JP2003086895A - Vertical resonator-type semiconductor light emitting element - Google Patents

Vertical resonator-type semiconductor light emitting element

Info

Publication number
JP2003086895A
JP2003086895A JP2001279859A JP2001279859A JP2003086895A JP 2003086895 A JP2003086895 A JP 2003086895A JP 2001279859 A JP2001279859 A JP 2001279859A JP 2001279859 A JP2001279859 A JP 2001279859A JP 2003086895 A JP2003086895 A JP 2003086895A
Authority
JP
Japan
Prior art keywords
light emitting
semiconductor
type
layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001279859A
Other languages
Japanese (ja)
Other versions
JP3692060B2 (en
Inventor
Keiji Takaoka
圭児 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001279859A priority Critical patent/JP3692060B2/en
Publication of JP2003086895A publication Critical patent/JP2003086895A/en
Application granted granted Critical
Publication of JP3692060B2 publication Critical patent/JP3692060B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve the problem that a vertical resonator-type semiconductor light emitting element has high thermal resistance because the semiconductor light emitting element is small in size, and a DBR mirror forming a reflecting mirror is low in thermal conductivity, therefore an active layer rises in temperature by heat released when a current is applied, and it is difficult for the semiconductor light emitting element to output high power. SOLUTION: A groove is cut in around a light emitting part as deep as a current constriction part, and an electrode is formed direct on the groove. By this setup, a distance from a heat releasing part to the electrode is shortened, and heat is easily conducted in a lateral direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、基板の一主面と垂
直方向に光を出射する垂直共振器型半導体発光素子に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vertical cavity type semiconductor light emitting device that emits light in a direction perpendicular to one main surface of a substrate.

【0002】[0002]

【従来の技術】基板面に対して垂直方向に光を出射する
垂直共振器型半導体レーザは、へき開なしに作成できる
こと、二次元アレイ化が可能なこと、出射ビームを容易
に円形化できることなど、基板端面から光を出射する端
面発光型半導体レーザにはない特徴があり注目をされて
いる。
2. Description of the Related Art A vertical cavity type semiconductor laser that emits light in a direction perpendicular to a substrate surface can be produced without cleavage, can be formed into a two-dimensional array, and can easily be circularized as an emitted beam. The edge-emitting semiconductor laser that emits light from the end surface of the substrate has features that are not present in the edge-emitting semiconductor laser, and has attracted attention.

【0003】垂直共振器型半導体レーザの最も一般的な
構造としては、半導体基板上に形成された発光層となる
活性領域と、この活性層の上下に半導体分布ブラッグ反
射型ミラー(以下、分布ブラッグ反射型ミラーをDBR
(DistributedBragg Reflect
or)ミラーと記載する。)を設け、この半導体DBR
ミラーの外側に形成した電極から、半導体DBRミラー
を介して、電流を注入する構造がある。
The most general structure of a vertical cavity type semiconductor laser is an active region which is a light emitting layer formed on a semiconductor substrate and semiconductor distributed Bragg reflection type mirrors (hereinafter referred to as distributed Bragg mirrors) above and below this active layer. DBR reflective mirror
(Distributed Bragg Reflect
or) Described as a mirror. ) Is provided for this semiconductor DBR
There is a structure in which a current is injected from an electrode formed outside the mirror via a semiconductor DBR mirror.

【0004】図6は、従来の垂直共振器型半導体レーザ
の断面構造図である。
FIG. 6 is a sectional view showing the structure of a conventional vertical cavity type semiconductor laser.

【0005】図6に示すように、この垂直共振器型半導
体レーザは、n型GaAs基板408上に、組成の異な
るAlGaAs層を交互に積層して形成されたn型DB
Rミラー407が形成されている。n型DBRミラー4
07上には、n型InGaAlPクラッド層406、I
nGaAlP系MQW活性層405、p型InGaAl
Pクラッド層404が順次形成されている。
As shown in FIG. 6, this vertical cavity type semiconductor laser is an n-type DB formed by alternately laminating AlGaAs layers having different compositions on an n-type GaAs substrate 408.
An R mirror 407 is formed. n-type DBR mirror 4
The n-type InGaAlP clad layer 406, I
nGaAlP-based MQW active layer 405, p-type InGaAl
The P clad layer 404 is sequentially formed.

【0006】p型InGaAlPクラッド層404上に
は、組成の異なるAlGaAs層を交互に積層して形成
されたp型n型DBRミラー403が形成されている。
このp型DBRミラー403及びn型DBRミラー40
7は、組成すなわち屈折率の異なるAlGaAsを交互
に積層してなる多層膜であり、それぞれの層の厚さは、
その光学的膜厚が共振波長の4分の1となるように形成
されている。そしてこれらのDBRミラーを反射鏡とし
て光が共振することによってレーザ発振し、n型GaA
s基板408の表面に対して垂直方向にレーザ光が出射
される。また、DBRミラーの高屈折率層にはAl
0.5Ga0.5As、低屈折率層にはAl 0.95
0.05Asなどを用いればよい。
On the p-type InGaAlP cladding layer 404
Is formed by alternately stacking AlGaAs layers with different compositions
Formed p-type n-type DBR mirror 403 is formed.
The p-type DBR mirror 403 and the n-type DBR mirror 40
7 is alternating AlGaAs with different composition, that is, refractive index
It is a multi-layered film that is laminated on each other, and the thickness of each layer is
Formed so that its optical thickness is 1/4 of the resonance wavelength
Has been done. And these DBR mirrors are used as reflectors
When the light resonates, laser oscillation occurs and n-type GaA
Laser light is emitted in a direction perpendicular to the surface of the substrate 408.
To be done. In addition, Al is used for the high refractive index layer of the DBR mirror.
0.5Ga0.5As, Al for the low refractive index layer 0.95G
a0.05As or the like may be used.

【0007】p型DBRミラー403上には、p型Ga
Asコンタクト層402が形成されている。これらの半
導体層は、MOCVD(Metal Organic
Chemical Vapor Depositio
n)法で順次結晶成長されている。
On the p-type DBR mirror 403, p-type Ga is formed.
An As contact layer 402 is formed. These semiconductor layers are formed by MOCVD (Metal Organic).
Chemical Vapor Deposition
Crystals are sequentially grown by the n) method.

【0008】p型DBRミラー403は、一部を除き選
択的にプロトンが照射されることにより、電流狭窄のた
めの高抵抗領域410が形成されている。そしてp型コ
ンタクト層402上に、レーザ光を取り出すための出射
窓を開口して形成されたp側電極401及びn型GaA
s基板408裏面に形成されたn側電極409から電流
を流し、活性層405に電流狭窄するようになってい
る。
In the p-type DBR mirror 403, a high resistance region 410 for current confinement is formed by selectively irradiating protons except a part. Then, on the p-type contact layer 402, a p-side electrode 401 and an n-type GaA formed by opening an emission window for extracting laser light.
A current is caused to flow from the n-side electrode 409 formed on the back surface of the s substrate 408, and the current is narrowed in the active layer 405.

【0009】このような垂直共振器型半導体レーザは、
端面発光半導体レーザと比べると、低電流で光出力が飽
和して十分な光出力が得られないのみならず、周辺温度
の上昇とともに急激に光出力が低下することがよく知ら
れている。
Such a vertical cavity type semiconductor laser is
It is well known that, compared with the edge-emitting semiconductor laser, the light output is saturated at a low current and a sufficient light output cannot be obtained, and the light output sharply decreases as the ambient temperature rises.

【0010】このような高温時に高出力動作が難しい理
由として、比較的熱伝導度の小さい材料で構成されるD
BRミラーの厚さが厚いために、活性層付近で通電によ
り発生した熱が逃げにくいという問題が上げられる。
The reason why it is difficult to operate at high power at such a high temperature is that D composed of a material having relatively small thermal conductivity is used.
Since the BR mirror is thick, there is a problem in that heat generated by energization near the active layer is difficult to escape.

【0011】活性層で通電により発生した熱を逃す方法
として、p側電極401上に金属のメッキを形成して放
熱させる方法や、基板表面側をヒートシンクにマウント
する方法が知られている。
As a method of releasing the heat generated by energization in the active layer, a method of forming metal plating on the p-side electrode 401 to radiate heat, and a method of mounting the substrate surface side on a heat sink are known.

【0012】しかしながら上述した方法によっても、十
分な放熱性が得られず、依然として温度上昇と共に急激
に光出力が低下する問題がある。
However, even with the method described above, sufficient heat dissipation cannot be obtained, and there is still a problem that the light output sharply decreases as the temperature rises.

【0013】このような問題は、活性層405でのキャ
リアのオーバーフローが顕著で、十分な温度特性の得ら
れにくい、赤色波長帯や1.3ミクロン〜1.55ミク
ロンの長波長帯の垂直共振器型半導体レーザにおいて特
に深刻である。
[0013] Such a problem is that vertical resonance in the red wavelength band or the long wavelength band of 1.3 μm to 1.55 μm, in which overflow of carriers in the active layer 405 is remarkable and it is difficult to obtain sufficient temperature characteristics. It is especially serious in container type semiconductor lasers.

【0014】[0014]

【発明が解決しようとする課題】このように従来の垂直
共振器型半導体レーザでは、活性層付近で通電により発
生した熱が逃げにくく、注入電流の増大とともに活性層
の温度が上昇するため、高出力動作が困難であるという
問題があった。
As described above, in the conventional vertical cavity type semiconductor laser, the heat generated by energization in the vicinity of the active layer is difficult to escape, and the temperature of the active layer rises as the injection current increases. There was a problem that the output operation was difficult.

【0015】本発明は、上述の課題を解決するためにな
されたもので、活性層で発生した熱を効果的に逃し、高
出力動作に優れた垂直共振器型半導体発光素子を提供す
ることを目的とする。
The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a vertical cavity type semiconductor light emitting device which effectively releases heat generated in an active layer and is excellent in high output operation. To aim.

【0016】[0016]

【課題を解決するための手段】前記目的を達成するため
に、本発明は、基板と、前記基板上に形成され、発光領
域を持つ半導体活性層と、前記半導体活性層を狭持し、
前記基板に対して垂直方向の共振器を形成する、前記半
導体活性層に対して前記基板側に設けられた第1の半導
体分布ブラッグ反射型ミラー及び前記基板と反対側に設
けられた第2の半導体分布ブラッグ反射型ミラーと、前
記第1及び第2の半導体分布ブラッグ反射型ミラーをそ
れぞれ介して、前記半導体活性層に電流を注入するため
の一対の電極と、前記第2の半導体分布ブラッグ反射型
ミラー側に形成され、前記電極から注入された電流を前
記発光領域へ絞り込むための電流狭窄部とを具備する垂
直共振器型半導体発光素子において、前記発光領域上の
前記第2の半導体分布ブラッグ反射型ミラーが凸状とな
るように、前記第2の半導体分布ブラッグ反射型ミラー
の周辺部に凹部を形成し、前記凹部上に前記電極の一方
を位置せしめてなることを特徴とする垂直共振器型半導
体発光素子を提供する。
In order to achieve the above object, the present invention provides a substrate, a semiconductor active layer formed on the substrate and having a light emitting region, and a semiconductor active layer sandwiched between the substrate and the semiconductor active layer.
A first semiconductor distributed Bragg reflection mirror provided on the substrate side with respect to the semiconductor active layer and a second semiconductor provided on the side opposite to the substrate, which form a resonator in a direction perpendicular to the substrate. A semiconductor distributed Bragg reflection mirror, a pair of electrodes for injecting a current into the semiconductor active layer through the first and second semiconductor distributed Bragg reflection mirrors, respectively, and the second semiconductor distributed Bragg reflection. A vertical cavity type semiconductor light emitting device formed on the type mirror side and having a current constriction portion for narrowing a current injected from the electrode to the light emitting region, wherein the second semiconductor distribution Bragg on the light emitting region is provided. A recess is formed in the peripheral portion of the second semiconductor distributed Bragg reflection mirror so that the reflection mirror has a convex shape, and one of the electrodes is positioned on the recess. Provide a vertical cavity type semiconductor light emitting device characterized by.

【0017】このとき、前記凹部が、前記電流狭窄部に
達するように形成されていることが好ましい。
At this time, it is preferable that the concave portion is formed so as to reach the current constriction portion.

【0018】また、前記凹部上に形成された前記電極上
に、さらに金属膜が形成されていることが好ましい。
It is preferable that a metal film is further formed on the electrode formed on the recess.

【0019】また、さらにヒートシンクを具備し、前記
凹部上に形成された前記電極が前記ヒートシンク上に設
置され、前記発光領域で発光した光を前記基板側から取
り出すことが好ましい。
Further, it is preferable that a heat sink is further provided, the electrode formed on the recess is provided on the heat sink, and light emitted in the light emitting region is taken out from the substrate side.

【0020】また、前記凹部が前記発光領域を中心とし
た同心円状に形成されていることが好ましい。
Further, it is preferable that the concave portion is formed in a concentric circle shape centering on the light emitting region.

【0021】また、前記半導体活性層は、In
1−x(Ga1−yAlP系材料が用いられ、発
光波長が620nm以上690nm以下であることが好
ましい。
The semiconductor active layer is In
1-x (Ga 1-y Al y) x P -based material is used, it is preferred that the emission wavelength is less than 690nm or more 620 nm.

【0022】この垂直共振器型半導体発光素子は、発光
領域の周辺部において、分布ブラッグ半導体多層膜の厚
さが薄くなっており、この部分に金属電極が形成されて
いるので、熱伝導の良い金属電極と発熱部との距離を従
来のものよりも短くでき、活性層付近で発生した熱を逃
げやすくできる。したがって、高い電流注入時にも活性
層の温度上昇を抑制することができ、高出力動作が可能
となる。
In this vertical cavity type semiconductor light emitting device, the thickness of the distributed Bragg semiconductor multilayer film is thin in the peripheral portion of the light emitting region, and the metal electrode is formed in this portion, so that the heat conduction is good. The distance between the metal electrode and the heat generating portion can be made shorter than that of the conventional one, and the heat generated near the active layer can be easily escaped. Therefore, the temperature rise of the active layer can be suppressed even when a high current is injected, and a high output operation can be performed.

【0023】また、電極上に、厚い金属メッキを施すこ
とで、より効率よく熱を逃がすことが可能となる。
Also, by applying thick metal plating on the electrodes, it becomes possible to more efficiently release heat.

【0024】また、また、電極を下にしてヒートシンク
上にマウントし、基板側から光を取り出す構成とすれ
ば、通電により発生した熱を、より効率よく逃がすこと
が可能となる
Further, if the electrodes are mounted on a heat sink with the electrodes facing down and the light is taken out from the substrate side, the heat generated by energization can be more efficiently released.

【0025】[0025]

【発明の実施の形態】以下、本発明の実施の形態を、図
面を用いて説明する。 (第1の実施形態)図1は、本発明の第1の実施形態に
係わる垂直共振器型半導体発光素子の概略構成を示す断
面図である。本実施形態では、発振波長が665nmの
赤色面発光レーザについて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. (First Embodiment) FIG. 1 is a sectional view showing a schematic configuration of a vertical cavity type semiconductor light emitting device according to a first embodiment of the present invention. In this embodiment, a red surface emitting laser having an oscillation wavelength of 665 nm will be described.

【0026】図1に示すように、この垂直共振器型半導
体発光素子は、n型GaAs基板109と、このn型G
aAs基板109の表面上に形成されたAlGaAs系
のn型DBRミラー108と、このn型DBRミラー1
08上に形成されたn型InGaAlPクラッド層10
7と、このn型InGaAlPクラッド層107上に形
成されたInGaAlP系MQW活性層106と、この
活性層106上に形成されたp型InGaAlPクラッ
ド層105と、このp型InGaAlPクラッド層10
5上に形成されたAlGaAs系のp型DBRミラー1
04と、このp型DBRミラー104上に形成されたp
型GaAsコンタクト層103とを具備している。
As shown in FIG. 1, this vertical cavity type semiconductor light emitting device includes an n-type GaAs substrate 109 and an n-type G-type semiconductor substrate 109.
AlGaAs-based n-type DBR mirror 108 formed on the surface of aAs substrate 109, and this n-type DBR mirror 1
N-type InGaAlP cladding layer 10 formed on 08
7, an InGaAlP-based MQW active layer 106 formed on the n-type InGaAlP cladding layer 107, a p-type InGaAlP cladding layer 105 formed on the active layer 106, and the p-type InGaAlP cladding layer 10.
AlGaAs-based p-type DBR mirror 1 formed on 5
04 and p formed on the p-type DBR mirror 104.
Type GaAs contact layer 103.

【0027】n型DBRミラー108及びp型DBRミ
ラー104は、、組成の異なるAlGaAs層を交互に
積層して形成されている。このn型DBRミラー108
及びp型DBRミラー104は、組成すなわち屈折率の
異なるAlGaAsを交互に積層してなる多層膜であ
り、それぞれの層の厚さは、その光学的膜厚が共振波長
である665nmの4分の1となるように形成されてい
る。そしてこれらのDBRミラーを反射鏡として光が共
振することによってレーザ発振し、n型GaAs基板1
09の表面に対して垂直方向にレーザ光が出射される。
また、DBRミラーの高屈折率層にはAl0.5Ga
0.5As、低屈折率層にはAl0.95Ga0.05
Asなどを用いればよい。
The n-type DBR mirror 108 and the p-type DBR mirror 104 are formed by alternately stacking AlGaAs layers having different compositions. This n-type DBR mirror 108
The p-type DBR mirror 104 is a multilayer film in which AlGaAs having different compositions, that is, different refractive indexes are alternately laminated, and the thickness of each layer is a quarter of 665 nm whose optical thickness is the resonance wavelength. It is formed to be 1. Then, when these DBR mirrors are used as reflecting mirrors and light resonates, laser oscillation occurs, and the n-type GaAs substrate 1
Laser light is emitted in a direction perpendicular to the surface of 09.
Further, Al 0.5 Ga is used for the high refractive index layer of the DBR mirror.
0.5 As, Al 0.95 Ga 0.05 for the low refractive index layer
As or the like may be used.

【0028】p型DBRミラー104の周辺部は、プロ
トンを選択的にイオン注入して形成した電流狭窄部であ
る高抵抗領域111が設けられている。そしてp型DB
Rミラー104の周辺部には、高抵抗領域111に達す
るまで凹部がエッチングにより形成されている。この凹
部上には、p側電極101が形成されている。そしてn
型GaAs基板109の裏面上には、n側電極110が
形成されている。
A high resistance region 111, which is a current constriction portion formed by selectively ion-implanting protons, is provided in the peripheral portion of the p-type DBR mirror 104. And p-type DB
In the peripheral portion of the R mirror 104, a recess is formed by etching until it reaches the high resistance region 111. A p-side electrode 101 is formed on this recess. And n
An n-side electrode 110 is formed on the back surface of the type GaAs substrate 109.

【0029】活性層106には、InGaAlP系多重
量子井戸構造を用いており、室温での発光ピーク波長が
約655nmとなるように調整されている。
The active layer 106 uses an InGaAlP-based multiple quantum well structure and is adjusted so that the emission peak wavelength at room temperature is about 655 nm.

【0030】次に、この垂直発振器型半導体発光素子の
製造方法について説明する。
Next, a method of manufacturing the vertical oscillator type semiconductor light emitting device will be described.

【0031】先ず、n型GaAs基板109上に、MO
CVD法により、AlGaAs系n型DBRミラー10
8を結晶成長する。光学膜厚が共振波長(665nm)の
1/4波長となるように低屈折率のAl0.98Ga
0.02As層と高屈折率のAl0.5Ga0.5As
層を交互に積層した。ここではAl0.98Ga0.0
As層から結晶成長を開始して、50.5周期(1周
期はAl0.98Ga .02As層/Al0.5Ga
0.5As層)繰り返して最終層をAl0.98Ga
0.02As層とした。
First, on the n-type GaAs substrate 109, MO
The AlGaAs n-type DBR mirror 10 is formed by the CVD method.
8 is crystal-grown. Low refractive index Al 0.98 Ga so that the optical film thickness is 1/4 wavelength of the resonance wavelength (665 nm).
0.02 As layer and high refractive index Al 0.5 Ga 0.5 As
The layers were stacked alternately. Here, Al 0.98 Ga 0.0
Start the crystal growth from the 2 As layer, 50.5 cycle (one cycle Al 0.98 Ga 0 .02 As layer / Al 0.5 Ga
0.5 As layer) Repeatedly the final layer was Al 0.98 Ga
It was a 0.02 As layer.

【0032】次に、n型DBRミラー108上に、MO
CVD法により、n型InGaAlPクラッド層10
7、発光ピーク波長が655nmとなるように調整され
たInGaAlP系MQW活性層106、p型InGa
AlPクラッド層105を順次結晶成長する。
Next, on the n-type DBR mirror 108, MO
The n-type InGaAlP cladding layer 10 is formed by the CVD method.
7. InGaAlP-based MQW active layer 106 adjusted to have an emission peak wavelength of 655 nm, p-type InGa
The AlP clad layer 105 is sequentially crystal-grown.

【0033】次に、p型InGaAlPクラッド層10
5上に、MOCVD法により、AlGaAs系p型DB
Rミラー104を結晶成長する。光学膜厚が共振波長
(665nm)の1/4波長となるように低屈折率のA
0.98Ga0.02As層と高屈折率のAl0.5
Ga0.5As層を交互に積層した。ここではAl0.
98Ga0.02As層から結晶成長を開始して、30
周期(1周期はAl0. 98Ga0.02As層/Al
0.5Ga0.5As層)繰り返して最終層をAl
0.5Ga0.5As層とした。
Next, the p-type InGaAlP clad layer 10 is formed.
AlGaAs-based p-type DB by MOCVD on
The R mirror 104 is crystal-grown. A with a low refractive index so that the optical film thickness becomes a quarter wavelength of the resonance wavelength (665 nm).
l 0.98 Ga 0.02 As layer and high refractive index Al 0.5
Ga 0.5 As layers were stacked alternately. Here, Al 0.
Crystal growth was started from the 98 Ga 0.02 As layer, and
Period (one period Al 0. 98 Ga 0.02 As layer / Al
0.5 Ga 0.5 As layer).
It was a 0.5 Ga 0.5 As layer.

【0034】次に、p型DBRミラー104上に、MO
CVD法により、p型GaAsコンタクト層103を結
晶成長する。このときp型GaAsコンタクト層103
の厚さは、吸収によるロスを十分小さくするために約5
nmとした。
Next, on the p-type DBR mirror 104, MO
The p-type GaAs contact layer 103 is crystal-grown by the CVD method. At this time, the p-type GaAs contact layer 103
The thickness of is about 5 in order to minimize the loss due to absorption.
nm.

【0035】次に、発光領域となる直径15μmの円形
領域を除いた領域に選択的にプロトンをイオン注入して
高抵抗領域111を形成する。このときイオン注入の加
速電圧は350kVとし、ドーズ量は3×1015cm
−2とした。
Next, a high resistance region 111 is formed by selectively ion-implanting protons into a region other than the circular region having a diameter of 15 μm which becomes a light emitting region. At this time, the acceleration voltage for ion implantation is 350 kV, and the dose amount is 3 × 10 15 cm.
-2 .

【0036】次に、発光領域と同心で、内径が20μm
で外径が40μmの領域を、高抵抗領域111に達する
ように深さ2μm選択的にエッチングする。
Next, the inner diameter is 20 μm, which is concentric with the light emitting region.
Then, a region having an outer diameter of 40 μm is selectively etched to a depth of 2 μm so as to reach the high resistance region 111.

【0037】次に、真空蒸着とリフトオフプロセスによ
り、先の工程で形成された同心円状の凹部を含む領域上
にp側電極101を形成する。このとき発光領域となる
直径15μmの円形領域の上部に直径10μmの開口部
を有するようにp側電極101を形成する。この電極開
口部からレーザ光を取り出すためである。
Next, the p-side electrode 101 is formed on the region including the concentric recesses formed in the previous step by vacuum evaporation and lift-off process. At this time, the p-side electrode 101 is formed so as to have an opening with a diameter of 10 μm above the circular area with a diameter of 15 μm that serves as a light emitting region. This is because the laser light is extracted from this electrode opening.

【0038】次に、このようにして形成されたp側電極
101上に、厚さ約10μmの金メッキを施し、メッキ
電極102を形成する。
Next, the p-side electrode 101 thus formed is plated with gold to a thickness of about 10 μm to form a plated electrode 102.

【0039】次に、厚さが約100μm程度となるよう
に、n型GaAs基板109の裏面を研磨し、この裏面
にn側電極110を形成する。
Next, the back surface of the n-type GaAs substrate 109 is polished to a thickness of about 100 μm, and the n-side electrode 110 is formed on this back surface.

【0040】図2は、このようにして形成した垂直共振
器型半導体発光素子のp側電極101上から見た上面図
である。
FIG. 2 is a top view of the vertical cavity type semiconductor light emitting device thus formed, viewed from above the p-side electrode 101.

【0041】この垂直共振器型半導体発光素子のチップ
サイズは、400μm×400μmとし、レーザ光が出
射するp側電極101の開口部は直径が10μmの円形
形状であり、金メッキ電極102は300μm×300
μmのサイズで、発光領域として形成した中心の直径2
0μmの領域を除く領域に形成されている。
The chip size of this vertical cavity type semiconductor light emitting device is 400 μm × 400 μm, the opening of the p-side electrode 101 from which laser light is emitted is circular with a diameter of 10 μm, and the gold-plated electrode 102 is 300 μm × 300.
The diameter of the center of the light emitting area is 2 μm.
It is formed in the region excluding the region of 0 μm.

【0042】図2に示す垂直共振器型半導体発光素子で
は、さらに、放熱性を向上するために、素子の外部と電
気接続を複数の金ワイア113(ここでは8本)により
行うようにした。
In the vertical cavity type semiconductor light emitting device shown in FIG. 2, a plurality of gold wires 113 (here, eight) are used for electrical connection with the outside of the device in order to improve heat dissipation.

【0043】このようにして作製した垂直共振器型半導
体発光素子は、発光領域の周辺部において、電流狭窄部
である高抵抗領域111に達するように凹部が形成さ
れ、この部分にp側電極101が形成されている。した
がって凹部を形成しない従来の図6に示す構造と比較し
て、発光領域であるpn接合部とp側電極101との距
離が短いために、電流注入により発生した熱は、同心円
状に形成された凹部から側面付近の金属電極101に向
かって横方向に効率よく流れる。したがって、素子の熱
抵抗が従来よりも大幅に低減し、通電による発熱が抑制
され、高電流注入時にも活性層の温度はさほど上昇せ
ず、高出力動作が可能となる。
In the vertical cavity type semiconductor light emitting device thus manufactured, a concave portion is formed in the peripheral portion of the light emitting region so as to reach the high resistance region 111 which is a current constriction portion, and the p side electrode 101 is formed in this portion. Are formed. Therefore, as compared with the conventional structure shown in FIG. 6 in which the recess is not formed, the distance between the pn junction, which is the light emitting region, and the p-side electrode 101 is short, so that the heat generated by the current injection is formed in concentric circles. It efficiently flows laterally from the recess toward the metal electrode 101 near the side surface. Therefore, the thermal resistance of the element is significantly reduced as compared with the conventional one, heat generation due to energization is suppressed, the temperature of the active layer does not rise so much even when high current is injected, and high output operation becomes possible.

【0044】なお、素子の放熱性は、エッチングにより
形成した同心円状の凹部の深さに依存する。
The heat dissipation of the device depends on the depth of the concentric recesses formed by etching.

【0045】図3に、図1及び図2に示した垂直共振器
型半導体発光素子における最高連続レーザ発振温度の凹
部(溝)の深さ依存性を示す。
FIG. 3 shows the depth dependence of the recess (groove) of the maximum continuous laser oscillation temperature in the vertical cavity type semiconductor light emitting device shown in FIGS.

【0046】図3に示すように、溝の深さが深くなるほ
ど最高連続レーザ発振温度が高くなっている様子がわか
る。しかしながら溝の深さが1.5μm程度以上あれば
放熱性改善の効果が十分に得られることがわかる。な
お、この1.5μmの深さはp型DBRミラー104の
厚さ約3μmの約2分の1に相当する。
As shown in FIG. 3, it can be seen that the maximum continuous laser oscillation temperature increases as the groove depth increases. However, it can be seen that if the depth of the groove is about 1.5 μm or more, the effect of improving heat dissipation can be sufficiently obtained. The depth of 1.5 μm corresponds to about ½ of the thickness of the p-type DBR mirror 104, which is about 3 μm.

【0047】(第2の実施形態)図4は、本発明の第2
の実施形態に係わるの垂直共振器型半導体発光素子の概
略構成を示す断面図である。この実施形態も第1の実施
形態と同様に、発振波長が665nmの赤色面発光レー
ザである。
(Second Embodiment) FIG. 4 shows a second embodiment of the present invention.
3 is a cross-sectional view showing a schematic configuration of a vertical cavity type semiconductor light emitting device according to the embodiment of FIG. Similar to the first embodiment, this embodiment is also a red surface emitting laser having an oscillation wavelength of 665 nm.

【0048】この実施形態では、第1の実施形態で説明
した垂直共振器型半導体発光素子のp側電極210を下
にして、ヒートシンクであるサブマウント213上に、
はんだ材212によってマウントした構造となってい
る。
In this embodiment, with the p-side electrode 210 of the vertical cavity type semiconductor light emitting device described in the first embodiment facing down, on the submount 213 which is a heat sink,
It has a structure mounted by a solder material 212.

【0049】このときp側電極210は、発光領域に該
当する領域を開口せずに、n側電極201を開口した。
At this time, the p-side electrode 210 opened the n-side electrode 201 without opening the region corresponding to the light emitting region.

【0050】次に、この垂直共振器型半導体発光素子の
製造方法について説明する。
Next, a method of manufacturing the vertical cavity type semiconductor light emitting device will be described.

【0051】先ず、GaAs基板(図示せず)上に、p
型GaAsコンタクト層209、AlGaAs系p型D
BRミラー208、p型InGaAlPクラッド層20
7、発光ピーク波長が655nmとなるように調整され
たInGaAlP系MQW活性層206、n型InGa
AlPクラッド層205、AlGaAs系n型DBRミ
ラー204、n型InGaAlP接着層203をMOC
VD法により順次結晶成長する。
First, p is placed on a GaAs substrate (not shown).
Type GaAs contact layer 209, AlGaAs p-type D
BR mirror 208, p-type InGaAlP cladding layer 20
7. InGaAlP-based MQW active layer 206 adjusted to have an emission peak wavelength of 655 nm, n-type InGa
The AlP clad layer 205, the AlGaAs n-type DBR mirror 204, and the n-type InGaAlP adhesive layer 203 are MOC.
Crystals are sequentially grown by the VD method.

【0052】このとき、AlGaAs系p型DBRミラ
ー208は、光学膜厚が共振波長(665nm)の1/4
波長となるように低屈折率のAl0.98Ga0.02
As層と高屈折率のAl0.5Ga0.5As層を交互
に積層した。ここではAl 0.98Ga0.02As層
から結晶成長を開始して、50.5周期(1周期はAl
0.98Ga0.02As層/Al0.5Ga0.5
s層)繰り返して最終層をAl0.98Ga0.02
s層とした。
At this time, the AlGaAs p-type DBR mirror
-208 indicates that the optical film thickness is 1/4 of the resonance wavelength (665 nm).
Al with low refractive index0.98Ga0.02
As layer and Al with high refractive index0.5Ga0.5Alternating As layers
Laminated. Al here 0.98Ga0.02As layer
Crystal growth from 50.5 cycles (1 cycle is Al
0.98Ga0.02As layer / Al0.5Ga0.5A
s layer) Repeat the final layer with Al0.98Ga0.02A
The s layer was used.

【0053】また、AlGaAs系n型DBRミラー2
04は、光学膜厚が共振波長(665nm)の1/4波
長となるように低屈折率のAl0.98Ga0.02
s層と高屈折率のAl0.5Ga0.5As層を交互に
積層した。ここではAl0. 98Ga0.02As層か
ら結晶成長を開始して、30周期(1周期はAl0.
98Ga0.02As層/Al0.5Ga0.5As
層)繰り返して最終層をAl0.5Ga0.5As層と
した。
The AlGaAs n-type DBR mirror 2
No. 04 is Al 0.98 Ga 0.02 A having a low refractive index so that the optical film thickness becomes a quarter wavelength of the resonance wavelength (665 nm).
The s layers and the Al 0.5 Ga 0.5 As layers having a high refractive index were alternately laminated. Here, Al 0. Crystal growth was started from the 98 Ga 0.02 As layer, and 30 cycles (1 cycle of Al 0.
98 Ga 0.02 As layer / Al 0.5 Ga 0.5 As
Layer) Repeatedly, the final layer was an Al 0.5 Ga 0.5 As layer.

【0054】次に、この結晶成長したp型GaAs基板
とn型GaP基板202とを、n型InGaAlP接着
層203がn型GaP基板と接着するようにして接着し
たあと、p型GaAs基板をエッチング除去する。この
とき、基板接着は500℃で10分間の熱処理を施し
た。また、n型GaAs基板のエッチングは硫酸系エッ
チャントを用いたウエットエッチングを用いて行った。
Next, the crystal-grown p-type GaAs substrate and n-type GaP substrate 202 are bonded so that the n-type InGaAlP adhesive layer 203 is bonded to the n-type GaP substrate, and then the p-type GaAs substrate is etched. Remove. At this time, the substrate was bonded by heat treatment at 500 ° C. for 10 minutes. The n-type GaAs substrate was etched by wet etching using a sulfuric acid-based etchant.

【0055】次に、発光領域となる直径10μmの円形
領域を除いた領域に選択的にプロトンをイオン注入して
高抵抗領域211を形成する。このとき、イオン注入の
加速電圧は400kVとし、ドーズ量は5×1015
−2とした。
Next, a high resistance region 211 is formed by selectively ion-implanting protons into a region excluding a circular region having a diameter of 10 μm which serves as a light emitting region. At this time, the acceleration voltage of ion implantation is 400 kV, and the dose amount is 5 × 10 15 c
m −2 .

【0056】次に、発光領域と同心で、内径が15μm
で外径が35μmの領域を、高抵抗領域211に達する
ように深さ2.5μm選択的にエッチングする。
Next, the inner diameter is 15 μm, which is concentric with the light emitting region.
Then, a region having an outer diameter of 35 μm is selectively etched to a depth of 2.5 μm so as to reach the high resistance region 211.

【0057】次に、真空蒸着により、先の工程で形成さ
れた同心円状の凹部を含む領域上にp側電極210を形
成する。
Next, the p-side electrode 210 is formed by vacuum evaporation on the region including the concentric recesses formed in the previous step.

【0058】厚さが約100μm程度となるようにn型
GaP基板202を研磨する。次に、発光領域を開口す
るように中央部に直径30μmの開口を設けたn側電極
201を形成する。さらに、作成したウエハを個々のチ
ップに分割した後に、エッチング溝が半田材212によ
り完全に埋まるように、サブマウント213上にマウン
トすることにより、図4に示す垂直共振器型発光素子を
形成する。
The n-type GaP substrate 202 is polished to a thickness of about 100 μm. Next, an n-side electrode 201 having an opening with a diameter of 30 μm in the central portion so as to open the light emitting region is formed. Further, after dividing the created wafer into individual chips, the wafer is mounted on the submount 213 so that the etching groove is completely filled with the solder material 212, thereby forming the vertical cavity light emitting device shown in FIG. .

【0059】この垂直共振器型発光素子においても、第
1の実施形態と同様に、電流注入により発生した熱は、
同心円上の溝から側面付近の金属電極210に向かって
横方向に効率よく流れる。さらに、この電極210はヒ
ートシンク接続したサブマウント213にボンディング
されているので、よりいっそう放熱性の優れた素子を得
ることができる。
Also in this vertical cavity type light emitting device, as in the first embodiment, the heat generated by current injection is
It efficiently flows laterally from the concentric groove toward the metal electrode 210 near the side surface. Further, since the electrode 210 is bonded to the submount 213 which is connected to the heat sink, it is possible to obtain an element having further excellent heat dissipation.

【0060】(第3の実施形態)図5は、本発明の第3
の実施形態に係わるの垂直共振器型半導体発光素子の概
略構成を示す断面図である。本実施形態では、発振波長
が1.3μmの面発光レーザを説明する。
(Third Embodiment) FIG. 5 shows a third embodiment of the present invention.
3 is a cross-sectional view showing a schematic configuration of a vertical cavity type semiconductor light emitting device according to the embodiment of FIG. In this embodiment, a surface emitting laser having an oscillation wavelength of 1.3 μm will be described.

【0061】この実施形態は、活性層306に室温での
発光ピーク波長が1.28μmGaInNAs系量子井
戸構造を用いた。この垂直共振器型半導体発光素子の製
造方法について以下に説明する。
In this embodiment, the active layer 306 has a GaInNAs-based quantum well structure with an emission peak wavelength of 1.28 μm at room temperature. A method of manufacturing this vertical cavity type semiconductor light emitting device will be described below.

【0062】先ず、n型GaAs基板309上に、MO
CVD法により、AlGaAs系n型DBRミラー30
8を結晶成長する。光学膜厚が共振波長(1.3μm)の
1/4波長となるように低屈折率のAl0.8Ga
0.2As層と高屈折率のAl .2Ga0.8As層
を交互に積層した。ここではAl0.8Ga0.2As
層から結晶成長を開始して、30.5周期(1周期はA
0.8Ga0.2As層/Al0.2Ga0.8As
層)繰り返して最終層をAl0.8Ga0.2As層と
した。
First, MO is formed on the n-type GaAs substrate 309.
The AlGaAs n-type DBR mirror 30 is formed by the CVD method.
8 is crystal-grown. Low refractive index Al 0.8 Ga so that the optical film thickness is 1/4 wavelength of the resonance wavelength (1.3 μm)
0.2 As layer and high refractive index Al 0 . 2 Ga 0.8 As layers were stacked alternately. Here, Al 0.8 Ga 0.2 As
Crystal growth is started from the layer and 30.5 cycles (1 cycle is A
l 0.8 Ga 0.2 As layer / Al 0.2 Ga 0.8 As
Layer) Repeatedly, the final layer was an Al 0.8 Ga 0.2 As layer.

【0063】次に、n型DBRミラー108上に、MO
CVD法により、n型AIGaAsクラッド層307、
発光波長のピークが1.28μmとなるように調整され
たGaInNAs/GaAs系MQW活性層306、p
型AIGaAsクラッド層305を順次結晶成長する。
Next, on the n-type DBR mirror 108, MO
The n-type AIGaAs clad layer 307,
GaInNAs / GaAs-based MQW active layer 306, p adjusted to have a peak emission wavelength of 1.28 μm
The type AIGaAs clad layer 305 is sequentially crystal-grown.

【0064】続いて、p型AlGaAsクラッド層30
5上に、第1のAlGaAs系p型n型DBRミラー3
04を形成する。第1のp型DBRミラー304は、光
学膜厚が共振波長(1.3μm)の1/4波長となるよ
うに低屈折率のAl0.8Ga0.2As層と高屈折率
のAl0.2Ga0.8As層を交互に積層した。ここ
ではAl0.8Ga0.2As層から結晶成長を開始し
て、10周期(1周期はAl0.8Ga0.2As層/
Al0.2Ga0.8As層)繰り返して最終層をAl
0.2Ga0.8As層とした。
Then, the p-type AlGaAs cladding layer 30 is formed.
On top of the first AlGaAs-based p-type n-type DBR mirror 3
To form 04. The first p-type DBR mirror 304 has a low refractive index Al 0.8 Ga 0.2 As layer and a high refractive index Al so that the optical film thickness becomes a quarter wavelength of the resonance wavelength (1.3 μm). The 0.2 Ga 0.8 As layers were stacked alternately. Here, the crystal growth is started from the Al 0.8 Ga 0.2 As layer, and 10 cycles (1 cycle is the Al 0.8 Ga 0.2 As layer /
Al 0.2 Ga 0.8 As layer) Repeat the final layer with Al
It was a 0.2 Ga 0.8 As layer.

【0065】次に、成長装置から基板を取り出し、発光
領域となる直径10μmの円形領域を除いた領域に選択
的にプロトンをイオン注入して高抵抗領域311を形成
する。このときイオン注入の加速電圧は200kVと
し、ドーズ量は1×1015cm−2とした。
Next, the substrate is taken out from the growth apparatus, and protons are selectively ion-implanted into a region other than a circular region having a diameter of 10 μm, which is a light emitting region, to form a high resistance region 311. At this time, the acceleration voltage of ion implantation was 200 kV, and the dose amount was 1 × 10 15 cm −2 .

【0066】次に、発光領域と同心で、内径が15μm
で外径が35μmの高抵抗領域311上の領域にSiO
膜(図示せず)を設ける。
Next, the inner diameter is 15 μm, which is concentric with the light emitting region.
And SiO 2 is formed on the high resistance region 311 having an outer diameter of 35 μm.
Two films (not shown) are provided.

【0067】次に、再び成長装置に基板を導入し、p型
AIGaAsクラッド層305及び高抵抗領域311上
に、CBE(Chemical Beam Epita
xy)法により、AlGaAs系p型DBRミラー30
3を結晶成長し、続いてp型GaAsコンタクト層30
2を結晶成長する。p型DBRミラー303は、光学膜
厚が発光波長(1.3μm)の1/4波長となるように
低屈折率のAl0.8Ga0.2As層と高屈折率のA
0.2Ga0.8As層を交互に積層した。ここでは
Al0.8Ga0.2As層から結晶成長を開始して、
12周期(1周期はAl0.8Ga0.2As層/Al
0.2Ga0.8As層)繰り返して最終層をAl
0.2Ga0.8As層とした。
Next, the substrate is again introduced into the growth apparatus, and CBE (Chemical Beam Epita) is formed on the p-type AIGaAs cladding layer 305 and the high resistance region 311.
xy) method, AlGaAs-based p-type DBR mirror 30
3 is crystal-grown, followed by p-type GaAs contact layer 30
2 is crystal-grown. The p-type DBR mirror 303 has a low refractive index Al 0.8 Ga 0.2 As layer and a high refractive index A so that the optical film thickness becomes a quarter wavelength of the emission wavelength (1.3 μm).
The l 0.2 Ga 0.8 As layer alternately laminated. Here, the crystal growth is started from the Al 0.8 Ga 0.2 As layer,
12 cycles (1 cycle is Al 0.8 Ga 0.2 As layer / Al
0.2 Ga 0.8 As layer).
It was a 0.2 Ga 0.8 As layer.

【0068】このときマスクとして働くのSiO膜の
上には、結晶は成長しないため、発光部の上部に位置す
るp型DBRミラー304は円柱状の形状となり、基板
表面にはリング状の溝(凹部)が形成されることにな
る。この溝は、高抵抗領域311に達する深さとなる。
At this time, since no crystal grows on the SiO 2 film which acts as a mask, the p-type DBR mirror 304 located above the light emitting portion has a cylindrical shape, and a ring-shaped groove is formed on the substrate surface. (Recess) will be formed. This groove has a depth reaching the high resistance region 311.

【0069】次に、マスクとして用いたSiO膜を除
去してから、円形の電流狭窄部である高抵抗領域311
と同心で、内径が10μmで外径が200μmのリング
領域にp側電極301を形成する。このとき、リング状
の溝の内壁はp側電極301で完全に覆われている。
Next, after removing the SiO 2 film used as the mask, the high resistance region 311 which is a circular current constriction portion is removed.
Concentric with, the p-side electrode 301 is formed in a ring region having an inner diameter of 10 μm and an outer diameter of 200 μm. At this time, the inner wall of the ring-shaped groove is completely covered with the p-side electrode 301.

【0070】次に、基板を約100μmの厚さまで研磨
してから、n側電極310を形成して素子が完成する。
Next, the substrate is polished to a thickness of about 100 μm, and then the n-side electrode 310 is formed to complete the device.

【0071】このようにして作製した垂直発振器型半導
体発光素子は、第1の実施形態及び第2の実施形態と同
様に、発光領域の周辺部において、電流狭窄部のpn接
合部とp側電極との距離が短いために、電流注入により
発生した熱は、リングの溝から側面付近の金属電極に向
かって横方向に効率よく流れる。
The vertical oscillator type semiconductor light emitting device thus manufactured is similar to the first and second embodiments, in the peripheral portion of the light emitting region, the pn junction portion of the current constriction portion and the p side electrode. Because of the short distance between the and, the heat generated by the current injection efficiently flows laterally from the groove of the ring toward the metal electrode near the side surface.

【0072】したがって、素子の熱抵抗が従来よりも大
幅に低減し、通電による発熱が抑制され、高電流注入時
にも活性層の温度はさほど上昇せず高出力動作が可能と
なる。
Therefore, the thermal resistance of the element is significantly reduced as compared with the conventional one, heat generation due to energization is suppressed, and the temperature of the active layer does not rise so much even at the time of high current injection, and high output operation becomes possible.

【0073】[0073]

【発明の効果】以上詳細に説明したように、本発明によ
れば、熱抵抗が小さく、高出力動作に優れた垂直共振器
型半導体発光素子を提供できる。
As described in detail above, according to the present invention, it is possible to provide a vertical cavity type semiconductor light emitting device having a small thermal resistance and excellent high output operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】 第1の実施形態に係わる垂直共振器型半導体
発光素子の概略構成を示す断面図。
FIG. 1 is a sectional view showing a schematic configuration of a vertical cavity type semiconductor light emitting device according to a first embodiment.

【図2】 第1の実施形態に係わる垂直共振器型半導体
発光素子の上面図。
FIG. 2 is a top view of the vertical cavity type semiconductor light emitting device according to the first embodiment.

【図3】 最高連続発振温度のエッチング溝深さ依存性
を示す図。
FIG. 3 is a diagram showing the dependence of the maximum continuous oscillation temperature on the etching groove depth.

【図4】 第2の実施形態に係わる垂直共振器型半導体
発光素子の概略構成図。
FIG. 4 is a schematic configuration diagram of a vertical cavity type semiconductor light emitting device according to a second embodiment.

【図5】 第3の実施形態に係わる垂直共振器型半導体
発光素子の概略構成図。
FIG. 5 is a schematic configuration diagram of a vertical cavity type semiconductor light emitting device according to a third embodiment.

【図6】 従来の垂直共振器型半導体発光素子の概略構
成を示す断面図。
FIG. 6 is a sectional view showing a schematic configuration of a conventional vertical cavity type semiconductor light emitting device.

【符号の説明】[Explanation of symbols]

101、210、301、401…p側電極 102…メッキ電極 103、209、302、402…p型GaAsコンタ
クト層 104、208、403…AlGaAs系p型DBRミ
ラー 105、207、404…p型AlGaAsクラッド層 106、206、405…InGaAlP系量子井戸構
造活性層 107、205、406…n型InGaAlPクラッド
層 108、204、308、403…AlGaAsn型D
BRミラー 109、309、408…n型GaAs基板 113…金ワイヤ 110、201、310、409…n側電極 111、211、311、410…高抵抗領域 202…n型GaP基板 203…n型InGaAlP接着層 212…半田材 213…サブマウント 303…AlGaAs系p型DBRミラー 304…AlGaAs系p型DBRミラー 305…p型AlGaAsクラッド層 306…GaInNAs/GaAs系量子井戸構造活性
層 307…n型AlGaAsクラッド層
101, 210, 301, 401 ... P-side electrode 102 ... Plated electrodes 103, 209, 302, 402 ... P-type GaAs contact layers 104, 208, 403 ... AlGaAs-based p-type DBR mirrors 105, 207, 404 ... p-type AlGaAs cladding Layers 106, 206, 405 ... InGaAlP-based quantum well structure active layers 107, 205, 406 ... N-type InGaAlP cladding layers 108, 204, 308, 403 ... AlGaAs n-type D
BR mirrors 109, 309, 408 ... n-type GaAs substrate 113 ... gold wires 110, 201, 310, 409 ... n-side electrodes 111, 211, 311, 410 ... high-resistance region 202 ... n-type GaP substrate 203 ... n-type InGaAlP bonding Layer 212 ... Solder material 213 ... Submount 303 ... AlGaAs-based p-type DBR mirror 304 ... AlGaAs-based p-type DBR mirror 305 ... p-type AlGaAs cladding layer 306 ... GaInNAs / GaAs-based quantum well structure active layer 307 ... n-type AlGaAs cladding layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】基板と、 前記基板上に形成され、発光領域を持つ半導体活性層
と、 前記半導体活性層を狭持し、前記基板に対して垂直方向
の共振器を形成する、 前記半導体活性層に対して前記基板側に設けられた第1
の半導体分布ブラッグ反射型ミラー及び前記基板と反対
側に設けられた第2の半導体分布ブラッグ反射型ミラー
と、 前記第1及び第2の半導体分布ブラッグ反射型ミラーを
それぞれ介して、前記半導体活性層に電流を注入するた
めの一対の電極と、 前記第2の半導体分布ブラッグ反射型ミラー側に形成さ
れ、前記電極から注入された電流を前記発光領域へ絞り
込むための電流狭窄部とを具備する垂直共振器型半導体
発光素子において、 前記発光領域上の前記第2の半導体分布ブラッグ反射型
ミラーが凸状となるように、前記第2の半導体分布ブラ
ッグ反射型ミラーの周辺部に凹部を形成し、前記凹部上
に前記電極の一方を位置せしめてなることを特徴とする
垂直共振器型半導体発光素子。
1. A substrate, a semiconductor active layer formed on the substrate and having a light emitting region, a semiconductor active layer sandwiched between the substrate and a resonator in a direction perpendicular to the substrate, and the semiconductor active layer. First provided on the substrate side with respect to the layer
Semiconductor distributed Bragg reflection type mirror and second semiconductor distributed Bragg reflection type mirror provided on the opposite side of the substrate, and the semiconductor active layer via the first and second semiconductor distributed Bragg reflection type mirrors, respectively. A vertical line including a pair of electrodes for injecting a current into the second semiconductor, and a current constriction portion formed on the side of the second semiconductor distributed Bragg reflection mirror for narrowing the current injected from the electrodes to the light emitting region. In the resonator-type semiconductor light emitting device, a concave portion is formed in a peripheral portion of the second semiconductor distributed Bragg reflective mirror so that the second semiconductor distributed Bragg reflective mirror on the light emitting region has a convex shape, A vertical cavity type semiconductor light emitting device, wherein one of the electrodes is positioned on the recess.
【請求項2】前記凹部が、前記電流狭窄部に達するよう
に形成されていることを特徴とする請求項1記載の垂直
共振器型半導体発光素子。
2. The vertical cavity type semiconductor light emitting device according to claim 1, wherein the recess is formed so as to reach the current constriction portion.
【請求項3】前記凹部上に形成された前記電極上に、さ
らに金属膜が形成されていることを特徴とする請求項1
記載の垂直共振器型半導体発光素子。
3. A metal film is further formed on the electrode formed on the recess.
A vertical cavity type semiconductor light emitting device as described above.
【請求項4】さらにヒートシンクを具備し、前記凹部上
に形成された前記電極が前記ヒートシンク上に設置さ
れ、前記発光領域で発光した光を前記基板側から取り出
すことを特徴とする請求項1記載の垂直共振器型半導体
発光素子。
4. A heat sink is further provided, the electrode formed on the recess is provided on the heat sink, and the light emitted in the light emitting region is taken out from the substrate side. Vertical cavity type semiconductor light emitting device.
【請求項5】前記凹部が前記発光領域を中心とした同心
円状に形成されていることを特徴とする請求項1記載の
垂直共振器型半導体発光素子。
5. The vertical cavity type semiconductor light emitting device according to claim 1, wherein the recess is formed in a concentric circle shape centering on the light emitting region.
JP2001279859A 2001-09-14 2001-09-14 Vertical cavity type semiconductor light emitting device Expired - Fee Related JP3692060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001279859A JP3692060B2 (en) 2001-09-14 2001-09-14 Vertical cavity type semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001279859A JP3692060B2 (en) 2001-09-14 2001-09-14 Vertical cavity type semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2003086895A true JP2003086895A (en) 2003-03-20
JP3692060B2 JP3692060B2 (en) 2005-09-07

Family

ID=19103958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001279859A Expired - Fee Related JP3692060B2 (en) 2001-09-14 2001-09-14 Vertical cavity type semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3692060B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1798827A2 (en) 2005-12-19 2007-06-20 Seiko Epson Corporation Surface-emitting type semiconductor laser and method for manufacturing the same
EP1808944A1 (en) 2006-01-12 2007-07-18 Seiko Epson Corporation Surface-emitting type semiconductor laser
EP1873878A1 (en) * 2006-06-27 2008-01-02 Seiko Epson Corporation Surface-emitting type semiconductor laser
US7397835B2 (en) 2006-01-12 2008-07-08 Seiko Epson Corporation Surface-emitting type semiconductor laser
JP2009182210A (en) * 2008-01-31 2009-08-13 Rohm Co Ltd Surface light emitting semiconductor laser
US7620089B2 (en) 2006-07-07 2009-11-17 Seiko Epson Corporation Surface-emitting type semiconductor laser
US7680168B2 (en) 2007-02-28 2010-03-16 Canon Kabushiki Kaisha Surface emitting laser array, production process thereof, and image forming apparatus having surface emitting laser array
US7787512B2 (en) 2007-12-26 2010-08-31 Sony Corporation Light-emitting element assembly and method for manufacturing the same
JP2010245502A (en) * 2009-03-18 2010-10-28 Ricoh Co Ltd Surface emitting laser, surface emitting laser array, optical scanning device, and image forming apparatus
JP2014007335A (en) * 2012-06-26 2014-01-16 Hamamatsu Photonics Kk Semiconductor light-emitting element
JP2014007293A (en) * 2012-06-25 2014-01-16 Hamamatsu Photonics Kk Semiconductor light-emitting element
US9252562B2 (en) 2013-10-07 2016-02-02 Fuji Xerox Co., Ltd. Surface emitting semiconductor laser, surface emitting semiconductor laser array, surface emitting semiconductor laser device, optical transmission device, information processing apparatus, and method of producing surface emitting semiconductor laser
WO2016147608A1 (en) * 2015-03-16 2016-09-22 Ricoh Company, Ltd. Surface-emitting laser array, laser apparatus, ignition device and internal combustion engine
JP2016174136A (en) * 2015-03-16 2016-09-29 株式会社リコー Surface-emitting laser array, laser apparatus, ignition device and internal combustion engine
JP2021009896A (en) * 2019-06-28 2021-01-28 住友電気工業株式会社 Surface emitting laser

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1798827A2 (en) 2005-12-19 2007-06-20 Seiko Epson Corporation Surface-emitting type semiconductor laser and method for manufacturing the same
EP1808944A1 (en) 2006-01-12 2007-07-18 Seiko Epson Corporation Surface-emitting type semiconductor laser
US7397835B2 (en) 2006-01-12 2008-07-08 Seiko Epson Corporation Surface-emitting type semiconductor laser
EP1873878A1 (en) * 2006-06-27 2008-01-02 Seiko Epson Corporation Surface-emitting type semiconductor laser
US7424043B2 (en) 2006-06-27 2008-09-09 Seiko Epson Corporation Surface-emitting type semiconductor laser
US7620089B2 (en) 2006-07-07 2009-11-17 Seiko Epson Corporation Surface-emitting type semiconductor laser
US8000369B2 (en) 2007-02-28 2011-08-16 Canon Kabushiki Kaisha Surface emitting laser array, production process thereof, and image forming apparatus having surface emitting laser array
US7680168B2 (en) 2007-02-28 2010-03-16 Canon Kabushiki Kaisha Surface emitting laser array, production process thereof, and image forming apparatus having surface emitting laser array
US7787512B2 (en) 2007-12-26 2010-08-31 Sony Corporation Light-emitting element assembly and method for manufacturing the same
US8372670B2 (en) 2007-12-26 2013-02-12 Sony Corporation Light-emitting element assembly and method for manufacturing the same
JP2009182210A (en) * 2008-01-31 2009-08-13 Rohm Co Ltd Surface light emitting semiconductor laser
JP2010245502A (en) * 2009-03-18 2010-10-28 Ricoh Co Ltd Surface emitting laser, surface emitting laser array, optical scanning device, and image forming apparatus
US8599233B2 (en) 2009-03-18 2013-12-03 Ricoh Company, Ltd. Vertical cavity surface emitting laser element, vertical cavity surface emitting laser array, optical scanning device, and image forming apparatus
JP2014007293A (en) * 2012-06-25 2014-01-16 Hamamatsu Photonics Kk Semiconductor light-emitting element
JP2014007335A (en) * 2012-06-26 2014-01-16 Hamamatsu Photonics Kk Semiconductor light-emitting element
US9252562B2 (en) 2013-10-07 2016-02-02 Fuji Xerox Co., Ltd. Surface emitting semiconductor laser, surface emitting semiconductor laser array, surface emitting semiconductor laser device, optical transmission device, information processing apparatus, and method of producing surface emitting semiconductor laser
WO2016147608A1 (en) * 2015-03-16 2016-09-22 Ricoh Company, Ltd. Surface-emitting laser array, laser apparatus, ignition device and internal combustion engine
JP2016174136A (en) * 2015-03-16 2016-09-29 株式会社リコー Surface-emitting laser array, laser apparatus, ignition device and internal combustion engine
EP3271978A4 (en) * 2015-03-16 2018-04-04 Ricoh Company, Ltd. Surface-emitting laser array, laser apparatus, ignition device and internal combustion engine
US10498108B2 (en) 2015-03-16 2019-12-03 Ricoh Company, Ltd. Surface-emitting laser array, laser apparatus, ignition device and internal combustion engine
JP2021009896A (en) * 2019-06-28 2021-01-28 住友電気工業株式会社 Surface emitting laser

Also Published As

Publication number Publication date
JP3692060B2 (en) 2005-09-07

Similar Documents

Publication Publication Date Title
JP4352337B2 (en) Semiconductor laser and semiconductor laser device
JP4927178B2 (en) Vertical external cavity surface emitting laser and method for manufacturing the light emitting component
JP5108671B2 (en) Optically pumped vertical emission semiconductor laser.
US5038356A (en) Vertical-cavity surface-emitting diode laser
US9160138B2 (en) Light-emitting element array
US7813402B2 (en) Surface emitting laser and method of manufacturing the same
JP3692060B2 (en) Vertical cavity type semiconductor light emitting device
JP2002353563A (en) Semiconductor light-emitting element and manufacturing method therefor
JP2006216961A (en) Semiconductor light emitting element having efficient cooling structure and manufacturing method thereof
JPWO2008117562A1 (en) Photonic crystal laser and photonic crystal laser manufacturing method
JP2005086170A (en) Surface light emitting semiconductor laser and manufacturing method of the same
Zinkiewicz et al. High‐power vertical‐cavity surface‐emitting AlGaAs/GaAs diode lasers
JPH05283796A (en) Surface emission type semiconductor laser
JP6252222B2 (en) Surface emitting laser array and laser apparatus
KR100918400B1 (en) Long wavelength vertical cavity surface emitting laser device and method for fabricating the same
JP2003017806A (en) Compound semiconductor light-emitting element, manufacturing method therefor, and the compound semiconductor light-emitting device
JP2002198613A (en) Semiconductor device having salient structure, and method of manufacturing the semiconductor device
JP3802465B2 (en) Vertical cavity surface emitting semiconductor laser
JP2013179210A (en) Array type semiconductor laser device and manufacturing method thereof
KR102103515B1 (en) Laser diode structure and manufacturing method
JPH11340570A (en) Photoelectric conversion element and its manufacture
JP2001148536A (en) Semiconductor laser device
JP2015028995A (en) Surface-emitting laser array and method of manufacturing the same
JP2001257424A (en) Vertical resonator surface light emitting element
JPH0671121B2 (en) Semiconductor laser device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050217

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050617

R151 Written notification of patent or utility model registration

Ref document number: 3692060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees