder 12. The cylinder 12 reciprocates with the piston 17 inside the transport guide cylinder 12 over the transport end side where the separator 14 is attached and the transport start end side opposite to the transport end side. When moving inside the cylinder 12, it moves while applying a magnetic force to the chips located outside the conveyance guide cylinder 12 via the conveyance guide cylinder 12. That is, the chips located outside the transport guide cylinder 12 can be attracted to the cylindrical outer peripheral surface of the transport guide cylinder 12 due to the magnetic force of the magnet 13 and move along the magnet 13 along the cylindrical outer peripheral face. I have to.
[0017]
The pair of air ports 16 are arranged such that one of the ports is an input port and the other is an output port for automatic control of air supply by the air supply device 21. Is controlled so as to be alternately selected. The air port 16 on the input side port sends the compressed air supplied from the air supply device 21 via the pipe line 20 into the inside of the transport guide tube 12, and the air port 16 on the output side port. Discharges the pressurized air inside the transport guide tube 12 to the air supply device 21 via the pipe 20. Thus, when air is supplied from the air supply device 21 to the air port 16 located at the end of the conveyance guide tube 12 on the conveyance start end side, the air is sent into the conveyance guide tube 12. By sliding the piston 17 toward the transport end of the transport guide tube 12 by this air pressure, the magnet 13 is moved forward from the transport start end side of the transport guide tube 12 to the transport end side by the air pressure from the air supply device 21. When air is supplied from the air supply device 21 to the air port 16 located at the end of the conveyance guide tube 12 on the conveyance end side, the air is sent into the inside of the conveyance guide tube 12 and the air pressure is applied. By sliding the piston 17 toward the transfer start end of the transfer guide tube 12, the magnet 13 is moved back from the transfer end side of the transfer guide tube 12 to the transfer start end by air pressure from the air supply device 21.
[0018]
The separator 14 is made of a synthetic resin and is externally fitted to the transport guide tube 12 so as not to be magnetized by the action of the magnet 13. As shown in FIG. 5 and the like, the separation body 14 is located at an end of the conveyance guide tube 12 facing the conveyance start end, outside the upwardly facing surface portion of the cylindrical outer peripheral surface of the conveyance guide tube 12. And a pair of separation operation portions 14a arranged as described above, and a separation operation portion 14b arranged so as to be located outside a portion other than the upward surface portion of the cylindrical outer peripheral surface of the transport guide tube 12. It has an end face. When the chips are attached to the magnet 13 and move along the cylindrical outer peripheral surface of the transport guide tube 12 and reach the transport end portion of the transport guide tube 12, the chips come into contact with the guide portion 14a or the separation operation portion 14b, and thereafter, The magnet 13 is configured to be transported beyond the guide section 14a and the separation operation section 14b of the separation body 14 and further toward the end of the transport guide tube 12. Thereby, the separating body 14 separates the chips that have reached the transport end of the transport guide tube 12 from the magnet 13 by the stopper action of the pair of guide portions 14a and the separation operation portion 14b, and drops the chips from the transport guide tube 12.
[0019]
As shown in FIG. 5, the pair of guide portions 14a are inclined with respect to the moving direction of the magnet 13 and at a lower level toward the lower side in the chip transfer direction. As a result, the respective guide portions 14a of the separation body 14 are capable of removing chips separated from the magnet 13 at the upward portion of the cylindrical outer peripheral surface of the transport guide tube 12 due to the inclined shape of the guide portion 14a. It is guided so as to descend to the lower surface side of the outer peripheral surface of the cylinder, so that chips are easily dropped from the upper surface portion of the transport guide tube 12.
[0020]
The chip receiver 11 is made of a stainless steel plate so as to have non-magnetism. A carry-out cylinder formed by press-molding the stainless steel plate is provided in a portion of the chip receiver 11 located below the separator 14 to form a carry-out port 18.
[0021]
That is, the air port 16 located on the transport start end side of the transport guide cylinder 12 sends air from the air supply device 21 into the interior of the transport guide cylinder 12, and the air pressure causes the pair of magnets 13 to transport the interior of the transport guide cylinder 12. It moves forward from the start end to the transport end. Then, the chips that have fallen from the chip discharging portion 2 of the machine tool 1 to the transport start end side of the transport guide cylinder 12 are attracted to the outer peripheral surface of the transport guide cylinder 12 by the magnetic force of the magnet 13, and are transported by the magnet 13. It moves along the guide tube 12. At this time, even if the chip is separated from the magnet 13 and falls, the chip is received by the chip receiver 11 so as not to fall to the ground. When the chips reach the transport end of the transport guide tube 12, the separator 14 separates the chips from the magnet 13. Thereafter, in order to switch the air supply by the air supply device 21, the air port 16 on the conveyance end side sends air from the air supply device 21 into the inside of the conveyance guide tube 12, and the pair of magnets 13 is conveyed by the air pressure. The inside of the guide tube 12 moves from the transport end side to the transport start side. At this time, the chips separated first from the magnet 13 are discharged from the machine tool 1 to the transfer start end side by dropping from the transfer guide tube 12 to the carry-out port 18 and not attaching to the magnet 13 to return to the transfer start end side. The chips are transferred to the end of conveyance by the magnetic force of the magnet 13 and supplied to the chip container 3.
[0022]
[Second embodiment]
FIG. 6 shows a transfer device 10 according to another embodiment, in which the transfer device 10 includes a vertical transfer guide tube 12 that is inclined and disposed at a position closer to the transfer end to a higher level. It is configured so that the chips are transported diagonally. In addition, the transfer device 10 includes a transfer guide tube 12 and a magnet 13 configured in the same manner as the transfer device 10 of the first embodiment, and the first embodiment is performed only at the point of the separation body 14 and the outlet 18. This is different from the transport device 10 of the embodiment, and only the separator 14 and the carry-out port 18 will be described below.
[0023]
The separator 14 in the transport device 10 is constituted by a pair of divided separators 14c movable in a direction intersecting with the axis of the transport guide tube 12, and a discharge port 18 is provided at one end of one of the divided separators 14c. Is provided.
That is, when a pair of split cylinders 14c are moved by a pair of air cylinders 22 whose rod sides are separately connected to the respective split separators 14c, the pair of split separators 14c is moved to both ends as shown in FIG. As shown in FIG. 7A, a closed state in which the leading end 14d of the divided body 14c contacts the outer peripheral surface of the transport guide tube 12 and the leading ends 14d of the divided bodies 14c abut each other. The distal end 14d is separated from the transport guide tube 12, and the distal ends 14d of the two split separators 14c are opened and closed so as to be separated from each other. When the magnet 13 is moved upward inside the transport guide cylinder 12 and the chip moves upward along the transport guide cylinder 12 with the magnet 13, the two split separators 14 c are maintained in an open state, and the chip Then, the magnet 13 moves from the stroke end on the transport end side to the transport start end side such that the magnet 13 moves to the upper end side of the transport guide barrel 12 through the space between the transport guide cylinder 12 and the tip end 14d of each divided separator 14c. When it is moved downward to return, the two split separators 14c are switched to the closed state, and the two split separators are moved so that the chips to be lowered with respect to the magnet 13 contact the upper surface side of the two split separators 14c. The body 14c is configured to be opened and closed. As a result, as shown in FIG. 7C, the separated body 14 functions as a stopper for the chips transported to the transport end side by the two separated bodies 14c, and the magnet 13 continues thereafter. As a result, the chips that have reached the transport end of the transport guide tube 12 are separated from the magnets 13.
[0024]
Chips separated from the magnet 13 by the separator 14 slide down on the upper surface side of the two separated separators 14c, reach the carry-out port 18, and fall from the carry-out port 18.
[0025]
[Third embodiment]
FIG. 8 shows a transfer device 10 according to still another embodiment. In this transfer device 10, a magnet 13 is provided inside a bent transfer guide tube 12 so as to be reciprocally movable. The waste is transported along the bent transport guide tube 12.
[0026]
[Another embodiment]
The object of the present invention can be achieved by adopting various types of magnet members such as a block body configured to exhibit magnetic force by mixing a powder of a magnet with a resin material instead of the magnet 13. Therefore, such a magnet 13, a magnet member, and the like are collectively referred to as a magnetic body 13.
[0027]
The transport guide cylinder 12 and the chip receiver 11 may be made of stainless steel, or may be made of various non-magnetizable materials such as vinyl chloride.
[0028]
The magnet 13 may be configured to reciprocate by supplying air and the air pressure, or may be configured to reciprocate the magnet 13 by supplying hydraulic oil and hydraulic pressure. In any case, the object of the present invention can be achieved. Therefore, air and hydraulic oil are collectively referred to as a fluid, the air port 16 is referred to as a fluid port 16, and the air supply device 21 is referred to as a fluid supply device 21.
[0029]
The present invention can be applied to a transport device that uses various types of iron pieces or the like as a transport target in addition to using chips as a transport target.
[Brief description of the drawings]
FIG. 1 is a plan view showing a chip collecting structure of a machine tool. FIG. 2 is a side view showing a chip collecting structure of a machine tool. FIG. 3 is a perspective view of a transfer device. FIG. 4 is a cross-sectional view of the transfer device. 5 is a plan view of the separation body. FIG. 6 is a perspective view of a transport device including the second embodiment. FIG. FIG. 8C is an explanatory view showing a state in which chips are separated and discharged. FIG. 8 is a cross-sectional view of a transport device including the third embodiment.
12 Conveyance Guide Tube 13 Magnetic Body 14 Separator 14a Guide Portion 16 Fluid Port 21 Fluid Supply Device

Claims (2)

非磁化性の搬送ガイド筒、この搬送ガイド筒の内部に位置して搬送ガイド筒外の搬送対象物に対して磁力を及ぼす磁性体、前記搬送ガイド筒の搬送終端部で搬送対象物を磁性体から分離させる分離体、前記搬送ガイド筒に設けた流体ポートを備えてあるとともに、前記流体ポートは、流体供給装置からの流体を搬送ガイド筒の内部に送り込んで流体圧で磁性体を搬送ガイド筒内で往復移動させるように構成してある搬送装置。A non-magnetizable transfer guide tube, a magnetic body positioned inside the transfer guide tube and exerting a magnetic force on a transfer target outside the transfer guide tube, and a transfer target magnetic material at the transfer end portion of the transfer guide tube. And a fluid port provided in the transport guide cylinder, wherein the fluid port feeds fluid from a fluid supply device into the transport guide cylinder to transfer the magnetic material by fluid pressure to the transport guide cylinder. A transport device that is configured to reciprocate within. 前記分離体に、搬送ガイド筒の外周面の上向き面部分で磁性体から分離した搬送対象物を搬送ガイド筒の外周面の下向き面側に下降するように案内するガイド部を備えてある請求項1記載の搬送装置。The separation body further includes a guide portion that guides the object to be transferred separated from the magnetic material at the upward surface portion of the outer peripheral surface of the transport guide cylinder so as to descend to the downward surface side of the outer peripheral surface of the transport guide cylinder. 2. The transfer device according to 1.
JP2002246906A 2002-08-27 2002-08-27 Carrier device Pending JP2004083211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002246906A JP2004083211A (en) 2002-08-27 2002-08-27 Carrier device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002246906A JP2004083211A (en) 2002-08-27 2002-08-27 Carrier device

Publications (1)

Publication Number Publication Date
JP2004083211A true JP2004083211A (en) 2004-03-18

Family

ID=32054675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002246906A Pending JP2004083211A (en) 2002-08-27 2002-08-27 Carrier device

Country Status (1)

Country Link
JP (1) JP2004083211A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005305563A (en) * 2004-04-16 2005-11-04 Disco Abrasive Syst Ltd Cutting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005305563A (en) * 2004-04-16 2005-11-04 Disco Abrasive Syst Ltd Cutting device

Similar Documents

Publication Publication Date Title
CN101928833B (en) Apparatus for recycling metal cutting chip
KR20140066228A (en) Method and apparatus for handling material in a pneumatic pipe transport system
EP1514692A3 (en) Fixed material transportation apparatus and liquid fixing apparatus
CN112936964A (en) Dust solidification device
JP2004083211A (en) Carrier device
JP2642300B2 (en) Machine tools with chip disposal
CN101248274B (en) Device for delivering thick matter
WO1999051409A1 (en) Metal mold and press device
JP2008194723A (en) Apparatus for solidifying powder and granular material
CN110744344B (en) Processing apparatus of lathe sweeps
JPH11226839A (en) Cutting chip processing device
JPS59156645A (en) Cutting and exhaust device for swarf from machine tool
CN101372006B (en) Automatic separation device of paper honeycomb flexible material borings and ferrous powder granules
JP2010167548A (en) Chip conveyor device
CN201366414Y (en) Device for automatically separating paper honeycomb flexible material cuttings and iron powder particles
CN212424604U (en) Automatic feeding mechanism
CN108373037A (en) A kind of separator that workpiece is risen to eminence delivery track
CN215556144U (en) Automatic sorting device for garbage of intelligent classification garbage can after being scattered
CN219463595U (en) Chip removal compressor
JPH1133868A (en) Chip treating method and device and lathe equipped with chip treating device
CN219506976U (en) Garbage classification throwing equipment
KR970001813Y1 (en) Cnc lathe with chip-carrier
JPS5845843A (en) Magnetic apparatus for transporting iron chips
CN217971218U (en) Spiral feeding machine
CN111186695A (en) Automatic feeding mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040914

A977 Report on retrieval

Effective date: 20070220

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070712

A02 Decision of refusal

Effective date: 20080131

Free format text: JAPANESE INTERMEDIATE CODE: A02