JP2004080883A - Power supply method and its distribution board device - Google Patents

Power supply method and its distribution board device Download PDF

Info

Publication number
JP2004080883A
JP2004080883A JP2002236073A JP2002236073A JP2004080883A JP 2004080883 A JP2004080883 A JP 2004080883A JP 2002236073 A JP2002236073 A JP 2002236073A JP 2002236073 A JP2002236073 A JP 2002236073A JP 2004080883 A JP2004080883 A JP 2004080883A
Authority
JP
Japan
Prior art keywords
phase
power supply
wire
internal unit
distribution board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002236073A
Other languages
Japanese (ja)
Other versions
JP4385574B2 (en
Inventor
Masahiko Kagawa
香川 雅彦
Masataka Kanda
神田 雅隆
Masateru Ishibashi
石橋 誠輝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2002236073A priority Critical patent/JP4385574B2/en
Publication of JP2004080883A publication Critical patent/JP2004080883A/en
Application granted granted Critical
Publication of JP4385574B2 publication Critical patent/JP4385574B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Distribution Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power supply method, capable of distributing current balance in each phase with respect to a three-phase and four-line type AC power supply as a whole, by combining a plurality of three-line type power supply inner units, and to provide a distribution board device capable of balancing the current balance in each phase to the three-phase and four-line type AC power supply as a whole, by storing the inner units. <P>SOLUTION: The distribution board device comprises a first inner unit 2<SB>1</SB>for branch-connecting a first three-line type power source system used a R-phase, a T-phase and a N-phase of the three-phase and four line type AC-power supply AC to each single-phase type load; a second inner unit 2<SB>2</SB>for branch-connecting a second three-line type power supply system using the T-phase, an S-phase and the N-phase of the three-phase and four-line-type AC-power source AC to each single-phase type load; and a third inner unit 2<SB>3</SB>for branch-connecting a third three-line type power supply system using the S-phase, the R-phase and the N-phase of the three-phase and four-line type AC-power supply AC to each single-phase type load. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電源供給方法及びその分電盤装置に関するものである。
【0002】
【従来の技術】
従来、3相の交流電源の配電方式として、米国を含めた大多数の国では3相4線式が用いられ、日本を含めた一部の国では3相4線式が用いられている。
【0003】
そして日本では、動力用電源として3相交流電源が利用されるものの、動力用以外の電源にあっては単相3線式の交流電源が用いられる。例えば情報センターなどに設置される日本国内製サーバ等で使用する電源も単相3線式の交流電源が主流である。
【0004】
ところで停電を嫌うサーバのためのサーバ用電源装置である、無停電電源装置は、インターネット関連産業のインフラ装置であるため、IT先進国である米国製品が世界市場を寡占化しており、当然その無停電電源装置は米国の配電方式に対応し、その入力が3相4線式の交流電源であることは勿論のこと、その出力も3相4線式交流電源が出力されるようになっている。
【0005】
図49はアメリカでの無停電電源装置100を用いた場合の配電構成を示しており、まず3相4線(3φ4W)式の交流電源を入力電源とする無停電電源装置100は、通常時には切替器101を通じて3相4線式(3φ4W)の交流電源を4極のブレーカ1を通じて各分電盤装置Xへ分配し、停電時にはAC/DCコンバータ102により通常時充電されているバッテリ103の直流をDC/ACコンバータ104により変換して得られた3相4線式(3φ4W)の交流電源を切替器101を介して各分電盤装置Xへ分配するようになっている。この場合アメリカでの接地方式、つまりT−N接地方式(N相遮断不可)が採用されるため、分電盤装置X内のN相の線路は中継用のブレーカ200を介さず、また分岐ブレーカ60を介さずに各負荷であるサーバ5に接続され、R,S,Tの各相の線路は3極の中継用のブレーカ200と1極の分岐ブレーカ60を介してサーバ5に分岐接続されるようになっている。
【0006】
従って、その無停電電源装置100をアメリカ等から日本へ輸入して、サーバ5の電源を賄なおうとすると、まず日本で広く使用されている3相3線式(3φ3W)の交流電源を図50に示すように入力変圧器Tで3相4線式(3φ4W)の交流電源に変換した後、無停電電源装置100へ入力電源として供給し、また無停電電源装置100が出力する3相4線式(3φ4W)の交流電源を日本の接地方式(T−T接地方式)に適合するような形で単相の負荷であるサーバ5へ分供給する必要があり、当然無停電電源装置100と各サーバ5との間には、電気安全性を確保するために、分電盤装置が介在される。
【0007】
この分電盤装置にはR,S,Tの3相の線と,N相の線とからなる4線の線路を引き込み、中性相の線路を切断することを可能とする分岐方法としては、図50に示すように分電盤装置X内にR,S,T,Nの各相の線路を、例えば平角導体からなる主幹バー40で構成し、N相の主幹バー40と、何れかの電圧極の相に対応する主幹バー40とに、2極で2Pサイズの分岐ブレーカ60’を接続し、該分岐ブレーカ60’を介して単相2線の電源をサーバ5へ分岐接続する方法か、或いは図51に示すようにN相の主幹バー40に一端を接続した中性相切断用のニュートラルスイッチNSWを、分電盤装置X内に配設する単極の分岐ブレーカ60の数だけ配設するとともに、各分岐ブレーカ60の一端を介して電圧極の何れかの相の主幹バー40に接続し、各分岐ブレーカ60と、夫々に対となるニュートラルスイッチNSWとを介して各サーバ5へ単相2線の電源を分岐接続する方法が採用されていた。
【0008】
ところで上記の図50の方法を採用した場合、分岐ブレーカ60’として2極の2Pサイズのものを使用するため、一分岐回路の分岐ブレーカ60’の幅が大きくなって、例えば上下方向に分岐ブレーカ60’を並設する場合には分電盤装置の筐体の縦方向の寸法が大きくなるという問題があった。
【0009】
また4本の主幹バー40…を左右方向に並行するように配設すると、隣接する主幹バー40,40同士の絶縁距離を確保する必要があり、そのため分電盤装置の筐体の左右方向の幅寸法が大きくなり、結果縦方向の寸法と併せて分電盤装置の大型化は避けられないという問題があった。
【0010】
また図51の方法を採用した場合、分岐ブレーカ60として1P型を使用するため、一分岐回路の分岐ブレーカ60の幅が図50の方法の場合に比べて幅寸法が小さくなるが、ニュートラルスイッチNSWは一般的に分電盤装置の筐体の最下部内に集合させて配置するため、N相の主幹バー40から各ニュートラルスイッチNSWへの電線による配線がしにくいという問題がある上に、ニュートラルスイッチNSWの集合配置スペースと、電線引き回しガタースペース分を確保する必要があるため、筐体の縦寸法を小さくすることができないという問題があった。
【0011】
また4本の主幹バー40…を左右方向に並行するように配設すると、隣接する主幹バー40,40同士の絶縁距離を確保する必要があり、そのため分電盤装置の筐体の左右方向の幅寸法が大きくなり、結果縦方向の寸法と併せて分電盤装置が大型化するという問題があった。
【0012】
そこで、従来から提供されている単相3線式交流電源用の分電盤装置を用いること方法も考えられる。この分電盤装置は、中央部の上下方向に第1相と第2相と中性相との3本の主幹バーからなる母線が設けられ、この母線の両側に主幹バーに沿って分岐ブレーカを配設するようになっているのが一般的な構成である。また使用される分岐ブレーカは、2極でしかも1Pサイズのもので、第1相と中性相とを組にして或いは第2相と中性相とを組にした100Vを分岐したり、第1相と第2相とを組にした200Vを分岐したりできるようにされている。
【0013】
このような分電盤装置は、母線や分岐ブレーカを予め準備し、母線に所定数の分岐ブレーカを組み付けて構成した内器ユニットを、金属の矩形箱状の筐体に組み込んで構成される。尚、この筐体にはラックタイプの筐体なども含まれる。
【0014】
上記内器ユニットは、当然ながら3線式の交流電源に対応するようにされており、3線式の交流電源の各相の電流バランスを考慮して、第1相と中性相とを組にした第1系統に接続される分岐ブレーカの数(第1系統に接続される分岐ブレーカの合計定格電流容量)と、第2相と中性相とを組にした第2系統に接続される分岐ブレーカの数(第2系統に接続される分岐ブレーカの合計定格電流容量)とを等しくしてある。
【0015】
そして分電盤装置に入力される3相4線式の交流電源に3線式電源の内器ユニットを接続するとなると、内器ユニットの母線の第1相は3相4線式交流電源の第1相に接続され、内器ユニットの母線の第2相は3相4線式の交流電源の第2相に接続され、内器ユニットの母線の中性相は3相4線式の交流電源の中性相に接続される。
【0016】
【発明が解決しようとする課題】
上述のように3線式の交流電源に対応している既存の分電盤装置内の内器ユニットの母線に、3相4線式の交流電源を接続すると、たとえ第1相と中性相とを組にした第1系統に接続される分岐ブレーカの数(第1系統に接続される分岐ブレーカの合計定格電流容量)と第2相と中性相とを組にした第2系統に接続される分岐ブレーカの数(第2系統に接続される分岐ブレーカの合計定格電流容量)とを等しくしてあって、しかも何れのブレーカにも定格電流通りに電流が通電されたにしても、3相4線式交流電源の第1相と第2相と中性相とには等しい負荷電流が流れるものの第3相には負荷電流が流れないから、電流の相バランスが崩れてしまって、受配電設備に無駄と悪影響を及ぼすという問題点がある。
【0017】
本発明は、前記問題点を解決するために為されたもので、その目的とするところは、3線式の交流電源の内器ユニットを複数組み合わせ3相4線式交流電源に対する各相の電流バランスを全体として分配することが可能な電源供給方法及び上記内器ユニットを収納して3相4線式交流電源に対する各相の電流バランスを全体として取ることができる分電盤装置を提供することにある。
【0018】
【課題を解決するための手段】
上述の目的を達成するために、請求項1の電源供給方法の発明では、3相4線式交流電源の供給を受け該交流電源を単相式負荷に分岐して供給する電源供給方法であって、前記3相4線式交流電源の第1相と第2相と中性相とを用いた第1の3線式電源系続を各単相式負荷へ分岐接続する第1の内器ユニットと、前記3相4線式交流電源の第2相と第3相と中性相とを用いた第2の3線式電源系統を各単相式負荷へ分岐接続する第2の内器ユニットと、前記3相4線式交流電源の第3相と第1相と中性相とを用いた第3の3線式電源系統を各単相式負荷へ分岐接続する第3の内器ユニットとに、前記3相4線式交流電源を夫々分配するようにしたことを特徴とする。
【0019】
請求項2の発明の電源供給方法の発明では、3相4線式交流電源の供給を受け該交流電源を単相式負荷に分岐して供給する電源供給方法であって、前記3相4線式交流電源の第1相と第2相と中性相とを用いた第1の3線式電源系統を各単相式負荷へ分岐接続する第1の内器ユニットと、前記3相4線式交流電源の第2相と第3相と中性相とを用いた第2の3線式電源系統を各単相式負荷へ分岐接続する第2の内器ユニットとを、前記3相4線式交流電源に夫々少なくとも1ユニット以上づつを前記3相4線式交流電源に接続するに当たって、前記第1相と中性相との間から各単相式負荷へ分岐接続する合計分岐数と、前記第2相と中性相との間から各単相式負荷へ分岐接続する合計分岐数と、前記第3相と中性相との間から各単相式負荷へ分岐接続する合計分岐数とを夫々等しくするようにしたことを特徴とする。
【0020】
請求項3の分電盤装置の発明では、3相4線式交流電源の供給を受け該交流電源を単相式負荷に分岐して供給するための分電盤装置であって、前記3相4線式交流電源の第1相と第2相と中性相とを用いた第1の3線式電源系統を各単相式負荷へ分岐接続する第1の内器ユニットと、前記3相4線式交流電源の第2相と第3相と中性相とを用いた第2の3線式電源系統を各単相式負荷へ分岐接続する第2の内器ユニットとを設け、前記第1の内器ユニットでは第1相と中性相とを組にした電源系続の分岐数をnとするとともに第2相と中性相とを組にした電源系統の分岐数を(n−α)と成し、前記第2の内器ユニットでは第2相と中性相とを組にした電源系統の分岐数を(n+α)とするとともに第3相と中性相とを組にした電源系統の分岐数をnと成したことを特徴とする分電盤装置。
【0021】
請求項4の分電盤装置の発明では、3相4線式交流電源の供給を受け該交流電源を単相式負荷に分岐して供給するための分電盤装置であって、前記3相4線式交流電源の第1相と第2相と中性相とを用いた第1の3線式電源系統を各単相式負荷へ分岐接続する第1の内器ユニットと、前記3相4線式交流電源の第2相と第3相と中性相とを用いた第2の3線式電源系統を各単相式負荷へ分岐接続する第2の内器ユニットとを設け、前記第1の内器ユニットでは第1相と中性相とを組にした電源系統の分岐数をnとするとともに第2相と中性相とを組にした電源系統の分岐数をn/2と成し、前記第2の内器ユニットでは第2相と中性相とを組にした電源系続の分岐数をn/2とするとともに第3相と中性相とを組にした電源系統の分岐数をnと成したことを特徴とする。
【0022】
請求項5の分電盤装置の発明では、請求項3又は4の分電盤装置の発明において、前記第1の内器ユニットを前面側に配設するとともに前記第2の内器ユニットを後面側に配設し、第1の3線式電源系統を前面側に、第2の3線式電源系統を後面側に夫々分離して矩形箱状の筐体に収納したことを特徴とする。
【0023】
請求項6の分電盤装置の発明では、請求項3又4の分電盤装置の発明において、前記第1の内器ユニットを上段に配設するとともに前記第2の内器ユニットを下段に配設し、第1の3線式電源系統を上段に第2の3線式電源系統を下段に夫々分離して矩形箱状の筐体に収納したことを特徴とする。
【0024】
【発明の実施の形態】
以下本発明を実施の形態により説明する。
【0025】
(実施形態1)
本実施形態は、図1に示すように例えば、無停電電源装置から出力される3相4線式(3φ4W)の交流電源ACを単相式の例えばサーバのような負荷(図示せず)に分配するものであって、図1に示すように3相4線式交流電源ACの第1相(例えばR相という)と第2相(例えばT相という)と中性相(N相という)とを用いた第1の3線式電源系続を各単相式負荷へ分岐接続する第1の内器ユニット2と、3相4線式交流電源ACのT相と第3相(例えばS相という)とN相とを用いた第2の3線式電源系統を各単相式負荷へ分岐接続する第2の内器ユニット2と、前記3相4線式交流電源ACのS相とR相とN相とを用いた第3の3線式電源系統を各単相式負荷へ分岐接続する第3の内器ユニット2とに、前記3相4線式交流電源ACの中性相及び各電圧相を4極のブレーカ1を介して分配するようになっている。
【0026】
このような構成を用いた実施例により本実施形態を更に詳説する。
【0027】
実施例1−1
図2は本実施例の具体構成を示しており、本実施例の場合には3相4線式の交流電源ACを構成する無停電電源装置100の出力が4極のブレーカ1を介して接続されて配線されている外部の3相4線の線路を後述する分電盤装置の筐体3内に引き込み上述のようにN相と、各相との組み合わせに対応した3線を対応する内器ユニット2〜2の3線式電源系統の母線へ直接的に接続している。
【0028】
ここで3相4線式交流電源が用いられるのは、3相4線式配電を行うアメリカで寡占的に製造される無停電電源装置100をサーバ5の電源装置として用いるためである。そして無停電電源装置100の入力電源は日本で広く用いられられている3線3相式配電による交流電源を入力変圧器Tで3相4線式の交流電源に変換したものが用いられる。
【0029】
無停電電源装置100は入力される入力変圧器Tからの3相4線式(3φ4W)の交流電源を通常時には切替器101を介してそのまま3相4線式(3φ4w)の交流電源ACとして出力し、停電時にはAC/DCコンバータ102により通常時充電されているバッテリ103の直流をDC/ACコンバータ104により変換して得られた3相4線式(3φ4W)の交流電源ACを切替器101を介して出力するようになっている。
【0030】
一方各内器ユニット2〜2では更に3線式電源系統の母線内のN相の線路42と何れかの相の電圧極の線路41又は43とを接続した2極の分岐ブレーカ6によって単相式負荷(以下サーバという)5へ分配するようになっている。この2極の分岐ブレーカ6を用いてN相を切断可能とすることで日本におけるT−T接地方式(N相切り離しを必須とする)に対応させている。
【0031】
そして本実施例の場合、内器ユニット2では中央部に上下方向に配設した3線式電源系統の母線を構成する3つの線路41〜43の左側にR,N相に接続される分岐ブレーカ6をn数配設し、右側にT,N相に接続される分岐ブレーカ6をn数配設し、内器ユニット2では中央部に上下方向に配設した3線式電源系統の母線を構成する3つの線路41〜43の左側にS,N相に接続される分岐ブレーカ6をn数配設し、右側にT,N相に接続される分岐ブレーカ6をn数配設し、内器ユニット2は中央部に上下方向に配設した3線式電源系統の母線を構成する3本の線路41〜43の左側にS,N相に接続される分岐ブレーカ6をn数配設し、右側にR,N相に接続される分岐ブレーカ6をn数配設し、R,S,Tの各相を同数の分岐ブレーカ6によって分岐することでバランスを図っている。
【0032】
内器ユニット2〜2は、図3に示すように分電盤装置の筐体3の取付面から一定高さ位置となるように取付台30、30間に橋絡配設される上下2つの取付ベース2A,2B(図5参照)と、この取付ベース2A,2Bの前面(取付上面)部の中央部に平角導体からなる上記の線路(以下主幹バーという)41〜43を取付ベース面に対して垂直方向に重ねるように夫々を一定間隔を開けて配置したもので、この3つの主幹バー41〜43が3線式電源系統の母線を構成する。この母線の両側には2極式の分岐ブレーカ6…を上述したように母線に沿うように上下方向に配設される。
【0033】
分岐ブレーカ6の固定は図4に示すように取付ベース2A(又は2B)に切り起こした略逆L状の固定爪14と、く字状に折曲され、取付ベース2A(又は2B)に取り付けられた係止ばね15とを用いて行うようになっており、分岐ブレーカ6の一端面に上記固定爪14の先部を係止する凹部(図示せず)を形成し、分岐ブレーカ6の他端面に係止ばね15の中程の突出部15aを係止する凹部(図示せず)を形成してある。
【0034】
ここで3線式電源系統の母線を構成する3本の主幹バー41〜43中、中間位置に位置する主幹バー42にはN相が接続され、残りの2本の主幹バー41,43には夫々の内器ユニット2〜2に振り分けたR相,T相、或いはS相,T相、又はS相,R相が接続され、分岐ブレーカ6の1対の電源端子の一方がN相に対応するN相(中性極)の主幹バー42に、他方が振り分けられている相に対応する電圧極の主幹バー41,43の何れか一方に接続される。
【0035】
また各主幹バー41,42,43の上端部は図5に示すように別の取付ベース2C上に配設した端子台31からの各接続主幹バー41’,42’,43’の他端が接続される取付ベース2Aの上端に設けた導電バー支持台16に接続されて支持され、また主幹バー41,42,43の中間部の両側半分が、取付ベース2Aの下端部の両側に配置される受台17、17の嵌合溝(図示せず)に夫々挿入して支持され、更に取付ベース2B側へ延設され、その下端は取付ベース2Bの下端部の両側に配置される受台17、17の嵌合溝(図示せず)に夫々挿入して支持されることになる。
【0036】
そして取付ベース2Aの主幹バー43の前方側には主幹バー43と平行するように硬質の合成樹脂材から形成された支点部材18が導電バー支持台16と、上記受台17、17との間に、また取付ベース2Bの主幹バー43の前方側には、取付ベース2Aの受台17,17と、下端部の受台17,17との間に架橋配設されている。
【0037】
ここで使用される分岐ブレーカ6は図6に示すように一端部にねじ端子からなる電源端子7a,7bを高さ位置が異なるように設けており、これらの電源端子7a,7bを設けた一端部にプラグインアダプタ8を取り付けるようになっている。
【0038】
プラグインアダプタ8は、2つの隔壁によって取付面に対して前後(図6では上下)3つの部屋に区画され、各部屋に面する側壁に切り溝9を備えている。これらの切り溝9の間隔は3本の主幹バー41〜43の間隔に等しく形成され、また取付ベース2上に配設された分岐ブレーカ6にプラグインアダプタ8を取り付けたときに、主幹バー41〜43の高さ位置と対応する夫々の切り溝9の高さ位置とが等しくなり、主幹バー41〜43の側端部を夫々に対応する切り溝9内に嵌入させることができるようになっている。
【0039】
プラグインアダプタ8内に配された2つの接続端子板10a、10bは、何れも図7に示すように一端に受刃11、11を備えたもので、電圧極である主幹バー43と中性極である主幹バー42に接続する分岐ブレーカ6の場合、プラグインアダプタ8の前記3つの部屋のうちの前側(図6では上側)の部屋に受刃11の部分を納めた接続端子板10aの他端に設けた接続固定部12を電源端子7aに接続し、中程の部屋に受刃11の部分を納めた接続端子板10bの他端の接続固定部12を電源端子7bに接続している。
【0040】
電圧極である主幹バー41と中性極である主幹バー42に接続する分岐ブレーカ6の場合に対応するプラグインアダプタ8は、前記3つの部屋のうちの後側(図6では下側)の部屋に受刃11の部分を納めた接続端子板10aの他端に設けた接続固定部12を分岐ブレーカ6の電源端子7aに接続し、中程の部屋に受刃11の部分を納めた接続端子板10bの他端の接続固定部12を電源端子7bに接続している。
【0041】
尚プラグインアダプタ8に設けられた孔13は電源端子7a、7bのねじ締め付け工具の挿入孔である。
【0042】
このようにして電圧極の主幹バー43と中性極の主幹バー42とに対応したプラグインアダプタ8を結合した分岐ブレーカ6と、電圧極の主幹バー41と中性極の主幹バー42とに対応したプラグインアダプタ8を結合した分岐ブレーカ6を各内器ユニット2〜2毎に所定の分岐数n分だけ準備し、夫々の分岐ブレーカ6をプラグインアダプタ8を介して線路5の主幹バー41と42或いは42と43とに接続することで、各相を等しい数で分岐して、各分岐ブレーカ6を介してサーバ5への電源供給が可能となる。母線の左右の何れから接続してもN相と組み合わせとなる相とは代わらないため、母線の左右両側に、組み合わせの異なる分岐ブレーカ6を混在させても良い。
【0043】
尚図3乃至図7中、Hは分岐ブレーカ6の操作ハンドルを示す。
【0044】
さて本実施例では内器ユニット2〜2は、図8(a)(b)に示すように前後に夫々内器収納空間が確保できるラックタイプの筐体3内に収納されて筐体3とともに分電盤装置を構成する。
【0045】
ここで本実施例に用いる筐体3は前後の上下に内器ユニット用の収納空間部300を夫々設けてあり、最大4つの内器ユニットを配設できる構造となっている。そして前側の上下の収納空間部300、300には内器ユニット2,2を、後側の上部の収納空間部300には内器ユニット2を、夫々取付台30,30を介して収納空間部300の上、下部に夫々設けた取付部301、301間に架橋配設している。
【0046】
この筐体3の各収納空間部30の正対する開口側には図9(a)(b)に示すように夫々中蓋302が被着され、各内器ユニット2〜2に配設している分岐ブレーカ6の操作ハンドルHの部位を露出させ、操作可能としている。
【0047】
そして筐体3の前面開口部(及び後面開口部)には図10に示すようにアクリル板303を開口窓304aに嵌め込んだ扉304が開閉自在に取り付けられて、筐体3の前後面から内部の分岐ブレーカ6を操作できるようになっている。
【0048】
実施例1−2
上記実施例1−1では各内器ユニット2〜2に端子台31を備えて、筐体3外側に配線されている4線の線路から各内器ユニット2〜2毎に分配されるN相と2つの相からなる3線電源系統の3線路を直接接続するようになっているが、本実施形態では、図11に示すように上記の端子台31の代わりに3極の中継用のブレーカ200を備え、このブレーカ200を介して図12に示すように内器ユニット2〜2の取付ベース2A,2B上に配設している各主幹バー41〜43にN相と2つの相からなる3線電源系統の3線を接続するようにしたものである。
【0049】
尚各内器ユニット2〜2における分岐数や、主幹バー41〜43の配設構成、また分岐ブレーカ6の取付ベース2への取り付け及び主幹バー41〜43への分岐ブレーカ6の接続の構成等は実施例1−1と同じであるので具体的な図示、説明は省略し、同じ構成には同じ符号を付す。
【0050】
而して、本実施例の場合も実施例1−1と同様な構成のラックタイプの筐体3を用いて分電盤装置を構成しており、図13(a)(b)は、本実施例の分電盤装置の前後の内部を示しており、前側の上下の収納空間部300、300には内器ユニット2,2を、後側の上部の収納空間部300には内器ユニット2を、夫々取付台30,30を介して収納空間部300の上、下部に夫々設けた取付部301、301間に架橋配設している。
【0051】
この筐体3の各収納空間部30の正対する開口側には図14(a)(b)に示すように夫々中蓋302が被着され、各内器ユニット2〜2に配設している分岐ブレーカ6の操作ハンドルH及び中継用のブレーカ200の操作ハンドルH’の部位を露出させ、操作可能としている。
【0052】
そして筐体3の前面開口部(及び後面開口部)には図15に示すようにアクリル板303を開口窓304aに嵌め込んだ扉304が開閉自在に取り付けられて、筐体3の前後面から内部の分岐ブレーカ6及び中継用のブレーカ200を操作できるようになっている。
【0053】
(実施形態2)
上記実施形態1では、3つの内器ユニット2〜2 を用いて各相をバランスさせて分岐する構成であったが、本実施形態は、図16に示すように3相4線式(3φ4W)の交流電源ACのR相とT相とN相とを用いた第1の3線式電源系統を各単相式負荷(図示せず)へ分配する第1の内器ユニット2と、3相4線式交流電源ACのT相とS相とN相とを用いた第2の3線式電源系統を各単相式負荷(図示せず)へ分配する第2の内器ユニット2とに3相4線式交流電源ACを分配している。そして本実施形態では、前記R相とN相との間に接続する分岐ブレーカ6による分岐数と、T相とN相との間に接続する分岐ブレーカ6による分岐数と、S相とN相との間に接続する分岐ブレーカ6による分岐数とを夫々等しくしている。
【0054】
具体的には第1の内器ユニット2ではR相とN相とを組にした電源系続の分岐数をnとするとともにT相とN相とを組にした電源系統の分岐数を(n−α)とし、第2の内器ユニット2ではT相とN相とを組にした電源系統の分岐数を(n+α)とするとともにS相とN相とを組にした電源系統の分岐数をnとすることで構成するか、若しくは内器ユニット2ではR相とN相とを組にした電源系統の分岐数をnとするとともにT相とN相とを組にした電源系統の分岐数をn/2とし、内器ユニット2ではT相とN相とを組にした電源系続の分岐数をn/2とするとともにS相とN相とを組にした電源系統の分岐数をnとすることで構成している。ここで(n+α)及び(n−α)の分岐数若しくはn/2の分岐数にする組み合わせは、上記のS相とN相と限定されるものではなく、他の相とN相との組み合わせでも良い。
【0055】
実施例2−1−1
図17は、本実施例の具体構成を示しており、本実施例の場合には図示するように、内器ユニット2,2を分電盤装置の筐体3内に配置したもので、3相4線式の交流電源ACに4極のブレーカ1を介して外部で配線されている3相4線の線路を筐体3内に引き込み、上記のN相と各相との組み合わせに対応した3線を対応する内器ユニット2〜2の3線式電源系統の母線を構成する主幹バー41〜43に図5と同様に端子台31を介して直接的に接続している。
【0056】
ここで本実施例の3相4線式交流電源ACも、実施例1−1.1−2と同様な構成の無停電電源装置100の出力により構成されており、無停電電源装置100の入力電源も日本で広く用いられられている3線3相式配電による交流電源を入力変圧器Tで3相4線式の交流電源に変換したものが用いられる。
【0057】
一方各内器ユニット2,2では上述した実施例1−1(1−2)と同様に更に3線式電源系統の母線内の中性極の主幹バー42と何れかの相の電圧極の主幹バー41又は43とを接続した分岐ブレーカ6によってサーバ5へ分配するようになっている。
【0058】
そして本実施例の場合、内器ユニット2ではR,N相に接続される分岐ブレーカ6をn数配設し、T,N相に接続される分岐ブレーカ6をn/2(若しくはn−α)数配設し、内器ユニット2では線路5の左側にS,N相に接続される分岐ブレーカ6をn数配設し、T,N相に接続される分岐ブレーカ6をn/2(若しくn+α)数配設し、R,S,Tの各相を同数に分岐することでバランスを図っている。
【0059】
尚本実施例の内器ユニット2,2及び分岐ブレーカ6の構造は実施例1−1で説明した構造のものが用いられるので、ここではそれらの構造そのものの説明及び図示は省略し、また図示されている同じ構成要素には同じ符号を付す。
【0060】
図18(a)(b)は、前後に夫々内器収納空間が確保できる実施例1−1の場合と同様なラックタイプの筐体3を用いた本実施例の分電盤装置の前後の内部を示しており、本実施例に用いる筐体3は前後内には上下に内器ユニット用の収納空間部300を設けてあり、最大4つの内器ユニットを配設できる構造となっている。そして前側の上側の収納空間部300には内器ユニット2を、後側の上部の収納空間部300には内器ユニット2を、夫々取付台30,30を介して収納空間部300の上、下部に夫々設けた取付部301、301間に架橋配設している。
【0061】
この筐体3の内器ユニット2,2を配設した各収納空間部300の正対する開口側には図19(a)(b)に示すように夫々中蓋302が被着され、各内器ユニット2、2に対応する中蓋302には夫々の内器ユニット2,2に配設している分岐ブレーカ6の操作ハンドルHの部位を露出させ、操作可能としている。
【0062】
そして筐体3の前面開口部(及び後面開口部)には図20に示すようにアクリル板303を開口窓304aに嵌め込んだ扉304が開閉自在に取り付けられて、筐体3の前後面から内部の分岐ブレーカ6を操作できるようになっている。
【0063】
実施例2−1−2
上記実施例2−1−1ではラックタイプの筐体3を用いて、筐体3の前後に設けた上側の収納空間部300に内器ユニット2,2を配設して分電盤装置を構成しているが、本実施例では、ラックタイプの筐体3を用いる点では同じであるが、図21に示すように筐体3の前部側の上下の収納空間部300.300に内器ユニット2,2を配設して分電盤装置を構成している点で実施例2−1−1と相違する。
【0064】
そして筐体3の収納空間部300,300には各内器ユニット2,2に配設している分岐ブレーカ6の操作ハンドルHの部位を露出させる窓孔を設けた中蓋302を図22に示すように被着して、分岐ブレーカ6を中蓋302の外側から操作可能としている。また筐体3の前面開口部(及び後面開口部)には図23に示すようにアクリル板303を開口窓304aに嵌め込んだ扉304を開閉自在に取り付けてある。
【0065】
尚配線構成、内器ユニット2,2の構造、分岐ブレーカ6の構成等は実施例1−1や実施例2−2−1と同じであるので図示と説明は省略する。
【0066】
実施例2−1−3
上記実施例2−1−1及び2−1−2ではラックタイプの筐体3を用いていたが、本実施形態では図24に示すように壁面取付型の電設盤タイプの筐体3を2台並設して各筐体3内一方の収納空間部300に内器ユニット2を、他方の収納空間部300に2を配設し、これら2つの筐体3、3により分電盤装置を構成した点に特徴がある。
【0067】
そして各筐体3の収納空間部300には各内器ユニット2,2に配設している分岐ブレーカ6の操作ハンドルHの部位を露出させる窓孔を設けた中蓋305を図25に示すように被着して、分岐ブレーカ6を中蓋305の外側から操作可能としている。また各筐体3の前面開口部には図26に示すように扉306を
開閉自在に取り付けてある。
【0068】
尚配線構成、内器ユニット2,2の構造、分岐ブレーカ6の構成等は実施例1−1や実施例2−1−1、2−1−2と同じであるので図示と説明は省略する。
【0069】
実施例2−1−4
上記実施例2−1−3では壁面取付型の電設盤タイプの筐体3を2台並設して各筐体3内一方の収納空間部300に内器ユニット2を、他方の収納空間部300に内器ユニット2を配設し、これら2つの筐体3、3により分電盤装置を構成しているが、本実施形態では、壁面取付型の電設盤タイプの筐体を用い点で同じであるが、図27に示すように2つの内器ユニット2,2を上下2段で収納できる長尺の筐体3を用いた点に特徴がある。
【0070】
そして筐体3の収納空間部300には各内器ユニット2,2に配設している分岐ブレーカ6の操作ハンドルHの部位を露出させる窓孔を設けた中蓋305を図28に示すように被着して、分岐ブレーカ6を中蓋305の外側から操作可能としている。また各筐体3の前面開口部には図29に示すように扉306を
開閉自在に取り付けてある。
【0071】
尚配線構成、内器ユニット2,2の構造、分岐ブレーカ6の構成等は実施例1−1や実施例2−1−1、2−1−2、2−1−3と同じであるので図示と説明は省略する。
【0072】
実施例2−1−5
上記実施例2−1−1乃至2−1−4では各内器ユニット2.2に配設する分岐ブレーカ6は夫々40台であるが、例えば分岐数を増加させて80台とした場合には、実施例2−2−1と同様なラックタイプの筐体3を用い、図30(a)に示すように筐体3の前側の上下の収納空間部300に40台の分岐ブレーカ6を夫々配設した内器ユニット21a,21bを配設し、同図(b)に示すように後側の上下の収納空間部300に40台の分岐ブレーカ6を夫々配設した内器ユニット22a,22bを配設し、上下の内器ユニット21a,21b又は22a,22bには同じ電圧極の相を振り分けて、上述のように分岐数を決定することで各相のバランスを図った分岐を行い且つ、その分岐数を増やすことを可能としている。
【0073】
この筐体3の各収納空間部300の正対する開口側には図31(a)(b)に示すように夫々中蓋302が被着され、各内器ユニット21a,21b、22a,22bに対応する中蓋302には夫々の内器ユニット21a,21b、22a,22bに配設している分岐ブレーカ6の操作ハンドルHの部位を露出させ、操作可能としている。
【0074】
そして筐体3の前面開口部(及び後面開口部)には図32に示すようにアクリル板303を開口窓304aに嵌め込んだ扉304が開閉自在に取り付けられて、筐体3の前後面から内部の分岐ブレーカ6を操作できるようになっている。
【0075】
尚配線構成、内器ユニット2,2の構造、分岐ブレーカ6の構成等は基本的には実施例1−1や実施例2−1−1〜2−1−4と同じであるので図示と説明は省略する。
【0076】
実施例2−2−1
上記実施例2−1−1〜2−1−5では各内器ユニット2,2の取付ベース2Aに端子台31を備えて、筐体3外側に配線されている4線3相式の線路から各内器ユニット2、2毎に振り分けられるN相と2つの相からなる3線電源系統の3線を直接接続するようになっているが、本実施形態では、図33に示すように上記の端子台31の代わりに3極中継用のブレーカ200を備え、このブレーカ200を介して内器ユニット2〜2の取付ベース2A,2B上に配設している各主幹バー41〜43にN相と2つの相からなる3線電源系統の3線を接続するようにしたものである。
【0077】
尚各内器ユニット2〜2における分岐数や、主幹バー41〜43の配設構成、また分岐ブレーカ6の取付ベース2への取り付け及び主幹バー41〜43への分岐ブレーカ6の接続の構成等は実施形態2−1−1と同じであるので具体的な図示、説明は省略し、同じ構成には同じ符号を付す。
【0078】
而して、本実施例の場合も実施例2−1−1と同様な構成のラックタイプの筐体3を用いて分電盤装置を構成しており、実施例2−1−1と同様に図34に示すように、筐体3の前側の上下の収納空間部300、300に内器ユニット2,2を取付台30,30を介して収納空間部300の上、下部に夫々設けた取付部301、301間に架橋配設している。
【0079】
この筐体3の各収納空間部30の正対する開口側には図35に示すように中蓋302が被着され、各内器ユニット2、2に配設している分岐ブレーカ6の操作ハンドルH及び中継用のブレーカ200の操作ハンドルH’の部位を露出させ、操作可能としている。
【0080】
そして筐体3の前面開口部(及び後面開口部)には図36に示すようにアクリル板303を開口窓304aに嵌め込んだ扉304が開閉自在に取り付けられて、筐体3の前面側から内部の分岐ブレーカ6及び中継用のブレーカ200を操作できるようになっている。
【0081】
実施例2−2−2
本実施例は実施例2−1−2の端子台31の代わりに中継用ブレーカ200を図37に示すように備えたもので、中継用ブレーカ200と、図38に示すように操作ハンドルH’に対応する中蓋302の構成以外は実施例2−1−2と同じ構成となっている。
【0082】
図39は本実施例の正面図である。
【0083】
実施例2−2−3
本実施例は実施例2−1−3の端子台31の代わりに中継用ブレーカ200を図40に示すように備えたもので、中継用ブレーカ200と、図41に示すように操作ハンドルH’に対応する中蓋305の構成以外は実施例2−1−2と同じ構成となっている。
【0084】
図42は本実施例の正面図である。
【0085】
実施例2−2−4
本実施例は実施例2−1−3の端子台31の代わりに中継用ブレーカ200を図43に示すように備えたもので、中継用ブレーカ200と、図44に示すように操作ハンドルH’に対応する中蓋305の構成以外は実施例2−1−2と同じ構成となっている。
【0086】
図45は本実施例の正面図である。
【0087】
実施例2−2−5
本実施例は実施例2−1−5の端子台31の代わりに中継用ブレーカ200を図46に示すように備えたもので、中継用ブレーカ200と、図47に示すように操作ハンドルH’に対応する中蓋302の構成以外は実施例2−1−2と同じ構成となっている。
【0088】
図48は本実施例の正面図である。
【0089】
【発明の効果】
請求項1の電源供給方法の発明は、3相4線式交流電源の供給を受け該交流電源を単相式負荷に分岐して供給する電源供給方法であって、前記3相4線式交流電源の第1相と第2相と中性相とを用いた第1の3線式電源系続を各単相式負荷へ分岐接続する第1の内器ユニットと、前記3相4線式交流電源の第2相と第3相と中性相とを用いた第2の3線式電源系統を各単相式負荷へ分岐接続する第2の内器ユニットと、前記3相4線式交流電源の第3相と第1相と中性相とを用いた第3の3線式電源系統を各単相式負荷へ分岐接続する第3の内器ユニットとに、前記3相4線式交流電源を夫々分配するようにしたので、各内器ユニットの3線式電源系統の線路が4本ではなく3本で構成でき、そのため線路を平角導体を用いた主幹バーで構成する場合に、4極から3極に減らすことが可能となるため、絶縁距離確保のための主幹バーの配設部位のスペースの小型化が図れ、それにより内器ユニットの横幅寸法も小さくでき、分岐ブレーカの負荷側配線のガタースペースが広く取れるようになり、施工性の大幅向上並びに分電盤装置の横幅の小型化が図れ、更に3相4線式交流電源から、3つの内器ユニットの3線式に分配電可能となるため、3相4線式交流電源の各相の電流バランスを保って受電することができるので、3相4線式交流電源から単相式負荷に電力供給を行うに当たって、或る相だけに電流が集中することがなく、受配電設備を効率的に運用できるという優れた電源供給方法を提供できる。
【0090】
請求項2の発明の電源供給方法の発明は、3相4線式交流電源の供給を受け該交流電源を単相式負荷に分岐して供給する電源供給方法であって、前記3相4線式交流電源の第1相と第2相と中性相とを用いた第1の3線式電源系統を各単相式負荷へ分岐接続する第1の内器ユニットと、前記3相4線式交流電源の第2相と第3相と中性相とを用いた第2の3線式電源系統を各単相式負荷へ分岐接続する第2の内器ユニットとを、前記3相4線式交流電源に夫々少なくとも1ユニット以上づつを前記3相4線式交流電源に接続するに当たって、前記第1相と中性相との間から各単相式負荷へ分岐接続する合計分岐数と、前記第2相と中性相との間から各単相式負荷へ分岐接続する合計分岐数と、前記第3相と中性相との間から各単相式負荷へ分岐接続する合計分岐数とを夫々等しくするようにしたので、請求項1の発明と同様に、各内器ユニットの3線式電源系統の線路が4本ではなく3本で構成でき、そのため線路を平角導体を用いた主幹バーで構成する場合に、4極から3極に減らすことが可能となるため、絶縁距離確保のための主幹バーの配設部位のスペースの小型化が図れ、それにより内器ユニットの横幅寸法も小さくでき、分岐ブレーカの負荷側配線のガタースペースが広く取れるようになり、施工性の大幅向上並びに分電盤装置の横幅の小型化が図れ、更に3相4線式交流電源の各相の電流バランスを保って受電することができるので、3相4線式交流電源から単相式負荷に電力供給を行うに当たって、或る相だけに電流が集中することがなく、受配電設備を効率的に運用できるという優れた電源供給方法を提供できる。
【0091】
請求項3の分電盤装置の発明は、3相4線式交流電源の供給を受け該交流電源を単相式負荷に分岐して供給するための分電盤装置であって、前記3相4線式交流電源の第1相と第2相と中性相とを用いた第1の3線式電源系統を各単相式負荷へ分岐接続する第1の内器ユニットと、前記3相4線式交流電源の第2相と第3相と中性相とを用いた第2の3線式電源系統を各単相式負荷へ分岐接続する第2の内器ユニットとを設け、前記第1の内器ユニットでは第1相と中性相とを組にした電源系続の分岐数をnとするとともに第2相と中性相とを組にした電源系統の分岐数を(n−α)と成し、前記第2の内器ユニットでは第2相と中性相とを組にした電源系統の分岐数を(n+α)とするとともに第3相と中性相とを組にした電源系統の分岐数をnと成したので、3相4線式交流電源から単相式負荷に電力供給を行うに当たって、3相4線式交流電源の各相の電流バランスを保って受電することができ、そのため或る相だけ電流容量を増大する等の必要を無くすことができ、受配電設備に無駄の生じ難くいという優れた分電盤装置を提供できる。
【0092】
請求項4の分電盤装置の発明は、3相4線式交流電源の供給を受け該交流電源を単相式負荷に分岐して供給するための分電盤装置であって、前記3相4線式交流電源の第1相と第2相と中性相とを用いた第1の3線式電源系統を各単相式負荷へ分岐接続する第1の内器ユニットと、前記3相4線式交流電源の第2相と第3相と中性相とを用いた第2の3線式電源系統を各単相式負荷へ分岐接続する第2の内器ユニットとを設け、前記第1の内器ユニットでは第1相と中性相とを組にした電源系統の分岐数をnとするとともに第2相と中性相とを組にした電源系統の分岐数をn/2と成し、前記第2の内器ユニットでは第2相と中性相とを組にした電源系続の分岐数をn/2とするとともに第3相と中性相とを組にした電源系統の分岐数をnと成したので、3相4線式交流電源から単相式負荷に電力供給を行うに当たって、3相4線式交流電源の各相の電流バランスを保って受電することができ、そのため或る相だけ電流容量を増大する等の必要を無くすことができ、受配電設備に無駄が生じ難くく、電力使用効率が高くでき、内器ユニットの母線の中性相に流れる電流を少なくできるので、各内器ユニットの温度上昇を低減できるるという優れた分電盤装置を提供できる。
【0093】
請求項5の分電盤装置の発明は、請求項3又は4の分電盤装置の発明において、前記第1の内器ユニットを前面側に配設するとともに前記第2の内器ユニットを後面側に配設し、第1の3線式電源系統を前面側に、第2の3線式電源系統を後面側に夫々分離して矩形箱状の筐体に収納したので、3線式電源系統の違いが判り易く明確になり、設置後のメンテナンス時に内器ユニット毎の3線式電源系統の確認作業を行う必要がないのでメンテナンス管理が行い易く、しかも矩形箱状の筐体の前後両面に内器ユニットを配設するので筐体内空間を有効に活用することができて内器ユニットの実装効率が向上し、省スペース化が図れるという優れた分電盤装置を提供できる。
【0094】
請求項6の分電盤装置の発明は、請求項3又4の分電盤装置の発明において、前記第1の内器ユニットを上段に配設するとともに前記第2の内器ユニットを下段に配設し、第1の3線式電源系統を上段に第2の3線式電源系統を下段に夫々分離して矩形箱状の筐体に収納したので、3線式電源系統の違いが判り易く明確になり、設置後のメンテナンス時に内器ユニット毎の3線式電源系統の確認作業を行う必要がないので、メンテナンス管理が行い易いという優れた分電盤装置を提供できる。
【図面の簡単な説明】
【図1】本発明の実施形態1の概念的な配電構成図である。
【図2】実施形態1の実施例1−1の具体的配電構成図である。
【図3】同上の内器ユニットと、バー及び分岐ブレーカとの関係構成説明図である。
【図4】同上の分岐ブレーカの取付ベースへの取付説明用の一部省略せる斜視図である。
【図5】同上の内器ユニットの正面図である。
【図6】同上に用いる分岐ブレーカと、取り外した状態のプラグインアダプタとを示す斜視図である。
【図7】同上のプラグインアダプタを取り付けた状態の分岐ブレーカの側面図である。
【図8】(a)は同上の分電盤装置の筐体の内部を示す正面図である。
(b)は同上の分電盤装置の筐体の内部を示す背面図である。
【図9】(a)は同上の分電盤装置の筐体の中蓋を取り付けた状態の内部の正面図である。
(b)は同上の分電盤装置の筐体の中蓋を取り付けた状態の内部を示す背面図である。
【図10】同上の分電盤装置の正面図である。
【図11】実施形態1の実施例1−2の具体的配電構成図である。
【図12】同上の内器ユニットの正面図である。
【図13】(a)は同上の分電盤装置の筐体の内部を示す正面図である。
(b)は同上の分電盤装置の筐体の内部を示す背面図である。
【図14】
(a)は同上の分電盤装置の筐体の中蓋を取り付けた状態の内部の正面図である。
(b)は同上の分電盤装置の筐体の中蓋を取り付けた状態の内部を示す背面図である。
【図15】同上の分電盤装置の正面図である。
【図16】本発明の実施形態2の概念的な構成図である。
【図17】実施形態2の実施例2−1−1の具体的配電構成図である。
【図18】(a)は同上の分電盤装置の筐体の内部を示す正面図である。
(b)は同上の分電盤装置の筐体の内部を示す背面図である。
【図19】(a)は同上の分電盤装置の筐体の中蓋を取り付けた状態の内部の正面図である。
(b)は同上の分電盤装置の筐体の中蓋を取り付けた状態の内部を示す背面図である。
【図20】同上の分電盤装置の正面図である。
【図21】実施形態2の実施例2−1−2の分電盤装置の筐体の内部を示す正面図である。
【図22】同上の分電盤装置の筐体の中蓋を取り付けた状態の内部の正面図である。
【図23】同上の分電盤装置の正面図である。
【図24】実施形態2の実施例2−1−3の分電盤装置の筐体の内部を示す正面図である。
【図25】同上の分電盤装置の筐体の中蓋を取り付けた状態の内部の正面図である。
【図26】同上の分電盤装置の正面図である。
【図27】実施形態2の実施例2−1−4の分電盤装置の筐体の内部を示す正面図である。
【図28】同上の分電盤装置の筐体の中蓋を取り付けた状態の内部の正面図である。
【図29】同上の分電盤装置の正面図である。
【図30】(a)は実施形態2の実施例2−1−5の分電盤装置の筐体の内部を示す正面図である。
(b)は同上の分電盤装置の筐体の内部を示す背面図である。
【図31】(a)は同上の分電盤装置の筐体の中蓋を取り付けた状態の内部の正面図である。
(b)は同上の分電盤装置の筐体の中蓋を取り付けた状態の内部を示す背面図である。
【図32】同上の分電盤装置の正面図である。
【図33】実施形態2の実施例2−2−1の具体的配電構成図である。
【図34】(a)は同上の分電盤装置の筐体の内部を示す正面図である。
(b)は同上の分電盤装置の筐体の内部を示す背面図である。
【図35】(a)は同上の分電盤装置の筐体の中蓋を取り付けた状態の内部の正面図である。
(b)は同上の分電盤装置の筐体の中蓋を取り付けた状態の内部を示す背面図である。
【図36】同上の分電盤装置の正面図である。
【図37】実施形態2の実施例2−2−2の分電盤装置の筐体の内部を示す正面図である。
【図38】同上の分電盤装置の筐体の中蓋を取り付けた状態の内部の正面図である。
【図39】同上の分電盤装置の正面図である。
【図40】実施形態2の実施例2−2−3の分電盤装置の筐体の内部を示す正面図である。
【図41】同上の分電盤装置の筐体の中蓋を取り付けた状態の内部の正面図である。
【図42】同上の分電盤装置の正面図である。
【図43】実施形態2の実施例2−2−4の分電盤装置の筐体の内部を示す正面図である。
【図44】同上の分電盤装置の筐体の中蓋を取り付けた状態の内部の正面図である。
【図45】同上の分電盤装置の正面図である。
【図46】(a)は実施形態2の実施例2−2−5の分電盤装置の筐体の内部を示す正面図である。
(b)は同上の分電盤装置の筐体の内部を示す背面図である。
【図47】(a)は同上の分電盤装置の筐体の中蓋を取り付けた状態の内部の正面図である。
(b)は同上の分電盤装置の筐体の中蓋を取り付けた状態の内部を示す背面図である。
【図48】同上の分電盤装置の正面図である。
【図49】3相4線式の交流電源を供給する無停電電源装置を用いたT−N接地方式による配電構成図である。
【図50】3相4線式の交流電源を供給する無停電電源装置を用いたT−T接地方式におよる従来例の配電構成図である。
【図51】3相4線式の交流電源を供給する無停電電源装置を用いたT−T接地方式におよる別の従来例の配電構成図である。
【符号の説明】
AC 3相4線式交流電源
1  ブレーカ
〜2 内器ユニット
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a power supply method and a distribution board device thereof.
[0002]
[Prior art]
Conventionally, as a power distribution system for a three-phase AC power supply, a majority of countries including the United States use a three-phase four-wire system, and some countries including Japan use a three-phase four-wire system.
[0003]
In Japan, a three-phase AC power supply is used as a power supply, but a single-phase three-wire AC power supply is used for power supplies other than the power supply. For example, a single-phase three-wire AC power supply is mainly used for a power supply used in a Japanese server installed in an information center or the like.
[0004]
By the way, since the uninterruptible power supply, which is a server power supply for servers that do not like power outages, is an infrastructure device for the Internet-related industry, U.S. products, which are IT advanced nations, have oligopolized the global market. The power outage power supply corresponds to the U.S. power distribution system, and its input is of course a three-phase four-wire AC power supply, and its output is also a three-phase four-wire AC power supply. .
[0005]
FIG. 49 shows a power distribution configuration when the uninterruptible power supply 100 in the United States is used. First, the uninterruptible power supply 100 using a three-phase four-wire (3φ4W) AC power supply as an input power supply is normally switched A three-phase four-wire (3φ4W) AC power supply is distributed to each distribution board device X through a four-pole breaker 1 through a switch 101, and the DC / DC of a battery 103 normally charged by an AC / DC converter 102 during a power failure is supplied. The three-phase four-wire (3φ4W) AC power obtained by conversion by the DC / AC converter 104 is distributed to each distribution board device X via the switch 101. In this case, a grounding system in the United States, that is, a TN grounding system (N-phase cut-off is not possible) is adopted, so that the N-phase line in the distribution board device X does not pass through the relay breaker 200 and the branch breaker The R, S, and T phase lines are branched and connected to the server 5 via the three-pole relay breaker 200 and the one-pole branch breaker 60 without passing through the server 5. It has become so.
[0006]
Therefore, when the uninterruptible power supply 100 is imported from the United States or the like to Japan and the power of the server 5 is to be replenished, first, a three-phase three-wire (3φ3W) AC power supply widely used in Japan is replaced with an AC power supply shown in FIG. As shown in the figure, after the input transformer T converts the power into a three-phase four-wire (3φ4W) AC power supply, the power is supplied to the uninterruptible power supply 100 as input power, and the three-phase four-wire output from the uninterruptible power supply 100 It is necessary to separately supply the AC power of the formula (3φ4W) to the server 5, which is a single-phase load, in a manner conforming to the Japanese grounding system (TT grounding system). A distribution board device is interposed between the server 5 and the server 5 in order to ensure electrical safety.
[0007]
As a branching method, this distribution board device is capable of drawing in four lines consisting of three-phase lines of R, S, and T and an N-phase line and cutting the neutral-phase line. As shown in FIG. 50, the R, S, T, and N phase lines are constituted by, for example, a main bar 40 made of a rectangular conductor in the distribution board device X. To connect the main pole 40 corresponding to the voltage pole phase to a branch pole breaker 60 ′ of 2 poles and 2P size, and to branch connect a single-phase two-wire power supply to the server 5 via the branch breaker 60 ′. Alternatively, as shown in FIG. 51, neutral switches NSW for neutral phase disconnection, one end of which is connected to the N-phase main bar 40, are provided by the number of unipolar branch breakers 60 provided in the distribution board device X. And a main bus of one of the voltage poles via one end of each branch breaker 60. Connect to 40, and each branch breakers 60, a method of branch connection power of single-phase two-wire to each server 5 via the neutral switch NSW forming a pair respectively have been employed.
[0008]
By the way, when the method of FIG. 50 described above is employed, since the two-pole 2P-sized branch breaker 60 'is used, the width of the branch breaker 60' of one branch circuit is increased, and for example, the branch breaker is vertically extended. When the 60's are juxtaposed, there is a problem that the vertical dimension of the housing of the distribution board device becomes large.
[0009]
When the four main bars 40 are arranged in parallel in the left-right direction, it is necessary to secure an insulation distance between the adjacent main bars 40, 40. There is a problem that the width dimension is increased, and as a result, the distribution board device is inevitably increased in size together with the vertical dimension.
[0010]
When the method of FIG. 51 is adopted, since the 1P type is used as the branch breaker 60, the width of the branch breaker 60 of the one branch circuit is smaller than that of the method of FIG. 50, but the neutral switch NSW Are generally arranged in the lowermost part of the housing of the distribution board device, so that it is difficult to wire the N-phase main bar 40 to each neutral switch NSW with electric wires, Since it is necessary to secure a space for the collective arrangement of the switches NSW and a space for the wire routing gutter, there is a problem that the vertical dimension of the housing cannot be reduced.
[0011]
When the four main bars 40 are arranged in parallel in the left-right direction, it is necessary to secure an insulation distance between the adjacent main bars 40, 40. There has been a problem that the width dimension is increased, and as a result, the distribution board device is enlarged in addition to the dimension in the vertical direction.
[0012]
Therefore, a method of using a conventionally provided distribution board device for a single-phase three-wire AC power supply may be considered. In this distribution board device, a bus composed of three main bars of a first phase, a second phase, and a neutral phase is provided in a vertical direction at a central portion, and branch breakers are provided along both sides of the main bar along the main bar. Is a general configuration. The branch breaker used is of two poles and of 1P size. The branch breaker is used to branch a 100 V paired with a first phase and a neutral phase or a 100 V paired with a second phase and a neutral phase. It is designed to be able to branch off 200 V, which is a set of one phase and second phase.
[0013]
Such a distribution board device is prepared by preparing a bus and a branch breaker in advance, and assembling an internal unit formed by assembling a predetermined number of branch breakers into the bus, in a metal rectangular box-shaped housing. Note that this housing includes a rack-type housing and the like.
[0014]
The internal unit is naturally adapted to a three-wire AC power supply. The first unit and the neutral phase are combined in consideration of the current balance of each phase of the three-wire AC power supply. The number of branch breakers connected to the first system (the total rated current capacity of the branch breakers connected to the first system) and the second system that is a set of the second phase and the neutral phase The number of branch breakers (the total rated current capacity of the branch breakers connected to the second system) is made equal.
[0015]
When the internal unit of the three-wire power supply is connected to the three-phase four-wire AC power input to the distribution board device, the first phase of the bus of the internal unit is the first phase of the three-phase four-wire AC power supply. The second phase of the bus of the internal unit is connected to the second phase of the three-phase four-wire AC power source, and the neutral phase of the bus of the internal unit is the three-phase four-wire AC power source Connected to the neutral phase.
[0016]
[Problems to be solved by the invention]
As described above, if a three-phase four-wire AC power supply is connected to a bus of an internal unit in an existing distribution board apparatus that supports a three-wire AC power supply, the first phase and the neutral phase And the number of branch breakers connected to the first system (the total rated current capacity of the branch breakers connected to the first system) and the second system connected to the second and neutral phases. And the number of branch breakers to be connected (total rated current capacity of the branch breakers connected to the second system) is equal to each other, and even if the current is supplied to each breaker as the rated current, 3 Although the same load current flows through the first phase, the second phase, and the neutral phase of the phase four-wire AC power supply, the load current does not flow through the third phase. There is a problem that power distribution equipment is wastefully and adversely affected.
[0017]
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to combine a plurality of internal units of a three-wire AC power supply with each phase current for a three-phase four-wire AC power supply. Provided is a power supply method capable of distributing the balance as a whole, and a distribution board device accommodating the internal unit and capable of balancing the current of each phase as a whole with respect to a three-phase four-wire AC power supply. It is in.
[0018]
[Means for Solving the Problems]
In order to achieve the above object, a power supply method according to claim 1 is a power supply method in which a three-phase four-wire AC power is supplied and the AC power is branched and supplied to a single-phase load. A first internal unit for branch-connecting a first three-wire power supply system using a first phase, a second phase, and a neutral phase of the three-phase four-wire AC power supply to each single-phase load. A second internal unit for branch-connecting a unit and a second three-wire power system using a second phase, a third phase and a neutral phase of the three-phase four-wire AC power source to each single-phase load A third internal unit for branch-connecting a unit and a third three-wire power system using a third phase, a first phase and a neutral phase of the three-phase four-wire AC power source to each single-phase load; The three-phase four-wire AC power supply is distributed to each of the units.
[0019]
The power supply method according to claim 2, wherein the three-phase four-wire AC power supply is supplied with the AC power branched to a single-phase load. A first internal unit for branch-connecting a first three-wire power system using a first phase, a second phase, and a neutral phase of an AC power supply to each single-phase load, and the three-phase four-wire system A second internal unit unit for branch-connecting a second three-wire power system using the second phase, the third phase, and the neutral phase of the AC power supply to each single-phase load. In connecting at least one unit to each of the three-phase four-wire AC power supplies, at least one unit is connected to each of the three-phase four-wire AC power supplies. The total number of branches connected between the second phase and the neutral phase to each single-phase load, and the total number of branches connected between the third phase and the neutral phase to each single-phase load. Characterized in that the total number of branches to Toki connected was to equalize respectively.
[0020]
The distribution board apparatus according to claim 3, wherein the three-phase four-wire AC power supply is supplied, and the AC power supply is branched and supplied to a single-phase load. A first internal unit for branch-connecting a first three-wire power supply system using a first phase, a second phase, and a neutral phase of a four-wire AC power supply to each single-phase load; A second internal unit that branches and connects a second three-wire power system using a second phase, a third phase, and a neutral phase of a four-wire AC power source to each single-phase load; In the first internal unit, the number of branches of the power supply system in which the first phase and the neutral phase are paired is n, and the number of branches of the power supply system in which the second phase and the neutral phase are paired is (n -Α), and in the second internal unit, the number of branches of the power supply system in which the second phase and the neutral phase are paired is set to (n + α), and the third phase and the neutral phase are paired. Power system branch A distribution board device wherein the number is n.
[0021]
5. The distribution board device according to claim 4, wherein the three-phase four-wire AC power supply is supplied, and the AC power supply is branched and supplied to a single-phase load. A first internal unit for branch-connecting a first three-wire power supply system using a first phase, a second phase, and a neutral phase of a four-wire AC power supply to each single-phase load; A second internal unit that branches and connects a second three-wire power system using a second phase, a third phase, and a neutral phase of a four-wire AC power source to each single-phase load; In the first internal unit, the number of branches of the power supply system in which the first phase and the neutral phase are paired is n, and the number of branches of the power supply system in which the second phase and the neutral phase are paired is n / 2. In the second internal unit, the number of branches of the power supply system in which the second phase and the neutral phase are paired is set to n / 2, and the power supply in which the third phase and the neutral phase are paired. Number of system branches is n It is characterized in that form.
[0022]
According to a fifth aspect of the present invention, the first internal unit is disposed on the front side and the second internal unit is disposed on the rear side. The first three-wire power supply system is separated from the front side, and the second three-wire power supply system is separated from the rear side, and are housed in a rectangular box-shaped housing.
[0023]
According to the invention of the distribution board device of claim 6, in the invention of the distribution board device of claim 3 or 4, the first internal unit is arranged in an upper stage and the second internal unit is arranged in a lower stage. The first three-wire power supply system and the second three-wire power supply system are separated from each other and housed in a rectangular box-shaped housing.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described with reference to embodiments.
[0025]
(Embodiment 1)
In this embodiment, as shown in FIG. 1, for example, a three-phase four-wire (3φ4W) AC power supply AC output from an uninterruptible power supply is applied to a single-phase load such as a server (not shown). The first phase (for example, R phase), the second phase (for example, T phase), and the neutral phase (for example, N phase) of the three-phase four-wire AC power supply AC as shown in FIG. First internal unit 2 for branch connection of a first three-wire power supply system using1And a second three-wire power supply system that uses a T-phase, a third-phase (for example, an S-phase), and an N-phase of a three-phase four-wire AC power supply AC to branch connect to each single-phase load. Inner unit 22And a third internal unit 2 for branch-connecting a third three-wire power supply system using the S, R, and N phases of the three-phase four-wire AC power supply AC to each single-phase load.3In addition, the neutral phase and each voltage phase of the three-phase four-wire AC power supply AC are distributed via a four-pole breaker 1.
[0026]
The present embodiment will be described in more detail with reference to an example using such a configuration.
[0027]
Example 1-1
FIG. 2 shows a specific configuration of the present embodiment. In this embodiment, the output of the uninterruptible power supply 100 constituting the three-phase four-wire AC power supply AC is connected via the four-pole breaker 1. The externally connected three-phase four-wire lines are drawn into the casing 3 of the distribution board device described later, and the N-phase and the three-wire corresponding to the combination of each phase are connected as described above. Unit 21~ 23Is directly connected to the bus of the three-wire power supply system.
[0028]
Here, the three-phase four-wire AC power supply is used because the uninterruptible power supply 100 that is exclusively manufactured in the United States and that performs three-phase four-wire power distribution is used as the power supply of the server 5. As the input power supply of the uninterruptible power supply 100, a power supply obtained by converting an AC power supply based on three-wire three-phase power distribution widely used in Japan into a three-phase four-wire AC power supply with an input transformer T is used.
[0029]
The uninterruptible power supply device 100 outputs a three-phase four-wire (3φ4W) AC power supply from the input transformer T as a three-phase four-wire (3φ4w) AC power supply via the switch 101 at normal times. Then, at the time of a power failure, a three-phase four-wire (3φ4W) AC power supply AC obtained by converting a direct current of the battery 103, which is normally charged by the AC / DC converter 102, by the DC / AC converter 104 is connected to the switch 101. Output via the Internet.
[0030]
On the other hand, each internal unit 21~ 23In addition, a single-phase load (hereinafter referred to as a server) 5 is provided by a two-pole branch breaker 6 that connects the N-phase line 42 in the bus of the three-wire power system and the voltage pole line 41 or 43 of any phase. To be distributed to The N-phase can be cut using the two-pole branch breaker 6 so as to correspond to the TT grounding system in Japan (N-phase separation is essential).
[0031]
In the case of this embodiment, the internal unit 21In the figure, n number of branch breakers 6 connected to the R and N phases are arranged on the left side of the three lines 41 to 43 constituting the bus of the three-wire type power supply system arranged in the vertical direction at the center and T on the right side. , N number of branch breakers 6 connected to the N-phase2In the figure, n number of branch breakers 6 connected to the S and N phases are arranged on the left side of three lines 41 to 43 constituting the bus of the three-wire power supply system arranged vertically in the center and T on the right side. , N number of branch breakers 6 connected to the N-phase3In the center, n number of branch breakers 6 connected to the S and N phases are arranged on the left side of three lines 41 to 43 constituting the bus of the three-wire power supply system arranged vertically in the center, and on the right side. The number n of the branch breakers 6 connected to the R and N phases is arranged, and the respective phases of R, S and T are branched by the same number of branch breakers 6 to achieve balance.
[0032]
Inner unit 21~ 23The upper and lower two mounting bases 2A, 2B (see FIG. 3) are arranged between the mounting bases 30, 30 so as to be at a constant height from the mounting surface of the housing 3 of the distribution board apparatus. 5), and the above-mentioned lines (hereinafter referred to as main bars) 41 to 43 made of a rectangular conductor are vertically overlapped with the mounting base surface at the center of the front surface (mounting upper surface) of the mounting bases 2A and 2B. The three main bars 41 to 43 constitute a bus of a three-wire power supply system. On both sides of the bus, two-pole branch breakers 6 are arranged vertically along the bus as described above.
[0033]
As shown in FIG. 4, the branch breaker 6 is fixed to the mounting base 2A (or 2B) by a substantially inverted L-shaped fixing claw 14 and bent into a V-shape to be mounted on the mounting base 2A (or 2B). And a concave portion (not shown) for locking the front end of the fixed claw 14 is formed on one end surface of the branch breaker 6, and the other end of the branch breaker 6 is formed. A concave portion (not shown) for locking the projecting portion 15a in the middle of the locking spring 15 is formed on the end face.
[0034]
Here, among the three main bars 41 to 43 constituting the bus of the three-wire power system, the N-phase is connected to the main bar 42 located at an intermediate position, and the remaining two main bars 41 and 43 are connected to the N main phase. Each internal unit 21~ 23R phase, T phase, or S phase, T phase, or S phase, R phase are connected, and one of a pair of power terminals of the branch breaker 6 is an N phase (neutral pole) corresponding to the N phase. Is connected to one of the main bars 41 and 43 of the voltage pole corresponding to the phase to which the other is allocated.
[0035]
As shown in FIG. 5, the upper ends of the main trunk bars 41, 42, and 43 have the other ends of the connection main bars 41 ', 42', and 43 'from the terminal block 31 arranged on another mounting base 2C. Connected and supported by the conductive bar support 16 provided at the upper end of the mounting base 2A to be connected, and halves on both sides of the middle portion of the main trunk bars 41, 42, 43 are arranged on both sides of the lower end of the mounting base 2A. Receiving bases 17, 17 are respectively inserted into and supported by fitting grooves (not shown) of the receiving bases 17, 17 and further extended toward the mounting base 2B, the lower ends of which are disposed on both sides of the lower end of the mounting base 2B. 17 and 17 are respectively inserted into and supported by fitting grooves (not shown).
[0036]
A fulcrum member 18 made of a hard synthetic resin material is formed on the front side of the main bar 43 of the mounting base 2A so as to be parallel to the main bar 43, between the conductive bar support base 16 and the receiving bases 17, 17. Further, on the front side of the main bar 43 of the mounting base 2B, a bridge 17 is provided between the receiving bases 17 of the mounting base 2A and the receiving bases 17 at the lower end.
[0037]
As shown in FIG. 6, the branch breaker 6 used here has power terminals 7a and 7b formed of screw terminals at one end so as to have different heights, and one end provided with the power terminals 7a and 7b. The plug-in adapter 8 is attached to the section.
[0038]
The plug-in adapter 8 is divided into three rooms before and after (up and down in FIG. 6) with respect to the mounting surface by two partition walls, and has a cut groove 9 on a side wall facing each room. The interval between these cut grooves 9 is formed to be equal to the interval between the three main bars 41 to 43. When the plug-in adapter 8 is attached to the branch breaker 6 disposed on the mounting base 2, the main bars 41 are formed. -43 and the corresponding height positions of the corresponding cut grooves 9 become equal, so that the side end portions of the main trunk bars 41-43 can be fitted into the corresponding cut grooves 9 respectively. ing.
[0039]
Each of the two connection terminal plates 10a and 10b arranged in the plug-in adapter 8 has a receiving blade 11 at one end as shown in FIG. In the case of the branch breaker 6 connected to the main trunk bar 42 which is a pole, the connection terminal plate 10a having the receiving blade 11 in the front (upper in FIG. 6) room of the three rooms of the plug-in adapter 8 The connection fixing portion 12 provided at the other end is connected to the power supply terminal 7a, and the connection fixing portion 12 at the other end of the connection terminal plate 10b in which the portion of the receiving blade 11 is accommodated in the middle room is connected to the power supply terminal 7b. I have.
[0040]
The plug-in adapter 8 corresponding to the case of the branch breaker 6 connected to the main bar 41 which is a voltage pole and the main bar 42 which is a neutral pole is provided on the rear side (the lower side in FIG. 6) of the three rooms. A connection fixing portion 12 provided at the other end of the connection terminal plate 10a containing the receiving blade 11 in the room is connected to the power supply terminal 7a of the branch breaker 6, and a connection containing the receiving blade 11 in the middle room. The connection fixing portion 12 at the other end of the terminal plate 10b is connected to the power terminal 7b.
[0041]
The hole 13 provided in the plug-in adapter 8 is an insertion hole for a screw tightening tool for the power terminals 7a and 7b.
[0042]
In this manner, the branch breaker 6 in which the plug-in adapter 8 corresponding to the main pole bar 43 of the voltage pole and the main pole bar 42 of the neutral pole is connected, and the main pole bar 41 of the voltage pole and the main bar 42 of the neutral pole are connected. The branch breaker 6 to which the corresponding plug-in adapter 8 is connected is connected to each internal unit 21~ 23By preparing a predetermined number of branches n for each time, and connecting each branch breaker 6 to the main bars 41 and 42 or 42 and 43 of the line 5 via the plug-in adapter 8, each phase is equalized. The power is supplied to the server 5 via the branch breakers 6 by branching. Even if the connection is made from either of the left and right sides of the bus, the combination of the N phase and the combined phase does not change. Therefore, the branch breakers 6 having different combinations may be mixed on both the left and right sides of the bus.
[0043]
In FIGS. 3 to 7, H denotes an operation handle of the branch breaker 6.
[0044]
Now, in this embodiment, the inner unit 21~ 23As shown in FIGS. 8 (a) and 8 (b), the power distribution board device is housed in a rack-type housing 3 in which an internal unit housing space can be secured in front and rear, respectively, and together with the housing 3.
[0045]
Here, the housing 3 used in the present embodiment has storage spaces 300 for the internal unit at the front, rear, upper and lower sides, respectively, and has a structure in which a maximum of four internal units can be arranged. The inner unit 2 is provided in the upper and lower storage spaces 300 on the front side.1, 22And the inner unit 2 in the upper storage space 300 on the rear side.3Are provided between the mounting portions 301 provided in the upper and lower portions of the storage space portion 300 via the mounting bases 30, 30, respectively.
[0046]
As shown in FIGS. 9A and 9B, inner lids 302 are respectively attached to the opening sides of the storage spaces 30 of the housing 3 that face each other.1~ 23The portion of the operation handle H of the branch breaker 6 disposed at the position is exposed to allow operation.
[0047]
As shown in FIG. 10, a door 304 in which an acrylic plate 303 is fitted into an opening window 304a is attached to the front opening (and the rear opening) of the housing 3 so as to be openable and closable. The internal branch breaker 6 can be operated.
[0048]
Example 1-2
In the above embodiment 1-1, each internal unit 21~ 23The terminal unit 31 is provided on each of the internal unit units 2 from the four-wire line wired outside the housing 3.1~ 23Although three lines of a three-wire power supply system composed of N phases and two phases distributed for each are directly connected, in the present embodiment, instead of the terminal block 31 as shown in FIG. A three-pole relay breaker 200 is provided, and through this breaker 200, as shown in FIG.1~ 23The three main wires 41 to 43 provided on the mounting bases 2A and 2B are connected to three wires of a three-wire power supply system composed of an N phase and two phases.
[0049]
Each internal unit 21~ 23, The configuration of the main bars 41 to 43, the arrangement of the branch breakers 6 to the mounting base 2 and the configuration of the connection of the branch breakers 6 to the main bars 41 to 43 are the same as those in the embodiment 1-1. Therefore, specific illustration and description are omitted, and the same components are denoted by the same reference numerals.
[0050]
Thus, also in the present embodiment, the distribution board device is configured by using the rack-type casing 3 having the same configuration as that of the embodiment 1-1, and FIGS. The front and rear insides of the distribution board device of the embodiment are shown, and the inner unit 2 is provided in upper and lower storage spaces 300 on the front side.1, 22And the inner unit 2 in the upper storage space 300 on the rear side.3Are provided between the mounting portions 301 provided in the upper and lower portions of the storage space portion 300 via the mounting bases 30, 30, respectively.
[0051]
As shown in FIGS. 14A and 14B, inner lids 302 are respectively attached to the opening sides of the storage spaces 30 of the housing 3 that face each other.1~ 23The operation handle H of the branch breaker 6 and the portion of the operation handle H 'of the relay breaker 200 are exposed to enable operation.
[0052]
As shown in FIG. 15, a door 304 in which an acrylic plate 303 is fitted into an opening window 304a is attached to the front opening (and the rear opening) of the housing 3 so as to be openable and closable. The internal branch breaker 6 and the relay breaker 200 can be operated.
[0053]
(Embodiment 2)
In the first embodiment, the three internal units 21~ 23However, in this embodiment, as shown in FIG. 16, the R, T, and N phases of a three-phase four-wire (3φ4 W) AC power supply AC are used. First internal unit 2 that distributes a first three-wire power supply system using a single-phase load to each single-phase load (not shown)1And a second internal unit for distributing a second three-wire power system using T phase, S phase and N phase of a three-phase four-wire AC power supply AC to each single-phase load (not shown) Unit 22And a three-phase four-wire AC power supply AC. In the present embodiment, the number of branches by the branch breaker 6 connected between the R phase and the N phase, the number of branches by the branch breaker 6 connected between the T phase and the N phase, the S phase and the N phase And the number of branches by the branch breaker 6 connected between them.
[0054]
Specifically, the first internal unit 21In the second internal unit, the number of branches of the power supply system combining the R phase and the N phase is set to n, and the number of branches of the power supply system combining the T phase and the N phase is set to (n-α). Unit 22In this case, the number of branches of the power supply system formed by combining the T phase and the N phase is set to (n + α), and the number of branches of the power supply system formed by combining the S phase and the N phase is set to n. Unit 21In the internal unit 2, the number of branches of the power supply system formed by combining the R phase and the N phase is set to n, and the number of branches of the power supply system formed by combining the T phase and the N phase is set to n / 2.2In this example, the number of branches of the power supply system in which the T-phase and the N-phase are combined is set to n / 2, and the number of branches of the power supply system in which the S-phase and the N-phase are combined is set to n. Here, the combination that sets the number of branches of (n + α) and (n−α) or the number of branches of n / 2 is not limited to the above-described S phase and N phase, but is a combination of another phase and N phase. But it's fine.
[0055]
Example 2-1-1
FIG. 17 shows a specific configuration of this embodiment. In the case of this embodiment, as shown in FIG.1, 22Are arranged in the housing 3 of the distribution board device, and a three-phase four-wire line externally wired to the three-phase four-wire AC power supply AC via the four-pole breaker 1 is connected to the housing 3. And the three lines corresponding to the combination of the N phase and each phase are connected to the corresponding internal unit 2.1~ 235 are directly connected to the main bars 41 to 43 constituting the bus of the three-wire power supply system via the terminal block 31 as in FIG.
[0056]
Here, the three-phase four-wire AC power supply AC of this embodiment is also configured by the output of the uninterruptible power supply 100 having the same configuration as that of the embodiment 1-1.1-2, and the input of the uninterruptible power supply 100 is As the power source, an AC power source based on three-wire three-phase power distribution widely used in Japan and converted into a three-phase four-wire AC power source by an input transformer T is used.
[0057]
On the other hand, each internal unit 21, 22In the third embodiment, the main pole bar 42 of the neutral pole in the bus of the three-wire power supply system and the main pole bar 41 or 43 of the voltage pole of any phase are connected in the same manner as in the embodiment 1-1 (1-2) described above. The distribution to the server 5 is performed by the determined branch breaker 6.
[0058]
In the case of this embodiment, the internal unit 21In this example, n number of branch breakers 6 connected to the R and N phases are arranged, and n / 2 (or n-α) number of branch breakers 6 connected to the T and N phases are arranged.2On the left side of the line 5, n branch breakers 6 connected to the S and N phases are provided, and n / 2 (n + α) branch breakers 6 connected to the T and N phases are provided. , S, and T are balanced by dividing the phases into the same number.
[0059]
Note that the inner unit 2 of the present embodiment1, 22Since the structure of the branch breaker 6 is the same as that described in the embodiment 1-1, the description and illustration of the structure itself are omitted here, and the same reference numerals are given to the same components shown in the drawings. Attach.
[0060]
FIGS. 18 (a) and 18 (b) show the front and rear of the distribution board device of this embodiment using the same rack type housing 3 as in the case of embodiment 1-1 in which the internal unit storage space can be secured before and after, respectively. The inside is shown, and a housing 3 used in this embodiment is provided with a storage space 300 for an internal unit in the front and rear and up and down, and has a structure in which a maximum of four internal units can be arranged. . The internal unit 2 is located in the upper storage space 300 on the front side.1And the inner unit 2 in the upper storage space 300 on the rear side.2Are provided between the mounting portions 301 provided in the upper and lower portions of the storage space portion 300 via the mounting bases 30, 30, respectively.
[0061]
Inner unit 2 of this housing 31, 22As shown in FIGS. 19 (a) and 19 (b), inner lids 302 are respectively attached to the opening sides of the storage spaces 300 where the storage units 300 are disposed.1, 22The inner lid 302 corresponding to each of the inner units 21, 22The portion of the operation handle H of the branch breaker 6 disposed at the position is exposed to allow operation.
[0062]
As shown in FIG. 20, a door 304 in which an acrylic plate 303 is fitted into an opening window 304a is attached to the front opening (and the rear opening) of the housing 3 so as to be openable and closable. The internal branch breaker 6 can be operated.
[0063]
Example 2-1-2
In the above-described embodiment 2-1-1, the rack-type housing 3 is used, and the inner unit 2 is placed in the upper storage space 300 provided before and after the housing 3.1, 22Are arranged to constitute a distribution board device. In this embodiment, the same is applied in that a rack-type housing 3 is used. However, as shown in FIG. Inner unit 2 in upper and lower storage spaces 300.3001, 22Is different from the embodiment 2-1-1 in that the switchboard is provided to constitute the distribution board device.
[0064]
Each of the internal unit 2 is provided in the storage space 300 of the housing 3.1, 22The inner cover 302 provided with a window hole for exposing the portion of the operation handle H of the branch breaker 6 disposed at the bottom is mounted as shown in FIG. 22, and the branch breaker 6 can be operated from the outside of the inner cover 302. And As shown in FIG. 23, a door 304 in which an acrylic plate 303 is fitted in an opening window 304a is attached to the front opening (and the rear opening) of the housing 3 so as to be openable and closable.
[0065]
Wiring configuration, internal unit 21, 22The structure and the configuration of the branch breaker 6 are the same as those of the embodiment 1-1 and the embodiment 2-2-1, so that the illustration and the description are omitted.
[0066]
Example 2-1-3
In the above Examples 2-1-1 and 2-1-2, the rack-type housing 3 was used. However, in the present embodiment, as shown in FIG. The internal unit 2 is placed side by side in one housing space 300 in each housing 3.1To the other storage space 3002And a distribution board device is constituted by these two housings 3 and 3.
[0067]
Each of the internal units 2 is provided in the storage space 300 of each housing 3.1, 22As shown in FIG. 25, a middle cover 305 provided with a window hole for exposing a portion of the operation handle H of the branch breaker 6 disposed on the inner side of the branch breaker 6 can be operated from outside the middle cover 305. And A door 306 is provided at the front opening of each housing 3 as shown in FIG.
It is attached to open and close freely.
[0068]
Wiring configuration, internal unit 21, 22And the configuration of the branch breaker 6 are the same as those of the embodiment 1-1 and the embodiments 2-1-1 and 2-1-2, and the illustration and description thereof are omitted.
[0069]
Example 2-1-4
In the embodiment 2-1-3, two wall-mounted electric board type housings 3 are arranged side by side, and the inner unit 2 is placed in one storage space 300 in each housing 3.1In the other storage space 3002And a distribution board device is constituted by these two casings 3 and 3. In the present embodiment, the construction is the same in that a wall-mounted electrical construction board type casing is used. As shown in FIG.1, 22Is characterized by the use of a long casing 3 which can store the upper and lower parts in two stages.
[0070]
Each of the internal unit 2 is provided in the storage space 300 of the housing 3.1, 22As shown in FIG. 28, a middle cover 305 provided with a window hole for exposing a portion of the operation handle H of the branch breaker 6 disposed on the inner side of the branch breaker 6 can be operated from outside the middle cover 305. And A door 306 is provided at the front opening of each housing 3 as shown in FIG.
It is attached to open and close freely.
[0071]
Wiring configuration, internal unit 21, 22And the configuration of the branch breaker 6 are the same as those of the embodiment 1-1 and the embodiments 2-1-1, 2-1-2, and 2-1-3, and the illustration and description thereof are omitted.
[0072]
Example 2-1-5
In the above embodiments 2-1-1 to 2-1-4, each inner unit 21. 22The number of the branch breakers 6 provided in each of the above is 40. For example, when the number of branches is increased to 80, the same rack type casing 3 as that of the embodiment 2-2-1 is used. As shown in FIG. 30 (a), an inner unit 2 in which 40 branch breakers 6 are respectively disposed in the upper and lower storage spaces 300 on the front side of the housing 3.1a, 21bAnd an inner unit 2 in which 40 branch breakers 6 are respectively disposed in the upper and lower storage spaces 300 on the rear side as shown in FIG.2a, 22bAnd the upper and lower inner unit 21a, 21bOr 22a, 22bBy dividing the phases of the same voltage pole and determining the number of branches as described above, it is possible to perform the branch in which each phase is balanced and increase the number of branches.
[0073]
As shown in FIGS. 31 (a) and 31 (b), inner lids 302 are respectively attached to the opening sides of the storage spaces 300 of the housing 3 that face each other.1a, 21b, 22a, 22bThe inner lid 302 corresponding to each of the inner units 21a, 21b, 22a, 22bThe portion of the operation handle H of the branch breaker 6 disposed at the position is exposed to allow operation.
[0074]
32, a door 304 in which an acrylic plate 303 is fitted into an opening window 304a is attached to the front opening (and the rear opening) of the housing 3 so as to be openable and closable. The internal branch breaker 6 can be operated.
[0075]
Wiring configuration, internal unit 21, 22And the configuration of the branch breaker 6 are basically the same as those of the embodiment 1-1 and the embodiments 2-1-1 to 2-1-4, and the illustration and description thereof are omitted.
[0076]
Example 2-2-1
In the above embodiments 2-1-1 to 2-1-5, each inner unit 21, 22Is provided with a terminal block 31 on the mounting base 2A of each of the internal unit units 2 from the four-wire three-phase line wired outside the housing 3.1, 22Although the three wires of the three-wire power supply system composed of the N phase and the two phases, which are distributed for each of the three phases, are directly connected, in the present embodiment, as shown in FIG. A pole relay breaker 200 is provided, and the internal unit 2 is connected via the breaker 200.1~ 23The three main wires 41 to 43 provided on the mounting bases 2A and 2B are connected to three wires of a three-wire power supply system composed of an N phase and two phases.
[0077]
Each internal unit 21~ 23, The configuration of the arrangement of the main bars 41 to 43, the attachment of the branch breakers 6 to the mounting base 2, and the configuration of the connection of the branch breakers 6 to the main bars 41 to 43, etc. in Embodiment 2-1-1. Therefore, specific illustration and description are omitted, and the same components are denoted by the same reference numerals.
[0078]
Thus, also in the present embodiment, the distribution board device is configured using the rack-type housing 3 having the same configuration as that of the embodiment 2-1-1, and is similar to the embodiment 2-1-1. As shown in FIG. 34, the inner unit 2 is placed in the upper and lower storage spaces 300 on the front side of the housing 3.1, 22Are provided between the mounting portions 301 provided on the upper and lower portions of the storage space portion 300 via the mounting bases 30, 30, respectively.
[0079]
As shown in FIG. 35, an inner lid 302 is attached to the opening side of each housing space portion 30 of the housing 3 facing the opening side.1, 22The operation handle H of the branch breaker 6 and the portion of the operation handle H 'of the relay breaker 200 are exposed to enable operation.
[0080]
As shown in FIG. 36, a door 304 in which an acrylic plate 303 is fitted into an opening window 304a is attached to the front opening (and the rear opening) of the housing 3 so as to be openable and closable. The internal branch breaker 6 and the relay breaker 200 can be operated.
[0081]
Example 2-2-2
In this embodiment, a relay breaker 200 is provided as shown in FIG. 37 instead of the terminal block 31 of the embodiment 2-1-2. The relay breaker 200 and the operation handle H ′ as shown in FIG. The configuration is the same as that of the embodiment 2-1-2 except for the configuration of the inner lid 302 corresponding to.
[0082]
FIG. 39 is a front view of the present embodiment.
[0083]
Example 2-2-3
In this embodiment, a relay breaker 200 is provided in place of the terminal block 31 of the embodiment 2-1-3 as shown in FIG. 40, and the relay breaker 200 and the operation handle H ′ as shown in FIG. The configuration is the same as that of the embodiment 2-1-2 except for the configuration of the inner lid 305 corresponding to.
[0084]
FIG. 42 is a front view of the present embodiment.
[0085]
Example 2-2-4
In this embodiment, a relay breaker 200 is provided in place of the terminal block 31 of the embodiment 2-1-3 as shown in FIG. 43, and the relay breaker 200 and the operation handle H ′ as shown in FIG. The configuration is the same as that of the embodiment 2-1-2 except for the configuration of the inner lid 305 corresponding to.
[0086]
FIG. 45 is a front view of the present embodiment.
[0087]
Example 2-2-5
In this embodiment, a relay breaker 200 is provided in place of the terminal block 31 of the embodiment 2-1-5 as shown in FIG. 46, and the relay breaker 200 and the operation handle H 'as shown in FIG. The configuration is the same as that of the embodiment 2-1-2 except for the configuration of the inner lid 302 corresponding to.
[0088]
FIG. 48 is a front view of the present embodiment.
[0089]
【The invention's effect】
The power supply method according to claim 1 is a power supply method in which a three-phase four-wire AC power is supplied and the AC power is branched and supplied to a single-phase load. A first internal unit for branch-connecting a first three-wire power connection using a first phase, a second phase, and a neutral phase of a power source to each single-phase load, and the three-phase four-wire system A second internal unit for branch-connecting a second three-wire power system using a second phase, a third phase, and a neutral phase of an AC power supply to each single-phase load, and the three-phase four-wire system A third internal unit that branches and connects a third three-wire power system using a third phase, a first phase, and a neutral phase of an AC power supply to each single-phase load; Since each type of AC power supply is distributed, the lines of the three-wire power supply system of each internal unit can be composed of three lines instead of four. Therefore, the lines are composed of main bars using rectangular conductors. In this case, it is possible to reduce the number of poles from four poles to three poles, so that it is possible to reduce the space at the location of the main bar for securing the insulation distance, thereby reducing the width of the inner unit. The gutter space for the wiring on the load side of the branch breaker can be widened, the workability can be greatly improved, the width of the distribution board can be reduced, and the three internal unit units can be changed from a three-phase four-wire AC power supply. Since power can be distributed in a three-wire system, power can be received while maintaining the current balance of each phase of a three-phase four-wire AC power supply, so that power is supplied from a three-phase four-wire AC power supply to a single-phase load. In performing the method, it is possible to provide an excellent power supply method in which current is not concentrated only in a certain phase and the power receiving and distribution equipment can be operated efficiently.
[0090]
The power supply method according to claim 2 is a power supply method for receiving a three-phase four-wire AC power supply and branching and supplying the AC power to a single-phase load. A first internal unit for branch-connecting a first three-wire power system using a first phase, a second phase, and a neutral phase of an AC power supply to each single-phase load, and the three-phase four-wire system A second internal unit unit for branch-connecting a second three-wire power system using the second phase, the third phase, and the neutral phase of the AC power supply to each single-phase load. In connecting at least one unit to each of the three-phase four-wire AC power supplies, at least one unit is connected to each of the three-phase four-wire AC power supplies. The total number of branches connected between the second phase and the neutral phase to each single-phase load, and the total number of branches connected between the third phase and the neutral phase to each single-phase load. Since the total number of branches to be connected is set to be equal to each other, the lines of the three-wire power supply system of each internal unit can be constituted by three lines instead of four lines, similarly to the invention of claim 1. In the case of a main bar using a rectangular conductor, the number of poles can be reduced from four to three, so that the space for the main bar can be reduced to secure an insulation distance, thereby reducing the inner space. The width of the switch unit can be reduced, the gutter space for the wiring on the load side of the branch breaker can be widened, the workability can be greatly improved, and the width of the distribution board can be reduced. Since power can be received while maintaining the current balance of each phase of the power supply, when power is supplied from a three-phase four-wire AC power supply to a single-phase load, the current is not concentrated on only a certain phase, and the power is received. Operate power distribution equipment efficiently Excellent power supply method that can be provided with.
[0091]
The distribution board device according to claim 3 is a distribution board device for receiving supply of a three-phase four-wire AC power supply and branching and supplying the AC power supply to a single-phase load. A first internal unit for branch-connecting a first three-wire power supply system using a first phase, a second phase, and a neutral phase of a four-wire AC power supply to each single-phase load; A second internal unit that branches and connects a second three-wire power system using a second phase, a third phase, and a neutral phase of a four-wire AC power source to each single-phase load; In the first internal unit, the number of branches of the power supply system in which the first phase and the neutral phase are paired is n, and the number of branches of the power supply system in which the second phase and the neutral phase are paired is (n -Α), and in the second internal unit, the number of branches of the power supply system in which the second phase and the neutral phase are paired is set to (n + α), and the third phase and the neutral phase are paired. Of power supply system branches Is set to n, when power is supplied from the three-phase four-wire AC power supply to the single-phase load, the power can be received while maintaining the current balance of each phase of the three-phase four-wire AC power supply. It is possible to eliminate the necessity of increasing the current capacity by only one phase, and to provide an excellent distribution board device in which power receiving and distribution equipment is less likely to be wasted.
[0092]
5. The distribution board apparatus according to claim 4, wherein the three-phase four-wire AC power supply is supplied, and the AC power supply is branched and supplied to a single-phase load. A first internal unit for branch-connecting a first three-wire power supply system using a first phase, a second phase, and a neutral phase of a four-wire AC power supply to each single-phase load; A second internal unit that branches and connects a second three-wire power system using a second phase, a third phase, and a neutral phase of a four-wire AC power source to each single-phase load; In the first internal unit, the number of branches of the power supply system in which the first phase and the neutral phase are paired is n, and the number of branches of the power supply system in which the second phase and the neutral phase are paired is n / 2. In the second internal unit, the number of branches of the power supply system in which the second phase and the neutral phase are paired is set to n / 2, and the power supply in which the third phase and the neutral phase are paired. Let n be the number of branches in the system Therefore, when power is supplied from the three-phase four-wire AC power supply to the single-phase load, power can be received while maintaining the current balance of each phase of the three-phase four-wire AC power supply. It is possible to eliminate the need to increase the capacity, etc., reduce waste in the power receiving and distribution equipment, increase the power usage efficiency, and reduce the current flowing through the neutral phase of the bus of the internal unit. It is possible to provide an excellent distribution board device capable of reducing the temperature rise of the unit.
[0093]
According to a fifth aspect of the present invention, the first internal unit is disposed on the front side and the second internal unit is disposed on the rear side. And the first three-wire power supply system is separated from the front side and the second three-wire power supply system is separated from the rear side and housed in a rectangular box-shaped housing. The differences between the systems are easy to understand and clear, and there is no need to check the three-wire power supply system for each internal unit during maintenance after installation. Since the internal unit is disposed in the housing, it is possible to effectively utilize the space in the housing, to improve the mounting efficiency of the internal unit, and to provide an excellent distribution board device capable of saving space.
[0094]
The invention of the distribution board device according to claim 6 is the invention of the distribution board device according to claim 3 or 4, wherein the first internal unit is arranged in an upper stage and the second internal unit is arranged in a lower stage. Since the first three-wire power supply system was arranged in the upper stage and the second three-wire power supply system was separated in the lower stage and housed in a rectangular box-shaped housing, the difference between the three-wire power system can be understood. It is easy and clear, and there is no need to check the three-wire power supply system for each internal unit at the time of maintenance after installation. Therefore, it is possible to provide an excellent distribution board device that facilitates maintenance management.
[Brief description of the drawings]
FIG. 1 is a conceptual power distribution configuration diagram according to a first embodiment of the present invention.
FIG. 2 is a specific power distribution configuration diagram of Example 1-1 of the first embodiment.
FIG. 3 is an explanatory diagram showing a relational configuration between the internal unit and the bar and the branch breaker.
FIG. 4 is a partially omitted perspective view for explaining attachment of the branch breaker to the attachment base.
FIG. 5 is a front view of the same internal unit.
FIG. 6 is a perspective view showing the branch breaker used in the above and a plug-in adapter in a detached state.
FIG. 7 is a side view of the branch breaker with the plug-in adapter attached thereto.
FIG. 8A is a front view showing the inside of the housing of the distribution board device of the above.
(B) is a rear view which shows the inside of the housing | casing of the distribution board apparatus same as the above.
FIG. 9A is a front view of the inside of the distribution board device of the above power supply unit with a middle cover attached thereto.
FIG. 3B is a rear view showing the inside of the distribution board device with the inner cover attached thereto.
FIG. 10 is a front view of the distribution board device.
FIG. 11 is a specific power distribution configuration diagram of Example 1-2 of the first embodiment.
FIG. 12 is a front view of the internal unit of the above.
FIG. 13 (a) is a front view showing the inside of the housing of the distribution board device of the above.
(B) is a rear view which shows the inside of the housing | casing of the distribution board apparatus same as the above.
FIG. 14
(A) is a front view of the inside of the distribution board device of the above with the inner lid of the housing attached.
FIG. 3B is a rear view showing the inside of the distribution board device with the inner cover attached thereto.
FIG. 15 is a front view of the above distribution board device.
FIG. 16 is a conceptual configuration diagram according to a second embodiment of the present invention.
FIG. 17 is a specific power distribution configuration diagram of Example 2-1-1 of the second embodiment.
FIG. 18 (a) is a front view showing the inside of the housing of the distribution board device of the above.
(B) is a rear view which shows the inside of the housing | casing of the distribution board apparatus same as the above.
FIG. 19 (a) is a front view of the inside of the distribution board device of the above power supply unit with the inner lid of the housing attached thereto.
FIG. 3B is a rear view showing the inside of the distribution board device with the inner cover attached thereto.
FIG. 20 is a front view of the distribution board device.
FIG. 21 is a front view showing the inside of the housing of the distribution board device of Example 2-1-2 of the second embodiment.
FIG. 22 is a front view of the inside of the distribution board device with the inner cover attached thereto.
FIG. 23 is a front view of the distribution board device.
FIG. 24 is a front view showing the inside of the housing of the distribution board device of Example 2-1-3 of the second embodiment.
FIG. 25 is a front view of the inside of the distribution board device with the inner lid attached thereto.
FIG. 26 is a front view of the above distribution board device.
FIG. 27 is a front view showing the inside of the housing of the distribution board device of Example 2-1-4 of the second embodiment.
FIG. 28 is a front view of the inside of the distribution board device with the inner lid attached thereto.
FIG. 29 is a front view of the distribution board device.
FIG. 30A is a front view showing the inside of the housing of the distribution board device of Example 2-1-5 of the second embodiment.
(B) is a rear view which shows the inside of the housing | casing of the distribution board apparatus same as the above.
FIG. 31 (a) is a front view of the inside of the distribution board device in the same state with the inner lid attached thereto.
FIG. 3B is a rear view showing the inside of the distribution board device with the inner cover attached thereto.
FIG. 32 is a front view of the distribution board device.
FIG. 33 is a specific power distribution configuration diagram of Example 2-2-1 of Embodiment 2.
FIG. 34 (a) is a front view showing the inside of the housing of the distribution board device of the above.
(B) is a rear view which shows the inside of the housing | casing of the distribution board apparatus same as the above.
FIG. 35 (a) is a front view of the inside of the distribution board device of the above power supply unit with a middle cover attached thereto.
FIG. 3B is a rear view showing the inside of the distribution board device with the inner cover attached thereto.
FIG. 36 is a front view of the above distribution board device.
FIG. 37 is a front view showing the inside of the housing of the distribution board device of Example 2-2-2 of Embodiment 2;
FIG. 38 is a front view of the inside of the distribution board device with the inner lid attached thereto.
FIG. 39 is a front view of the distribution board device.
FIG. 40 is a front view showing the inside of the housing of the distribution board device of Example 2-2-3 of the second embodiment.
FIG. 41 is a front view of the inside of the distribution board device with the inner lid attached thereto.
FIG. 42 is a front view of the distribution board device.
FIG. 43 is a front view showing the inside of the housing of the distribution board device of Example 2-2-4 of the second embodiment.
FIG. 44 is a front view of the inside of the distribution board device in the same state with the inner cover attached thereto.
FIG. 45 is a front view of the distribution board device.
FIG. 46A is a front view showing the inside of the housing of the distribution board device of Example 2-2-5 of the second embodiment.
(B) is a rear view which shows the inside of the housing | casing of the distribution board apparatus same as the above.
FIG. 47 (a) is a front view of the inside of the distribution board device of the above power supply unit with the inner cover attached thereto.
FIG. 3B is a rear view showing the inside of the distribution board device with the inner cover attached thereto.
FIG. 48 is a front view of the above distribution board device.
FIG. 49 is a power distribution configuration diagram based on a TN grounding method using an uninterruptible power supply that supplies three-phase four-wire AC power.
FIG. 50 is a power distribution configuration diagram of a conventional example extending to a TT grounding system using an uninterruptible power supply for supplying a three-phase four-wire AC power supply.
FIG. 51 is a power distribution configuration diagram of another conventional example of a TT grounding system using an uninterruptible power supply that supplies three-phase four-wire AC power.
[Explanation of symbols]
AC @ 3-phase 4-wire AC power supply
1 breaker
21~ 23Inner unit

Claims (6)

3相4線式交流電源の供給を受け該交流電源を単相式負荷に分岐して供給する電源供給方法であって、前記3相4線式交流電源の第1相と第2相と中性相とを用いた第1の3線式電源系続を各単相式負荷へ分岐接続する第1の内器ユニットと、前記3相4線式交流電源の第2相と第3相と中性相とを用いた第2の3線式電源系統を各単相式負荷へ分岐接続する第2の内器ユニットと、前記3相4線式交流電源の第3相と第1相と中性相とを用いた第3の3線式電源系統を各単相式負荷へ分岐接続する第3の内器ユニットとに、前記3相4線式交流電源を夫々分配するようにしたことを特徴とする電源供給方法。A power supply method for receiving a supply of a three-phase four-wire AC power supply and branching and supplying the single-phase load to the AC power supply, wherein the three-phase four-wire AC power supply includes first and second phases. A first internal unit for branch-connecting a first three-wire power supply system using sex phases to each single-phase load, and a second phase and a third phase of the three-phase four-wire AC power supply A second internal unit that branches and connects a second three-wire power supply system using a neutral phase to each single-phase load, and a third phase and a first phase of the three-phase four-wire AC power supply The three-phase four-wire AC power supply is distributed to a third internal unit that branches and connects a third three-wire power supply system using a neutral phase to each single-phase load. A power supply method characterized by the above-mentioned. 3相4線式交流電源の供給を受け該交流電源を単相式負荷に分岐して供給する電源供給方法であって、前記3相4線式交流電源の第1相と第2相と中性相とを用いた第1の3線式電源系統を各単相式負荷へ分岐接続する第1の内器ユニットと、前記3相4線式交流電源の第2相と第3相と中性相とを用いた第2の3線式電源系統を各単相式負荷へ分岐接続する第2の内器ユニットとを、前記3相4線式交流電源に夫々少なくとも1ユニット以上づつを前記3相4線式交流電源に接続するに当たって、前記第1相と中性相との間から各単相式負荷へ分岐接続する合計分岐数と、前記第2相と中性相との間から各単相式負荷へ分岐接続する合計分岐数と、前記第3相と中性相との間から各単相式負荷へ分岐接続する合計分岐数とを夫々等しくするようにしたことを特徴とする電源供給方法。A power supply method for receiving a supply of a three-phase four-wire AC power supply and branching and supplying the single-phase load to the AC power supply, wherein the three-phase four-wire AC power supply includes first and second phases. A first internal unit for branch-connecting a first three-wire power supply system using sex phases to each single-phase load, and a second and third phase of the three-phase four-wire AC power supply; A second internal unit for branch-connecting a second three-wire power supply system using sex phases to each single-phase load, and at least one unit for each of the three-phase four-wire AC power supplies. In connecting to the three-phase four-wire AC power supply, the total number of branches connected between the first phase and the neutral phase to each single-phase load, and the total number of branches connected between the second phase and the neutral phase The total number of branches connected to each single-phase load is equal to the total number of branches connected to each single-phase load between the third phase and the neutral phase. Power supply wherein the was Unishi. 3相4線式交流電源の供給を受け該交流電源を単相式負荷に分岐して供給するための分電盤装置であって、前記3相4線式交流電源の第1相と第2相と中性相とを用いた第1の3線式電源系統を各単相式負荷へ分岐接続する第1の内器ユニットと、前記3相4線式交流電源の第2相と第3相と中性相とを用いた第2の3線式電源系統を各単相式負荷へ分岐接続する第2の内器ユニットとを設け、前記第1の内器ユニットでは第1相と中性相とを組にした電源系続の分岐数をnとするとともに第2相と中性相とを組にした電源系統の分岐数を(n−α)と成し、前記第2の内器ユニットでは第2相と中性相とを組にした電源系統の分岐数を(n+α)とするとともに第3相と中性相とを組にした電源系統の分岐数をnと成したことを特徴とする分電盤装置。A distribution board device for receiving supply of a three-phase four-wire AC power supply and branching and supplying the AC power supply to a single-phase load, wherein a first phase and a second phase of the three-phase four-wire AC power supply are provided. First internal unit for branch-connecting a first three-wire power supply system using a phase and a neutral phase to each single-phase load, and a second phase and a third phase of the three-phase four-wire AC power supply A second internal unit that branches and connects a second three-wire power supply system using a phase and a neutral phase to each of the single-phase loads. The number of branches of the power supply system paired with the sexual phase is n, and the number of branches of the power supply system paired with the second phase and the neutral phase is (n-α). In the power unit, the number of branches of the power system that combines the second phase and the neutral phase is (n + α), and the number of branches of the power system that combines the third phase and the neutral phase is n. Characterized by Electric board equipment. 3相4線式交流電源の供給を受け該交流電源を単相式負荷に分岐して供給するための分電盤装置であって、前記3相4線式交流電源の第1相と第2相と中性相とを用いた第1の3線式電源系統を各単相式負荷へ分岐接続する第1の内器ユニットと、前記3相4線式交流電源の第2相と第3相と中性相とを用いた第2の3線式電源系統を各単相式負荷へ分岐接続する第2の内器ユニットとを設け、前記第1の内器ユニットでは第1相と中性相とを組にした電源系統の分岐数をnとするとともに第2相と中性相とを組にした電源系統の分岐数をn/2と成し、前記第2の内器ユニットでは第2相と中性相とを組にした電源系続の分岐数をn/2とするとともに第3相と中性相とを組にした電源系統の分岐数をnと成したことを特徴とする分電盤装置。A distribution board device for receiving supply of a three-phase four-wire AC power supply and branching and supplying the AC power supply to a single-phase load, wherein a first phase and a second phase of the three-phase four-wire AC power supply are provided. First internal unit for branch-connecting a first three-wire power supply system using a phase and a neutral phase to each single-phase load, and a second phase and a third phase of the three-phase four-wire AC power supply A second internal unit that branches and connects a second three-wire power supply system using a phase and a neutral phase to each of the single-phase loads. The number of branches of the power supply system paired with the sexual phase is n, and the number of branches of the power supply system paired with the second phase and the neutral phase is n / 2. In the second internal unit, It is characterized in that the number of branches of the power supply system in which the second phase and the neutral phase are paired is n / 2, and the number of branches of the power supply system in which the third phase and the neutral phase are paired is n. Power distribution board . 前記第1の内器ユニットを前面側に配設するとともに前記第2の内器ユニットを後面側に配設し、第1の3線式電源系統を前面側に、第2の3線式電源系統を後面側に夫々分離して矩形箱状の筐体に収納したことを特徴とする請求項3又は4記載の分電盤装置。The first internal unit is disposed on the front side, the second internal unit is disposed on the rear side, a first three-wire power supply system is provided on the front side, and a second three-wire power supply is provided. The distribution board apparatus according to claim 3 or 4, wherein the systems are separated from each other on the rear side and housed in a rectangular box-shaped housing. 前記第1の内器ユニットを上段に配設するとともに前記第2の内器ユニットを下段に配設し、第1の3線式電源系統を上段に第2の3線式電源系統を下段に夫々分離して矩形箱状の筐体に収納したことを特徴とする請求項3又は4記載の分電盤装置。The first internal unit is disposed in an upper stage, and the second internal unit is disposed in a lower stage. A first three-wire power supply system is disposed in an upper stage and a second three-wire power supply system is disposed in a lower stage. The distribution board device according to claim 3 or 4, wherein the distribution board devices are separately housed in a rectangular box-shaped housing.
JP2002236073A 2002-08-13 2002-08-13 Distribution board device Expired - Lifetime JP4385574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002236073A JP4385574B2 (en) 2002-08-13 2002-08-13 Distribution board device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002236073A JP4385574B2 (en) 2002-08-13 2002-08-13 Distribution board device

Publications (2)

Publication Number Publication Date
JP2004080883A true JP2004080883A (en) 2004-03-11
JP4385574B2 JP4385574B2 (en) 2009-12-16

Family

ID=32020375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002236073A Expired - Lifetime JP4385574B2 (en) 2002-08-13 2002-08-13 Distribution board device

Country Status (1)

Country Link
JP (1) JP4385574B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007089300A (en) * 2005-09-21 2007-04-05 Matsushita Denko Denro System Kk Distribution board
JP2007295754A (en) * 2006-04-26 2007-11-08 Kajima Corp Power distribution system
JP2008533965A (en) * 2005-03-17 2008-08-21 リッタル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Switchboard equipment or rack equipment
JP2009044801A (en) * 2007-08-06 2009-02-26 Panasonic Electric Works Co Ltd Power monitoring system
JP2009520455A (en) * 2005-12-20 2009-05-21 ブラッドレー・リートン・ロス Power distribution system with multiple functional zones that can be individually isolated
JP2013252022A (en) * 2012-06-01 2013-12-12 Kawamura Electric Inc Apparatus and method for detecting abnormality of cable way
CN103490298A (en) * 2012-06-11 2014-01-01 辽宁省电力有限公司营口供电公司 High-voltage load control independent supporting system
CN104701747A (en) * 2015-03-18 2015-06-10 榆林学院 Single busbar sectioned PT automatically splitting paralleling entrance system and implementation method
US9350172B2 (en) 2012-07-24 2016-05-24 International Business Machines Corporation Predictive phase balancing for demand response
JP2017038465A (en) * 2015-08-07 2017-02-16 パナソニックIpマネジメント株式会社 Cabinet of distribution board, distribution board and construction method for distribution board

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008533965A (en) * 2005-03-17 2008-08-21 リッタル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Switchboard equipment or rack equipment
JP4914434B2 (en) * 2005-03-17 2012-04-11 リッタル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Switchboard equipment
JP2007089300A (en) * 2005-09-21 2007-04-05 Matsushita Denko Denro System Kk Distribution board
JP2009520455A (en) * 2005-12-20 2009-05-21 ブラッドレー・リートン・ロス Power distribution system with multiple functional zones that can be individually isolated
JP2007295754A (en) * 2006-04-26 2007-11-08 Kajima Corp Power distribution system
JP2009044801A (en) * 2007-08-06 2009-02-26 Panasonic Electric Works Co Ltd Power monitoring system
JP2013252022A (en) * 2012-06-01 2013-12-12 Kawamura Electric Inc Apparatus and method for detecting abnormality of cable way
CN103490298A (en) * 2012-06-11 2014-01-01 辽宁省电力有限公司营口供电公司 High-voltage load control independent supporting system
US9350172B2 (en) 2012-07-24 2016-05-24 International Business Machines Corporation Predictive phase balancing for demand response
US9356447B2 (en) 2012-07-24 2016-05-31 International Business Machines Corporation Predictive phase balancing for demand response
CN104701747A (en) * 2015-03-18 2015-06-10 榆林学院 Single busbar sectioned PT automatically splitting paralleling entrance system and implementation method
JP2017038465A (en) * 2015-08-07 2017-02-16 パナソニックIpマネジメント株式会社 Cabinet of distribution board, distribution board and construction method for distribution board

Also Published As

Publication number Publication date
JP4385574B2 (en) 2009-12-16

Similar Documents

Publication Publication Date Title
US8305739B2 (en) High density power/lighting panelboard
US9312665B2 (en) Electrical distribution systems incuding parallel energy source and methods
US8547684B2 (en) Panelboard having a parallel feeder bars distribution
CN109428246A (en) AC power source adapter and its applicable power distribution system
AU2010328486B2 (en) Apparatus, system and method employing a ups
CA2716086C (en) Field rephaseable modular metering device
US20080055822A1 (en) Scalable plant with top or bottom entry flexibility
JP2004080883A (en) Power supply method and its distribution board device
US20140247537A1 (en) Medium Voltage Power Distribution in Data Centers
US9478949B2 (en) Fusible meter stack apparatus, multi-unit power distribution apparatus, and operational methods
JP3925678B2 (en) Connection conductor device for distribution board
JP2008061455A (en) Plug-in mounting adapter of quadripole breaker
JP2007135298A (en) Electric switchboard
JP2011142750A (en) Home distribution panel
JP2007288963A (en) Plug-in power distribution board
US7859130B2 (en) Device for supplying power to equipment with varying requirements for the power supply
US6975505B2 (en) Electrical service entrance with neutral
JP3239651U (en) switchboard
JP2006149118A (en) Interrupting device for low-voltage power distribution
CN210137092U (en) Rack-type UPS battery protection switch box
US11139641B1 (en) Group meter stack with disconnect switch
JP2012221868A (en) Circuit breaker and adaptor for circuit breaker
JP6713840B2 (en) Power system
JP2002142314A (en) Connection conductor device of panelboard
KR20220002231U (en) Terminal Block With Integrated Zero Current Transformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090921

R151 Written notification of patent or utility model registration

Ref document number: 4385574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

EXPY Cancellation because of completion of term