JP2004080894A - Protective system for in-loop system - Google Patents

Protective system for in-loop system Download PDF

Info

Publication number
JP2004080894A
JP2004080894A JP2002236773A JP2002236773A JP2004080894A JP 2004080894 A JP2004080894 A JP 2004080894A JP 2002236773 A JP2002236773 A JP 2002236773A JP 2002236773 A JP2002236773 A JP 2002236773A JP 2004080894 A JP2004080894 A JP 2004080894A
Authority
JP
Japan
Prior art keywords
current
accident
customer
pattern
fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002236773A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamaguchi
山口 浩史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2002236773A priority Critical patent/JP2004080894A/en
Publication of JP2004080894A publication Critical patent/JP2004080894A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate the laying of a transmission line of an optical fiber or the like, in protecting an in-loop relay based on a current differential relay method. <P>SOLUTION: Terminal units 18 to 21 provided in each consumer position prepare current pattern information, which have the presence of an accident current and an accident current direction detected by a pair of current transformers CT, provided in both ends of an own device, and carrier-transmit the prepared current pattern information through a power line. An external accident and an internal accident incurred at the consumer, and the accident direction are determined by send/receive of the current pattern information. This determination indicates both trips of the pair of circuit breakers, provided in both ends of the each consumer position, the trip of one circuit breaker, accident current passage, and an accident current passage trailing end in the right direction or the left direction. When the determination of the accident current passage indicates that the right side or left side of the own device is located at the current passage trailing end, backup of a main protection is performed by opening the current breaker on the trailing end side after a specified time elapses. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電源変電所から需要家位置までの電力線を環線接続とする環線系統の保護方式に関する。
【0002】
【従来の技術】
従来、環線系統の保護には、電流差動継電方式が採用され、電源変電所から離れた各需要家位置に設けた計器用変流器(CT)からの電流情報を光ファイバなどの伝送路を通して電源変電所の中央装置に収集し、中央装置で保護リレー演算を行っている。
【0003】
図10は、2端末を設備する環線系統の保護装置の構成例を示す。2箇所の電源変電所1、2から2箇所の需要家3、4まで環状の電力線を布設し、それぞれの需要家3、4に配電する環線系統において、電源変電所に設けられる中央装置5から需要家端末装置6、7までをループ構成の光ファイバ伝送路8で通信接続する。
【0004】
中央装置5では各需要家位置での左右一対の変流器(CT)での電流検出情報を光ファイバ伝送路8を通して収集し、さらに電源変電所1、2での変流器の電流検出情報を収集し、需要家位置での左右一対の変流器情報から当該需要家の内部事故または外部事故の判定および外部事故ではいずれの電源変電所側で事故が発生したかの判定、さらに事故区間の判定をすることで停電区間を系統から切り離す保護リレー演算を行う。
【0005】
【発明が解決しようとする課題】
従来の保護方式では、変流器の検出電流情報を各需要家位置から電源変電所まで伝送するために、光ファイバ伝送路など情報伝送量の大きい高速伝送路を布設する必要があり、大掛かりな設備になるし、大きな設備コストを伴う問題があった。
【0006】
さらに、設備の計画状況によっては、電源変電所と需要家間に通信伝送設備がない場合があり、この場合には当該需要家区間の保護が不能になる。
【0007】
本発明の目的は、前記の課題を解決した環線系統の保護方式を提供することにある。
【0008】
【課題を解決するための手段】
本発明は、電力線は需要家位置まで必ず布設されることに着目し、各需要家位置の端末装置からの情報伝送には電力線を利用した搬送波伝送を行う。この搬送波伝送は、光ファイバ伝送路に比べて低速になるため、データ量としては非常に多い電流情報をそのまま伝送すると保護に遅れが生じる。そこで、変流器で検出する事故電流情報として事故点の違いに対応する事故電流の有無および事故電流方向をもつ電流パターン情報を送受信し、この電流パターン情報から各端末装置が外部事故と内部事故を判定および事故方向を判定し、系統保護に適切なしゃ断器の開放などの処理を行う。この電流パターン情報は、一対の変流器の事故電流の有無と事故電流方向と端末装置の位置(または番号)情報で済み、従来の変流器の電流情報をそのまま伝送するのに比べてデータ量が極めて少なく、搬送波伝送によるも保護に十分な速度で伝送できることになる。以上のことから、本発明は以下の方式を特徴とする。
【0009】
(1)電源変電所から需要家位置までの電力線を環線接続とする環線系統の保護方式であって、
各需要家位置にそれぞれ設けた端末装置は、
自装置の両端に設けられる一対の変流器で検出する事故電流の有無と事故電流方向をもつ電流パターン情報を生成して前記電力線を通して搬送波伝送する手段と、
前記電流パターン情報の送受信で需要家の外部事故と内部事故を判定および事故方向を判定する手段と、
前記判定から、各需要家位置の両端に設けられる一対のしゃ断器の両方トリップ、一方のしゃ断器のトリップ、事故電流通過、自装置の右側または左側の隣接需要家の事故電流通過終端の判定を得る手段を備えたことを特徴とする。
【0010】
(2)前記事故電流通過判定で、自装置の右側または左側の隣接需要家が通過電流終端の判定が得られたとき、一定時限後に終端側のしゃ断器を開放して主保護のバックアップを行う手段を備えたことを特徴とする。
【0011】
【発明の実施の形態】
図1は、本発明の実施形態を示す環線系統と保護装置の構成図であり、2箇所の電源変電所11、12から4箇所の需要家13〜16までを環線で接続する配電系統に適用した場合である。
【0012】
電源変電所位置には電流差動継電方式をベースとして系統保護を行う中央装置17を設け、各需要家端末装置18〜21とは電力線を利用した搬送波伝送によって系統保護情報の伝送を行う。
【0013】
端末装置18〜21は、端末装置18に代表して機能ブロックを示すように、事故発生時に自需要家位置の左右一対の変流器(CT)の事故電流の有無と事故電流方向を基にした電流パターン情報生成と内部事故判定時にしゃ断器トリップ信号を発生するシーケンサ22と、このシーケンサ22からの電流パターン情報を電力線を利用して環線系統に搬送波伝送で送信および他の端末装置から受信する搬送波送受信部23と、シーケンサ22からのトリップ信号で自需要家位置の一対のしゃ断器の一方を開放制御または両方を開放制御、もしくは制御無しにするしゃ断器トリップ部24とを設ける。
【0014】
図2は、各需要家位置での事故状況による左右一対の変流器の電流方向(電流パターン)の違いを示す。同図の(a)〜(c)は需要家内部事故時の事故電流の方向を示し、(a)では両端に電源がある場合で内部事故が発生したとき、左右一対の変流器で検出される電流方向(両端のしゃ断器O1、O2に流れる電流方向)が需要家母線方向(内向き)になる。(b)では図面上で左側に電源がある場合で内部事故が発生したとき、片方の変流器(しゃ断器O2側)に内向きの事故電流が検出され、残りの変流器には事故電流が流れない。(c)では図面上で右側に電源がある場合で内部事故が発生したとき、片方の変流器(しゃ断器O1側)に内向きの事故電流が検出され、残りの変流器には事故電流が流れない。また、図2の(d)と(e)は需要家外部事故時の事故電流の方向を示し、(d)では図面上で左側に事故が発生したときの一対の変流器の電流方向が共に左側になり、(e)では図面上で右側に事故が発生したときの一対の変流器の電流方向が共に右側になる。これらの電流方向は、一方が需要家母線に対して内向き方向で、他方が需要家母線に対して外向き方向となる。
【0015】
上記の図2に示す各電流パターン情報は各端末装置での変流器の検出電流方向と電源構成からそれぞれ判定・生成され、各端末装置は自端末装置で生成した電流パターン情報と、その左右に設置される他端末装置から搬送波伝送される電流パターン情報から、内部事故と外部事故の判定および事故方向の判定を行い、開放すべきしゃ断器(CB)を決定する。以下、保護シーケンス処理を具体的に説明する。
【0016】
まず、図3は、電流パターンの違いを区別するためのパターン名称の例を示し、パターンA,B,Cは需要家の内部事故時のもの、パターンDは電源変電所での事故、パターンR,Lは需要家の外部事故時のもので、電流パターンは全部で6種類とする。
【0017】
図4は、系統線路事故の場合の電流パターンの伝送例を示す。同図の(a)は両端電源構成でNo.1とNo.2の需要家間で線路事故が発生した場合を示し、No.1の端末装置はパターンRを搬送波伝送で送信し、No.2の端末装置はパターンLを送信する。これらパターン情報を互いに送受信することで、No.1側端末装置のシーケンサはO1側しゃ断器を開放し、No.2側端末装置のシーケンサはO2側しゃ断器を開放することで事故区間を系統から切り離すことができる。
【0018】
図4の(b)は片端電源構成での線路事故の場合を示し、No.1の端末装置はパターンRを送信し、No.2の端末装置は事故電流が流れないため、パターンを送信しない。これらパターン情報から、No.1側端末装置のシーケンサは事故電流通過終端Rとし、O1側しゃ断器を開放することでNo.2側を含めて事故区間を系統から切り離すことができる。
【0019】
図5は、需要家母線事故の場合の電流パターンの伝送例を示す。同図の(a)は両端電源構成でNo.1の需要家母線に事故が発生した場合を示し、No.1の端末装置はパターンAを送信し、No.2の端末装置はパターンLを送信する。これらパターン情報を互いに送受信することで、No.1側端末装置のシーケンサはO1とO2の両しゃ断器を開放し、系統から切り離す。No.2側端末装置のシーケンサはしゃ断器を開放することなく、片端電源への移行を判定する。
【0020】
図5の(b)は片端電源構成でNo.1の需要家母線に事故が発生した場合を示し、No.1の端末装置はパターンBを送信し、No.2の端末装置は事故電流が流れないため、パターンを送信しない。これらパターン情報から、No.1側端末装置のシーケンサは事故電流通過終端Lとし、O2側しゃ断器を開放することでNo.2側を含めて事故区間を系統から切り離すことができる。
【0021】
以上のように、需要家母線事故の場合は母線両端の一対のしゃ断器の一方を開放することで系統から切り離すことができるが、図6のような盲点故障(需要家のしゃ断器の故障)の場合も想定し、両方のしゃ断器を開放させるのが好ましい。
【0022】
図7は、端末装置のシーケンサ22のシーケンス論理構成を示す。自装置の一対の変流器の事故検出電流状況を基にした判定J〜Jにより、オンディレー、オフディレータイマTによる判定継続と継続動作で、前記の電流パターンA,B,C,L,Rのいずれかを搬送波伝送する。また、需要家母線事故になるパターンA〜Cのいずれかの判定では論理Gで自己の両しゃ断器O1,O2のトリップ信号を発生する。
【0023】
パターンLの判定状態では、しゃ断器O1側の隣接装置からのパターンA(B,Cも同様)の受信判定Jによって、論理G,GでNG(事故様相からは考えられない組み合わせであり、何らかの装置異常とみなす)を発生する。また、しゃ断器O2側の隣接装置からのパターンA(B,Cも同様)の受信判定Jによって、論理G,Gで自装置のO2側しゃ断器のトリップ信号を発生する。
【0024】
同様の手法で、パターンL、R、Dの受信判定J〜J13によって、O1側しゃ断器のトリップや事故電流通過終端Lの判定、事故電流通過の判定を得る。例えば、自装置にパターンLの判定が得られ、O1側の隣接装置からのパターンLの受信判定JとO2側の隣接装置からのパターンLの受信判定Jが無しの場合には論理G.Gによって左側の隣接装置が事故電流通過終端Lと判定する。また、自装置にパターンLの判定が得られ、O1側の隣接装置からのパターンLの受信判定J、またはO2側の隣接装置からのパターンLの受信判定J、またはO1側の隣接装置からのパターンDの受信判定J12の場合、事故電流通過と判定する。
【0025】
これら処理は、パターンRの判定状態においてもトリップさせるしゃ断器がO1側になることや終端R側の判定の違いはあるが同様のものになる。
【0026】
ここで、自装置での事故電流の通過判定が得られ、左右いずれかの隣接需要家も事故電流が通過するような場合、基本的には自装置は事故区間両端の装置動作を期待し、シーケンス処理としては何もしない。しかし、相手からの情報が何らかの理由で誤りまたは遮断された場合、主保護不動作で後備保護となり、系統全体が停電となる。この不都合に対処するため、自装置が通過電流終端R,Lに位置する判定が得られたとき、一定時限後に終端側のしゃ断器を開放することで主保護のバックアップを行う。
【0027】
この例を、図8および図9で説明する。図8は、線路事故で相手装置が不応動の場合を示し、No.1の端末装置と中央装置との間の線路で事故が発生し、中央装置が不応動でパターン信号が来ないとき、No.1装置では通過電流が自装置の左側で止まっているのか、隣接装置を通過してさらに左側装置に行っているかを判断できない。
【0028】
そこで、図9に追加のバックアップシーケンス論理の要部を示すように、図8の構成において、No.1端末装置は自装置のパターンLを判定したとき、図7の論理ではO1側隣接装置パターンL(あるいはパターンD)を受信し、O2側隣接装置パターンLを受信しなければ、事故電流通過の終端と判断している。
【0029】
ここで、図9では、終端であれば、事故時には一定時限内にO2側隣接装置パターンRを受信するはずが、一定時限経過してもパターンRを受信しなければ、何らかの不具合が発生したものとみなし、自装置のO2側しゃ断器をトリップさせる論理とし、全体の停電を防止する。同様に、自装置パターンRの判定の場合は自装置O1側しゃ断器をトリップさせる。
【0030】
【発明の効果】
以上のとおり、本発明によれば、各需要家位置の端末装置では一対の変流器で検出する事故電流の有無および事故電流方向をもつ電流パターン情報を電力線を利用した搬送波伝送で互いに送受信し、この電流パターン情報から各端末装置が外部事故と内部事故を判定および事故方向を判定し、系統保護に適切なしゃ断器の開放などの処理を行うようにしたため、従来の変流器の電流情報を伝送するための光ファイバ伝送路を不要にし、簡易で低コスト化を図り、しかも高速保護動作を得ることができる。
【0031】
また、電源変電所と需要家間に通信伝送設備がない場合にも当該需要家区間の保護ができる。
【図面の簡単な説明】
【図1】本発明の実施形態を示す環線系統と保護装置の構成図。
【図2】実施形態における事故電流の方向(電流パターン)の例。
【図3】実施形態における電流パターンの名称の例。
【図4】実施形態における線路事故とパターン送信の例。
【図5】実施形態における需要家母線事故とパターン送信の例。
【図6】実施形態における盲点故障とパターン送信の例。
【図7】実施形態におけるシーケンス論理構成の例。
【図8】実施形態における線路事故で相手装置不応動の場合の例。
【図9】実施形態におけるバックアップシーケンス論理の要部構成。
【図10】環線系統の構成例(2端末対応の場合)。
【符号の説明】
11、12…電源変電所
13〜16…需要家
17…中央装置
18〜21…端末装置
22…シーケンサ
23…搬送波送受信部
24…しゃ断器トリップ部
No.1、No.2…端末装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a protection system for a ring system in which a power line from a power substation to a customer position is connected to a ring.
[0002]
[Prior art]
Conventionally, a current differential relay system has been adopted for protection of the ring system, and current information from an instrument current transformer (CT) installed at each customer location away from a power substation is transmitted through an optical fiber or the like. The data is collected at the central unit of the power substation through the road, and the protective relay operation is performed by the central unit.
[0003]
FIG. 10 shows an example of the configuration of a ring system protection device equipped with two terminals. A ring-shaped power line is laid from two power substations 1 and 2 to two customers 3 and 4, and in a ring system for distributing power to the respective customers 3 and 4, a central device 5 provided at the power substation is provided. The customer terminal devices 6 and 7 are communicatively connected by an optical fiber transmission line 8 having a loop configuration.
[0004]
The central unit 5 collects the current detection information of the pair of right and left current transformers (CT) at each customer position through the optical fiber transmission line 8, and further detects the current detection information of the current transformers at the power supply substations 1 and 2. From the pair of left and right current transformers at the customer location, determine whether the customer has an internal accident or an external accident, and in the case of an external accident, determine which power substation caused the accident, and the accident section The protection relay calculation for separating the power failure section from the system by performing the determination of (1) is performed.
[0005]
[Problems to be solved by the invention]
In the conventional protection method, it is necessary to lay a high-speed transmission line with a large information transmission amount, such as an optical fiber transmission line, in order to transmit the detected current information of the current transformer from each customer location to the power substation. There is a problem that it becomes equipment and involves large equipment costs.
[0006]
Furthermore, there is a case where there is no communication transmission facility between the power substation and the customer depending on the plan situation of the facility, and in this case, the protection of the customer section becomes impossible.
[0007]
An object of the present invention is to provide a ring system protection system that solves the above problems.
[0008]
[Means for Solving the Problems]
The present invention focuses on the fact that a power line is always laid to a customer position, and performs carrier wave transmission using a power line for information transmission from a terminal device at each customer position. Since the carrier wave transmission is slower than the optical fiber transmission line, if current information having a very large data amount is transmitted as it is, a delay occurs in protection. Therefore, as the fault current information detected by the current transformer, the presence / absence of fault current corresponding to the difference in fault point and the current pattern information having fault current direction are transmitted and received. And the direction of the accident are determined, and processing such as opening a circuit breaker appropriate for system protection is performed. This current pattern information requires only the presence / absence of a fault current of a pair of current transformers, the direction of the fault current, and the position (or number) of the terminal device. The amount is extremely small, and transmission can be performed at a speed sufficient for protection even by carrier wave transmission. From the above, the present invention has the following features.
[0009]
(1) A ring system protection system in which a power line from a power substation to a customer position is connected to a ring system,
The terminal devices provided at each customer location are:
Means for generating a current pattern information having the presence and absence of a fault current and a fault current direction detected by a pair of current transformers provided at both ends of the own device and transmitting a carrier wave through the power line,
Means for determining the external accident and internal accident of the customer by transmitting and receiving the current pattern information and determining the accident direction,
From the determination, the trip of both the pair of circuit breakers provided at both ends of each customer position, the trip of one circuit breaker, the fault current passing, the fault current passing termination of the adjacent customer on the right or left side of the own device is determined. And a means for obtaining.
[0010]
(2) In the above-mentioned fault current passage determination, when the adjacent customer on the right or left side of the own device obtains the determination of the termination of the passing current, the circuit breaker on the terminal side is opened after a certain period of time to back up the main protection. Means are provided.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a configuration diagram of a ring system and a protection device according to an embodiment of the present invention, which is applied to a distribution system that connects two power supply substations 11 and 12 to four customers 13 to 16 by a ring. This is the case.
[0012]
A central device 17 for system protection based on the current differential relay system is provided at the power substation position, and system protection information is transmitted to each of the customer terminal devices 18 to 21 by carrier wave transmission using power lines.
[0013]
The terminal devices 18 to 21 are based on the presence / absence of a fault current and a fault current direction of a pair of left and right current transformers (CT) at the position of the own customer when a fault occurs, as shown by functional blocks as representative of the terminal device 18. Sequencer 22 that generates a circuit breaker trip signal at the time of generating current pattern information and determining an internal accident, and transmitting the current pattern information from this sequencer 22 to the ring system by carrier wave transmission using a power line and receiving from another terminal device. A carrier transmission / reception unit 23 and a circuit breaker trip unit 24 that performs open control of one of a pair of circuit breakers at the customer's position, open control of both, or no control by a trip signal from the sequencer 22 are provided.
[0014]
FIG. 2 shows the difference in the current direction (current pattern) of the pair of left and right current transformers depending on the accident situation at each customer position. (A) to (c) of the figure show the direction of the fault current at the time of a customer internal fault. In (a), when a power source is present at both ends and an internal fault occurs, it is detected by a pair of right and left current transformers. The current direction (the current direction flowing through the circuit breakers O1 and O2 at both ends) is the customer bus direction (inward). In (b), when the power supply is on the left side of the drawing and an internal fault occurs, an inward fault current is detected in one of the current transformers (the circuit breaker O2 side), and the other current transformer has a fault. No current flows. In (c), when an internal fault occurs when there is a power supply on the right side of the drawing, an inward fault current is detected in one of the current transformers (the circuit breaker O1 side), and the fault is detected in the other current transformers. No current flows. 2 (d) and 2 (e) show the direction of the fault current at the time of a customer external fault. In FIG. 2 (d), the current directions of a pair of current transformers when the fault occurs on the left side of the drawing are shown. Both are on the left side, and in (e), the current directions of the pair of current transformers are both on the right side when an accident occurs on the right side in the drawing. One of these current directions is inward with respect to the customer bus, and the other is outward with respect to the customer bus.
[0015]
Each of the current pattern information shown in FIG. 2 is determined and generated from the detected current direction of the current transformer and the power supply configuration in each terminal device, and each terminal device determines the current pattern information generated by its own terminal device and the left and right current pattern information. The internal circuit determines the internal fault and the external fault and the direction of the fault from the current pattern information transmitted by the carrier from another terminal device installed in the terminal device, and determines the circuit breaker (CB) to be opened. Hereinafter, the protection sequence processing will be specifically described.
[0016]
First, FIG. 3 shows an example of a pattern name for distinguishing a difference in a current pattern. Patterns A, B, and C are for a customer internal accident, pattern D is an accident at a power substation, and pattern R , L are at the time of an external accident of the customer, and there are six types of current patterns in total.
[0017]
FIG. 4 shows an example of transmission of a current pattern in the case of a system line fault. (A) of FIG. 1 and No. No. 2 shows a case where a line accident occurred between the customers. The terminal device of No. 1 transmits the pattern R by carrier wave transmission, and The second terminal device transmits the pattern L. By transmitting and receiving these pattern information to each other, the No. The sequencer of the terminal device on the first side opens the circuit breaker on the O1 side. The sequencer of the two-side terminal device can disconnect the accident section from the system by opening the O2-side circuit breaker.
[0018]
FIG. 4B shows a case of a line fault in a single-ended power supply configuration. The terminal device of No. 1 transmits the pattern R, and The terminal device 2 does not transmit a pattern because no fault current flows. From these pattern information, No. The sequencer of the terminal device on the side 1 is set to the fault current passing terminal R, and the circuit breaker No. 1 is opened by opening the circuit breaker on the O1 side. The accident section including the two sides can be separated from the system.
[0019]
FIG. 5 shows a transmission example of a current pattern in the case of a customer bus accident. (A) of FIG. No. 1 shows a case where an accident occurred on the customer bus. The terminal device of No. 1 transmits pattern A, and The second terminal device transmits the pattern L. By transmitting and receiving these pattern information to each other, the No. The sequencer of the first terminal device opens both the O1 and O2 circuit breakers and disconnects them from the system. No. The sequencer of the two-side terminal determines the transition to the single-ended power supply without opening the circuit breaker.
[0020]
FIG. 5B shows a single-ended power supply configuration. No. 1 shows a case where an accident occurred on the customer bus. The terminal device of No. 1 transmits the pattern B, and The terminal device 2 does not transmit a pattern because no fault current flows. From these pattern information, No. The sequencer of the terminal device on the side 1 is set to the fault current passing terminal L and the circuit breaker No. 2 is opened by opening the circuit breaker on the O2 side. The accident section including the two sides can be separated from the system.
[0021]
As described above, in the case of a customer bus accident, the system can be disconnected from the system by opening one of the pair of circuit breakers at both ends of the bus. However, a blind spot failure as shown in FIG. 6 (a failure of the customer circuit breaker) In this case, it is preferable to open both circuit breakers.
[0022]
FIG. 7 shows a sequence logical configuration of the sequencer 22 of the terminal device. The determination J 1 through J 5 based on a pair of fault detection current status of the current transformer of the apparatus, on-delay, the determination continues a continuation operation due to the off-delay T, the current pattern A, B, C, One of L and R is transmitted by a carrier wave. Also generates a trip signal of its own both breaker O1, O2 in a logical G 1 is either in the determination of the pattern A~C become consumers bus accident.
[0023]
The determination condition of the pattern L, a pattern A from the neighboring device of the breaker O1 side by the reception judgment J 6 of (B, C as well), a combination inconceivable from NG (accident modal a logical G 2, G 3 And it is regarded as some kind of device abnormality). Further, the reception determination J 7 of pattern A from an adjacent device breaker O2 side (B, C as well), for generating a trip signal from the O2 side breaker of the self apparatus in a logical G 4, G 5.
[0024]
In similar manner, the reception determination J 8 through J 13 of the pattern L, R, D, determination of the trip or fault current passage end L of O1 side circuit breaker to obtain a determination of the fault current passes. For example, the device itself determines the pattern L obtained, logic G in the case of the reception determination J 9 is no pattern L from the adjacent device reception determination J 8 and O2 side of the pattern L from O1 side of the neighboring device 6 . G 7 determines that the adjacent device on the left side is the fault current passage termination L. In addition, a determination of the pattern L is obtained in the own device, and the reception determination J 8 of the pattern L from the adjacent device on the O1 side, the reception determination J 9 of the pattern L from the adjacent device on the O2 side, or the adjacent device on the O1 side. If the reception determination J 12 pattern D from determines that the fault current passes.
[0025]
These processes are the same although there is a difference in the circuit breaker to be tripped on the O1 side and the determination on the end R side even in the determination state of the pattern R.
[0026]
Here, the determination of the passage of the fault current in the own device is obtained, and in the case where the fault current also passes through the adjacent customers on either the left or right side, basically, the own device expects the device operation at both ends of the fault section, Nothing is performed as the sequence processing. However, if the information from the other party is erroneous or interrupted for some reason, the main protection is deactivated and the protection is provided afterwards, resulting in a power outage of the entire system. To cope with this inconvenience, when it is determined that the own device is located at the passing current terminals R and L, the main protection is backed up by opening the circuit breaker at the terminal side after a certain period of time.
[0027]
This example will be described with reference to FIGS. FIG. 8 shows a case where the partner device is unresponsive in a track accident. When an accident occurs on the line between the terminal device of No. 1 and the central device and the central device does not respond and no pattern signal comes, One device cannot determine whether the passing current stops on the left side of the own device or passes through the adjacent device and goes to the left side device.
[0028]
Therefore, as shown in FIG. 9, the main part of the additional backup sequence logic, in the configuration of FIG. When one terminal device determines its own pattern L, it receives the O1-side adjacent device pattern L (or pattern D) according to the logic of FIG. Judge as the end.
[0029]
Here, in FIG. 9, if at the end, the O2 side adjacent device pattern R should be received within a certain time period at the time of an accident, but if the pattern R is not received after the certain time period, some trouble occurs. Therefore, the logic of tripping the O2 circuit breaker of the own device is assumed, and the entire power failure is prevented. Similarly, in the case of the determination of the own device pattern R, the own device O1 side circuit breaker is tripped.
[0030]
【The invention's effect】
As described above, according to the present invention, the terminal device at each customer position transmits / receives current pattern information having presence / absence of fault current and fault current direction detected by a pair of current transformers to / from each other by carrier wave transmission using a power line. From this current pattern information, each terminal device determines external and internal accidents and the direction of the accident, and performs processing such as opening a circuit breaker appropriate for system protection. This eliminates the need for an optical fiber transmission line for transmitting the signal, thereby achieving a simple and low-cost operation, and a high-speed protection operation.
[0031]
In addition, even when there is no communication transmission equipment between the power substation and the customer, the customer section can be protected.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a ring system and a protection device according to an embodiment of the present invention.
FIG. 2 is an example of a direction (current pattern) of a fault current in the embodiment.
FIG. 3 is an example of names of current patterns in the embodiment.
FIG. 4 is an example of a line fault and pattern transmission in the embodiment.
FIG. 5 is an example of a customer bus accident and pattern transmission in the embodiment.
FIG. 6 is an example of blind spot failure and pattern transmission in the embodiment.
FIG. 7 shows an example of a sequence logical configuration in the embodiment.
FIG. 8 is a diagram illustrating an example of a case where a partner device is unresponsive in a track accident according to the embodiment.
FIG. 9 is a main configuration of a backup sequence logic in the embodiment.
FIG. 10 is a configuration example of a ring system (a case corresponding to two terminals).
[Explanation of symbols]
11, 12 Power supply substations 13 to 16 Customer 17 Central device 18 to 21 Terminal device 22 Sequencer 23 Carrier transmitting / receiving unit 24 Circuit breaker trip unit No. 1, No. 2. Terminal device

Claims (2)

電源変電所から需要家位置までの電力線を環線接続とする環線系統の保護方式であって、
各需要家位置にそれぞれ設けた端末装置は、
自装置の両端に設けられる一対の変流器で検出する事故電流の有無と事故電流方向をもつ電流パターン情報を生成して前記電力線を通して搬送波伝送する手段と、
前記電流パターン情報の送受信で需要家の外部事故と内部事故を判定および事故方向を判定する手段と、
前記判定から、各需要家位置の両端に設けられる一対のしゃ断器の両方トリップ、一方のしゃ断器のトリップ、事故電流通過、自装置の右側または左側の隣接需要家の事故電流通過終端の判定を得る手段を備えたことを特徴とする環線系統の保護方式。
A protection system for a ring system in which a power line from a power substation to a customer position is connected to a ring system,
The terminal devices provided at each customer location are:
Means for generating a current pattern information having the presence and absence of a fault current and a fault current direction detected by a pair of current transformers provided at both ends of the own device and transmitting a carrier wave through the power line,
Means for determining the external accident and internal accident of the customer by transmitting and receiving the current pattern information and determining the accident direction,
From the determination, the trip of both the pair of circuit breakers provided at both ends of each customer position, the trip of one circuit breaker, the fault current passing, the fault current passing termination of the adjacent customer on the right or left side of the own device is determined. A ring system protection method characterized by comprising means for obtaining.
前記事故電流通過判定で、自装置の右側または左側の隣接需要家が通過電流終端の判定が得られたとき、一定時限後に終端側のしゃ断器を開放して主保護のバックアップを行う手段を備えたことを特徴とする請求項1に記載の環線系統の保護方式。In the accident current passage judgment, when the adjacent customer on the right side or left side of the own device has obtained the judgment of the end of the passing current, after a certain period of time, there is provided a means for opening the circuit breaker on the end side to back up the main protection. The protection system for a ring system according to claim 1, wherein:
JP2002236773A 2002-08-15 2002-08-15 Protective system for in-loop system Pending JP2004080894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002236773A JP2004080894A (en) 2002-08-15 2002-08-15 Protective system for in-loop system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002236773A JP2004080894A (en) 2002-08-15 2002-08-15 Protective system for in-loop system

Publications (1)

Publication Number Publication Date
JP2004080894A true JP2004080894A (en) 2004-03-11

Family

ID=32020803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002236773A Pending JP2004080894A (en) 2002-08-15 2002-08-15 Protective system for in-loop system

Country Status (1)

Country Link
JP (1) JP2004080894A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100464479C (en) * 2006-12-12 2009-02-25 赵建青 Electric grid system and method for resolving electric grid large area power cut
KR101064508B1 (en) * 2009-09-08 2011-09-16 한전케이디엔주식회사 fault location automatic separation method of terminal for distributing automation
KR101105300B1 (en) * 2009-06-30 2012-01-17 한국전력공사 Closed-loop power distribution system including sub loops
CN103715667A (en) * 2013-12-30 2014-04-09 广东电网公司电力调度控制中心 Power transmission and distribution system protection method and power transmission and distribution protection device
CN103947064A (en) * 2011-11-25 2014-07-23 株式会社东芝 Transmission line protective relay device
JP2020120479A (en) * 2019-01-23 2020-08-06 矢崎総業株式会社 Power supply device
CN112072610A (en) * 2020-08-06 2020-12-11 许继集团有限公司 Breaker failure protection optimization method and system based on comprehensive difference

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100464479C (en) * 2006-12-12 2009-02-25 赵建青 Electric grid system and method for resolving electric grid large area power cut
KR101105300B1 (en) * 2009-06-30 2012-01-17 한국전력공사 Closed-loop power distribution system including sub loops
KR101064508B1 (en) * 2009-09-08 2011-09-16 한전케이디엔주식회사 fault location automatic separation method of terminal for distributing automation
CN103947064A (en) * 2011-11-25 2014-07-23 株式会社东芝 Transmission line protective relay device
CN103715667A (en) * 2013-12-30 2014-04-09 广东电网公司电力调度控制中心 Power transmission and distribution system protection method and power transmission and distribution protection device
JP2020120479A (en) * 2019-01-23 2020-08-06 矢崎総業株式会社 Power supply device
CN112072610A (en) * 2020-08-06 2020-12-11 许继集团有限公司 Breaker failure protection optimization method and system based on comprehensive difference
CN112072610B (en) * 2020-08-06 2022-10-04 许继集团有限公司 Breaker failure protection optimization method and system based on comprehensive difference

Similar Documents

Publication Publication Date Title
EP2206208B1 (en) Differential protection method, system and device
US6714395B2 (en) Method for detecting faults internal to a distribution equipment configuration
JPS59209018A (en) Protecting relaying device and method
CN112736870B (en) Adjacent cooperative remote backup protection method
CN106451373A (en) Bidirectional allowable protection method employing master station to identify dynamic topology for power distribution circuit
CA3135642A1 (en) Non-three-phase fault isolation and restoration systems
JP2004080894A (en) Protective system for in-loop system
US11909194B2 (en) Differential protection device and protection system for monitoring objects to be protected in a power supply network
Roberts et al. Trip and restore distribution circuits at transmission speeds
JP4658753B2 (en) Failure location system and failure location system
EP2150895B1 (en) Redundant computers and computer communication networks in a high-voltage power transmission system
Rintamaki et al. Communicating line differential protection for urban distribution networks
JP3964601B2 (en) Protection system
JP2009022063A (en) Power transmission line protection system, and protection relay device
KR102397664B1 (en) Method for preventing accidents due to disconnection of power distribution line
JPH0552126B2 (en)
JP2008278662A (en) Bus protective relaying device
JP2011015517A (en) Protection system of distribution line
JPH03251031A (en) Fault zone detector
JP2009055763A (en) Network power transmission protector
JPS6149618A (en) Backup system of centralized process type loop protecting relay
JP2004254369A (en) Power line short circuit protection relay system
JPS6223222Y2 (en)
JPS62207130A (en) Protective relay system for loop type power system
JP4960328B2 (en) Network power transmission protection device