JP2004079833A - Vertical resonator type surface emission semiconductor laser - Google Patents

Vertical resonator type surface emission semiconductor laser Download PDF

Info

Publication number
JP2004079833A
JP2004079833A JP2002239146A JP2002239146A JP2004079833A JP 2004079833 A JP2004079833 A JP 2004079833A JP 2002239146 A JP2002239146 A JP 2002239146A JP 2002239146 A JP2002239146 A JP 2002239146A JP 2004079833 A JP2004079833 A JP 2004079833A
Authority
JP
Japan
Prior art keywords
substrate
layer
active layer
semiconductor
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002239146A
Other languages
Japanese (ja)
Other versions
JP3802465B2 (en
Inventor
Keiji Takaoka
高岡 圭児
Michihiko Nishigaki
西垣 亨彦
Zuisen Ezaki
江崎 瑞仙
Genichi Hatagoshi
波多腰 玄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002239146A priority Critical patent/JP3802465B2/en
Publication of JP2004079833A publication Critical patent/JP2004079833A/en
Application granted granted Critical
Publication of JP3802465B2 publication Critical patent/JP3802465B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve such a problem that a conventional junction-down mounting type surface emission laser, where a substrate is opaque against laser light and the laser light is picked up from an opening made on the rear surface, suffers from low heat dissipation owing to the opening in the rear surface, and hence cannot sufficiently reduce thermal resistance. <P>SOLUTION: The thickness of a semiconductor layer between an active layer and a light emitting surface is made to be 8μm or more, a heat produced in a light emission part can be dissipated through a route allowing the heat to directly flow from the light emission part to a heat sink, as well as a route allowing the heat to spread from the light emission part to the side of a substrate. Therefore, thermal resistance of a component can be reduced. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、基板の一主面と垂直方向にレーザ光を出射する垂直共振器型面発光半導体レーザに関する。
【0002】
【従来の技術】
垂直共振器型面発光半導体レーザ(以下では、面発光レーザと呼ぶ)は、端面へき開なしに作製できること、二次元アレイ化が可能なこと、出射ビームを容易に円形化できることなど、端面発光型の半導体レーザにはない特徴があり注目をされている。
【0003】
面発光レーザの最も一般的な構造としては、半導体基板上において、活性層の上下に一対の分布ブラッグ反射型半導体多層膜反射鏡(Distributed Bragg Reflection Mirror、以下DBRミラーと呼ぶ)を配置した積層構造を形成し、このDBRミラーの外側に形成した電極からDBRミラーを介して、電流を注入する構造がよく知られている。このような構造の面発光レーザにおいては、端面発光型の半導体レーザと比べると素子の熱抵抗が非常に大きく、レーザ発振時には通電による発熱で、活性層内部の温度が素子の外部と比べて上昇することも知られている。
面発光レーザの熱抵抗を低減する方法の一つとして、発熱源となるpn接合部のある基板表面側をヒートシンクにマウントする、いわゆるジャンクションダウン型とすることにより、レーザ光を基板の表面側からではなく裏面側から取り出す方法がある。ジャンクションダウン型では、基板がレーザ光に対して透明な場合は、基板裏面から容易にレーザ光を取り出すことが可能であるが、基板が不透明な場合は、レーザ光を取り出すためには基板に光取り出し用の孔を設ける必要がある。
【0004】
図5は、レーザ光に対して基板が不透明でかつ、基板裏面からレーザ光を取り出す構成の面発光レーザの従来例を示す構造断面図である。このような構成の面発光レーザと同様な構成は、例えば、ELECTRONICS LETTERS Vol.25 No.24 pp.1644−1645(1989年11月23日発行)に記載されている。
図5に示した面発光レーザでは、活性層にGaAsを量子井戸に用いた多重量子井戸(MQW:Multiple Quantum well)構造を用いているため、発振波長が約850nmとなり、レーザ光はGaAs基板によって吸収されるため、基板には裏面から孔を開けて、そこからレーザ光を取り出す構造となっている。
【0005】
以下、図5に示した従来例の作製法を簡単に説明する。最初に、n型GaAs基板408上に、n型GaAlAs系DBRミラー407、n型Ga0.7Al0.3As クラッド層406、GaAs系MQW活性層405、p型Ga0.7Al0.3As クラッド層404、p型GaAlAs系DBRミラー403、p型GaAsコンタクト層402をMOCVD法で順次結晶成長する。このとき、GaAlAs系DBRミラーは、それぞれの光学膜厚が発振波長の四分の一波長であるGa0.9Al0.1AsとGa0.2Al0.8Asを、交互に繰り返し積層したものであり、波長850nm帯の面発光レーザでは、この材料の組み合わせの場合には繰り返し数は基板側のDBRミラーでは約20程度、また基板と反対側のDBRミラーでは約30程度とするのが一般的である。次いで、基板表面から選択的にプロトンをイオン注入することにより、電流狭窄のための高抵抗領域410を形成する。次いで、p側電極401の形成、基板の裏面研磨、n側電極409の形成を順次行った後に、裏面を選択的にエッチングすることにより光取り出し用の開孔を作製する。
【0006】
以上のような手順で作製した面発光レーザを、いわゆるジャンクションダウン型でヒートシンクに実装すると、いわゆるジャンクションアップ型で実装した場合と比べると、発熱源となる活性層とヒートシンクとの距離を大幅に短くなるので、素子の熱抵抗を小さくすることが可能である。素子の熱抵抗が小さくなると、電流注入時の活性層の温度上昇が小さくなるので、高温動作・高出力動作が可能となる。
【0007】
【発明が解決しようとする課題】
上記のように、ジャンクションダウン型の実装により、ジャンクションアップ型と比べて素子の熱抵抗を低減することが可能となる。しかしながら、従来例のように基板が発振波長に対して不透明な場合において、レーザ光を取り出すための開孔を裏面に形成すると、開孔がない素子をジャンクションダウン型で実装した場合ほど、素子の熱抵抗を低減することはできない。これは、基板に設けた開孔により、熱源となる発光部からレーザ光が素子外部に出射される光出射面までの半導体層の厚さが約2.5〜3μmと非常に薄くなるために、熱源から基板側に広がりながらヒートシンクへと放熱する経路での放熱効果が低減してしまうためである。
【0008】
このように、発振波長に対して基板が透明で裏面に開孔を設けることなくジャンクションダウン型実装が可能な面発光レーザと比べると、発振波長に対して基板が不透明なために裏面に開孔を設けないとジャンクションダウン型実装ができない面発光レーザにおいては、ジャンクションダウン実装型による熱抵抗の改善による光出力特性や温度特性などの素子特性改善が少ないという問題があった。本発明は、上記の課題を解決するためになされたもので、発振波長に対して基板が不透明で、基板裏面から開孔を設けてレーザ光を取り出す構造の面発光レーザにおいて、従来よりも素子の熱抵抗が低減され、高温・高出力動作に優れた素子を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、上記目的を達成するために、請求項1に係る発明では、基板と、この基板の上部に形成された第1の分布ブラッグ反射型半導体多層膜反射鏡と、この第1の分布ブラッグ反射型半導体多層膜反射鏡の上部に形成された活性層と、この活性層の上部に形成された第2の分布ブラッグ反射型半導体多層膜反射鏡とを少なくとも有し、前記活性層の発光波長は前記基板のバンドギャップ波長よりも短く、前記基板の裏面側に設けられた孔からレーザ光が取り出され、前記活性層と光出射面との間に設けられた半導体層の合計の厚さが8μm以上である垂直共振器型面発光半導体レーザを提供する。
このような構成の面発光レーザを、ジャンクションダウン型でヒートシンクに実装したとき、活性層と光出射面との間の半導体層の厚さが十分に厚いために、電流注入時に活性層すなわち発光部で発生した熱に対する、基板側に広がりながらヒートシンクへと放熱する経路での放熱効果が改善され、素子の熱抵抗を従来よりも低減することが可能となる。素子の熱抵抗の低減にともない、光出力特性と温度特性が改善される。
なお、活性層と光出射面との間の半導体層の厚さが十分に厚く、8μm以上にすれば、上述の効果が期待できるが、その上限は13μm以下が望ましい。その理由は、厚さ13μm以上で素子の熱抵抗はほとんど一定になり、これ以上厚くしても素子特性はほとんど変化しないからである。
【0010】
次に請求項2に係る発明では、活性層と、活性層と基板の間に設けられた分布ブラッグ反射型半導体多層膜反射鏡の間に、厚さが5μm以上の半導体層を設けることにより、活性層と光出射面との間の半導体層の厚さが十分に厚くすることが可能であり、素子の熱抵抗が低減される。
なお、活性層と、活性層と基板の間に設けられた分布ブラッグ反射型半導体多層膜反射鏡の間の半導体層の厚さを、5μm以上にすれば、素子の熱抵抗を低減できるが、その上限は10μm以下が望ましい。
【0011】
次に、請求項3に係る発明では、活性層と基板の間に設けられた分布ブラッグ反射型半導体多層膜反射鏡と、基板の間に、厚さが5μm以上の半導体層を設けることにより、活性層と光出射面との間の半導体層の厚さが十分に厚くすることが可能であり、素子の熱抵抗が低減される。
なお、活性層と基板の間に設けられた分布ブラッグ反射型半導体多層膜反射鏡と、基板の間に設けられた半導体層の厚さも、5μm以上が好ましいが、10μm以下が望ましい。
【0012】
次に、請求項4に係る発明では、活性層と、活性層と基板の間に設けられた分布ブラッグ反射型半導体多層膜反射鏡の間に設けられた半導体層と、活性層と基板の間に設けられた分布ブラッグ反射型半導体多層膜反射鏡と、基板の間に設けられた半導体層の、合計の厚さを5μm以上とすることにより、活性層と光出射面との間の半導体層の厚さが十分に厚くすることが可能であり、素子の熱抵抗が低減される。
【0013】
次に、請求項5に係る発明では、基板と、この基板の上部に形成された第1の分布ブラッグ反射型半導体多層膜反射鏡と、この第1の分布ブラッグ反射型半導体多層膜反射鏡の上部に形成された活性層と、この活性層の上部に形成された第2の分布ブラッグ反射型半導体多層膜反射鏡とを少なくとも有し、前記活性層の発光波長は前記基板のバンドギャップ波長よりも短く、前記基板の裏面側に設けられた孔からレーザ光が取り出され、この開孔部にレーザ光に対して透明でかつ前記基板よりも熱伝導率の高い半導体層が形成された面発光レーザを提供する。このような構成の面発光レーザを、ジャンクションダウン型でヒートシンクに実装したとき、基板裏面に設けられた開孔に熱伝導率の高い半導体層が設けられているために、電流注入時に活性層すなわち発光部で発生した熱に対する、基板側に広がりながらヒートシンクへと放熱する経路での放熱効果が改善され、素子の熱抵抗を従来よりも低減することが可能となる。素子の熱抵抗の低減にともない、光出力特性と温度特性が改善される。
【0014】
次に、請求項6に係る発明では、前記基板がGaAsであり、前記活性層にIn1−x(Ga1−yAlP系材料が用いられ、発振波長が620〜690nmである面発光レーザを提供する。
活性層にIn1−x(Ga1−yAlP系材料を用いた発振波長が620〜690nmの赤色面発光レーザでは、温度上昇に伴う利得の低下が非常に顕著であることから、素子の熱抵抗を低減したことによる素子特性の改善はいっそう顕著となる。
【0015】
次に、請求項7に係る発明では、前記基板がGaAsであり、前記活性層から前記光出射面との間に設けられた半導体層に、Ga1−zAlAs系材料またはIn1−x(Ga1−yAlP系材料を用いた面発光レーザを提供する。
Ga1−zAlAs系材料またはIn1−x(Ga1−yAlP系材料は、GaAs基板に格子整合させることができるため、結晶品質を低下させることなく十分な膜厚の半導体層を積層することが可能である。
【0016】
次に、請求項8に係る発明では、前記活性層から前記光出射面との間に設けられた半導体層のうち、基板に最も近い半導体層がIn1−x(Ga1−yAlP系材料である面発光を提供する。
裏面に開孔を設けることにより、露出され素子外部と接触する半導体層をIn1−x(Ga1−yAlP系材料とすることで、Ga1−zAlAs系材料を用いた場合と比べて、外部からの水分の吸収を抑制することが可能となり、信頼性の高い面発光レーザが実現できる。
【0017】
次に、請求項9に係る発明では、前記開孔部に形成されたレーザ光に対して透明でかつ前記基板よりも熱伝導率の高い半導体層が、GaN、AlN、SiC、ダイヤモンドのいずれか、またはその組み合わせにより構成された面発光レーザを提供する。
GaN、AlN、SiC、ダイヤモンドなどの半導体材料は、GaAs、In1−x(Ga1−yAlP、Ga1−zAlAsなどの半導体材料と比べ、熱伝導率が非常に高い材料であるため、放熱効果の改善が顕著であり、さらに素子特性が改善される。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を、図面を用いて説明する。
(第1の実施形態)
本発明の第1の実施形態は、活性層にInGaAlP系量子井戸構造を用いた、発光波長が約660nmの面発光レーザである。
図1は、本実施形態に係わる面発光レーザの概略構成を示す断面図である。
【0019】
以下、本実施形態に係わる面発光レーザの作製手順について説明する。まず、n型GaAs基板110の一主面上に、n型InGaP層109、n型GaAlAs層108、n型GaAlAs系DBRミラー107、n型InGaAlPクラッド層106、発光ピーク波長が650nmとなるように調整されたInGaAlP系MQW活性層105、p型InGaAlPクラッド層104、p型GaAlAs系DBRミラー103、p型GaAsコンタクト層102を、MOCVD法による結晶成長で順次積層する。次に、発光領域となる直径10μmの円形領域を除いた領域に、選択的にプロトンをイオン注入することにより高抵抗領域112を形成し、電流狭窄部を作製する。次に、基板表面の略全面にp側電極101を形成し、その後に、n型GaAs基板110の裏面を研磨して積層した半導体層も含めた基板の厚さを120μmとした。その後に、基板裏面の電流狭窄部と同心で直径80μmの円形領域を除いた領域に、n側電極111を形成する。最後に、n側電極111が形成されなかった領域をエッチングすることにより、レーザ光を取り出すための孔を作製し、図1のような面発光レーザが完成する。このとき、開孔部を形成するエッチングは、レジストをマスクとした塩素系RIE(Reactive Ion Etching)を用いた約100μmのドライエッチングと、硫酸系エッチャントによるウエットエッチングを用いて行った。p型InGaP層109は、硫酸系エッチャントによりGaAsをエッチングするときの、エッチングストップ層として機能させることができる。また、GaAlAs系DBRミラーは、それぞれの光学膜厚が発振波長の四分の一波長であるGa0.5Al0.5AsとGa0.05Al0.95Asを、交互に繰り返し積層した構造とし、繰り返し数は、基板側のn型DBRミラーでは30、基板と反対側のDBRミラーでは50.5とした。さらに、n型DBRミラー107とn型GaAs基板の間に設けたGaAlAs層108においては、Al組成を0.7、膜厚を約6.5μmとし、p型InGaP層109においては膜厚を約0.5μmとした。n側DBRミラー107の厚さは約3μmであることから、活性層からレーザ光出射面までの半導体層の合計の膜厚は約10μmとなる。なお、InGaP層109は、すでに述べたエッチングストップ層として機能するだけではなく、素子外部からの水分の吸収を抑制して、長期信頼性の高い素子を実現するのに有効な保護層としての働きもしている。また、n型InGaAlPクラッド層106、InGaAlP系MQW活性層105、およびp型InGaAlPクラッド層の合計の厚さは約0.2μmであるが、より厳密には共振器の共振波長が660nmとなるように調整されている。
【0020】
以上のようにして作製された図1の面発光レーザは、p側電極101がヒートシンクに接触するように、ジャンクションダウン型で実装して、外部から電流を注入して動作させる。このとき、活性層から光出射面までの半導体層の厚さが約10μmと、十分な厚さが確保されているため、発光部で発生した熱は、発光部から直接ヒートシンクへ熱が流れる経路に加えて、発光部から基板側へ広がりながら熱が流れる経路でも放熱させることが可能となる。その結果、一般的なジャンクションアップ型構造の場合よりも素子の熱抵抗が低減されるのみならず、裏面開孔を設けたジャンクションダウン型で図5の従来例のような構成と比べても熱抵抗はさらに低減される。
【0021】
裏面開孔を設けた面発光レーザをジャンクションダウン型で実装した場合の素子の熱抵抗は、活性層から光出射面までの半導体層の厚さに強く依存する。図1の実施形態と概略同一構成の面発光レーザに関して、n型GaAlAs層108の厚さを変化させたときの熱抵抗を、シミュレーションにより算出した結果をグラフに示したのが図2である。ここでは、素子の電流狭窄径が、5,10,15,20μmの4種類の場合について示してある。なお、グラフの横軸は、n型GaAlAs層108の厚さではなく、活性層から光出射面までの合計の半導体層の厚さ(t)としている。図2を見るとわかるように、tの増加とともに熱抵抗は減少するが、素子の電流狭窄径がいずれの場合においても、tが8μmくらいまではtの増加に対して熱抵抗が急速に減少し、tが8μmを超えるとほぼ一定値に落ち着くことがわかる。したがって、活性層から光出射面までの合計の半導体層の厚さは8μm以上とすれば良いことになる。
この図2から、活性層から光出射面までの合計の半導体層の厚さは8μm以上例えば40μm以上であっても理論的には良いが、必要以上に厚くすると、結晶成長時間が長くなるだけでなく結晶品質の低下も懸念されるので、熱抵抗がほぼ一定となる13μm以下が望ましい。
【0022】
(第2の実施形態)
本発明の第2の実施形態も、第1の実施形態と同様に、活性層にInGaAlP系量子井戸構造を用いた、発振波長が約660nmの面発光レーザである。
図3は、本実施形態に係わる面発光レーザの概略構成を示す断面図である。
【0023】
以下、本実施形態に係わる面発光レーザの作製手順について説明する。まず、n型GaAs基板209の一主面上に、n型InGaP層208、n型GaAlAs系DBRミラー207、n型InGaAlPクラッド層206、発光ピーク波長が650nmとなるように調整されたInGaAlP系MQW活性層205、p型InGaAlPクラッド層204、p型GaAlAs系DBRミラー203、p型GaAsコンタクト層202を、MOCVD法による結晶成長で順次積層する。次に、発光領域となる直径10μmの円形領域を除いた領域に、選択的にプロトンをイオン注入することにより高抵抗領域211を形成し、電流狭窄部を作製する。次に、基板表面の略全面にp側電極201を形成し、その後に、n型GaAs基板209の裏面を研磨して積層した半導体層も含めた基板の厚さを120μmとした。その後に、基板裏面の電流狭窄部と同心で直径80μmの円形領域を除いた領域に、n側電極210を形成する。最後に、n側電極210が形成されなかった領域をエッチングすることにより、レーザ光を取り出すための孔を作製し、図2のような面発光レーザが完成する。
【0024】
この第2の実施形態を、第1の実施形態とを比較すると、n型InGaAlPクラッド層206の厚さを約6.5μmと非常に厚くしていることと、第1の実施形態におけるn型GaAlAs層108に相当する半導体層がないことを除けば、ほぼ同一の構成となっている。また、第1の実施形態と同様に活性層から光出射面までの半導体層の厚さは約10μmとなっており、ジャンクションダウン型で実装した場合に、素子の熱抵抗を十分に低減される。さらに、上記のような構成の第2の実施形態においては、共振器長が約6.6μmと第1の実施形態と比べると長くなることにより、高次の横モードに対する光の回折損失が大きくなるため、基本横モードでレーザしやすくなるという副次的な効果も期待することができる。
【0025】
(第3の実施形態)
本発明の第3の実施形態も、第1および第2の実施形態と同様に、活性層にInGaAlP系量子井戸構造を用いた、発振波長が約660nmの面発光レーザである。
図4は、本実施形態に係わる面発光レーザの概略構成を示す断面図である。
【0026】
以下、本実施形態に係わる面発光レーザの作製手順について説明する。まず、n型GaAs基板308の一主面上に、n型GaAlAs系DBRミラー307、n型InGaAlPクラッド層306、発光ピーク波長が650nmとなるように調整されたInGaAlP系MQW活性層305、p型InGaAlPクラッド層304、p型GaAlAs系DBRミラー303、p型GaAsコンタクト層302を、MOCVD法による結晶成長で順次積層する。次に、発光領域となる直径10μmの円形領域を除いた領域に、選択的にプロトンをイオン注入することにより高抵抗領域311を形成し、電流狭窄部を作製する。次に、基板表面の略全面にp側電極301を形成し、その後に、n型GaAs基板308の裏面を研磨して積層した半導体層も含めた基板の厚さを120μmとした。その後に、基板裏面にスパッタ法を用いてAlN層310を堆積する。最後に、開孔部以外の領域のAlN層310をエッチング除去した後に、n側電極309を形成して、図4のような構造の面発光レーザが完成する。
以上のようにして作製された図4の面発光レーザは、p側電極301がヒートシンクに接触するように、ジャンクションダウン型で実装して、外部から電流を注入して動作させる。このとき、レーザ光を取り出すための開孔部には、熱伝導率の高いAlN層が設けてあるため、発光部で発生した熱は、発光部から直接ヒートシンクへ熱が流れる経路に加えて、発光部から基板側へ広がりながら熱が流れる経路でも放熱させることが可能となる。その結果、一般的なジャンクションアップ型構造の場合よりも素子の熱抵抗が低減されるのみならず、裏面開孔を設けたジャンクションダウン型で図5の従来例のような構成と比べても熱抵抗はさらに低減される。ここでは、開孔部にもうける熱伝導率の高い層として、AlNを用いたが、GaN、SiC、ダイヤモンドなどの材料を用いても同様な効果が得られることは言うまでもない。
【0027】
【発明の効果】
以上詳細に説明したように、発振波長に対して基板が不透明で、基板裏面から開孔を設けてレーザ光を取り出す構造の面発光レーザにおいて、本発明の面発光レーザを、ヒートシンクにジャンクションダウン型で実装することにより、素子の熱抵抗を大幅に低減することが可能である。その結果、素子の最大光出力および最高連続発振温度が従来よりも向上させることができる。
【図面の簡単な説明】
【図1】第1の実施形態に係わる垂直共振器型面発光半導体レーザの概略構成を示す断面図。
【図2】熱抵抗の、活性層からレーザ光出射面までの半導体層厚さ依存性。
【図3】第2の実施形態に係わる垂直共振器型面発光半導体レーザの素子用面の概略構成図。
【図4】第3の実施形態に係わる垂直共振器型面発光半導体レーザの素子用面の概略構成図。
【図5】従来構造の垂直共振器型面発光半導体レーザの概略構成を示す断面図。
【符号の説明】
101,201,301,401・・・p側電極
102,202,302,402・・・p型GaAsコンタクト層
103,203,303,403・・・p型GaAlAs系DBRミラー
104,204,304,404・・・p型InGaAlPクラッド層
105,205,305,405・・・InGaAlP系MQW活性層
106,206,306,406・・・n型InGaAlPクラッド層
107,207,307,407・・・nGaAlAs系DBRミラー
108・・・n型GaAlAs層
109,208・・・n型InGaP層
110,209,308,408・・・n型GaAs基板
111,210,309,409・・・n側電極
112,211,311,410・・・高抵抗領域
310・・・AlN層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a vertical cavity surface emitting semiconductor laser that emits laser light in a direction perpendicular to one main surface of a substrate.
[0002]
[Prior art]
A vertical cavity surface emitting semiconductor laser (hereinafter, referred to as a surface emitting laser) is an edge emitting type laser that can be manufactured without cleaving an end face, can be formed in a two-dimensional array, and can easily make an output beam circular. Attention has been paid to features that semiconductor lasers do not have.
[0003]
The most common structure of a surface emitting laser is a stacked structure in which a pair of distributed Bragg reflection type semiconductor multilayer mirrors (hereinafter, referred to as DBR mirrors) are arranged above and below an active layer on a semiconductor substrate. Is well known, and a current is injected from an electrode formed outside the DBR mirror via the DBR mirror. In a surface emitting laser having such a structure, the thermal resistance of the element is much higher than that of an edge emitting type semiconductor laser, and the temperature inside the active layer rises compared to the outside of the element due to heat generated by energization during laser oscillation. It is also known to do.
As one of the methods for reducing the thermal resistance of a surface emitting laser, a so-called junction-down type in which the surface of a substrate having a pn junction serving as a heat source is mounted on a heat sink, so that laser light is emitted from the surface of the substrate. There is a method of taking out from the back side instead. In the junction-down type, when the substrate is transparent to the laser light, the laser light can be easily extracted from the back surface of the substrate. However, when the substrate is opaque, the light must be applied to the substrate to extract the laser light. It is necessary to provide a hole for taking out.
[0004]
FIG. 5 is a structural sectional view showing a conventional example of a surface emitting laser having a configuration in which a substrate is opaque to laser light and a laser light is extracted from the back surface of the substrate. A configuration similar to the surface emitting laser having such a configuration is described in, for example, ELECTRONICS LETTERS Vol. 25 No. 24 pp. 1644-1645 (issued November 23, 1989).
In the surface emitting laser shown in FIG. 5, since the active layer has a multiple quantum well (MQW) structure using GaAs as the quantum well, the oscillation wavelength is about 850 nm, and the laser light is emitted by the GaAs substrate. Since the substrate is absorbed, a hole is formed in the substrate from the back surface, and a laser beam is extracted therefrom.
[0005]
Hereinafter, the manufacturing method of the conventional example shown in FIG. 5 will be briefly described. First, n-type on a GaAs substrate 408, n-type GaAlAs-based DBR mirror 407, n-type Ga 0.7 Al 0.3 As cladding layer 406, GaAs based MQW active layer 405, p-type Ga 0.7 Al 0. A 3 As clad layer 404, a p-type GaAlAs-based DBR mirror 403, and a p-type GaAs contact layer 402 are sequentially grown by MOCVD. At this time, the GaAlAs-based DBR mirror is formed by alternately and repeatedly laminating Ga 0.9 Al 0.1 As and Ga 0.2 Al 0.8 As each having an optical film thickness which is a quarter wavelength of the oscillation wavelength. In a surface emitting laser having a wavelength of 850 nm, in the case of this combination of materials, the number of repetitions is about 20 for the DBR mirror on the substrate side and about 30 for the DBR mirror on the side opposite to the substrate. Is common. Next, high-resistance regions 410 for current constriction are formed by selectively implanting protons from the substrate surface. Next, formation of the p-side electrode 401, polishing of the back surface of the substrate, and formation of the n-side electrode 409 are sequentially performed, and then the back surface is selectively etched to form an opening for extracting light.
[0006]
When the surface-emitting laser fabricated by the above procedure is mounted on a heat sink using a so-called junction-down type, the distance between the active layer and the heat source and the heat source becomes much shorter than when mounted on a so-called junction-up type. Therefore, it is possible to reduce the thermal resistance of the element. When the thermal resistance of the element becomes small, the temperature rise of the active layer at the time of current injection becomes small, so that high-temperature operation and high-output operation become possible.
[0007]
[Problems to be solved by the invention]
As described above, the junction-down type mounting makes it possible to reduce the thermal resistance of the element as compared with the junction-up type. However, in the case where the substrate is opaque to the oscillation wavelength as in the conventional example, if an opening for taking out the laser beam is formed on the back surface, the more the element without the opening is mounted in the junction-down type, the more the element becomes. Thermal resistance cannot be reduced. This is because the thickness of the semiconductor layer from the light emitting portion serving as a heat source to the light emitting surface from which the laser light is emitted to the outside of the element becomes extremely thin, about 2.5 to 3 μm, due to the opening provided in the substrate. This is because the heat radiation effect in the path for dissipating heat to the heat sink while spreading from the heat source to the substrate side is reduced.
[0008]
Thus, compared to a surface-emitting laser that is transparent to the oscillation wavelength and can be mounted in a junction-down type without providing an opening in the back surface, the substrate is opaque to the oscillation wavelength and the opening in the back surface In a surface emitting laser that cannot be mounted in a junction-down type without the provision of a device, there is a problem that the improvement in the device characteristics such as the light output characteristic and the temperature characteristic due to the improvement in the thermal resistance by the junction-down mounting type is small. The present invention has been made in order to solve the above-mentioned problem, and in a surface emitting laser having a structure in which a substrate is opaque to an oscillation wavelength and a laser beam is extracted by providing an opening from the back surface of the substrate, It is an object of the present invention to provide an element having reduced thermal resistance and excellent high-temperature and high-output operation.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, a substrate, a first distributed Bragg reflection type semiconductor multilayer mirror formed on an upper portion of the substrate, and the first distribution An active layer formed on the Bragg reflection type semiconductor multilayer reflector; and a second distributed Bragg reflection type semiconductor multilayer reflector formed on the active layer; The wavelength is shorter than the bandgap wavelength of the substrate, a laser beam is extracted from a hole provided on the back side of the substrate, and the total thickness of the semiconductor layer provided between the active layer and the light emitting surface. Is 8 μm or more.
When a surface emitting laser having such a configuration is mounted on a heat sink in a junction-down type, the thickness of the semiconductor layer between the active layer and the light emitting surface is sufficiently large. The heat radiation effect of the heat generated in the path for dissipating heat to the heat sink while spreading to the substrate side is improved, and the thermal resistance of the element can be reduced as compared with the conventional case. As the thermal resistance of the device decreases, the light output characteristics and the temperature characteristics are improved.
The above-mentioned effect can be expected if the thickness of the semiconductor layer between the active layer and the light emitting surface is sufficiently large and 8 μm or more, but the upper limit is desirably 13 μm or less. The reason is that when the thickness is 13 μm or more, the thermal resistance of the element becomes almost constant, and when the thickness is further increased, the element characteristics hardly change.
[0010]
Next, in the invention according to claim 2, by providing a semiconductor layer having a thickness of 5 μm or more between the active layer and the distributed Bragg reflection type semiconductor multilayer mirror provided between the active layer and the substrate, The thickness of the semiconductor layer between the active layer and the light emitting surface can be made sufficiently large, and the thermal resistance of the device is reduced.
If the thickness of the semiconductor layer between the active layer and the distributed Bragg reflection type semiconductor multilayer mirror provided between the active layer and the substrate is set to 5 μm or more, the thermal resistance of the element can be reduced. The upper limit is desirably 10 μm or less.
[0011]
Next, in the invention according to claim 3, by providing a distributed Bragg reflection type semiconductor multilayer film reflecting mirror provided between the active layer and the substrate and a semiconductor layer having a thickness of 5 μm or more between the substrate, The thickness of the semiconductor layer between the active layer and the light emitting surface can be made sufficiently large, and the thermal resistance of the device is reduced.
The thickness of the distributed Bragg reflection type semiconductor multilayer mirror provided between the active layer and the substrate and the thickness of the semiconductor layer provided between the substrates are also preferably 5 μm or more, and more preferably 10 μm or less.
[0012]
Next, in the invention according to claim 4, between the active layer, the semiconductor layer provided between the active layer and the substrate, the distributed Bragg reflection type semiconductor multilayer mirror, and between the active layer and the substrate. The total thickness of the distributed Bragg reflection type semiconductor multilayer film reflecting mirror provided on the substrate and the semiconductor layer provided between the substrates is at least 5 μm, so that the semiconductor layer between the active layer and the light emitting surface is formed. Can be made sufficiently thick, and the thermal resistance of the element is reduced.
[0013]
Next, in the invention according to claim 5, the substrate, the first distributed Bragg reflection type semiconductor multilayer reflector formed on the upper portion of the substrate, and the first distributed Bragg reflection type semiconductor multilayer reflector are formed. An active layer formed on the active layer; and a second distributed Bragg reflection type semiconductor multilayer film reflecting mirror formed on the active layer, wherein an emission wavelength of the active layer is higher than a bandgap wavelength of the substrate. Laser light is extracted from a hole provided on the back surface side of the substrate, and a semiconductor layer that is transparent to the laser light and has a higher thermal conductivity than the substrate is formed in the opening. Provide a laser. When a surface emitting laser having such a configuration is mounted on a heat sink in a junction-down type, an active layer, that is, an active layer during current injection is provided because a semiconductor layer having a high thermal conductivity is provided in an opening provided on the back surface of the substrate. The heat radiation effect of the heat generated in the light emitting portion in the path of dissipating heat to the heat sink while spreading to the substrate side is improved, and the thermal resistance of the element can be reduced as compared with the related art. As the thermal resistance of the device decreases, the light output characteristics and the temperature characteristics are improved.
[0014]
Next, in the invention according to claim 6, wherein the substrate is GaAs, In 1-x (Ga 1-y Al y) x P -based material is used for the active layer, the oscillation wavelength is 620~690nm A surface emitting laser is provided.
Since the oscillation wavelength using In 1-x (Ga 1- y Al y) x P -based material in the active layer is a red surface emitting laser 620~690Nm, gain reduction due to the temperature rise is very pronounced The improvement in element characteristics due to the reduction in the thermal resistance of the element becomes even more remarkable.
[0015]
Next, in the invention according to claim 7, wherein the substrate is GaAs, the semiconductor layer provided between the light emitting surface from the active layer, Ga 1-z Al z As-based material or an In 1- to provide a surface emitting laser using the x (Ga 1-y Al y ) x P material.
Ga 1-z Al z As-based material, or In 1-x (Ga 1- y Al y) x P -based material, since it is possible to lattice-matched to GaAs substrate, sufficient thickness without reducing the crystal quality Semiconductor layers can be stacked.
[0016]
Next, in the invention according to claim 8, of the semiconductor layer provided between the light emitting surface from the active layer, closest to the semiconductor layer to the substrate is In 1-x (Ga 1- y Al y) It provides a surface emitting an x P-based material.
By providing an opening in the back surface, the semiconductor layer in contact with the exposed element external With In 1-x (Ga 1- y Al y) x P -based material, a Ga 1-z Al z As-based material As compared with the case of using, it is possible to suppress the absorption of moisture from the outside, and a highly reliable surface emitting laser can be realized.
[0017]
Next, in the invention according to claim 9, the semiconductor layer that is transparent to the laser light formed in the opening and has higher thermal conductivity than the substrate is made of any one of GaN, AlN, SiC, and diamond. , Or a combination thereof.
GaN, the semiconductor material of the AlN, SiC, etc. diamond, GaAs, In 1-x ( Ga 1-y Al y) x P, as compared with the semiconductor material, such as Ga 1-z Al z As, the thermal conductivity is very Because of the high material, the heat radiation effect is remarkably improved, and the element characteristics are further improved.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(1st Embodiment)
The first embodiment of the present invention is a surface-emitting laser having an emission wavelength of about 660 nm using an InGaAlP-based quantum well structure for an active layer.
FIG. 1 is a sectional view showing a schematic configuration of a surface emitting laser according to the present embodiment.
[0019]
Hereinafter, a manufacturing procedure of the surface emitting laser according to the present embodiment will be described. First, on one main surface of an n-type GaAs substrate 110, an n-type InGaP layer 109, an n-type GaAlAs layer 108, an n-type GaAlAs-based DBR mirror 107, an n-type InGaAlP cladding layer 106, and an emission peak wavelength of 650 nm. The adjusted InGaAlP-based MQW active layer 105, p-type InGaAlP clad layer 104, p-type GaAlAs-based DBR mirror 103, and p-type GaAs contact layer 102 are sequentially stacked by crystal growth by MOCVD. Next, a high-resistance region 112 is formed by selectively ion-implanting protons in a region excluding a circular region having a diameter of 10 μm serving as a light-emitting region, thereby forming a current constriction portion. Next, the p-side electrode 101 was formed on substantially the entire surface of the substrate, and then the back surface of the n-type GaAs substrate 110 was polished to a thickness of 120 μm including the laminated semiconductor layers. Thereafter, an n-side electrode 111 is formed in a region excluding a circular region having a diameter of 80 μm and concentric with the current constriction portion on the back surface of the substrate. Lastly, by etching a region where the n-side electrode 111 is not formed, a hole for extracting a laser beam is formed, and a surface emitting laser as shown in FIG. 1 is completed. At this time, the etching for forming the opening was performed using dry etching of about 100 μm using chlorine-based RIE (Reactive Ion Etching) using a resist as a mask, and wet etching using a sulfuric acid-based etchant. The p-type InGaP layer 109 can function as an etching stop layer when etching GaAs with a sulfuric acid-based etchant. In addition, the GaAlAs-based DBR mirror alternately and repeatedly laminated Ga 0.5 Al 0.5 As and Ga 0.05 Al 0.95 As, each of which has an optical film thickness which is a quarter wavelength of the oscillation wavelength. The structure was such that the number of repetitions was 30 for the n-type DBR mirror on the substrate side and 50.5 for the DBR mirror on the opposite side to the substrate. Further, in the GaAlAs layer 108 provided between the n-type DBR mirror 107 and the n-type GaAs substrate, the Al composition is 0.7, the film thickness is about 6.5 μm, and in the p-type InGaP layer 109, the film thickness is about It was 0.5 μm. Since the thickness of the n-side DBR mirror 107 is about 3 μm, the total film thickness of the semiconductor layer from the active layer to the laser light emission surface is about 10 μm. Note that the InGaP layer 109 not only functions as the etching stop layer described above, but also functions as a protective layer effective for realizing a device having high long-term reliability by suppressing absorption of moisture from the outside of the device. If you do. The total thickness of the n-type InGaAlP cladding layer 106, the InGaAlP-based MQW active layer 105, and the p-type InGaAlP cladding layer is about 0.2 μm, but more strictly, the resonance wavelength of the resonator is 660 nm. Has been adjusted.
[0020]
The surface emitting laser of FIG. 1 manufactured as described above is mounted in a junction-down type so that the p-side electrode 101 contacts a heat sink, and is operated by externally injecting current. At this time, since the thickness of the semiconductor layer from the active layer to the light emission surface is about 10 μm, which is sufficient, the heat generated in the light emitting section is a path through which heat flows directly from the light emitting section to the heat sink. In addition, it is possible to dissipate heat even in a path in which heat flows while spreading from the light emitting unit to the substrate side. As a result, not only is the thermal resistance of the element lower than in the case of a general junction-up type structure, but also the junction-down type having a back surface opening has a lower thermal resistance than the conventional example of FIG. The resistance is further reduced.
[0021]
When a surface emitting laser having a back surface opening is mounted in a junction-down type, the thermal resistance of the element strongly depends on the thickness of the semiconductor layer from the active layer to the light emitting surface. FIG. 2 is a graph showing the result of calculating the thermal resistance when the thickness of the n-type GaAlAs layer 108 is changed by simulation with respect to the surface emitting laser having substantially the same configuration as the embodiment of FIG. Here, four cases are shown in which the current constriction diameter of the element is 5, 10, 15, and 20 μm. The horizontal axis of the graph is not the thickness of the n-type GaAlAs layer 108 but the total thickness (t) of the semiconductor layer from the active layer to the light emitting surface. As can be seen from FIG. 2, the thermal resistance decreases with increasing t. However, in any case where the current constriction diameter of the element is increased, the thermal resistance rapidly decreases with increasing t until t is about 8 μm. However, it can be seen that when t exceeds 8 μm, the value settles to a substantially constant value. Therefore, the total thickness of the semiconductor layer from the active layer to the light emitting surface should be 8 μm or more.
From FIG. 2, it is theoretically good that the total thickness of the semiconductor layer from the active layer to the light emitting surface is 8 μm or more, for example, 40 μm or more. However, since the crystal quality may be deteriorated, the thickness is preferably 13 μm or less at which the thermal resistance becomes almost constant.
[0022]
(Second embodiment)
Similarly to the first embodiment, the second embodiment of the present invention is a surface emitting laser having an active layer of an InGaAlP-based quantum well structure and having an oscillation wavelength of about 660 nm.
FIG. 3 is a cross-sectional view illustrating a schematic configuration of the surface emitting laser according to the present embodiment.
[0023]
Hereinafter, a manufacturing procedure of the surface emitting laser according to the present embodiment will be described. First, on one main surface of an n-type GaAs substrate 209, an n-type InGaP layer 208, an n-type GaAlAs-based DBR mirror 207, an n-type InGaAlP clad layer 206, and an InGaAlP-based MQW adjusted to have an emission peak wavelength of 650 nm. An active layer 205, a p-type InGaAlP cladding layer 204, a p-type GaAlAs-based DBR mirror 203, and a p-type GaAs contact layer 202 are sequentially laminated by MOCVD. Next, a high-resistance region 211 is formed by selectively ion-implanting protons in a region excluding a circular region having a diameter of 10 μm serving as a light-emitting region, thereby forming a current confinement portion. Next, the p-side electrode 201 was formed on substantially the entire surface of the substrate, and then the back surface of the n-type GaAs substrate 209 was polished to a thickness of 120 μm including the stacked semiconductor layers. Thereafter, an n-side electrode 210 is formed in a region excluding a circular region having a diameter of 80 μm and concentric with the current constriction portion on the back surface of the substrate. Finally, by etching the region where the n-side electrode 210 is not formed, a hole for extracting a laser beam is formed, and a surface emitting laser as shown in FIG. 2 is completed.
[0024]
When the second embodiment is compared with the first embodiment, the n-type InGaAlP cladding layer 206 has a very large thickness of about 6.5 μm, and the n-type InGaAlP cladding layer 206 has a very large thickness. The configuration is almost the same except that there is no semiconductor layer corresponding to the GaAlAs layer 108. Further, as in the first embodiment, the thickness of the semiconductor layer from the active layer to the light emitting surface is about 10 μm, and when mounted in a junction-down type, the thermal resistance of the element is sufficiently reduced. . Furthermore, in the second embodiment having the above configuration, the resonator length is about 6.6 μm, which is longer than that of the first embodiment, so that the diffraction loss of light with respect to higher-order transverse modes is large. Therefore, it is possible to expect a secondary effect that laser becomes easy in the basic transverse mode.
[0025]
(Third embodiment)
Similarly to the first and second embodiments, the third embodiment of the present invention is also a surface emitting laser using an InGaAlP-based quantum well structure for an active layer and having an oscillation wavelength of about 660 nm.
FIG. 4 is a sectional view showing a schematic configuration of the surface emitting laser according to the present embodiment.
[0026]
Hereinafter, a manufacturing procedure of the surface emitting laser according to the present embodiment will be described. First, on one main surface of an n-type GaAs substrate 308, an n-type GaAlAs-based DBR mirror 307, an n-type InGaAlP clad layer 306, an InGaAlP-based MQW active layer 305 adjusted to have an emission peak wavelength of 650 nm, and a p-type An InGaAlP cladding layer 304, a p-type GaAlAs-based DBR mirror 303, and a p-type GaAs contact layer 302 are sequentially stacked by crystal growth by MOCVD. Next, a high-resistance region 311 is formed by selectively ion-implanting protons in a region excluding a circular region having a diameter of 10 μm serving as a light-emitting region, and a current confinement portion is manufactured. Next, the p-side electrode 301 was formed on substantially the entire surface of the substrate, and then the back surface of the n-type GaAs substrate 308 was polished to a thickness of 120 μm including the stacked semiconductor layers. Thereafter, an AlN layer 310 is deposited on the back surface of the substrate by using a sputtering method. Finally, after the AlN layer 310 in a region other than the opening is removed by etching, an n-side electrode 309 is formed, and a surface emitting laser having a structure as shown in FIG. 4 is completed.
The surface emitting laser of FIG. 4 manufactured as described above is mounted in a junction-down type so that the p-side electrode 301 contacts a heat sink, and is operated by externally injecting current. At this time, since the AlN layer having high thermal conductivity is provided in the opening for extracting the laser light, the heat generated in the light emitting unit is added to the path in which the heat flows from the light emitting unit directly to the heat sink. It is possible to dissipate heat even in a path in which heat flows while spreading from the light emitting unit to the substrate side. As a result, not only is the thermal resistance of the element lower than in the case of a general junction-up type structure, but also the junction-down type having a back surface opening has a lower thermal resistance than the conventional example of FIG. The resistance is further reduced. Here, AlN was used as the layer having a high thermal conductivity in the opening, but it goes without saying that a similar effect can be obtained by using a material such as GaN, SiC, or diamond.
[0027]
【The invention's effect】
As described in detail above, in the surface emitting laser having a structure in which the substrate is opaque to the oscillation wavelength and an opening is provided from the back surface of the substrate to extract the laser light, the surface emitting laser of the present invention is provided with a junction down type heat sink. By mounting the device, it is possible to significantly reduce the thermal resistance of the element. As a result, the maximum light output and the maximum continuous oscillation temperature of the device can be improved as compared with the related art.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a schematic configuration of a vertical cavity surface emitting semiconductor laser according to a first embodiment.
FIG. 2 shows the dependence of the thermal resistance on the thickness of the semiconductor layer from the active layer to the laser beam emission surface.
FIG. 3 is a schematic configuration diagram of an element surface of a vertical cavity surface emitting semiconductor laser according to a second embodiment.
FIG. 4 is a schematic configuration diagram of an element surface of a vertical cavity surface emitting semiconductor laser according to a third embodiment.
FIG. 5 is a sectional view showing a schematic configuration of a vertical cavity surface emitting semiconductor laser having a conventional structure.
[Explanation of symbols]
101, 201, 301, 401 ... p-side electrodes 102, 202, 302, 402 ... p-type GaAs contact layers 103, 203, 303, 403 ... p-type GaAlAs-based DBR mirrors 104, 204, 304, 404... P-type InGaAlP cladding layers 105, 205, 305, 405... InGaAlP-based MQW active layers 106, 206, 306, 406. N-type GaAlAs layers 109 and 208 n-type InGaP layers 110, 209, 308, and 408 n-type GaAs substrates 111, 210, 309, and 409 n-side electrodes 112 211, 311, 410... High resistance region 310... AlN layer

Claims (9)

基板と、この基板の上部に形成された第1の分布ブラッグ反射型半導体多層膜反射鏡と、この第1の分布ブラッグ反射型半導体多層膜反射鏡の上部に形成された活性層と、この活性層の上部に形成された第2の分布ブラッグ反射型半導体多層膜反射鏡とを少なくとも有し、前記活性層の発光波長は前記基板のバンドギャップ波長よりも短く、前記基板の裏面側に設けられた孔からレーザ光が取り出され、前記活性層と光出射面との間に設けられた半導体層の合計の厚さが8μm以上であることを特徴とする垂直共振器型面発光半導体レーザ。A substrate, a first distributed Bragg reflection type semiconductor multilayer reflector formed on the substrate, an active layer formed on the first distributed Bragg reflection type semiconductor multilayer reflector, A second distributed Bragg reflection type semiconductor multilayer film reflecting mirror formed at the top of the layer, wherein the emission wavelength of the active layer is shorter than the bandgap wavelength of the substrate, and is provided on the back side of the substrate. A vertical cavity surface emitting semiconductor laser, wherein a total thickness of a semiconductor layer provided between the active layer and the light emitting surface is 8 μm or more. 前記活性層と前記第1の分布ブラッグ反射型半導体多層膜反射鏡の間に設けられた半導体層の厚さが5μm以上であることを特徴とする請求項1に記載の垂直共振器型面発光半導体レーザ。2. The vertical cavity surface emitting device according to claim 1, wherein a thickness of a semiconductor layer provided between the active layer and the first distributed Bragg reflection type semiconductor multilayer mirror is 5 [mu] m or more. Semiconductor laser. 前記第1の分布ブラッグ反射型半導体多層膜反射鏡と前記光出射面の間に設けられた半導体層の厚さが5μm以上であることを特徴とする請求項1に記載の垂直共振器型面発光半導体レーザ。2. The vertical resonator type surface according to claim 1, wherein a thickness of a semiconductor layer provided between the first distributed Bragg reflection type semiconductor multilayer mirror and the light emitting surface is 5 [mu] m or more. Light emitting semiconductor laser. 前記活性層と前記第1の分布ブラッグ反射型半導体多層膜反射鏡の間に設けられた半導体層の厚さと、前記第1の分布ブラッグ反射型半導体多層膜反射鏡と前記光出射面の間に設けられた半導体層の厚さの合計が5μm以上であることを特徴とする請求項1に記載の垂直共振器型面発光半導体レーザ。A thickness of a semiconductor layer provided between the active layer and the first distributed Bragg reflection type semiconductor multilayer film reflector, and a thickness between the first distributed Bragg reflection type semiconductor multilayer film reflector and the light emitting surface; 2. The vertical cavity surface emitting semiconductor laser according to claim 1, wherein the total thickness of the provided semiconductor layers is 5 μm or more. 基板と、この基板の上部に形成された第1の分布ブラッグ反射型半導体多層膜反射鏡と、この第1の分布ブラッグ反射型半導体多層膜反射鏡の上部に形成された活性層と、この活性層の上部に形成された第2の分布ブラッグ反射型半導体多層膜反射鏡とを少なくとも有し、前記活性層の発光波長は前記基板のバンドギャップ波長よりも短く、前記基板の裏面側に設けられた孔からレーザ光が取り出され、この開孔部にレーザ光に対して透明でかつ前記基板よりも熱伝導率の高い半導体層あるいは絶縁体層が形成されていることを特徴とする垂直共振器型面発光半導体レーザ。A substrate, a first distributed Bragg reflection type semiconductor multilayer reflector formed on the substrate, an active layer formed on the first distributed Bragg reflection type semiconductor multilayer reflector, A second distributed Bragg reflection type semiconductor multilayer film reflecting mirror formed at the top of the layer, wherein the emission wavelength of the active layer is shorter than the bandgap wavelength of the substrate, and is provided on the back side of the substrate. Laser light is extracted from the hole, and a semiconductor layer or an insulator layer that is transparent to the laser light and has higher thermal conductivity than the substrate is formed in the opening. Type surface emitting semiconductor laser. 前記基板がGaAsであり、前記活性層にIn1−x(Ga1−yAlP系材料が用いられ、発振波長が620〜690nmであることを特徴とする請求項1から5のいずれかに記載の垂直共振器型面発光半導体レーザ。Wherein the substrate is GaAs, In 1-x (Ga 1-y Al y) x P -based material is used for the active layer, the oscillation wavelength of claims 1 to 5, characterized in that the 620~690nm The vertical cavity surface emitting semiconductor laser according to any one of the above. 前記基板がGaAsであり、前記活性層から前記光出射面との間に設けられた半導体層が、Ga1−zAlAs系材料またはIn1−x(Ga1−yAlP系材料であることを特徴とする請求項1から4のいずれかに記載の垂直共振器型面発光半導体レーザ。Wherein the substrate is GaAs, the semiconductor layer provided between the light emitting surface from the active layer, Ga 1-z Al z As-based material, or In 1-x (Ga 1- y Al y) x P 5. The vertical cavity surface emitting semiconductor laser according to claim 1, wherein the vertical cavity surface emitting semiconductor laser is a series material. 前記活性層から前記光出射面との間に設けられた半導体層のうち、基板に最も近い半導体層がIn1−x(Ga1−yAlP系材料であることを特徴とする、請求項1から4のいずれかに記載の垂直共振器型面発光半導体レーザ。Among the semiconductor layers provided between the active layer and the light emitting surface, the semiconductor layer closest to the substrate is made of an In1 -x (Ga1 - yAly ) xP- based material. The vertical cavity surface emitting semiconductor laser according to claim 1. 前記開孔部に形成されたレーザ光に対して透明でかつ前記基板よりも熱伝導率の高い半導体層あるいは絶縁体層が、GaN、AlN、SiC、ダイヤモンドのいずれか、またはその組み合わせにより構成されることを特徴とする請求項5に記載の垂直共振器型面発光半導体レーザ。The semiconductor layer or the insulator layer, which is transparent to the laser beam formed in the opening and has higher thermal conductivity than the substrate, is made of any of GaN, AlN, SiC, diamond, or a combination thereof. 6. The vertical cavity surface emitting semiconductor laser according to claim 5, wherein:
JP2002239146A 2002-08-20 2002-08-20 Vertical cavity surface emitting semiconductor laser Expired - Lifetime JP3802465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002239146A JP3802465B2 (en) 2002-08-20 2002-08-20 Vertical cavity surface emitting semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002239146A JP3802465B2 (en) 2002-08-20 2002-08-20 Vertical cavity surface emitting semiconductor laser

Publications (2)

Publication Number Publication Date
JP2004079833A true JP2004079833A (en) 2004-03-11
JP3802465B2 JP3802465B2 (en) 2006-07-26

Family

ID=32022326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002239146A Expired - Lifetime JP3802465B2 (en) 2002-08-20 2002-08-20 Vertical cavity surface emitting semiconductor laser

Country Status (1)

Country Link
JP (1) JP3802465B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009105106A (en) * 2007-10-22 2009-05-14 Hitachi Ltd Optical transmitter/receiver module
JP2013008743A (en) * 2011-06-22 2013-01-10 Denso Corp Surface-emitting laser element
WO2019107273A1 (en) * 2017-11-30 2019-06-06 ソニーセミコンダクタソリューションズ株式会社 Surface emission semiconductor laser
WO2021166661A1 (en) * 2020-02-18 2021-08-26 ソニーセミコンダクタソリューションズ株式会社 Light-emitting device and method for manufacturing light-emitting device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009105106A (en) * 2007-10-22 2009-05-14 Hitachi Ltd Optical transmitter/receiver module
JP2013008743A (en) * 2011-06-22 2013-01-10 Denso Corp Surface-emitting laser element
WO2019107273A1 (en) * 2017-11-30 2019-06-06 ソニーセミコンダクタソリューションズ株式会社 Surface emission semiconductor laser
JPWO2019107273A1 (en) * 2017-11-30 2020-11-26 ソニーセミコンダクタソリューションズ株式会社 Surface emitting semiconductor laser
US11652333B2 (en) 2017-11-30 2023-05-16 Sony Semiconductor Solutions Corporation Surface-emitting semiconductor laser
JP7312113B2 (en) 2017-11-30 2023-07-20 ソニーセミコンダクタソリューションズ株式会社 Surface emitting semiconductor laser
WO2021166661A1 (en) * 2020-02-18 2021-08-26 ソニーセミコンダクタソリューションズ株式会社 Light-emitting device and method for manufacturing light-emitting device

Also Published As

Publication number Publication date
JP3802465B2 (en) 2006-07-26

Similar Documents

Publication Publication Date Title
JP4352337B2 (en) Semiconductor laser and semiconductor laser device
US7869483B2 (en) Surface emitting laser
JP3038048B2 (en) Light emitting semiconductor diode and method of manufacturing the same
JP2002353563A (en) Semiconductor light-emitting element and manufacturing method therefor
US6594297B1 (en) Laser apparatus in which surface-emitting semiconductor is excited with semiconduct laser element and high-order oscillation modes are suppressed
US6738403B2 (en) Semiconductor laser element and semiconductor laser
WO2018168430A1 (en) Semiconductor laser device, semiconductor laser module, and laser light source system for welding
JP2004152841A (en) Nitride semiconductor laser device
JP4295776B2 (en) Semiconductor laser device and manufacturing method thereof
US6782019B2 (en) VCSEL with heat-spreading layer
JP2003086895A (en) Vertical resonator-type semiconductor light emitting element
JP3547344B2 (en) Semiconductor light emitting device
JP2002190649A (en) Semiconductor laser and method of manufacturing it
JP2003031894A (en) Semiconductor laser and its manufacturing method
JP3802465B2 (en) Vertical cavity surface emitting semiconductor laser
JPH09307190A (en) Aluminum-indium-gallium-nitrogen based semiconductor luminous element and semiconductor luminous device
US7843984B2 (en) Semiconductor laser device
JP3655066B2 (en) Gallium nitride compound semiconductor laser and manufacturing method thereof
JP2007049088A (en) High power red semiconductor laser
JPH10294533A (en) Nitride compound semiconductor laser and its manufacture
JP2013179210A (en) Array type semiconductor laser device and manufacturing method thereof
KR102103515B1 (en) Laser diode structure and manufacturing method
JPH11340573A (en) Gallium nitride based semiconductor laser element
JP2001102675A (en) Semiconductor light-emitting element
JP2007158008A (en) Semiconductor light emitting device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060427

R151 Written notification of patent or utility model registration

Ref document number: 3802465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

EXPY Cancellation because of completion of term