JP2004080923A - Branch connection structure and its construction method for power transmission branched steel tower - Google Patents

Branch connection structure and its construction method for power transmission branched steel tower Download PDF

Info

Publication number
JP2004080923A
JP2004080923A JP2002238935A JP2002238935A JP2004080923A JP 2004080923 A JP2004080923 A JP 2004080923A JP 2002238935 A JP2002238935 A JP 2002238935A JP 2002238935 A JP2002238935 A JP 2002238935A JP 2004080923 A JP2004080923 A JP 2004080923A
Authority
JP
Japan
Prior art keywords
support arm
cable
power transmission
tower
underground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002238935A
Other languages
Japanese (ja)
Inventor
Kashio Mine
峰 甲子男
Takuya Sukegawa
助川 琢也
Tatsuo Nakanishi
中西 辰雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Hitachi Cable Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Hitachi Cable Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Hitachi Cable Ltd, Sumitomo Electric Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2002238935A priority Critical patent/JP2004080923A/en
Publication of JP2004080923A publication Critical patent/JP2004080923A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electric Cable Installation (AREA)
  • Processing Of Terminals (AREA)
  • Suspension Of Electric Lines Or Cables (AREA)
  • Cable Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a branch connection structure that allows branch connection to an underground power cable from an aerial cable without the need for large-scale modification support arms of an existing power transmission steel tower for transmitting power to an underground cable that feeds power to a newly constructed substation, thus dispensing with large-scale modification work, such as construction of a temporary steel tower, improved in mechanical strength, electrical insulation and construction method, and capable of coping with the accidents of the underground cable. <P>SOLUTION: In the aerial cable steel tower having the horizontal support arms 2 arranged at a tower body in a multistep state, a cable end 5, to which the end of the underground cable extending upward from the ground is attached, is attached horizontally to the tower body 1 by a fixing member 6 at a mid-height position between one support arm 2 that supports the corresponding aerial cable and the other support arm 2, immediately below the one support arm; an overhanging member 3 is arranged at the tip of each support arm 2 and a station insulator 4 is hung at the tip; and a jumper line Lj is made to protrude by the station insulator 4, thus constituting the branch connecting structure so that the jumper line Lj is positioned outside of the range of the insulation distance. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、既設架空送電線から地中送電線を分岐して送電するための送電用分岐鉄塔の分岐接続構造及びその工法に関する。
【0002】
【従来の技術】
新設される変電所に対し、既設架空送電線が架設されている送電用鉄塔から地中送電線を分岐して送電できるようにする工法は、既設の送電用鉄塔の大改造及び関連する設備を必要とし、従ってこれを最小限必要な工事とすることが従来より種々提案され実施されて来た。このような工法には時代による顕著な変化があり、架空送電線のような高圧ケーブルに接続すべき地中送電線としてOFケーブル(oil Filled Cable)が利用されていた頃(1975年迄)迄と、その後CVケーブル(架橋ポリエチレン絶縁ケーブル)が利用されるようになった後とでは次のような変化がある。
【0003】
OFケーブルを地中ケーブルとして利用していた頃では、その地中ケーブルを鉄塔上部迄引上げて架空送電線に接続することは、油圧の関係からできなかったため、鉄塔の真下にケーブル終端部を設置し、この終端部に設けた碍管に対し、鉄塔上部の水平な支持アームに接続されている架空送電線から同種の接続ケーブルを用いて地中ケーブルへの接続が行われていた。しかし、支持アームから接続ケーブルを降ろす際に既設の鉄塔であるため接続ケーブルが架空送電線に干渉しない位置を選択する必要があり、従って支持アームを長いものに取替える必要がある。
【0004】
支持アームの取替えは、送電を継続しながら実施することはできず、従って図9に示すように仮鉄塔A’を本来の鉄塔Aの近くに建設し、架空送電線を仮鉄塔へ移設した後本来の鉄塔の支持アームを長いアームに取替えるという方法で改造が行われていた。図中のTは新設の変電所、LB は地中ケーブル(地中送電線)、LA は架空送電線、1は鉄塔の塔体、Bは隣接する鉄塔である。
【0005】
地中ケーブルにCVケーブルが利用できるようになった後は、CVケーブルが固体絶縁構造であるため、地上にケーブル終端部を設ける必要がなくなり、図8に示すように地中ケーブルLB を鉄塔1の真下から鉄塔上部まで連続状に設けることができるようになった。この方式では、地中ケーブルLB の上端はケーブル終端部5の碍管に接続し、ケーブル終端部5は支持アーム2の端に垂直に取付けることを前提としているため、支持アーム2が改造されていないままではケーブル終端部5の端と架空送電線LA が接近し、絶縁距離を確保することができない。従って、やはり支持アーム2を長くするための大改造をOFケーブル使用の時と同様に行なうという方法が採用されていた。
【0006】
【発明が解決しようとする課題】
しかし、上記のような鉄塔の大改造は、いずれの方式であれ支持アームの改造だけでなく、仮鉄塔を設置する用地をも必要とし、架空送電線の移設、復帰工事、仮鉄塔の建設、撤去などに膨大な費用と人材及び時間が掛かる。このような状況は地中ケーブルにCVケーブルが使用できるようになったとしても同じである。ところが、最近では仮鉄塔を建設する用地を確保することが次第に困難となり、このため鉄塔の支持アームを大改造したり、仮鉄塔を建設する必要のない分岐接続構造及びその工法の研究、開発が強く要望されるようになっていた。
【0007】
この発明は、上記の従来の工法における種々の問題に留意して、新設される変電所へ電力を送る地中送電線へ既設の送電鉄塔の支持アームを大改造することなく、又そのため仮鉄塔を建設するなどの大規模な改造工事を必要とすることもなく架空送電線から地中送電線への分岐接続ができ、しかも機械的な強度、電気的な絶縁性能、施工方法に優れ、かつ地中送電線の事故に対応できる分岐接続構造及びその工法を提供することを課題とする。
【0008】
【課題を解決するための手段】
この発明は、上記の課題を解決する手段として、支柱を組合わせて形成される塔体に多段状に水平な支持アームを設け、各支持アームに端末を係止させる架空送電線同士を接続するジャンパ線と、このジャンパ線を把持するステーション碍子とを備え、架空送電線から分岐接続するため地上から上方へ延びる地中送電線のケーブル終端部の対応する架空送電線を係止する支持アームの直下の支持アーム上に支持アームより長い足場を設け、上記架空送電線を係止する支持アームとその直下の支持アームとの中間高さ位置でケーブル終端部を中心軸が略水平となるよう塔体に取付け、支持アームの先端に張出し部材を設け、この張出し部材の端にステーション碍子を吊り下げて把持されるジャンパ線がケーブル終端部の先端から必要な絶縁距離外に位置するように構成した送電用分岐鉄塔の分岐接続構造としたのである。
【0009】
上記構成の送電用分岐鉄塔の分岐接続構造によれば、既設の送電用鉄塔を改造することにより架空送電線から地中送電線へ分岐接続して新設の変電所へ送電が可能となる。地中送電線は、現在ではCVケーブル(架橋ポリエチレン絶縁ケーブル)が用いられているため、地中から鉄塔の位置で鉄塔の上部までCVケーブルが連続する線として設けられ、その端末はケーブル終端部という端末部材に固定される。
【0010】
ケーブル終端部は、一般にはその長さ方向を垂直に立てて設置することを前提として設計されるが、鉄塔の支持アーム上に垂直に立てて又は下向きに設置すると、鉄塔の塔体の一部であり、かつケーブル終端部が設置される支持アームの直上又は直下の支持アームに導体を露出させたケーブル終端部の先端部が接近し過ぎて先端部から所定距離の絶縁距離を確保できない。このような不都合を生じさせないために、ケーブル終端部は対応する架空送電線を支持する支持アームとその直下の支持アームの中間高さ位置に水平に設置すれば、先端部から必要な絶縁距離外に支持アームが位置することとなり条件に適合する。
【0011】
但し、架空送電線を支持する支持アームが最下層に位置する場合、上記「直下の支持アーム」については、その下に支持アームがあると想定した場合の高さ位置と解してその位置に足場を設け、又その位置との中間高さ位置にケーブル終端部を取り付けることを意味するものとする。後記の分岐接続工法における「下段の支持アーム」についても同様である。又、ケーブル終端部は、水平に設置しても内部での電界集中部に内部閃絡が発生しないように従来型の形式のものを若干の改造をすることにより水平に設置できる形式としたものを使用することが前提である。
【0012】
さらに、ケーブル終端部を水平に設置すれば、塔体との絶縁距離は確保できるが、さらに必要な条件としてジャンパ線に対しても絶縁距離を確保する必要がある。ジャンパ線を支持アーム端に連結される架空送電線を含む垂直面内に設置したままでケーブル終端部の先端部とリード線で接続すると、地中送電線に事故が発生した際に絶縁距離が十分でないからである。
【0013】
地中送電線の事故では復旧までに時間が掛かり、架空送電線での送電に影響が生じるため、ジャンパ線に接続されているリード線を取外すことにより地中送電線を架空送電線から切り離す必要が生じる。このとき、リード線を取外してもジャンパ線の接続点がケーブル終端部の先端から必要な絶縁距離内に位置していると、架空送電線から地中送電線を完全に切り離したことにならない。このような状態に対応するため、ステーション碍子を張出し部材で支持アーム端から突出させ、このステーション碍子でジャンパ線を斜め方向に突出させてジャンパ線の接続点を必要な絶縁距離外へ位置させるようにしたのである。
【0014】
上記の地中送電線への分岐接続構造を得るためには、既設の鉄塔における架空送電線から分岐接続できるように支持アームを改造することにより形成する工法が必要である。この工法は、支柱を組合わせて形成される塔体に多段状に水平に設けられた支持アームに架設されている架空送電線同士を接続するジャンパ線から地中送電線へケーブル終端部を経由して分岐接続する際に、ケーブル終端部の対応する架空送電線を係止する支持アームの下段の支持アーム上に支持アームより長い足場を設置し、この足場上での作業によりケーブル終端部をその中心軸が略水平となるように塔体に取付けてケーブル終端部を地中送電線に接続し、ジャンパ線を把持するためのステーション碍子を支持アーム先端より所定距離塔体から離れた位置に吊下げて上記ジャンパ線を把持し、このジャンパ線にリード線を介してケーブル終端部を接続するようにした送電用分岐鉄塔の分岐接続工法とすることができる。
【0015】
この工法ではケーブル終端部を対応する架空送電線を支持する支持アームとその直下の支持アームとの間に水平に塔体に取付けるため、上記直下の支持アーム上に支持アームより長い足場を設置する。この足場上でケーブル終端部の碍管を水平に保持、移動させる作業を行ない、塔体に固定される地中送電線の先端部に組込んでケーブル終端部が組立てられる。このとき、架空送電線を支持する支持アームに対し、架設レールとこのレールで水平移動する吊下手段で碍管を水平に保持しながら移動させると作業は効率よく行なわれることとなる。
【0016】
張出し部材は、支持アームの先端に固定して設け、これにより吊下げられるステーション碍子でジャンパ線を斜めに突出させて把持し、このジャンパ線からリード線をケーブル終端部に接続すると分岐接続構造が得られる。
【0017】
【発明の実施の形態】
以下、この発明の実施の形態について図面を参照して説明する。図1は実施形態の送電用分岐鉄塔の全体概略及び要部概略斜視図を示す。図示の送電用分岐鉄塔は、既設の送電用鉄塔に対し部分的な構成部材の改造を施したものである。この送電用分岐鉄塔として改造される送電用鉄塔は、新設される変電所に最も近く、地中送電線を布設するのに適する位置に設置されている既設の送電用鉄塔が選択されるが、新たに設置される送電用鉄塔であってもよい。
【0018】
図示のように、送電用分岐鉄塔Aは、一般の送電用鉄塔と同様に複数の支柱をトラス構造に連結して構成した塔体1の上方に多段状に複数の支持アーム2を水平に取付けて形成されており、支持アーム2は、多段状に架設される架空送電線LA が上下に重ならないように少しずつ互いに異なる長さで設けられ、架空送電線LA の重量に十分耐えられるよう補助部材2aが塔体から斜め下方に向けて設けられ、その先端を支持アーム2の端に接続して支持アーム2を補強している。
【0019】
支持アーム2の先端にはヘ字状の張出し部材3が所定長さに設定して設けられ、この部材3の先端(塔体1から離れる方向)にステーション碍子4が垂直に吊り下げられている。このステーション碍子4の下端はジャンパ線LJ に連結され、ジャンパ線LJ が風や地震により揺れるのを防止している。従って、既設のジャンパ線が支持アーム端の直ぐ下方に半円状に垂れ下げて保持されているのに対し、この実施形態ではジャンパ線LJ は斜め横方向に半円状に保持される。
【0020】
上記ジャンパ線LJ から電力を分岐して地中送電線LB へ送る接続をするため、地中送電線LB の端末部を固定するケーブル終端部5が、対応する段の架空送電線LA を支持している支持アーム2の下方で、この支持アーム2の直下の支持アーム2との略中間高さ位置にその中心軸が大略水平となるように塔体1に対し固定部材6を介して取付けられている。又、上記ケーブル終端部5や張出し部材3を取付けるための足場7が下段の支持アーム2上に設置されている。
【0021】
足場7は取付作業の後も故障、保守点検作業のため永久部材として残される。なお、足場7は図1では図示が複雑になるため省略し、図2の詳細図に示している。又、支持アーム2が最下層に位置する場合、上記「直下の支持アーム2」についてはその下に支持アーム2があると想定した場合の高さ位置と解し、その位置に足場7を設けると共に、その位置と上方の支持アーム2との中間高さ位置にケーブル終端部5を設け、張出し部材3は最下層の支持アーム2に取り付けることを意味するものとする。
【0022】
塔体1に対しケーブル終端部5が取付けられると、地上から延びる地中送電線の各相のケーブルの端末がそれぞれ対応するケーブル終端部5に接続されたこととなり、さらにケーブル終端部5からジャンパ線LJ へリード線Ll を介して接続が行なわれる。この場合、ジャンパ線LJ は、ケーブル終端部5の先端から必要な絶縁距離範囲外を通るよう斜め横方向に設置されており、その半円形部分の中間位置にリード線Ll が接続される。
【0023】
図3に上記ケーブル終端部5の概略構造を示す。(a)図は組立側面図、(b)図は主断面図である。又、図4は分解図を示す。図示のように、このケーブル終端部5はポリマ材を使用した碍管51とその内部に挿入されるケーブル端末部とから成り、ケーブル端末部はケーブル導体52を一部露出させてその先端の一部を碍管51の一端から突出させるように挿入固定され、他はケーブルシースと半導電層を大部分剥ぎ取って絶縁体53が露出した状態とし、その基端寄りにゴムユニット固定部55とゴムユニット54を装着した状態で碍管51内に挿入、固定される。
【0024】
そして、上記ケーブル端末部を碍管51内に挿着した後内部空隙部に不活性ガスであるSF6 ガスを封入して密封する。57は碍管51の他端に接続されるケーブル端の保護のための防水処理部材である。なお、地中送電線LB は、一般にCVケーブルと呼ばれる架橋ポリエチレン絶縁ケーブルが使用されている。
【0025】
上記の構成としたケーブル終端部5は、鉄塔に水平に取付けた際に機械的強度や、電気的性能としての絶縁性能が十分か、又ケーブル端末へのポリマ碍管の挿入組立ができるかについて種々検討の結果採用されたものである。機械的強度の面から一般的にはケーブル終端部としては機械的な強度が十分な磁器型が使用されるが、鉄塔に取付けた場合の外的条件として風速40m/sの風圧や阪神淡路大震災での800galの振動加速度に対し、圧縮応力や引張応力において十分であると共に、固定部材6で固定する際の取付強度が十分でなければならない。ポリマ型碍管強度自体は磁器型とほぼ同等であり、ポリマ型も十分使用できる。
【0026】
しかし、固定部材6で水平に固定する場合、重量が大き過ぎると固定部材6による固定構造の強度が不足する。ポリマ型は図示の例では総重量80kgであり、磁器型は200kgとなり、ポリマ型は固定部材6で十分な安全率をもって支持できるが、磁器型は重過ぎて適切ではなく、このためポリマ型が採用されたものである。
【0027】
上記ポリマ型ケーブル終端部5を固定する固定部材6は、図2に示すように、垂直からやや傾斜する塔体1の支持材であるL型鋼材のアーム先端側に平行側板62を水平方向に固定し、この平行側板62のそれぞれにC型鋼材63を固定したものから成る。ケーブル終端部5は、碍管51の端部のフランジ部をこのC型鋼材63に固定することにより片持状にしっかりと固定される。
【0028】
上記のように構成される架空送電線から地中送電線へ分岐する分岐接続構造を有する送電用分岐鉄塔を形成するための作業について以下説明する。なお、送電用分岐鉄塔は新設される場合でも構成は同じとなるように形成すればよいが、以下では主として既設の送電用鉄塔を対象とし、その構成部材を部分的に改造する場合についてその工法を説明する。図6にケーブル終端部5を固定するための作業構造を示す。
【0029】
前述したように、下段の支持アーム2上には地中送電線への分岐接続工事のために最初に足場7が取付けられ、さらに上段の支持アーム2上にも仮設レール8と吊下手段9が設置される。7aは足場7に設けられる手摺である。仮設レール8と吊下手段9は工事終了後は撤去される。仮設レール8と吊下手段9は、ケーブル終端部5を塔体1に対し水平に取付ける工事のために用いられる。仮設レール8は支持アーム2に対しワイヤやボルト・ナット、仮溶接などの適切な固定手段で一時的に固定される。
【0030】
仮設レール8は、詳細は図示していないが、2本のC型鋼材を平行に設け、その内側溝内に移動自在に回転する回転ローラとローラ間の軸に吊下ブロックを取付ける方法、またはH型鋼材の溝を挟むように移動自在に回転する回転ローラを取付ける方法で吊下ブロックを取り付け、吊下げブロックからチェーンを垂らして水平状のケーブル終端部5のポリマ碍管51を吊下げるようにした吊下手段9が取付けられている。仮設レール8と吊下手段9を用いてケーブル終端部5を組立てる作業の状況を図7に示している。
【0031】
図7の(a)図に示すように、ポリマ碍管51を組立てる前に、予め固定部材6のC型鋼材63に対し地中送電線LB の各段の支持アーム2に対する端末部を固定する作業が行なわれる。この端末部は、前述したように導体52、絶縁体53を予め露出させてゴムユニット固定部55と防水処理部57を取付けた部分をC型鋼材63に固定することにより取付けられる。そして、ゴムユニット固定部55に向けて端末部の先端側からゴムユニット54が挿入される。
【0032】
上記ゴムユニット54の挿入には図5に示す専用の挿入具10が使用される。この挿入具10は、軸線が直交するよう互いに係合する一対のカサ歯車11を組合わせ、一方のカサ歯車11にはその軸端に回転ハンドル12を設け、他方のカサ歯車にはその中心のねじ穴に螺合するねじ棒13を挿通させ、ねじ棒の端には地中送電線LB の先端の導体52の端に締結し得るチャック部13aを有する。さらに、ねじ棒13を囲むフレーム14の前端にはゴムユニット54を押すための端面を有する。
【0033】
上述したように、地中送電線LB の先端部に予め手作業でゴムユニット54が少しだけ挿入された状態から、さらに上記挿入具10をLB の先端部に取付けてゴムユニット54を挿入する。ハンドル12を回転させるとネジ棒がLB の先端部の向いている方向に進み、相対的にゴムユニット54はLB の先端部から反対方向に挿入され、ゴムユニット固定部55に当接する位置まで挿入されると挿入が終る。
【0034】
チャック13aによる締結を弛めて挿入具を引き離すと、次にLB の先端部にポリマ碍管51を挿入する挿入作業を開始する。図7の(a)図に示すように、仮設レール8上で吊下手段9を支持アーム2端より外側適当位置に置き、ポリマ碍管51の長さ中央より少し基部寄りの重心点の位置で吊下手段9のチェーンによりポリマ碍管51を水平に吊り下げる。(b)図のように仮設レール8や吊下手段9を用いずに人手で水平にポリマ碍管51を保持しても、碍管51のバランスが取り難く、LB の先端部にスムーズに挿入することが困難である。
【0035】
しかし、この実施形態では仮設レール8と吊下手段9を用いて常にポリマ碍管51の水平状態を保つことができ、従って水平状態のバランスを取りながらポリマ碍管51をローラで水平移動させる。このため、ケーブル絶縁体53を傷付けることなくポリマ碍管51をLB の先端部に挿入できる。このポリマ碍管51の挿入が終ると、碍管51の端部のフランジを固定部材6に固定し、図示しない手段で外部から碍管51内へSF6 ガス56が密封される。
【0036】
なお、一般に碍管51内に封入されるシリコン油と空気層のままで水平に設置すると、試験電圧印加時(JEC3408)の電界集中部最大電界と空気の沿面破壊電界について、
最大電界のImp 3.4kV/mm > 破壊電界Imp 約3kV/mm
AC  0.9kV/mm ≒     AC  約1kV/mm
であり、空気層が電界集中部にくるため内部閃絡を発生するため、これを防止するようにシリコン油に代えてSF6 ガスを封入したが、この場合の電界状態は次の通りである。
【0037】
最大電界のImp 3.4kV/mm < SF6 の沿面破壊電界Imp 約6kV/mm
AC  0.9kV/mm <           AC  約4kV/mm
このような電界状態とすることにより水平状態でも電気的絶縁性能を維持できる。又、内部閃路を防止する別の方法として、SF6 ガスを入れずに碍管上部にリザーバを配置し、リザーバと碍管内部間を給油管で連通し、空気層を碍管内電界の加わらないリザーバ側へ配置することで碍管内をシリコン油で充満させる方法もある。
【0038】
以上で碍管51の組立てが終ると、次に仮設レール8と吊下手段9を撤去した後、上段の支持アームの先端に張出し部材3が取付けられ、かつその先端にステーション碍子4が取付けられる。張出し部材3は上段の支持アーム先端に溶接により永久固定される。上記のように水平に取付けられたケーブル終端部5の先端はステーション碍子4で把持されているジャンパ線LJ にリード線Ll を介して接続され、これにより鉄塔に架設されている架空送電線から新設変電所への地中送電線へ分岐接続する接続工事が完了する。なお、ケーブル終端部5の先端をリード線Ll でジャンパ線LJ に接続する位置が、張出部材3でステーション碍子4を支持アーム先端から離すことにより支持アーム先端より所定の絶縁距離外に置かれている。
【0039】
これは、地中送電線の事故発生時に対応できるようにするためである。新設の変電所へ電力を送るための地中送電線に事故が発生した場合、送電用分岐鉄塔を経由して既設の変電所Aから変電所Bへの送電が影響を受ける。地中送電線の復旧には時間がかかるためまずA→B変電所への送電を復旧させる必要があり、事故が生じた地中送電線を架空送電線から切離す必要が生じる。この切離しはケーブル終端部5とジャンパ線LJ とを接続するリード線Ll を切断することにより行なわれる。
【0040】
しかし、従来のように架空送電線間の接続を架空送電線の端を支持アームに固定した位置で互いの送電線間をその位置で下方に垂れるジャンパ線LJ で接続すると、ケーブル終端部5の先端とジャンパ線LJ との間の距離が接近して絶縁距離が確保できない。従って、ジャンパ線LJ との絶縁距離を確保するためには、張出し部材3を支持アーム2の先端より突出させることによりステーション碍子4を突出させ、これによりジャンパ線を突出させて、リード線Ll を取外した後もジャンパ線との間の絶縁距離を得ることができるようにしたのである。
【0041】
なお、上記実施形態では張出し部材3は断面がヘ字状の板材を用いたが、支持アーム2の先から必要な絶縁距離外にステーション碍子が位置し得る長さであれば、その断面形状、材料は他の適宜部材としてもよい。
【0042】
【発明の効果】
以上、詳細に説明したように、この発明の分岐接続構造は、地中送電線の端末部を固定するケーブル終端部を、対応する架空送電線の支持アームとその直下の支持アームとの中間高さ位置で水平に塔体に固定し、支持アームから張出し部材を設けてそこに吊り下げたステーション碍子でジャンパ線を斜めに突出させて把持し、絶縁距離を塔体及びジャンパ線に対して確保するように構成したから、架空送電用の鉄塔の支持アームを大改造し、そのため仮鉄塔を別に建設するなどの大改造工事を必要とすることなく、架空送電線から地中送電線への分岐接続ができ、しかも機械的強度、電気的な絶縁性能にも優れ、かつこの発明の施工方法によれば地中送電線の事故にも対応でき、工費を大幅に激減することができるという顕著な効果を奏する。
【図面の簡単な説明】
【図1】実施形態の送電用分岐鉄塔の(a)全体概略構成図、(b)要部拡大斜視図
【図2】地中送電線への分岐接続構造部の(a)平面図、(b)側面図
【図3】ケーブル終端部の(a)側面図、(b)断面図
【図4】ケーブル終端部の分解図
【図5】ゴムユニットの挿入具の概略構成図((a)は動作初期、(b)は動作中間状態を示す)
【図6】ケーブル終端部を固定するための作業構造の(a)側面図、(b)平面図
【図7】ケーブル終端部の組立工事の(a)適正な工事状態と(b)不適切な工事状態の説明図
【図8】従来の送電用分岐鉄塔の概略構成図
【図9】従来の送電用分岐鉄塔の改造工事の説明図
【符号の説明】
1 塔体
2 支持アーム
2a 補助部材
3 張出し部材
4 ステーション碍子
5 ケーブル終端部
6 固定部材
7 足場
8 仮設レール
9 吊下手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a branch connection structure of a power transmission branch tower for branching an underground transmission line from an existing overhead transmission line and transmitting the power, and a method of constructing the branch connection structure.
[0002]
[Prior art]
For the new substation, the method of branching the underground power transmission line from the power transmission tower where the existing overhead power transmission line is erected, and transmitting power can be done by making major modifications to the existing power transmission tower and related equipment. Various proposals and implementations have been made in the past to make it necessary and therefore to make it the minimum necessary work. Such a construction method has undergone a remarkable change according to the times, and until an OF cable (oil Filled Cable) was used as an underground transmission line to be connected to a high-voltage cable such as an overhead transmission line (until 1975). And after the CV cable (crosslinked polyethylene insulated cable) is used, the following changes occur.
[0003]
At the time when the OF cable was used as an underground cable, it was not possible to pull up the underground cable to the upper part of the tower and connect it to the overhead transmission line due to hydraulic pressure. However, the underground cable was connected to the porcelain tube provided at the terminal end from an overhead power transmission line connected to a horizontal support arm above the steel tower using a similar type of connection cable. However, it is necessary to select a position where the connection cable does not interfere with the overhead power transmission line because the existing cable tower is used when lowering the connection arm from the support arm. Therefore, it is necessary to replace the support arm with a longer one.
[0004]
The replacement of the support arm cannot be performed while the power transmission is continued. Therefore, as shown in FIG. 9, after the temporary tower A ′ is constructed near the original tower A, and the overhead transmission line is moved to the temporary tower, Modifications were made by replacing the original support arm of the tower with a longer arm. Substations T is new in the figure, L B is underground cables (underground transmission lines), L A is overhead lines, 1 column of towers, B is adjacent tower.
[0005]
Once they become available are CV cable underground cables, since CV cable is a solid insulating structure, it is not necessary to provide a cable termination to the ground, tower underground cable L B, as shown in FIG. 8 1 can be provided continuously from just below to the top of the tower. In this manner, the upper end of the underground cable L B is connected to the porcelain bushing of the cable termination 5, cable termination 5 since it is assumed that the mounted vertically on the end of the support arm 2, the support arm 2 has been modified while the close end and overhead transmission lines L a of the cable termination 5 is no, it is not possible to secure an insulation distance. Therefore, a method has been adopted in which a major modification for lengthening the support arm 2 is performed in the same manner as when an OF cable is used.
[0006]
[Problems to be solved by the invention]
However, the major modification of the tower as described above requires not only the modification of the support arm in any case, but also the site for installing the temporary tower, relocation of the overhead transmission line, return work, construction of the temporary tower, Huge costs, human resources and time are required for removal. This situation is the same even if CV cables can be used as underground cables. However, recently it has become increasingly difficult to secure land for the construction of temporary towers.Therefore, research and development of branch connection structures and construction methods that do not require large modifications of tower support arms or construction of temporary towers have been carried out. It was becoming strongly desired.
[0007]
The present invention has been made in consideration of the above-mentioned various problems in the conventional construction method, and has not greatly modified the support arm of the existing power transmission tower to the underground transmission line for transmitting power to the newly constructed substation, and therefore, has not The branch connection from the overhead transmission line to the underground transmission line can be performed without the need for large-scale remodeling work such as the construction of an underground transmission line, and it is excellent in mechanical strength, electrical insulation performance, construction method, and An object of the present invention is to provide a branch connection structure capable of coping with an accident of an underground power transmission line and a method of constructing the same.
[0008]
[Means for Solving the Problems]
As a means for solving the above-mentioned problems, the present invention provides a multi-stage horizontal support arm on a tower formed by combining columns, and connects overhead transmission lines for locking terminals to each support arm. A jumper line and a station insulator for gripping the jumper line, and a support arm for locking a corresponding overhead transmission line at a cable end of an underground transmission line extending upward from the ground for branch connection from the overhead transmission line. A scaffold longer than the support arm is provided on the support arm immediately below, and the tower is arranged such that the central axis is substantially horizontal at the cable end at an intermediate height between the support arm for locking the overhead power transmission line and the support arm immediately below the support arm. A jumper wire that is attached to the body and provided with a projecting member at the end of the support arm, and a station insulator is suspended at the end of this projecting member and the jumper wire that is gripped is the required insulation distance from the end of the cable end. Than it was a branch connection structure of the power transmission branch towers configured so as to be positioned.
[0009]
According to the branch connection structure of the power transmission branch tower having the above-described configuration, the existing power transmission tower can be modified to branch connect from the overhead transmission line to the underground transmission line and transmit power to the newly installed substation. Currently, CV cables (cross-linked polyethylene insulated cables) are used as underground transmission lines, so CV cables are provided as a continuous line from underground to the top of the tower at the position of the tower, and the terminal is located at the end of the cable. Is fixed to the terminal member.
[0010]
The cable end is generally designed on the assumption that its length is set up vertically, but when installed vertically or down on the support arm of the tower, a part of the tower body of the tower is installed. In addition, the distal end of the cable terminal end where the conductor is exposed to the support arm immediately above or immediately below the support arm where the cable terminal end is installed is too close to be able to secure an insulation distance of a predetermined distance from the distal end. In order to avoid such inconvenience, if the cable end is installed horizontally at the intermediate height between the support arm that supports the corresponding overhead power transmission line and the support arm immediately below, the required insulation distance from the tip end is reduced. The support arm is located at the position corresponding to the condition.
[0011]
However, when the support arm that supports the overhead transmission line is located at the lowest layer, the above “direct support arm” is interpreted as a height position when it is assumed that the support arm is located thereunder. It shall mean providing a scaffold and attaching a cable termination at an intermediate height from that location. The same applies to the “lower supporting arm” in the branch connection method described later. The end of the cable shall be of the type that can be installed horizontally by slightly modifying the conventional type so that internal flashover does not occur in the electric field concentration area inside even if it is installed horizontally. It is assumed that is used.
[0012]
Furthermore, if the cable end is installed horizontally, the insulation distance from the tower body can be ensured. However, as a necessary condition, it is necessary to ensure the insulation distance from the jumper wire. If the jumper wire is connected to the end of the cable end with a lead wire while it is installed in the vertical plane including the overhead power line connected to the end of the support arm, the insulation distance will be reduced when an accident occurs in the underground power line. It is not enough.
[0013]
In the case of an underground power line accident, it takes time to recover, and power transmission via the overhead power line is affected, so it is necessary to disconnect the underground power line from the overhead power line by removing the lead wire connected to the jumper wire Occurs. At this time, even if the lead wire is removed, if the connection point of the jumper wire is located within the required insulation distance from the end of the cable end, the underground power transmission line is not completely disconnected from the overhead power transmission line. In order to cope with such a situation, the station insulator is protruded from the support arm end with an overhang member, and the jumper wire is projected obliquely with the station insulator so that the connection point of the jumper wire is located outside the required insulation distance. It was.
[0014]
In order to obtain the above-mentioned branch connection structure to the underground power transmission line, a construction method is required in which a support arm is modified so as to be capable of branch connection from an overhead transmission line in an existing steel tower. In this method, via a cable termination from a jumper line connecting underground transmission lines to overhead transmission lines that connect overhead transmission lines installed on support arms provided horizontally in multiple stages on a tower body formed by combining columns When branch connection is made, a scaffold longer than the support arm is installed on the lower support arm of the support arm that locks the corresponding overhead transmission line at the cable end, and the work on this scaffold removes the cable end. Attach it to the tower body so that its central axis is substantially horizontal, connect the cable end to the underground power line, and place the station insulator for gripping the jumper wire at a distance from the tower body a predetermined distance from the tip of the support arm A branch connection method of a power transmission branch tower in which the jumper wire is suspended and gripped, and a cable terminal portion is connected to the jumper wire via a lead wire can be provided.
[0015]
In this method, a scaffold longer than the support arm is installed on the support arm immediately below the cable so that the end of the cable is horizontally attached to the tower body between the support arm that supports the corresponding overhead power transmission line and the support arm immediately below it. . On this scaffold, work to hold and move the porcelain tube at the end of the cable horizontally is performed, and the cable end is assembled by assembling the tip of the underground power transmission line fixed to the tower body. At this time, if the porcelain tube is moved horizontally with respect to the support arm supporting the overhead transmission line by the erection rail and the suspending means that moves horizontally by the rail, the work is performed efficiently.
[0016]
The overhanging member is fixedly provided at the tip of the support arm, and the jumper wire is obliquely projected and gripped by the suspended station insulator, and when the lead wire is connected to the cable terminal portion from the jumper wire, a branch connection structure is obtained. can get.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an overall schematic and a main part schematic perspective view of a power transmission branch tower according to an embodiment. The illustrated power transmission branch tower is obtained by partially modifying the existing power transmission tower. The power transmission tower to be remodeled as this power transmission branch tower is the existing power transmission tower that is closest to the new substation and is installed at a position suitable for laying the underground power transmission line, It may be a newly installed power transmission tower.
[0018]
As shown in the figure, a power transmission branch tower A has a plurality of support arms 2 mounted horizontally in a multi-stage manner above a tower 1 constructed by connecting a plurality of columns to a truss structure in the same manner as a general power transmission tower. It is formed Te, the support arm 2 is provided with overhead lines L a different lengths from each other little by little so as not to overlap vertically, which is laid in a multistage form, can sufficiently support the weight of the overhead transmission line L a An auxiliary member 2a is provided obliquely downward from the tower body, and its tip is connected to the end of the support arm 2 to reinforce the support arm 2.
[0019]
At the tip of the support arm 2, a projecting member 3 having a U-shape is provided with a predetermined length, and a station insulator 4 is vertically suspended from the tip of the member 3 (in a direction away from the tower 1). . The lower end of the station insulator 4 is connected to the jumper wire L J, jumper wires L J is prevented from swaying by wind or earthquake. Thus, existing jumper wires while being held down hanging in a semicircle just below the support arm end, a jumper line L J in this embodiment is held in a semicircle in an oblique horizontal direction.
[0020]
To the connection to send branched power from the jumper line L J into the ground power line L B, the cable terminal portion 5 for fixing the terminal portion of the underground transmission lines L B, overhead lines of corresponding stage L A fixing member 6 is fixed to the tower body 1 below the support arm 2 supporting A, at a substantially intermediate height position between the support arm 2 and the support arm 2 immediately below the support arm 2 so that the center axis thereof is substantially horizontal. Mounted through. In addition, a scaffold 7 for mounting the cable terminal portion 5 and the overhang member 3 is installed on the lower support arm 2.
[0021]
The scaffold 7 breaks down after the mounting work, and is left as a permanent member for maintenance and inspection work. Note that the scaffold 7 is omitted in FIG. 1 because the illustration is complicated, and is shown in the detailed view of FIG. When the support arm 2 is located at the lowermost layer, the above “directly below the support arm 2” is understood to be a height position assuming that the support arm 2 is located therebelow, and the scaffold 7 is provided at that position. At the same time, the cable end portion 5 is provided at an intermediate height position between the position and the upper support arm 2, and the overhang member 3 is attached to the lowermost support arm 2.
[0022]
When the cable terminal 5 is attached to the tower 1, the terminals of the cables of each phase of the underground power transmission line extending from the ground are connected to the corresponding cable terminal 5, respectively. connection is made through a lead wire L l to line L J. In this case, the jumper line L J is installed in an oblique horizontal direction so as to pass through the insulation distance within the required range from the distal end of the cable termination 5 and the lead wire L l is connected to an intermediate position of the semi-circular portion .
[0023]
FIG. 3 shows a schematic structure of the cable terminal section 5. (A) is an assembly side view, and (b) is a main sectional view. FIG. 4 is an exploded view. As shown in the figure, the cable end portion 5 is composed of a porcelain tube 51 made of a polymer material and a cable terminal portion inserted into the inside thereof. Is inserted and fixed so as to protrude from one end of the porcelain tube 51, and the other is largely stripped of the cable sheath and the semiconductive layer to expose the insulator 53, and the rubber unit fixing portion 55 and the rubber unit are provided near the base end thereof. It is inserted and fixed in the insulator tube 51 with the 54 attached.
[0024]
After the cable end is inserted into the insulator tube 51, SF 6 gas, which is an inert gas, is sealed in the internal gap and sealed. Reference numeral 57 denotes a waterproofing member for protecting a cable end connected to the other end of the insulator tube 51. Incidentally, underground transmission lines L B is generally the cross-linked polyethylene insulated cables called CV cable is used.
[0025]
The cable end portion 5 having the above-described structure has various characteristics as to whether it has sufficient mechanical strength and electrical insulation performance when mounted horizontally on a steel tower, and whether a polymer insulator tube can be inserted and assembled into a cable terminal. It was adopted as a result of examination. Generally, a porcelain type with sufficient mechanical strength is used as the cable end part from the viewpoint of mechanical strength. However, when installed on a steel tower, external conditions such as wind pressure of 40 m / s and the Great Hanshin-Awaji Earthquake , The compression stress and the tensile stress must be sufficient for the vibration acceleration of 800 gal, and the mounting strength when fixing with the fixing member 6 must be sufficient. The strength of the polymer type insulator tube itself is almost the same as that of the porcelain type, and the polymer type can be used sufficiently.
[0026]
However, when fixing horizontally with the fixing member 6, if the weight is too large, the strength of the fixing structure by the fixing member 6 is insufficient. The polymer type has a total weight of 80 kg in the illustrated example, the porcelain type has a weight of 200 kg, and the polymer type can be supported with a sufficient safety factor by the fixing member 6. However, the porcelain type is not suitable because it is too heavy. It has been adopted.
[0027]
As shown in FIG. 2, a fixing member 6 for fixing the polymer type cable end portion 5 is provided with a parallel side plate 62 in a horizontal direction on an arm tip side of an L-shaped steel material which is a support member of the tower body 1 slightly inclined from vertical. The parallel side plates 62 are fixed, and the C-shaped steel members 63 are fixed to the respective parallel side plates 62. The cable terminal portion 5 is firmly fixed in a cantilever shape by fixing the flange portion at the end of the insulator tube 51 to the C-shaped steel material 63.
[0028]
An operation for forming a power transmission branch tower having a branch connection structure that branches from the overhead transmission line configured as described above to the underground transmission line will be described below. The power transmission branch tower may be formed so as to have the same configuration even when newly installed.However, in the following, the method is mainly applied to the existing power transmission tower, and the method for partially remodeling the constituent members is described below. Will be described. FIG. 6 shows a working structure for fixing the cable terminal 5.
[0029]
As described above, the scaffold 7 is first mounted on the lower support arm 2 for branch connection work to the underground power transmission line, and the temporary rail 8 and the suspension means 9 are also mounted on the upper support arm 2. Is installed. 7 a is a handrail provided on the scaffold 7. The temporary rail 8 and the suspension means 9 are removed after the completion of the construction. The temporary rail 8 and the suspending means 9 are used for the work of attaching the cable terminal 5 horizontally to the tower 1. The temporary rail 8 is temporarily fixed to the support arm 2 by a suitable fixing means such as a wire, a bolt and a nut, and temporary welding.
[0030]
Although not shown in detail, the temporary rail 8 is provided with two C-shaped steel members in parallel, and a method in which a suspension block is mounted on a shaft between the rotating roller and the roller that is movably rotated in the inner groove, or A suspension block is attached by a method of attaching a rotatable roller rotatably rotating so as to sandwich the groove of the H-shaped steel material, and a chain is hung from the suspension block so that the polymer insulator tube 51 of the horizontal cable end portion 5 is suspended. Hanging means 9 is attached. FIG. 7 shows the state of the work of assembling the cable end portion 5 using the temporary rail 8 and the suspension means 9.
[0031]
As shown in (a) of FIG. 7, before assembling the polymer porcelain bushing 51, with respect to C-type steel 63 of the pre-fixed member 6 for fixing the terminal portion relative to the support arm 2 of each stage of the underground transmission lines L B Work is performed. The terminal portion is attached by exposing the conductor 52 and the insulator 53 in advance and fixing the portion where the rubber unit fixing portion 55 and the waterproofing portion 57 are attached to the C-type steel 63 as described above. Then, the rubber unit 54 is inserted toward the rubber unit fixing portion 55 from the distal end side of the terminal portion.
[0032]
A dedicated insert 10 shown in FIG. 5 is used to insert the rubber unit 54. This inserter 10 combines a pair of bevel gears 11 which engage with each other so that their axes are orthogonal to each other. One of the bevel gears 11 is provided with a rotating handle 12 at the shaft end thereof, and the other bevel gear 11 is provided with a center handle thereof. the threaded rod 13 is screwed into the screw hole is inserted, the end of the threaded rod having a chuck portion 13a which can be fastened to the end of the conductor 52 at the tip of the underground transmission lines L B. Further, the front end of the frame 14 surrounding the screw rod 13 has an end face for pushing the rubber unit 54.
[0033]
As described above, inserting the rubber unit 54 is attached from the state rubber unit 54 in advance manually in the distal portion of the underground transmission lines L B is inserted slightly further the insertion tool 10 to the tip portion of the L B I do. When the handle 12 is rotated proceeds in the direction in which the threaded rod is facing the tip of the L B, relatively rubber unit 54 is inserted in the opposite direction from the front end of the L B, abuts against the rubber unit fixing portion 55 located When the insertion is completed, the insertion ends.
[0034]
When pulling the insert loosening the fastening by the chuck 13a, then start inserting operation of inserting the polymer porcelain bushing 51 to the distal end portion of the L B. As shown in FIG. 7 (a), the suspending means 9 is placed on the temporary rail 8 at an appropriate position outside the end of the support arm 2 and at the position of the center of gravity slightly closer to the base than the center of the length of the polymer insulator 51. The polymer insulator tube 51 is suspended horizontally by the chain of the suspension means 9. (B) also hold the polymer insulator pipes 51 horizontally by hand without using a temporary rail 8 and hanging means 9 as shown in the illustration difficult to balance the porcelain bushing 51 is inserted smoothly into the distal end portion of the L B It is difficult.
[0035]
However, in this embodiment, the horizontal state of the polymer insulator 51 can be always maintained by using the temporary rail 8 and the suspending means 9, and therefore, the polymer insulator 51 is horizontally moved by the rollers while keeping the horizontal state balanced. Therefore, it inserts the polymer porcelain bushing 51 without damaging the cable insulation 53 to the distal end portion of the L B. When the insertion of the polymer porcelain bushing 51 is completed, to fix the flange of the end of the porcelain bushing 51 to the fixed member 6, SF 6 gas 56 is sealed from the outside by means not shown to the porcelain bushing 51.
[0036]
In addition, if the silicon oil enclosed in the insulator tube 51 and the air layer are horizontally installed, the maximum electric field at the electric field concentrated portion and the creepage electric field of the air when the test voltage is applied (JEC3408) are as follows.
Maximum electric field Imp 3.4 kV / mm> Breakdown electric field Imp about 3 kV / mm
AC 0.9kV / mm ≒ AC about 1kV / mm
Since the air layer comes to the electric field concentrated portion and an internal flash occurs, SF 6 gas is sealed in place of silicon oil to prevent this, but the electric field state in this case is as follows. .
[0037]
Maximum electric field Imp 3.4 kV / mm <creeping breakdown electric field Imp of SF 6 Approximately 6 kV / mm
AC 0.9kV / mm <AC about 4kV / mm
With such an electric field state, electrical insulation performance can be maintained even in a horizontal state. As another method for preventing the internal flash, a reservoir is disposed above the insulator without supplying SF 6 gas, the reservoir and the interior of the insulator are connected by an oil supply pipe, and the air layer does not receive an electric field in the insulator. There is also a method in which the inside of the insulator tube is filled with silicone oil by disposing it on the side.
[0038]
After the assembling of the insulator tube 51 is completed, the temporary rail 8 and the suspension means 9 are removed, and then the extension member 3 is attached to the tip of the upper support arm, and the station insulator 4 is attached to the tip. The overhang member 3 is permanently fixed to the tip of the upper support arm by welding. Horizontally the tip of the cable termination 5 mounted as described above is connected through a lead wire L l jumper line L J which is gripped by the station insulator 4, thereby overhead lines that are bridged tower The connection work for branch connection from underground to the new substation is completed. The position to be connected to the jumper wires L J a tip of a cable terminal portion 5 with the lead wire L l is a predetermined insulation distance outside the supporting arm tip by separating with projecting members 3 stations insulator 4 from the support arm tip It has been placed.
[0039]
This is to make it possible to cope with an underground transmission line accident. When an accident occurs on an underground transmission line for transmitting power to a newly constructed substation, the transmission from the existing substation A to the substation B via the transmission branch tower is affected. Since it takes time to restore the underground transmission line, it is necessary to first restore the transmission from the A → B substation, and it is necessary to disconnect the underground transmission line where the accident occurred from the overhead transmission line. The disconnect is effected by cutting the lead wire L l for connecting the jumper line L J cable termination 5.
[0040]
However, when connected as in the conventional connection between overhead transmission line at a position fixing the end of the overhead line to the support arm by jumper wire L J hanging downwardly between each other of the transmission lines at that position, the cable terminal portion 5 distance close insulation distance between the tip and the jumper line L J of can not be ensured. Therefore, in order to secure the insulation distance between the jumper line L J is is protruded station insulator 4 by projecting a flared member 3 from the distal end of the support arm 2, thereby to protrude the jumper wire, lead wire L Thus, the insulation distance from the jumper wire can be obtained even after removing l .
[0041]
In the above-described embodiment, the overhanging member 3 uses a plate material whose cross section is a letter-shaped. However, as long as the station insulator can be located outside the required insulation distance from the tip of the support arm 2, its cross-sectional shape, The material may be another suitable member.
[0042]
【The invention's effect】
As described in detail above, the branch connection structure of the present invention provides a cable termination portion for fixing a terminal portion of an underground power transmission line with an intermediate height between a support arm of a corresponding overhead power transmission line and a support arm immediately thereunder. At the position, it is fixed horizontally to the tower body, a projecting member is provided from the support arm, the jumper wire is obliquely projected and gripped by a station insulator suspended there, and the insulation distance is secured for the tower body and the jumper wire The branching from the overhead transmission line to the underground transmission line is not required, since the support arm of the tower for overhead power transmission is greatly remodeled, and thus no major rebuilding work such as the construction of a temporary tower is required. It is remarkable that it can be connected, has excellent mechanical strength and electrical insulation performance, and according to the construction method of the present invention, it can cope with an accident of an underground transmission line and can drastically reduce the construction cost. It works
[Brief description of the drawings]
FIG. 1A is an overall schematic diagram of a power transmission branch tower according to an embodiment, and FIG. 1B is an enlarged perspective view of a main part. FIG. 2A is a plan view of a branch connection structure to an underground power transmission line. b) Side view [FIG. 3] (a) Side view, (b) sectional view of cable termination section [FIG. 4] Exploded view of cable termination section [FIG. 5] Schematic configuration view of rubber unit insertion tool ((a)) Indicates an initial operation, and (b) indicates an intermediate operation state.)
6A is a side view and FIG. 7B is a plan view of a working structure for fixing a cable terminal portion. FIG. 7A is an appropriate construction state of an assembling work of a cable terminal portion, and FIG. [Fig. 8] Schematic configuration of a conventional power transmission branch tower [Fig. 9] Schematic diagram of a conventional power transmission branch tower remodeling work [Description of symbols]
DESCRIPTION OF SYMBOLS 1 Tower body 2 Support arm 2a Auxiliary member 3 Overhang member 4 Station insulator 5 Cable terminal end 6 Fixing member 7 Scaffolding 8 Temporary rail 9 Suspension means

Claims (6)

支柱を組合わせて形成される塔体に多段状に水平な支持アームを設け、各支持アームに端末を係止させる架空送電線同士を接続するジャンパ線と、このジャンパ線を把持するステーション碍子とを備え、架空送電線から分岐接続するため地上から上方へ延びる地中送電線のケーブル終端部の対応する架空送電線を係止する支持アームの直下の支持アーム上に支持アームより長い足場を設け、上記架空送電線を係止する支持アームとその直下の支持アームとの中間高さ位置でケーブル終端部を中心軸が略水平となるよう塔体に取付け、支持アームの先端に張出し部材を設け、この張出し部材の端にステーション碍子を吊り下げて把持されるジャンパ線がケーブル終端部の先端から必要な絶縁距離外に位置するように構成した送電用分岐鉄塔の分岐接続構造。A tower body formed by combining columns is provided with multi-stage horizontal support arms, jumper wires connecting overhead power transmission lines that lock terminals to each support arm, and a station insulator holding this jumper wire. And a scaffold longer than the support arm is provided on the support arm immediately below the support arm for locking the corresponding overhead power line at the cable terminal end of the underground power line extending upward from the ground for branch connection from the overhead power line. At the intermediate height between the support arm for locking the overhead power transmission line and the support arm immediately below the cable, the cable end is attached to the tower so that the central axis is substantially horizontal, and an extension member is provided at the tip of the support arm. The power transmission branch tower is configured such that the jumper wire, which is held by suspending the station insulator at the end of the overhang member, is located outside the required insulation distance from the end of the cable end. Connection structure. 支柱を組合わせて形成される塔体に多段状に水平に設けられた支持アームに架設されている架空送電線同士を接続するジャンパ線から地中送電線へケーブル終端部を経由して分岐接続する際に、ケーブル終端部の対応する架空送電線を係止する支持アームの下段の支持アーム上に支持アームより長い足場を設置し、この足場上での作業によりケーブル終端部をその中心軸が略水平となるように塔体に取付けてケーブル終端部を地中送電線に接続し、ジャンパ線を把持するためのステーション碍子を支持アーム先端より所定距離塔体から離れた位置に吊下げて上記ジャンパ線を把持し、このジャンパ線にリード線を介してケーブル終端部を接続するようにした送電用分岐鉄塔の分岐接続工法。Branch connection from the jumper wire connecting underground transmission lines to underground transmission lines that connects overhead transmission lines installed on support arms provided horizontally in multiple stages on a tower body formed by combining columns At the time of installation, a scaffold longer than the support arm is installed on the lower support arm of the support arm that locks the corresponding overhead transmission line at the cable end, and the center axis of the cable end is changed by working on this scaffold. Attach it to the tower so that it is substantially horizontal, connect the cable end to the underground power line, suspend the station insulator for holding the jumper wire at a position away from the tower body by a predetermined distance from the tip of the support arm, and A branch connection method of a power transmission branch tower that grips a jumper wire and connects a cable terminal portion to the jumper wire via a lead wire. 前記ケーブル終端部の取付位置より上方位置に仮設レール及びこのレール内で水平移動自在な吊下手段を設け、吊下手段によりケーブル終端部の碍管を水平に吊り下げた状態で水平移動させてケーブル終端部を組立てるようにしたことを特徴とする請求項2に記載の送電用分岐鉄塔の分岐接続工法。A temporary rail is provided above the mounting position of the cable end portion, and a suspending means which is horizontally movable within the rail is provided, and the cable is moved horizontally while the insulator tube at the cable end portion is hung horizontally by the suspending means. 3. The method according to claim 2, wherein the terminal portion is assembled. 前記支持アーム先端より所定距離塔体から離れた位置にステーション碍子を吊り下げる際に、支持アーム先端に張出し部材を固定し、この張出し部材の端にステーション碍子を取付けるようにしたことを特徴とする請求項2又は3に記載の送電用分岐鉄塔の分岐接続工法。When suspending the station insulator at a position away from the tower body by a predetermined distance from the tip of the support arm, a projecting member is fixed to the tip of the support arm, and the station insulator is attached to the end of the projecting member. The branch connection method of the power transmission branch tower according to claim 2 or 3. 前記ケーブル終端部に地中送電線の端部を接続する際に、予め地中送電線の保護層を剥ぎ取り、その外周にゴムユニットを挿入具を用いて挿入するようにしたことを特徴とする請求項2乃至4のいずれかに記載の送電用分岐鉄塔の分岐接続工法。When connecting the end of the underground power transmission line to the cable end portion, the protective layer of the underground power transmission line is peeled off in advance, and a rubber unit is inserted around the outer circumference thereof using an insertion tool. The method for connecting and branching a power transmission branch tower according to any one of claims 2 to 4. 保護層を剥ぎ取った地中送電線の端部にゴムユニットを装着するための当接面を有する押込フレーム内に上記端部の導体を把持するチャックを先端に有するねじ軸を出没自在に備え、ねじ軸にはハンドルで回転する歯車操作機構をねじ係合させ、ハンドルを操作することにより地中送電線の端部にゴムユニットを嵌合装着させるように構成したゴムユニット挿入具。A screw shaft having a chuck for gripping the conductor at the end portion is provided in a push frame having a contact surface for mounting a rubber unit at an end portion of the underground power transmission line from which the protective layer has been peeled off so as to be able to protrude and retract. A rubber unit insertion tool configured to engage a gear operating mechanism that is rotated by a handle with a screw shaft and operate the handle to fit and attach a rubber unit to an end of an underground power transmission line.
JP2002238935A 2002-08-20 2002-08-20 Branch connection structure and its construction method for power transmission branched steel tower Pending JP2004080923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002238935A JP2004080923A (en) 2002-08-20 2002-08-20 Branch connection structure and its construction method for power transmission branched steel tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002238935A JP2004080923A (en) 2002-08-20 2002-08-20 Branch connection structure and its construction method for power transmission branched steel tower

Publications (1)

Publication Number Publication Date
JP2004080923A true JP2004080923A (en) 2004-03-11

Family

ID=32022180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002238935A Pending JP2004080923A (en) 2002-08-20 2002-08-20 Branch connection structure and its construction method for power transmission branched steel tower

Country Status (1)

Country Link
JP (1) JP2004080923A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101859988A (en) * 2010-03-12 2010-10-13 湖北省输变电工程公司 Assembly type overhead construction process
JP2011182541A (en) * 2010-03-01 2011-09-15 Furukawa Electric Co Ltd:The Facility and method for rebuilding steel tower
CN102751687A (en) * 2012-07-12 2012-10-24 国核电力规划设计研究院 Drainage armour clamp of high voltage alternative current circuit tension resisting tower
CN104242208A (en) * 2014-09-22 2014-12-24 国家电网公司 Double-circuit cable terminal steel pipe pole for overhead transmission line
CN105024333A (en) * 2015-04-20 2015-11-04 国家电网公司 Cable terminal tower lead wire hardening method
CN107069644A (en) * 2017-06-12 2017-08-18 国网江苏省电力公司无锡供电公司 A kind of multiple splicing apparatus in outdoor cable terminal station

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011182541A (en) * 2010-03-01 2011-09-15 Furukawa Electric Co Ltd:The Facility and method for rebuilding steel tower
CN101859988A (en) * 2010-03-12 2010-10-13 湖北省输变电工程公司 Assembly type overhead construction process
CN101859988B (en) * 2010-03-12 2013-01-09 湖北省输变电工程公司 Assembly type overhead construction process
CN102751687A (en) * 2012-07-12 2012-10-24 国核电力规划设计研究院 Drainage armour clamp of high voltage alternative current circuit tension resisting tower
CN104242208A (en) * 2014-09-22 2014-12-24 国家电网公司 Double-circuit cable terminal steel pipe pole for overhead transmission line
CN105024333A (en) * 2015-04-20 2015-11-04 国家电网公司 Cable terminal tower lead wire hardening method
CN107069644A (en) * 2017-06-12 2017-08-18 国网江苏省电力公司无锡供电公司 A kind of multiple splicing apparatus in outdoor cable terminal station

Similar Documents

Publication Publication Date Title
KR100913253B1 (en) Power transmission rail track installation method that use catenary fixing device that fix electric wire so that miniaturization of straight tower may be available and catenary fixing device of polymer arm insulators
CN201323409Y (en) Tool for live line replacing of high voltage transmission line V-shaped insulator chain
US20170338633A1 (en) Quick connect and disconnect cable junction box
KR20120040402A (en) Power line supporting device for replacing insulator in transmission towers
US8471416B2 (en) In situ reconstruction of high voltage electric power lines
JP2004080923A (en) Branch connection structure and its construction method for power transmission branched steel tower
CN106450835A (en) Shoe manufacturer high voltage wire landing device
CN109779373B (en) Cable terminal rod for breaking one circuit in double-circuit same-rod parallel-rack transmission line
CN102957104B (en) The remodeling method of transformer and GIS power distribution equipment flexible connection structures
CN201149972Y (en) Equipotential operation curved ladder
JP5788033B2 (en) Overhead power transmission line support structure
CN112636251B (en) Method for changing 10kV straight pole into sectional pole in live mode
JP5486120B1 (en) Overhead power transmission line construction method and overhead power line support structure suitable for this method
CN212478731U (en) Three-loop cable terminal iron tower with high-altitude area maintenance platform
CA2946380C (en) Temporary transfer bus
CN210693413U (en) High-strength core rod type lightning arrester with visible fracture
CN201312079Y (en) Clamping apparatus for live line replacement of suspended insulator in middle of 500KV untypical tangent tower via splicing method
CN210164317U (en) Lightning protection device of electric power transmission and distribution line
CN101232158B (en) Equipotential operating curve ladder
CN202434988U (en) 10 kV drop fuse cable electroscopy grounding wire
CN105449612A (en) A conductive wire insulation support plate apparatus
CN219979930U (en) Uninterrupted access system for emergency power supply
CN220692791U (en) Power distribution net rack for power distribution network planning
CN101771252B (en) Device and method for electriferous replacement of phase-to-phase insulators of 220 KV compact line
CN204167810U (en) A kind of lightning protection pillar insulator live line working wire stripping support

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050307

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050719