JP2004082530A - Manufacturing method for laminate - Google Patents

Manufacturing method for laminate Download PDF

Info

Publication number
JP2004082530A
JP2004082530A JP2002247128A JP2002247128A JP2004082530A JP 2004082530 A JP2004082530 A JP 2004082530A JP 2002247128 A JP2002247128 A JP 2002247128A JP 2002247128 A JP2002247128 A JP 2002247128A JP 2004082530 A JP2004082530 A JP 2004082530A
Authority
JP
Japan
Prior art keywords
laminate
manufacturing
producing
plate
adhesive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002247128A
Other languages
Japanese (ja)
Inventor
Kazuaki Yuki
結城 一哲
Hideo Yoshizawa
吉沢 英夫
Hiroaki Kato
加藤 浩昭
Hidekazu Nakaoka
中岡 英一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2002247128A priority Critical patent/JP2004082530A/en
Priority to PCT/JP2003/010805 priority patent/WO2004020196A1/en
Priority to AU2003261734A priority patent/AU2003261734A1/en
Publication of JP2004082530A publication Critical patent/JP2004082530A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/45Joining of substantially the whole surface of the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1403Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the type of electromagnetic or particle radiation
    • B29C65/1425Microwave radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1429Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface
    • B29C65/1435Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1477Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation making use of an absorber or impact modifier
    • B29C65/1483Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation making use of an absorber or impact modifier coated on the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1207Heat-activated adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/08Treatment by energy or chemical effects by wave energy or particle radiation
    • B32B2310/0806Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation
    • B32B2310/0862Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation using microwave

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for a laminate which adheres the adhesive layer of the laminate by preferentially and efficiently heating the adhesive layer and to provide a method for manufacturing the laminate which can suppress a warp occurring due to a difference of thermal expansion coefficients or releasing at an adhesive boundary. <P>SOLUTION: In the manufacturing method for the laminate in which at least two plate-like materials are adhered by the adhesive layer, the adhesive layer is made of a material having a larger dielectric loss factor than the plate-like material, and the adhesive layer is set to an adherable state by irradiating the layer with a microwave to heat the layer, and at least two plate-like materials are adhered and laminated by pressurizing. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、少なくとも二枚からなる板状体を接着層にて接着する積層体の製造に関し、特に熱膨張率の異なる板状体を積層した積層体の製造方法に関する。
【0002】
【従来の技術】
板状体を接着により積層する方法としては、接着温度に着目すると二つに大別できる。1)常温で接着する製造方法、2)加熱して接着する製造方法の二通りである。2)の製造方法では、接着層として熱可塑性樹脂や熱硬化性樹脂等を用い、熱プレスやオートクレーブの工程を経て接着する方法である。
【0003】
【発明が解決しようとする課題】
上記1)の常温で接着する製造方法では、接着積層体が得られるまでに長時間を要し、生産性が低いという問題がある。
【0004】
上記2)の熱プレスやオートクレーブを用いた積層体の製造方法の一例として、特開平7―323504号公報がある。上記公報によると、請求項2において、「ガラス板又はアクリル系樹脂板とポリカーボネート樹脂板とをウレタン系接着フィルムを介して積層し、この積層体を減圧雰囲気中で100〜150℃に加熱して1.5kg/cm以下の圧力で圧着することを特徴とする透明複合板の製造方法」が開示されている。
【0005】
上記方法では、ガラス板もしくはアクリル系樹脂板、ポリカーボネート樹脂板の熱膨張率がそれぞれ異なるため、加熱による膨張差が生じ、接着後、室温まで冷却すると膨張の差の分だけ反りが発生するという問題がある。
【0006】
そこで、特開平10−119184号公報には、反りの少ない無機ガラス板とポリカーボネート板との透明積層体が開示されている。この積層体は、中間膜の粘性が高いものを選び、雰囲気加熱と加圧により得られる。しかし、この方法では雰囲気加熱であるため積層体全体が加熱される。そのため、加熱により無機ガラス板とポリカーボネート板はそれぞれの熱膨張率の違いから、熱膨張による差が生じ、接着後、室温まで温度が下がると膨張の差の分だけ反りが発生する。また、接着層のみの加熱でないため、加熱効率は落ちる。そして、接着した後に接着層にせん断応力が作用し、接着界面で剥離が起こるという問題もある。
【0007】
つまり、上述の積層体の製造方法では、積層体全体を加熱することのみが開示され、接着層を効率的に加熱する手段は示されていない。
【0008】
本発明では、接着層を優先的・効率的に加熱して接着する積層体の製造方法を提供する。さらに熱膨張率の違いから生じる反りや接着界面での剥離を抑えることのできる積層体の製造方法を提供する。
【0009】
【課題を解決するための手段】
本発明は、請求項1に記載の発明として、
少なくとも二枚の板状体を接着層にて接着した積層体の製造方法において、
前記接着層は前記板状体より誘電損率が大きな材料からなり、前記接着層へマイクロ波を照射し加熱することで前記接着層を接着可能な状態として、前記少なくとも二枚の板状体を接着し積層することを特徴とする積層体の製造方法である。
【0010】
請求項2に記載の発明として、
請求項1に記載の積層体の製造方法において、
前記板状体の熱膨張率が異なるものであることを特徴とする積層体の製造方法である。
【0011】
請求項3に記載の発明として、
請求項1または2に記載の積層体の製造方法において、
前記接着層は、熱可塑性樹脂膜であることを特徴とする積層体の製造方法である。
【0012】
請求項4に記載の発明として、
請求項3に記載の積層体の製造方法において、
前記接着層は、ポリウレタン膜、ポリビニルブチラール膜、またはエチレン−酢酸ビニル共重合体膜であることを特徴とする積層体の製造方法である。
【0013】
請求項5に記載の発明として、
請求項1〜4いずれか1項に記載の積層体の製造方法において、
前記二枚の板状体は、無機ガラスおよび有機樹脂よりなることを特徴とする積層体の製造方法である。
【0014】
請求項6に記載の発明として、
請求項1〜5いずれか1項に記載の積層体の製造方法において、
前記有機樹脂は、アクリル樹脂またはポリカーボネート樹脂であることを特徴とする積層体の製造方法である。
【0015】
請求項7に記載の発明として、
請求項1〜6いずれか1項に記載の積層体の製造方法において、
さらに前記積層体を加圧手段で加圧しながら接着することを特徴とする積層体の製造方法である。
【0016】
請求項8に記載の発明として、
請求項7に記載の積層体の製造方法において、
前記加圧手段は、機械的プレスであることを特徴とする積層体の製造方法である。
【0017】
請求項9に記載の発明として、
請求項7に記載の積層体の製造方法において、
前記加圧は、チャンバー内に前記積層体を収めたバッグを入れて減圧脱気し、さらに前記チャンバー内に気体を封入し与圧して行うことを特徴とする積層体の製造方法である。
【0018】
請求項10に記載の発明として、
請求項1〜10いずれか1項に記載の積層体の製造方法において、
前記マイクロ波は、1〜300GHzの電磁波であることを特徴とする積層体の製造方法である。
【0019】
【発明の実施の形態】
図1は、積層体1を製造する発振装置2の概略図である。また、図2は積層体1の構成図である。発振装置2の構成としては、チャンバー3、発振器4、導波管5とからなる。発振器4より発生するマイクロ波は、導波管5によりチャンバー3へ導かれる。チャンバー内へ導かれたマイクロ波により、接着層12が優先的に加熱され、積層体1を接着することができる。
【0020】
発振器4は、マイクロ波を発生する装置である。マイクロ波を誘電体(絶縁体)に照射すると、誘電体内部でマイクロ波の電界により分子振動が起こる。この分子振動により振動摩擦が生じ、誘電体自体が発熱する。分子振動は誘電体全体で起こるため、発熱は均一なものとなる。
【0021】
誘電体の発熱量は、マイクロ波の電界、周波数、そして誘電体の誘電損率と呼ばれる物性値に比例する。つまり、誘電損率の高い誘電体ほど発熱量が多くなる。そのため、被接着体の誘電損率に対して、接着層の誘電損率が大きいものを選択すると、被接着体の発熱量に対して、接着層の発熱量が多くなる。
【0022】
ここで誘電損率は、物性値である比誘電率と誘電体損失角の積で表される。誘電体における誘電他損失角と比誘電率の関係を図3に示す。図3は周波数が2.45GHzのときのものである。図3の右上に行くほど、発熱量が多くなる。また、同図に半減深度も示す。半減深度とは、マイクロ波が誘電体の中を進んで、マイクロ波のエネルギーが半分に減衰する距離である。半減深度が浅いほど、発熱量が多いことを表す。
【0023】
加熱に用いるマイクロ波の発振器としては、1)マグネトロン(実用周波数範囲は1〜200GHz)、2)クライストロン(実用周波数範囲は約1〜100GHz)、3)ジャイロトロン(周波数は11〜300GHz)が挙げられる。いずれもセラミックスの焼結に用いられている発振器である。1)、2)、3)ともに周波数が高くなると、出力は大きくとれない。しかし、ジャイロトロン発振器は1)、2)に比べて、キャビティーと呼ばれる共振空間が大きくとれるため、高周波が発生可能である。また、電子ビームの半径を大きくできるため、出力の低下も抑えられる。そのため、マイクロ波の発振器としては、ジャイロトロンが最も望ましい。
【0024】
ジャイロトロン発振器の概略を図4に示す。ジャイロトロンは、電子サイクロトロン共鳴メーザー(CRM)と呼ばれる発振原理を備えた大電力で、高効率発振が可能な電子管である。前記ジャイロトロン41は、電磁波を発振する空洞共振器45を中心に持ち、電子銃42やビームコレクタ47からなるジャイロトロン本体と共振器部に強力な磁場を発生させる超伝導磁石43から構成される。電子銃としてマグネトロン入射型電子銃が用いられる。
【0025】
マグネトロン入射型電子銃でジャイロ運動をする円筒状の電子ビームが生成され、空洞共振器へ入射される。入射された電子ビームの回転運動エネルギーは、強磁場の印加された円筒形の共振機内の非常に限られた空間内において、CRMにより電磁波のエネルギーに変換される。
【0026】
本発明による積層体の製造方法では、初めに板状体および接着層を積層しておき、マイクロ波を照射し、接着層を優先的に発熱させ、さらに加圧して接着する。このとき、接着層の誘電損率は板状体の誘電損率より大きい材料とする。接着層の誘電損率が板状体の誘電損率よりも大きいため、接着層を優先的に加熱することができ、熱膨張率の異なる板状体であっても、熱膨張率差に起因する収縮差による反りの低減ができ、接着界面での剥離が抑えられる。
【0027】
(具体例)
以下、板状体の材料としてガラス板およびポリカーボネート板、接着層としてポリウレタン膜の場合を例にとり説明する。このガラス板、ポリウレタン膜とポリカーボネート板の接着では、富士電波工業(株)の発振装置(型式:FMW−10−28、周波数:28GHz、最大出力:10kW)を用いた。
【0028】
(1)昇温テスト
ガラス板、ポリウレタン膜、ポリカーボネート板の各材料にマイクロ波を照射した場合、ガラス板やポリカーボネート板よりもポリウレタン膜が高い温度に加熱されると、ガラス板やポリカーボネート板とポリウレタン膜の温度差の分だけ、熱膨張が抑えられる。
【0029】
そこで、ガラス板、ポリカーボネート板とポリウレタン膜にマイクロ波を照射して、ポリウレタン膜のみが軟化点温度(約90℃)まで加熱できるかを調べるために、温度測定を行なった。実際の接着を想定して、ガラス板11(150×150×4mm)、ポリウレタン膜12(150×150×0.7mm)、そしてポリカーボネート板13(150×150×2mm)の順に重ねて、チャンバー3内のステージ31上に配置し、マイクロ波を照射した。それぞれの温度は、K型熱電対を用いて測定した。
【0030】
その結果を図5に示す。これより、ポリウレタン膜は粘着性が生じる軟化点付近(約90℃)まで加熱されることが分かった。これに対して、ガラス板は約40℃、ポリカーボネート板は約55℃と室温(約20℃)に対して約20〜30℃程度の昇温で抑えられていることが分かった。このことから、ガラス板とポリカーボネート板の熱膨張を抑えられることが確認できた。
【0031】
以上のことから、ガラス板、ポリウレタン膜、ポリカーボネート板の積層体へマイクロ波を照射することにより、接着層を優先的・効率的に加熱できることが確認できた。
【0032】
(2)積層体の製造
以上のテストより、この方法によって接着層であるポリウレタン膜を、粘着性が生じる軟化点付近まで、優先的に加熱できることが確認できたので、この方法により積層体を製造してみることにした。
【0033】
まず上記確認テスト同様に、150×150mmの寸法のガラス板、ポリウレタン膜およびポリカーボネート板を積層し、シリコーン製のバッグの中へ入れたものをチャンバー内へ配置した。
【0034】
そしてバッグ内を約48Paまで排気し、チャンバー内の圧力を約0.58MPaに保った状態で、マイクロ波を照射して前記積層体の接着層を加熱した。10分間でポリウレタン膜の軟化点付近(約90℃)まで加熱(出力:1kW)し、その後、15分間保持(出力:約0.8kW)してから室温まで放冷して接着を行なった。以上の工程を経て、ガラス板/ポリウレタン膜/ポリカーボネート板の積層体を得た。
【0035】
(3)積層体の残留応力の評価
上記方法により得られたガラス板/ポリウレタン膜/ポリカーボネート板の積層体を、ひずみゲージを使って残留応力の測定をした。この場合、ポリカーボネート板側へひずみゲージを貼り付けて残留応力を測定した。これは、ポリカーボネート板側が残留応力により割れやすいため、ポリカーボネート側の残留応力が小さいことが望まれるからである。測定について以下に説明する。
【0036】
ひずみゲージは、測定対象物にひずみが発生すると、ひずみを電気信号に変換して出力する装置である。今回用いたひずみゲージは、単軸ゲージであり、一方向のひずみを測定するものである。そのひずみゲージをポリカーボネート板の各辺に貼り付け、各辺に平行な方向のひずみを測定し、残留応力を算出した。
【0037】
ひずみゲージ6を積層体1のポリカーボネート板13側に貼り付けた様子を、図6の平面図(a)と側面図(b)に示す。まず、前記ひずみゲージを貼り付けた部分を50×50mmの大きさで切り出す。つぎに、切り出したひずみゲージ付きサンプルについて、ガラス板を破砕してガラス板による応力を取り除く。そして、最後にポリウレタン膜を剥がして、ポリカーボネート板に働いていた応力を測定した。
【0038】
前記接着方法で接着した積層体およびオートクレーブを用いて接着した積層体のそれぞれにおいて、合計3箇所(A,B,C)にて測定したポリカーボネート板の残留応力を表1および表2に示す。
【0039】
ここで、オートクレーブを用いて接着した積層体は、接着層の加熱手段がオートクレーブによるものであるが、それ以外は前述と同様の製造方法で得られたものである。また寸法は740×650mmであり、ガラス板/ポリウレタン膜/ポリカーボネート板のそれぞれの厚みは、マイクロ波を用いて積層したものと同じ厚みである。
【0040】
マイクロ波を用いて接着した積層体(150×150mm)とオートクレーブを用いて接着した積層体(740×650mm)の大きさは違うが、残留応力はポリカーボネート板とガラス板の熱膨張率差に起因するものである。そのため、大きさに関係なく比較することができる。
【0041】
表1と表2を比較すると、切断時、ガラス板破砕時、そして、ポリカーボネート単板時のどの時点においても、マイクロ波を用いた接着方法で接着した積層体におけるポリカーボネート板の残留応力が低減していることが分かる。ただし、切り出し位置の違いにより、残留応力が大きく違っているものがある。これは、温度分布のムラによる接着状態のばらつきと考えられる。
【0042】
【表1】

Figure 2004082530
【0043】
【表2】
Figure 2004082530
【0044】
【発明の効果】
以上の説明から、本発明による製造方法では、接着層の誘電損率を板状体の誘電損率より大きなものとすることにより、接着層を優先的・効率的に加熱することができる。また、板状体の昇温を抑えることができるため、接着時における熱膨張を抑えることができる。
【0045】
その結果、接着後の冷却時における熱収縮の量が減り、反りを低減することができる。また、接着界面での剥離を抑えることのできる積層体が得られる。
【図面の簡単な説明】
【図1】本発明に用いうる積層体を製造する装置の概略図である。
【図2】本発明により得られる積層体の断面図である。
【図3】誘電体における誘電他損失角と比誘電率の関係を示す図である。
【図4】ジャイロトロン発振器の概略を説明する図である。
【図5】昇温テストにおける温度上昇を示すグラフである。
【図6】ひずみゲージを積層体のポリカーボネート板に貼り付けた様子を説明する図である。
【符号の説明】
1:積層体
11:(ガラス)板状体
12:(ウレタン)接着層
13:(ポリカーボネート)板状体
2:製造装置
3:チャンバー
31:ステージ
4:発振器
41:ジャイロトロン
42:電子銃
43:電子銃用電磁石
44:ビームトンネル
45:共振器(キャビティー)
46:主電磁石
47:ビームコレクタ
48:出力窓
5:導波管
6:ひずみゲージ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of manufacturing a laminate in which at least two plate-like bodies are bonded with an adhesive layer, and more particularly to a method of manufacturing a laminate in which plate-like bodies having different coefficients of thermal expansion are stacked.
[0002]
[Prior art]
The method of laminating the plate-like bodies by bonding can be roughly classified into two when focusing on the bonding temperature. There are two methods: 1) a bonding method at room temperature and 2) a bonding method by heating. In the production method 2), a thermoplastic resin, a thermosetting resin, or the like is used as an adhesive layer, and the adhesive is applied through a hot press or autoclave process.
[0003]
[Problems to be solved by the invention]
In the production method of bonding at room temperature in the above 1), there is a problem that it takes a long time until an adhesive laminate is obtained and productivity is low.
[0004]
Japanese Patent Application Laid-Open No. 7-323504 is an example of a method for producing a laminate using a hot press or an autoclave of the above 2). According to the above publication, in claim 2, “a glass plate or an acrylic resin plate and a polycarbonate resin plate are laminated via a urethane-based adhesive film, and the laminate is heated to 100 to 150 ° C. in a reduced-pressure atmosphere. A method for producing a transparent composite plate, which is characterized by performing pressure bonding at a pressure of 1.5 kg / cm 2 or less ”.
[0005]
In the above method, since the thermal expansion coefficients of the glass plate, the acrylic resin plate, and the polycarbonate resin plate are different from each other, a difference in expansion occurs due to heating, and after bonding, when cooled to room temperature, a warp is generated by the difference in expansion. There is.
[0006]
Therefore, JP-A-10-119184 discloses a transparent laminate of an inorganic glass plate and a polycarbonate plate with less warpage. This laminate is obtained by selecting an intermediate film having a high viscosity and heating and pressurizing the atmosphere. However, in this method, the entire laminate is heated because of the atmospheric heating. For this reason, the difference in thermal expansion between the inorganic glass plate and the polycarbonate plate due to heating causes a difference due to thermal expansion. When the temperature is lowered to room temperature after bonding, warpage occurs due to the difference in expansion. In addition, since the heating is not performed only for the adhesive layer, the heating efficiency decreases. Then, there is also a problem that a shear stress acts on the bonding layer after bonding, and separation occurs at the bonding interface.
[0007]
That is, the above-described method for manufacturing a laminate only discloses heating the entire laminate, and does not show a means for efficiently heating the adhesive layer.
[0008]
The present invention provides a method for producing a laminate in which an adhesive layer is preferentially and efficiently heated and adhered. Further, the present invention provides a method for manufacturing a laminate that can suppress warpage or peeling at an adhesive interface caused by a difference in thermal expansion coefficient.
[0009]
[Means for Solving the Problems]
The present invention relates to the first aspect of the present invention,
In a method for manufacturing a laminate in which at least two plate-like bodies are bonded with an adhesive layer,
The adhesive layer is made of a material having a higher dielectric loss factor than the plate-like body, and the adhesive layer is irradiated with microwaves and heated so that the adhesive layer can be bonded to the at least two plate-like bodies. This is a method for producing a laminate, which comprises bonding and laminating.
[0010]
As the invention according to claim 2,
The method for producing a laminate according to claim 1,
A method of manufacturing a laminate, wherein the plate-like bodies have different coefficients of thermal expansion.
[0011]
As the invention according to claim 3,
The method for producing a laminate according to claim 1 or 2,
The method for producing a laminate, wherein the adhesive layer is a thermoplastic resin film.
[0012]
As the invention according to claim 4,
The method for producing a laminate according to claim 3,
The method for producing a laminate, wherein the adhesive layer is a polyurethane film, a polyvinyl butyral film, or an ethylene-vinyl acetate copolymer film.
[0013]
As the invention according to claim 5,
The method for producing a laminate according to any one of claims 1 to 4,
A method for manufacturing a laminate, wherein the two plate-like bodies are made of an inorganic glass and an organic resin.
[0014]
As the invention according to claim 6,
The method for producing a laminate according to any one of claims 1 to 5,
The method of manufacturing a laminate, wherein the organic resin is an acrylic resin or a polycarbonate resin.
[0015]
As the invention according to claim 7,
The method for producing a laminate according to any one of claims 1 to 6,
Further, there is provided a method for producing a laminate, wherein the laminate is adhered while being pressed by a pressing means.
[0016]
As the invention according to claim 8,
The method for producing a laminate according to claim 7,
The method for manufacturing a laminate, wherein the pressing unit is a mechanical press.
[0017]
According to the ninth aspect of the present invention,
The method for producing a laminate according to claim 7,
The method of manufacturing a laminate is characterized in that the pressurization is performed by putting a bag containing the laminate in a chamber, degassing the bag under reduced pressure, and sealing and pressurizing a gas in the chamber.
[0018]
As the invention according to claim 10,
The method for producing a laminate according to any one of claims 1 to 10,
The method of manufacturing a laminate, wherein the microwave is an electromagnetic wave of 1 to 300 GHz.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a schematic view of an oscillation device 2 that manufactures the laminate 1. FIG. 2 is a configuration diagram of the laminate 1. The configuration of the oscillation device 2 includes a chamber 3, an oscillator 4, and a waveguide 5. The microwave generated by the oscillator 4 is guided to the chamber 3 by the waveguide 5. The adhesive layer 12 is preferentially heated by the microwave guided into the chamber, and the laminate 1 can be adhered.
[0020]
The oscillator 4 is a device that generates a microwave. When a microwave is applied to a dielectric (insulator), molecular vibration occurs inside the dielectric due to an electric field of the microwave. Vibration friction occurs due to the molecular vibration, and the dielectric itself generates heat. Since molecular vibration occurs throughout the dielectric, the heat generation is uniform.
[0021]
The calorific value of a dielectric is proportional to a microwave electric field, frequency, and a physical property called a dielectric loss factor of the dielectric. That is, the calorific value increases as the dielectric has a higher dielectric loss factor. Therefore, when a material having a large dielectric loss factor of the adhesive layer is selected with respect to the dielectric loss factor of the adherend, the heat generation amount of the adhesive layer is larger than the heat generation amount of the adherend.
[0022]
Here, the dielectric loss factor is represented by a product of a relative dielectric constant, which is a physical property value, and a dielectric loss angle. FIG. 3 shows the relationship between the dielectric loss angle and the relative permittivity of the dielectric. FIG. 3 shows the case where the frequency is 2.45 GHz. The amount of heat generation increases toward the upper right of FIG. The figure also shows the half depth. The half-depth is the distance at which the microwave travels through the dielectric and the energy of the microwave attenuates by half. The shallower the half-depth, the greater the calorific value.
[0023]
Examples of the microwave oscillator used for heating include 1) a magnetron (a practical frequency range is 1 to 200 GHz), 2) a klystron (a practical frequency range is about 1 to 100 GHz), and 3) a gyrotron (a frequency is 11 to 300 GHz). Can be All are oscillators used for sintering ceramics. When the frequency increases in all of 1), 2) and 3), the output cannot be increased. However, the gyrotron oscillator can generate a high frequency because a resonance space called a cavity can be larger than in 1) and 2). Further, since the radius of the electron beam can be increased, a decrease in output can be suppressed. Therefore, a gyrotron is most desirable as a microwave oscillator.
[0024]
FIG. 4 schematically shows a gyrotron oscillator. A gyrotron is an electron tube that can oscillate with high power and high efficiency using an oscillation principle called an electron cyclotron resonance maser (CRM). The gyrotron 41 has a cavity resonator 45 that oscillates an electromagnetic wave at the center, and is composed of a gyrotron main body including an electron gun 42 and a beam collector 47 and a superconducting magnet 43 that generates a strong magnetic field in the resonator section. . As the electron gun, a magnetron incident electron gun is used.
[0025]
A gyroscopic cylindrical electron beam is generated by the magnetron injection type electron gun, and is incident on the cavity resonator. The rotational kinetic energy of the incident electron beam is converted into electromagnetic wave energy by CRM in a very limited space in a cylindrical resonator to which a strong magnetic field is applied.
[0026]
In the method for manufacturing a laminate according to the present invention, first, the plate-like body and the adhesive layer are laminated, and the microwave is irradiated to generate heat preferentially in the adhesive layer, and further pressurize to adhere. At this time, the dielectric loss factor of the adhesive layer is made of a material larger than the dielectric loss factor of the plate. Since the dielectric loss factor of the adhesive layer is larger than the dielectric loss factor of the plate-like body, the adhesive layer can be preferentially heated, and even a plate-like body having a different coefficient of thermal expansion is caused by a difference in thermal expansion coefficient. The warpage due to the difference in shrinkage can be reduced, and peeling at the bonding interface can be suppressed.
[0027]
(Concrete example)
Hereinafter, a case where a glass plate and a polycarbonate plate are used as the material of the plate-like body and a polyurethane film is used as the adhesive layer will be described as an example. An oscillator (FMW-10-28, frequency: 28 GHz, maximum output: 10 kW) from Fuji Denki Kogyo Co., Ltd. was used for bonding the glass plate, polyurethane film and polycarbonate plate.
[0028]
(1) Temperature rise test When each material of a glass plate, a polyurethane film, and a polycarbonate plate is irradiated with microwaves, if the polyurethane film is heated to a higher temperature than the glass plate or the polycarbonate plate, the glass plate, the polycarbonate plate, and the polyurethane are heated. Thermal expansion is suppressed by the temperature difference of the film.
[0029]
Therefore, a glass plate, a polycarbonate plate, and a polyurethane film were irradiated with microwaves to measure whether only the polyurethane film could be heated to the softening point temperature (about 90 ° C.). Assuming actual bonding, a glass plate 11 (150 × 150 × 4 mm), a polyurethane film 12 (150 × 150 × 0.7 mm), and a polycarbonate plate 13 (150 × 150 × 2 mm) are stacked in this order to form a chamber 3. Was placed on the stage 31 inside, and irradiated with microwaves. Each temperature was measured using a K-type thermocouple.
[0030]
The result is shown in FIG. From this, it was found that the polyurethane film was heated to around the softening point (about 90 ° C.) at which tackiness occurs. On the other hand, it was found that the temperature of the glass plate was about 40 ° C., and that of the polycarbonate plate was about 55 ° C., which was kept at about 20 to 30 ° C. higher than room temperature (about 20 ° C.). From this, it was confirmed that the thermal expansion of the glass plate and the polycarbonate plate could be suppressed.
[0031]
From the above, it was confirmed that the adhesive layer can be heated preferentially and efficiently by irradiating the microwave to the laminate of the glass plate, the polyurethane film, and the polycarbonate plate.
[0032]
(2) Manufacture of laminated body From the tests described above, it was confirmed that the polyurethane film as the adhesive layer can be preferentially heated up to the vicinity of the softening point at which tackiness occurs, and thus the laminated body was manufactured by this method. I decided to try.
[0033]
First, in the same manner as in the above confirmation test, a glass plate having a size of 150 × 150 mm, a polyurethane film, and a polycarbonate plate were laminated and placed in a silicone bag and placed in a chamber.
[0034]
Then, the inside of the bag was evacuated to about 48 Pa, and while maintaining the pressure in the chamber at about 0.58 MPa, microwaves were irradiated to heat the adhesive layer of the laminate. Heating (output: 1 kW) to the vicinity of the softening point of the polyurethane film (about 90 ° C.) for 10 minutes, then holding for 15 minutes (output: about 0.8 kW), and then allowing to cool to room temperature to perform bonding. Through the above steps, a laminate of a glass plate / polyurethane film / polycarbonate plate was obtained.
[0035]
(3) Evaluation of Residual Stress of Laminate The laminate of the glass plate / polyurethane film / polycarbonate plate obtained by the above method was measured for residual stress using a strain gauge. In this case, a residual stress was measured by attaching a strain gauge to the polycarbonate plate side. This is because the polycarbonate plate side is easily cracked by the residual stress, so that it is desired that the residual stress on the polycarbonate side is small. The measurement will be described below.
[0036]
A strain gauge is a device that converts a strain into an electric signal and outputs the signal when a strain occurs in a measurement object. The strain gauge used this time is a uniaxial gauge, which measures strain in one direction. The strain gauge was attached to each side of the polycarbonate plate, the strain in the direction parallel to each side was measured, and the residual stress was calculated.
[0037]
FIG. 6A is a plan view and FIG. 6B is a side view showing a state in which the strain gauge 6 is attached to the polycarbonate plate 13 side of the laminate 1. First, a portion to which the strain gauge is attached is cut out in a size of 50 × 50 mm. Next, the glass plate is crushed with respect to the cut sample with a strain gauge to remove the stress caused by the glass plate. Finally, the polyurethane film was peeled off, and the stress acting on the polycarbonate plate was measured.
[0038]
Tables 1 and 2 show the residual stress of the polycarbonate plate measured at a total of three points (A, B, C) in each of the laminate bonded by the bonding method and the laminate bonded by using the autoclave.
[0039]
Here, the laminate bonded using an autoclave is obtained by the same manufacturing method as described above, except that the heating means of the adhesive layer is based on the autoclave. The dimensions are 740 × 650 mm, and the thickness of each of the glass plate / polyurethane film / polycarbonate plate is the same as that obtained by lamination using microwaves.
[0040]
The size of the laminate (150 x 150 mm) bonded using microwaves and that of the laminate (740 x 650 mm) bonded using an autoclave are different, but the residual stress is due to the difference in the coefficient of thermal expansion between the polycarbonate plate and the glass plate. Is what you do. Therefore, comparison can be made regardless of the size.
[0041]
Comparing Tables 1 and 2, the residual stress of the polycarbonate plate in the laminated body bonded by the bonding method using microwave is reduced at any time of cutting, glass plate crushing, and polycarbonate single plate. You can see that. However, there is a case where the residual stress greatly differs depending on the difference in the cutting position. This is considered to be a variation in the bonding state due to uneven temperature distribution.
[0042]
[Table 1]
Figure 2004082530
[0043]
[Table 2]
Figure 2004082530
[0044]
【The invention's effect】
From the above description, in the manufacturing method according to the present invention, the adhesive layer can be preferentially and efficiently heated by setting the dielectric loss factor of the adhesive layer to be larger than the dielectric loss factor of the plate-like body. Further, since the temperature rise of the plate-like body can be suppressed, the thermal expansion during bonding can be suppressed.
[0045]
As a result, the amount of heat shrinkage during cooling after bonding is reduced, and warpage can be reduced. In addition, a laminate that can suppress peeling at the bonding interface can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic view of an apparatus for manufacturing a laminate that can be used in the present invention.
FIG. 2 is a sectional view of a laminate obtained according to the present invention.
FIG. 3 is a diagram showing the relationship between the dielectric loss angle and the relative permittivity of a dielectric.
FIG. 4 is a diagram schematically illustrating a gyrotron oscillator.
FIG. 5 is a graph showing a temperature rise in a temperature rise test.
FIG. 6 is a diagram illustrating a state where a strain gauge is attached to a polycarbonate plate of a laminate.
[Explanation of symbols]
1: laminated body 11: (glass) plate 12: (urethane) adhesive layer 13: (polycarbonate) plate 2: manufacturing apparatus 3: chamber 31: stage 4: oscillator 41: gyrotron 42: electron gun 43: Electromagnet 44 for electron gun: Beam tunnel 45: Resonator (cavity)
46: main electromagnet 47: beam collector 48: output window 5: waveguide 6: strain gauge

Claims (10)

少なくとも二枚の板状体を接着層にて接着した積層体の製造方法において、
前記接着層は前記板状体より誘電損率が大きな材料からなり、前記接着層へマイクロ波を照射し加熱することで前記接着層を接着可能な状態として、前記少なくとも二枚の板状体を接着し積層することを特徴とする積層体の製造方法。
In a method for manufacturing a laminate in which at least two plate-like bodies are bonded with an adhesive layer,
The adhesive layer is made of a material having a higher dielectric loss factor than the plate-like body, and the adhesive layer is irradiated with microwaves and heated so that the adhesive layer can be bonded to the at least two plate-like bodies. A method for producing a laminate, comprising bonding and laminating.
請求項1に記載の積層体の製造方法において、
前記板状体の熱膨張率が異なるものであることを特徴とする積層体の製造方法。
The method for producing a laminate according to claim 1,
A method of manufacturing a laminate, wherein the plate-like bodies have different coefficients of thermal expansion.
請求項1または2に記載の積層体の製造方法において、
前記接着層は、熱可塑性樹脂膜であることを特徴とする積層体の製造方法。
The method for producing a laminate according to claim 1 or 2,
The method for manufacturing a laminate, wherein the adhesive layer is a thermoplastic resin film.
請求項3に記載の積層体の製造方法において、
前記接着層は、ポリウレタン膜、ポリビニルブチラール膜、またはエチレン−酢酸ビニル共重合体膜であることを特徴とする積層体の製造方法。
The method for producing a laminate according to claim 3,
The method for manufacturing a laminate, wherein the adhesive layer is a polyurethane film, a polyvinyl butyral film, or an ethylene-vinyl acetate copolymer film.
請求項1〜4いずれか1項に記載の積層体の製造方法において、
前記二枚の板状体は、無機ガラスおよび有機樹脂よりなることを特徴とする積層体の製造方法。
The method for producing a laminate according to any one of claims 1 to 4,
The method for manufacturing a laminate, wherein the two plate-like bodies are made of an inorganic glass and an organic resin.
請求項1〜5いずれか1項に記載の積層体の製造方法において、
前記有機樹脂は、アクリル樹脂またはポリカーボネート樹脂であることを特徴とする積層体の製造方法。
The method for producing a laminate according to any one of claims 1 to 5,
The method for producing a laminate, wherein the organic resin is an acrylic resin or a polycarbonate resin.
請求項1〜6いずれか1項に記載の積層体の製造方法において、
さらに前記積層体を加圧手段で加圧しながら接着することを特徴とする積層体の製造方法。
The method for producing a laminate according to any one of claims 1 to 6,
A method for manufacturing a laminate, further comprising bonding the laminate while applying pressure by a pressing means.
請求項7に記載の積層体の製造方法において、
前記加圧手段は、機械的プレスであることを特徴とする積層体の製造方法。
The method for producing a laminate according to claim 7,
The method for manufacturing a laminate, wherein the pressing unit is a mechanical press.
請求項7に記載の積層体の製造方法において、
前記加圧は、チャンバー内に前記積層体を収めたバッグを入れて減圧脱気し、さらに前記チャンバー内に気体を封入し与圧して行うことを特徴とする積層体の製造方法。
The method for producing a laminate according to claim 7,
The method of manufacturing a laminate, wherein the pressurization is performed by putting a bag containing the laminate in a chamber, degassing the bag under reduced pressure, and sealing and pressurizing a gas in the chamber.
請求項1〜10いずれか1項に記載の積層体の製造方法において、
前記マイクロ波は、1〜300GHzの電磁波であることを特徴とする積層体の製造方法。
The method for producing a laminate according to any one of claims 1 to 10,
The method of manufacturing a laminate, wherein the microwave is an electromagnetic wave of 1 to 300 GHz.
JP2002247128A 2002-08-27 2002-08-27 Manufacturing method for laminate Withdrawn JP2004082530A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002247128A JP2004082530A (en) 2002-08-27 2002-08-27 Manufacturing method for laminate
PCT/JP2003/010805 WO2004020196A1 (en) 2002-08-27 2003-08-26 Method of manufacturing laminated body
AU2003261734A AU2003261734A1 (en) 2002-08-27 2003-08-26 Method of manufacturing laminated body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002247128A JP2004082530A (en) 2002-08-27 2002-08-27 Manufacturing method for laminate

Publications (1)

Publication Number Publication Date
JP2004082530A true JP2004082530A (en) 2004-03-18

Family

ID=31972454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002247128A Withdrawn JP2004082530A (en) 2002-08-27 2002-08-27 Manufacturing method for laminate

Country Status (3)

Country Link
JP (1) JP2004082530A (en)
AU (1) AU2003261734A1 (en)
WO (1) WO2004020196A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008081363A1 (en) * 2006-12-28 2008-07-10 Kimberly-Clark Worldwide, Inc. Process for bonding substrates with improved microwave absorbing compositions
US7674300B2 (en) 2006-12-28 2010-03-09 Kimberly-Clark Worldwide, Inc. Process for dyeing a textile web
US7740666B2 (en) 2006-12-28 2010-06-22 Kimberly-Clark Worldwide, Inc. Process for dyeing a textile web
US8182552B2 (en) 2006-12-28 2012-05-22 Kimberly-Clark Worldwide, Inc. Process for dyeing a textile web
US8632613B2 (en) 2007-12-27 2014-01-21 Kimberly-Clark Worldwide, Inc. Process for applying one or more treatment agents to a textile web
JP7092247B1 (en) 2021-09-24 2022-06-28 Agc株式会社 Laminated body and method for manufacturing the laminated body

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4671992A (en) * 1983-09-12 1987-06-09 The Dow Chemical Company High frequency lamination of polymer foams
DE69129705T2 (en) * 1990-12-24 1999-04-08 Ford Werke Ag Method and device for connecting a conductive object to a non-conductive object.
JPH08336932A (en) * 1995-04-12 1996-12-24 Nitto Denzai Kk Manufacture of plate-shaped composite material and apparatus therefor
JPH08281873A (en) * 1995-04-12 1996-10-29 Nitto Denzai Kk Plate-shaped composite material
JP2000037779A (en) * 1998-07-21 2000-02-08 Dainippon Ink & Chem Inc Manufacture of thick member

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008081363A1 (en) * 2006-12-28 2008-07-10 Kimberly-Clark Worldwide, Inc. Process for bonding substrates with improved microwave absorbing compositions
US7674300B2 (en) 2006-12-28 2010-03-09 Kimberly-Clark Worldwide, Inc. Process for dyeing a textile web
US7740666B2 (en) 2006-12-28 2010-06-22 Kimberly-Clark Worldwide, Inc. Process for dyeing a textile web
US8182552B2 (en) 2006-12-28 2012-05-22 Kimberly-Clark Worldwide, Inc. Process for dyeing a textile web
US8632613B2 (en) 2007-12-27 2014-01-21 Kimberly-Clark Worldwide, Inc. Process for applying one or more treatment agents to a textile web
JP7092247B1 (en) 2021-09-24 2022-06-28 Agc株式会社 Laminated body and method for manufacturing the laminated body
KR20230043726A (en) * 2021-09-24 2023-03-31 에이지씨 가부시키가이샤 Laminated body and method for manufacturing laminated body
JP2023046854A (en) * 2021-09-24 2023-04-05 Agc株式会社 Laminate and method for manufacturing the same
KR102604584B1 (en) * 2021-09-24 2023-11-22 에이지씨 가부시키가이샤 Laminated body and method for manufacturing laminated body
US11840048B2 (en) 2021-09-24 2023-12-12 AGC Inc. Laminated body and method for manufacturing laminated body
TWI831378B (en) * 2021-09-24 2024-02-01 日商Agc股份有限公司 Laminated body and method of manufacturing the laminated body

Also Published As

Publication number Publication date
WO2004020196A1 (en) 2004-03-11
AU2003261734A1 (en) 2004-03-19

Similar Documents

Publication Publication Date Title
EP2402298B1 (en) Method of fabricating a ceramic-metal junction
US7140102B2 (en) Electrode sandwich separation
JP5643509B2 (en) SOS substrate manufacturing method with reduced stress
WO2020056793A1 (en) Microwave curing method for multidirectional paved carbon fiber reinforced resin-base composite material
JP2001244444A (en) Method of transposition and separation for thin film
WO2007094232A1 (en) Method for manufacturing soi substrate
Thompson et al. Direct silicon-silicon bonding by electromagnetic induction heating
CN106497523A (en) A kind of graphite composite material and preparation method thereof
JP6671518B2 (en) Semiconductor manufacturing method and semiconductor manufacturing apparatus
JP2004082530A (en) Manufacturing method for laminate
CN109397724B (en) High-temperature-resistant composite material and high-temperature thermal expansion forming method thereof
CN114536617A (en) Method for improving microwave curing heating uniformity of carbon fiber composite material
JP4490506B1 (en) LAMINATED SHEET, ITS MANUFACTURING METHOD, AND PROCESSING METHOD
US5925277A (en) Annealed thermoplastic weld
JP2018167528A (en) Molding method for fiber reinforced plastic, and molding apparatus for fiber reinforced plastic
US20240043342A1 (en) High strength ceramics with novel fracture mode
JP2017092791A (en) Method for manufacturing composite board
CN112867593B (en) Method for producing thermoplastic liquid crystal polymer structure
US20130171380A1 (en) Joined unit of glass base members, airtight envelope, and method for producing glass structural unit
Boey et al. Electromagnetic radiation curing of an epoxy/fibre glass reinforced composite
CN106881871B (en) Welding method for controllable locating surfaces between thermoplastic polymer material bodies
CN113543450B (en) Manufacturing method of copper-niobium composite material plate for superconducting cavity
US20210118726A1 (en) Method for transferring thin film
TWI290342B (en) A method to fabricate a thin film on a substrate
TW201807805A (en) Method to fabricate thin film on substrate by forming a thin film layer which is the region of original substrate receiving ion implantation, and a layer of Remnant Substrate without ion implantation, and heating up the bonding structure body, then applying laser irradiation, etc.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050411

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070622