JP2004079280A - Manufacturing method for complex lid for thermal battery - Google Patents

Manufacturing method for complex lid for thermal battery Download PDF

Info

Publication number
JP2004079280A
JP2004079280A JP2002235809A JP2002235809A JP2004079280A JP 2004079280 A JP2004079280 A JP 2004079280A JP 2002235809 A JP2002235809 A JP 2002235809A JP 2002235809 A JP2002235809 A JP 2002235809A JP 2004079280 A JP2004079280 A JP 2004079280A
Authority
JP
Japan
Prior art keywords
viscosity
lid
viscosity insulating
battery
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002235809A
Other languages
Japanese (ja)
Other versions
JP4167026B2 (en
Inventor
Kazuya Omichi
大道 和也
Mitsuhiro Nakanishi
中西 光弘
Kazuhiro Kimura
木村 和弘
Keizo Oda
小田 敬三
Yasuhiro Nishimura
西村 保廣
Takayuki Umebayashi
梅林 享行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002235809A priority Critical patent/JP4167026B2/en
Publication of JP2004079280A publication Critical patent/JP2004079280A/en
Application granted granted Critical
Publication of JP4167026B2 publication Critical patent/JP4167026B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Primary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for a complex lid for a thermal battery capable of having an excellent insulating performance. <P>SOLUTION: The manufacturing method for the complex lid for the thermal battery comprises processes of: (1) applying to the surface of a battery lid 3 equipped with the end of an ignition terminal 5, an electric bridge lead 2 connected with the ignition terminal, and a piezoelectric ignition plug 1 connected with the electric bridge lead, a high viscosity insulating agent 8 at the outside part where the ignition terminal, the electric bridge lead, and the piezoelectric ignition plug are located; (2) applying a low viscosity insulating agent 7 to the inside of the high viscosity insulating agent at the surface so as to cover the ignition terminal, the electric bridge lead, and the piezoelectric ignition plug before the high viscosity insulating agent solidifies; and (3) overlapping an insulating material 6 on the battery lid and adhere before the low viscosity insulating and the high viscosity insulating agents solidify. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、熱電池用複合蓋の製造方法、さらに詳しくは熱電池用複合蓋の絶縁処理方法に関する。
【0002】
【従来の技術】
従来、熱電池用複合蓋における電池蓋表面の絶縁処理は、高粘度絶縁剤を用いて以下に示す▲1▼〜▲3▼のいずれかの方法により行っていた。
▲1▼図3に示すように電池蓋13に設けた点火端子15および前記点火端子15に接続された電橋リード線12のみを完全に覆うように高粘度絶縁剤18を塗布する。
▲2▼図4に示すように電池蓋13の表面全体のみに高粘度絶縁剤18を塗布する。
▲3▼図5に示すように電池蓋13の表面全体に高粘度絶縁剤18を塗布した後、さらに電橋リード線12および点火端子15を完全に覆うように高粘度絶縁剤18を塗布する。
そして、▲1▼〜▲3▼のいずれかの方法で絶縁処理し、高粘度絶縁剤18が固化した後、圧電点火栓11の収納および保護のために、再度高粘度絶縁剤18を塗布して圧電点火栓11を収容する開口部を有する断熱体(図示せず)を電池蓋13に接着させる。
【0003】
【発明が解決しようとする課題】
圧電点火栓を備えた熱電池を活性化するためには、圧電素子より高電圧が印加された点火端子間でスパーク放電させ、それにより圧電点火栓を着火させることが絶対条件である。しかし、非常に高電圧であるため、点火端子間以外で沿面放電が発生しやすい。したがって、点火端子間で放電されずに熱電池が活性化しないという現象が生じやすい。
ここで、上記の従来の絶縁処理では、作業性を良くするために絶縁剤として高粘度のものを使用している。しかし、絶縁剤内部に気泡による空間が発生しやすく、また、絶縁剤の塗布度合いが不均一となりやすい。このため、絶縁性が不均一となり、絶縁剤が少量の部分では絶縁不良が生ずる可能性がある。よって、従来の絶縁処理では、上述のような点火端子間以外での沿面放電を防止できない可能性があると考えられる。
【0004】
このような、絶縁性の不均一を解消する手段としては、高粘度絶縁剤の代わりに低粘度絶縁剤の使用が考えられるが、所定の塗布箇所に低粘度絶縁剤を十分に塗布しても、前記絶縁剤が低粘度であるため、塗布すべきでない部分に前記絶縁剤が流出して、作業性が著しく低下したり、不良が発生しやすいという問題がある。
これ以外の絶縁処理方法が、特開平7−282820号公報および特開平9−45342号公報で提案されているが、点火端子間以外での沿面放電を完全に防ぐことはできない。
【0005】
そこで、本発明では、上記従来の問題を解決するために、優れた絶縁性を有する熱電池用複合蓋が得られる熱電池用複合蓋の製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の熱電池用複合蓋の製造方法は、(1)点火端子の端部と、前記点火端子に接続された電橋リード線と、前記電橋リード線に接続された圧電点火栓とを具備する電池蓋の表面において、前記点火端子、電橋リード線および圧電点火栓が位置する部分の外側に、高粘度絶縁剤を塗布する工程、(2)前記高粘度絶縁剤が固化する前に、前記表面における前記高粘度絶縁剤の内側に、前記点火端子、電橋リード線および圧電点火栓を覆うように低粘度絶縁剤を塗布する工程、ならびに(3)前記低粘度絶縁剤および高粘度絶縁剤が固化する前に、断熱体を前記電池蓋に重ねて接着する工程を有する。
前記高粘度絶縁剤の粘度が、4.5〜100Pa・s(23℃時)であることが好ましい。
前記低粘度絶縁剤の粘度が、0.6〜5Pa・s(23℃時)であることが好ましい。
【0007】
【発明の実施の形態】
本発明の実施の形態を図1および2を参照しながら説明する。
本発明の熱電池用複合蓋の製造方法は、以下の3つの工程を有している。
【0008】
(1)点火端子5の端部と、前記点火端子5に接続された電橋リード線2と、前記電橋リード線2に接続された圧電点火栓1とを具備した電池蓋3の表面における点火端子5、電橋リード線2および圧電点火栓1が位置する部分の外側に高粘度絶縁剤8を塗布する。
(2)高粘度絶縁剤8が固化する前に、電池蓋3の表面における高粘度絶縁剤8の内側に、前記点火端子5、電橋リード線2および圧電点火栓1を覆うように低粘度絶縁剤7を塗布する。
(3)前記低粘度絶縁剤7および高粘度絶縁剤8が固化する前に、断熱体6を前記電池蓋3に重ね、ついで接着する。
【0009】
図1に示すように、工程(2)で低粘度絶縁剤7を電池蓋3表面に塗布する際には、塗布する部分の周囲が先の工程(1)で塗布した高粘度絶縁剤8で被覆されている。このため、低粘度絶縁剤7の塗布不可部分への流出を防止でき、不良の発生および作業性の低下を抑えることができる。
【0010】
従来では一種類の高粘度絶縁剤のみを用いて絶縁処理を行っていたが、これに対し、本発明では工程(1)および工程(2)で粘度の異なる低粘度絶縁剤7および高粘度絶縁剤8の二種類の絶縁剤を用いて、図1に示すように沿面放電を生じる可能性がある圧電点火栓1周辺部分を低粘度絶縁剤7で被覆している。このため、低粘度絶縁剤7を塗布した部分では、従来用いられていた高粘度絶縁剤8でみられた絶縁剤内部での気泡の発生および塗布度合いの不均一などによる絶縁性のばらつきがなく、優れた絶縁性が得られる。
【0011】
また、工程(3)では、図2に示すように、工程(1)で塗布した高粘度絶縁剤8および工程(2)で塗布した低粘度絶縁剤7により断熱体6を電池蓋3と接着している。したがって、従来の断熱体の接着時に行っていた絶縁剤の電池蓋への再塗布をしなくて済むため作業性が向上する。
【0012】
前記高粘度絶縁剤8の粘度は、高粘度絶縁剤と低粘度絶縁剤とが、その接触界面で混ざり合わないという理由により4.5〜100Pa・s(23℃時)が好ましい。前記高粘度絶縁剤8としては、例えば、シリコーン樹脂やエポキシ樹脂などの樹脂が挙げられる。
【0013】
前記低粘度絶縁剤7の粘度は、流動性の良さにより、絶縁剤内部での気泡発生の抑制および塗布度合いの均一性を可能にするという理由により0.6〜5Pa・s(23℃時)が好ましい。前記低粘度絶縁剤7としては、例えば、シリコーン樹脂などの樹脂が挙げられる。
【0014】
【実施例】
本発明の実施例を以下に説明する。
【0015】
《実施例》
以下のようにして図2に示す熱電池用複合蓋を作製した。
電池蓋3には、その表面全体に絶縁性を有するポリテトラフルオロエチレンからなるシートを貼り付け、点火端子5が貫通する通過孔をハーメチックガラス4により埋め込んだものを用いた。電橋リード線2の端部を対向させて保持するためにガラス材からなる保持体1bを用いた。また、電橋リード線2の端部をジルコニウムおよびクロム酸バリウムからなる点火剤1aで覆った。そして、前記点火剤1aおよび保持体1bからなる圧電点火栓1を端部に備えた前記電橋リード線2を前記電池蓋3に固定した点火端子5に接続し、図1に示すような点火端子5、電橋リード線2および圧電点火栓1を具備する電池蓋3を作製した。
【0016】
そして、図1に示すように電池蓋3の表面の点火端子5よりも外側に、高粘度絶縁剤8として4.5Pa・s(23℃時)の粘度および20kV/mmの絶縁破壊の強さを有する高粘度のシリコーン樹脂を塗布した。前記樹脂を塗布した後直ちに、電池蓋3の表面における塗布した高粘度の樹脂よりも内側に低粘度絶縁剤7として2Pa・s(23℃時)の粘度および20kV/mmの絶縁破壊の強さを有する低粘度のシリコーン樹脂を点火端子5および電橋リード線2を完全に覆うように塗布した。次に、図2に示すように高粘度および低粘度のシリコーン樹脂が固化する前に、直ちに断熱体6を前記電池蓋3に重ね、ついで接着することにより、熱電池用複合蓋を作製した。
【0017】
上記で得られた熱電池用複合蓋を用いて以下のような方法により、熱電池を作製した。
素電池と発熱剤を交互に積層してスタックを構成した。なお、素電池には、リチウムまたはリチウム合金からなる負極と、二硫化鉄を含む正極と、溶融塩をセラミックに含浸させて得られた電解質とを用いて構成したものを用いた。また、発熱剤には、還元剤として鉄粉と酸化剤として過塩素酸カリウム粉との混合成形体としたものを用いた。スタックの上部および外周に導火剤を備え、さらに断熱材で包囲した後、電池ケース内に収容した。そして、電池ケースの開口部を上記で得られた圧電点火栓を備えた熱電池用複合蓋により密閉した。この熱電池を64個作製した。
この熱電池においては、熱電池の点火端子間に高電圧が印加されると、圧電点火栓が燃焼する。この燃焼熱が、スタックの周囲に備えられた導火剤を経て発熱剤に伝播する。発熱剤の発熱により素電池が昇温し、熱電池が活性化する。
【0018】
《比較例》
実施例と同様の方法により、図5に示すような点火端子15、電橋リード線12および圧電点火栓11を具備する電池蓋13を作製した。
そして、図5に示すように前記電池蓋13の表面全体に高粘度絶縁剤18として高粘度のシリコーン樹脂を塗布した後、さらに電橋リード線12および点火端子15の全面に高粘度のシリコーン樹脂を塗布した。なお、シリコーン樹脂には、4.5Pa・s(23℃時)の粘度および20kV/mmの絶縁破壊の強さを有するものを用いた。次に、前記シリコーン樹脂が固化した後、同様のシリコーン樹脂を既に塗布した部分に再度塗布して実施例と同様の断熱体(図示せず)を電池蓋13に接着することにより、熱電池用複合蓋を作製した。この熱電池用複合蓋を用いた以外は、実施例と同様の方法により熱電池を64個作製した。
【0019】
[評価]
上記で作製した熱電池の点火端子に圧電点火装置を接続し、10kV/2mJのエネルギーを供給した。そして、圧電点火栓が着火するかどうかを確認した。その評価結果を表1に示す。
【0020】
【表1】

Figure 2004079280
【0021】
比較例では着火しない熱電池が見られたが、実施例では全ての電池で着火することが確認された。このように、本発明の熱電池用複合蓋を用いた熱電池では、圧電点火栓が確実に着火することが示された。
【0022】
【発明の効果】
以上のように、本発明によれば、優れた絶縁性を有する熱電池用複合蓋が得られる熱電池用複合蓋の製造方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の粘度の異なる2種類の絶縁剤を電池蓋に塗布した熱電池用複合蓋の概略縦断面図である。
【図2】本発明の断熱体を接着した熱電池用複合蓋の概略縦断面図である。
【図3】従来の高粘度絶縁剤を点火端子および電橋リード線全体に塗布した熱電池用複合蓋の概略縦断面図である。
【図4】従来の高粘度絶縁剤を電池蓋の表面全体に塗布した熱電池用複合蓋の概略縦断面図である。
【図5】従来の高粘度絶縁剤を電池蓋の表面全体ならびに点火端子および電橋リード線全体に塗布した熱電池用複合蓋の概略縦断面図である。
【符号の説明】
1  圧電点火栓
1a 点火剤
1b 保持体
2  電橋リード線
3  電池蓋
4  ハーメチックガラス
5  点火端子
6  断熱体
7  低粘度絶縁剤
8  高粘度絶縁剤[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a composite lid for a thermal battery, and more particularly to a method for insulating a composite lid for a thermal battery.
[0002]
[Prior art]
Conventionally, the insulating treatment of the battery lid surface in the composite lid for thermal batteries has been performed by any of the following methods (1) to (3) using a high-viscosity insulating agent.
(1) As shown in FIG. 3, a high-viscosity insulating agent 18 is applied so as to completely cover only the ignition terminal 15 provided on the battery lid 13 and the electric bridge lead wire 12 connected to the ignition terminal 15.
(2) As shown in FIG. 4, the high-viscosity insulating agent 18 is applied only to the entire surface of the battery cover 13.
(3) As shown in FIG. 5, after applying the high-viscosity insulating material 18 over the entire surface of the battery lid 13, the high-viscosity insulating material 18 is further applied so as to completely cover the electric bridge lead wire 12 and the ignition terminal 15. .
After the insulating treatment is performed by any one of the methods (1) to (3) and the high-viscosity insulating material 18 is solidified, the high-viscosity insulating material 18 is applied again for storing and protecting the piezoelectric ignition plug 11. Then, a heat insulator (not shown) having an opening for accommodating the piezoelectric ignition plug 11 is adhered to the battery lid 13.
[0003]
[Problems to be solved by the invention]
In order to activate a thermal battery provided with a piezoelectric ignition plug, it is an absolute condition that spark discharge is caused between ignition terminals to which a voltage higher than that of the piezoelectric element is applied, thereby igniting the piezoelectric ignition plug. However, since the voltage is very high, creeping discharge is likely to occur except between the ignition terminals. Therefore, a phenomenon that the thermal battery is not activated without being discharged between the ignition terminals is likely to occur.
Here, in the above-mentioned conventional insulating treatment, a high-viscosity insulating agent is used in order to improve workability. However, spaces due to bubbles are easily generated inside the insulating agent, and the degree of application of the insulating agent is likely to be uneven. For this reason, the insulating property becomes non-uniform, and there is a possibility that insulation failure occurs in a portion where the amount of the insulating agent is small. Therefore, it is considered that the conventional insulation treatment may not be able to prevent creeping discharge except between the ignition terminals as described above.
[0004]
As a means for eliminating such non-uniformity of insulation, use of a low-viscosity insulating agent instead of a high-viscosity insulating agent is conceivable, but even if the low-viscosity insulating agent is sufficiently applied to a predetermined application location. In addition, since the insulating agent has a low viscosity, there is a problem that the insulating agent flows out to a portion that should not be applied, so that the workability is remarkably reduced or a defect is apt to occur.
Other insulation treatment methods have been proposed in JP-A-7-282820 and JP-A-9-45342, but they cannot completely prevent creeping discharge except between ignition terminals.
[0005]
In view of the above, an object of the present invention is to provide a method for manufacturing a composite lid for a thermal battery capable of obtaining a composite lid for a thermal battery having excellent insulating properties in order to solve the above-described conventional problems.
[0006]
[Means for Solving the Problems]
The method for manufacturing a composite lid for a thermal battery according to the present invention includes: (1) an end of an ignition terminal, an electric bridge lead wire connected to the ignition terminal, and a piezoelectric ignition plug connected to the electric bridge lead wire. A step of applying a high-viscosity insulating material to the surface of the battery lid provided, outside the portion where the ignition terminal, the electric bridge lead wire and the piezoelectric ignition plug are located, (2) before the high-viscosity insulating material solidifies, Applying a low-viscosity insulator to the inside of the high-viscosity insulator on the surface so as to cover the ignition terminal, the electric bridge lead wire and the piezoelectric ignition plug; and (3) applying the low-viscosity insulator and the high viscosity Before the insulating agent is solidified, the method includes a step of laminating a heat insulator on the battery lid and bonding the same.
It is preferable that the viscosity of the high-viscosity insulating agent is 4.5 to 100 Pa · s (at 23 ° C.).
It is preferable that the viscosity of the low-viscosity insulating agent is 0.6 to 5 Pa · s (at 23 ° C.).
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to FIGS.
The method for producing a composite lid for a thermal battery according to the present invention includes the following three steps.
[0008]
(1) On the surface of the battery lid 3 including the end of the ignition terminal 5, the electric bridge lead 2 connected to the ignition terminal 5, and the piezoelectric ignition plug 1 connected to the electric bridge lead 2. A high-viscosity insulating material 8 is applied to the outside of the portion where the ignition terminal 5, the electric bridge lead wire 2 and the piezoelectric ignition plug 1 are located.
(2) Before the high-viscosity insulating material 8 is solidified, a low-viscosity material is provided on the surface of the battery lid 3 so as to cover the ignition terminal 5, the electric bridge lead wire 2 and the piezoelectric ignition plug 1 inside the high-viscosity insulating material 8. An insulating agent 7 is applied.
(3) Before the low-viscosity insulating material 7 and the high-viscosity insulating material 8 solidify, the heat insulator 6 is overlaid on the battery lid 3 and then adhered.
[0009]
As shown in FIG. 1, when applying the low-viscosity insulating agent 7 to the surface of the battery lid 3 in the step (2), the periphery of the applied portion is covered with the high-viscosity insulating agent 8 applied in the previous step (1). Coated. For this reason, it is possible to prevent the low-viscosity insulating agent 7 from flowing out to the unapplicable portion, and it is possible to suppress the occurrence of defects and a decrease in workability.
[0010]
Conventionally, the insulation treatment was performed using only one kind of high-viscosity insulating agent. In contrast, in the present invention, the low-viscosity insulating agent 7 and the high-viscosity insulating agent having different viscosities in step (1) and step (2). As shown in FIG. 1, the peripheral portion of the piezoelectric ignition plug 1 that may cause creeping discharge is covered with a low-viscosity insulating material 7 using two types of insulating materials 8. For this reason, in the portion where the low-viscosity insulating material 7 is applied, there is no variation in the insulating properties due to the generation of bubbles inside the insulating material and the nonuniformity of the application degree as seen in the conventionally used high-viscosity insulating material 8. And excellent insulation properties can be obtained.
[0011]
In the step (3), as shown in FIG. 2, the heat insulator 6 is bonded to the battery lid 3 by the high-viscosity insulating agent 8 applied in the step (1) and the low-viscosity insulating agent 7 applied in the step (2). are doing. Therefore, the workability is improved because it is not necessary to re-apply the insulating agent to the battery lid, which has been performed at the time of bonding the conventional heat insulator.
[0012]
The viscosity of the high-viscosity insulating agent 8 is preferably 4.5 to 100 Pa · s (at 23 ° C.) because the high-viscosity insulating agent and the low-viscosity insulating agent do not mix at the contact interface. Examples of the high-viscosity insulating agent 8 include resins such as silicone resin and epoxy resin.
[0013]
The viscosity of the low-viscosity insulating agent 7 is 0.6 to 5 Pa · s (at 23 ° C.) because of its good fluidity, thereby suppressing the generation of bubbles inside the insulating agent and enabling the coating degree to be uniform. Is preferred. Examples of the low-viscosity insulating agent 7 include a resin such as a silicone resin.
[0014]
【Example】
Embodiments of the present invention will be described below.
[0015]
"Example"
The composite lid for a thermal battery shown in FIG. 2 was produced as follows.
A battery lid 3 was used in which a sheet made of polytetrafluoroethylene having an insulating property was attached to the entire surface thereof, and a through hole through which the ignition terminal 5 penetrated was filled with hermetic glass 4. A holder 1b made of a glass material was used to hold the ends of the electric bridge lead wires 2 facing each other. In addition, the end of the electric bridge lead wire 2 was covered with an igniter 1a made of zirconium and barium chromate. Then, the electric bridge lead wire 2 having a piezoelectric ignition plug 1 composed of the ignition agent 1a and the holder 1b at an end thereof is connected to an ignition terminal 5 fixed to the battery cover 3, and an ignition as shown in FIG. A battery lid 3 including the terminal 5, the electric bridge lead wire 2, and the piezoelectric ignition plug 1 was produced.
[0016]
As shown in FIG. 1, a high-viscosity insulating agent 8 having a viscosity of 4.5 Pa · s (at 23 ° C.) and a dielectric breakdown strength of 20 kV / mm is provided on the surface of the battery lid 3 outside the ignition terminal 5. A high-viscosity silicone resin having the following was applied. Immediately after the application of the resin, a viscosity of 2 Pa · s (at 23 ° C.) and a dielectric breakdown strength of 20 kV / mm are applied as a low-viscosity insulating agent 7 on the surface of the battery lid 3 inside the applied high-viscosity resin. Was applied so as to completely cover the ignition terminal 5 and the electric bridge lead wire 2. Next, as shown in FIG. 2, before the high-viscosity and low-viscosity silicone resins were solidified, the heat insulator 6 was immediately stacked on the battery lid 3 and then adhered to produce a composite lid for a thermal battery.
[0017]
Using the composite lid for a thermal battery obtained above, a thermal battery was produced by the following method.
A unit cell and a heating agent were alternately stacked to form a stack. The unit cell used was composed of a negative electrode made of lithium or a lithium alloy, a positive electrode containing iron disulfide, and an electrolyte obtained by impregnating a ceramic with a molten salt. As the heat generating agent, a mixture formed of iron powder as a reducing agent and potassium perchlorate powder as an oxidizing agent was used. The stack was provided with a flaming agent at the top and outer periphery, and was further surrounded by a heat insulating material and then housed in a battery case. Then, the opening of the battery case was sealed with a composite lid for a thermal battery provided with the piezoelectric ignition plug obtained above. 64 thermal batteries were produced.
In this thermal battery, when a high voltage is applied between the ignition terminals of the thermal battery, the piezoelectric spark plug burns. This heat of combustion propagates to the exothermic agent via a pyrotechnic agent provided around the stack. The unit cell temperature rises due to the heat generated by the heating agent, and the heat cell is activated.
[0018]
<< Comparative Example >>
In the same manner as in the example, a battery lid 13 having an ignition terminal 15, a bridge lead wire 12, and a piezoelectric ignition plug 11 as shown in FIG.
Then, as shown in FIG. 5, after applying a high-viscosity silicone resin as a high-viscosity insulating agent 18 to the entire surface of the battery cover 13, the high-viscosity silicone resin is further applied to the entire surface of the electric bridge lead wire 12 and the ignition terminal 15. Was applied. The silicone resin used had a viscosity of 4.5 Pa · s (at 23 ° C.) and a dielectric breakdown strength of 20 kV / mm. Next, after the silicone resin is solidified, the same silicone resin is applied again to the already applied portion, and the same heat insulator (not shown) as in the embodiment is adhered to the battery cover 13 to provide a heat battery. A composite lid was made. Except using this composite lid for thermal batteries, 64 thermal batteries were produced in the same manner as in the example.
[0019]
[Evaluation]
A piezoelectric ignition device was connected to the ignition terminal of the thermal battery prepared above, and energy of 10 kV / 2 mJ was supplied. Then, it was confirmed whether the piezoelectric ignition plug ignited. Table 1 shows the evaluation results.
[0020]
[Table 1]
Figure 2004079280
[0021]
In the comparative example, a non-ignited thermal battery was found, but in the example, ignition was confirmed in all batteries. As described above, in the thermal battery using the composite lid for a thermal battery of the present invention, it was shown that the piezoelectric ignition plug ignited reliably.
[0022]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a method of manufacturing a composite lid for a thermal battery, which can provide a composite lid for a thermal battery having excellent insulating properties.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view of a composite lid for a thermal battery in which two kinds of insulating agents having different viscosities of the present invention are applied to a battery lid.
FIG. 2 is a schematic longitudinal sectional view of a composite lid for a thermal battery to which a heat insulator of the present invention is bonded.
FIG. 3 is a schematic vertical sectional view of a conventional composite lid for a thermal battery in which a high-viscosity insulating agent is applied to the entirety of an ignition terminal and a lead wire of an electric bridge.
FIG. 4 is a schematic vertical sectional view of a conventional composite lid for a thermal battery in which a high-viscosity insulating agent is applied to the entire surface of the battery lid.
FIG. 5 is a schematic longitudinal sectional view of a composite lid for a thermal battery in which a conventional high-viscosity insulating agent is applied to the entire surface of the battery lid, the entire ignition terminal and the lead wire of the bridge.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 piezoelectric ignition plug 1 a ignition agent 1 b holder 2 battery bridge lead 3 battery lid 4 hermetic glass 5 ignition terminal 6 heat insulator 7 low-viscosity insulator 8 high-viscosity insulator

Claims (3)

(1)点火端子の端部と、前記点火端子に接続された電橋リード線と、前記電橋リード線に接続された圧電点火栓とを具備する電池蓋の表面において、前記点火端子、電橋リード線および圧電点火栓が位置する部分の外側に、高粘度絶縁剤を塗布する工程、
(2)前記高粘度絶縁剤が固化する前に、前記表面における前記高粘度絶縁剤の内側に、前記点火端子、電橋リード線および圧電点火栓を覆うように低粘度絶縁剤を塗布する工程、ならびに
(3)前記低粘度絶縁剤および高粘度絶縁剤が固化する前に、断熱体を前記電池蓋に重ねて接着する工程を有する熱電池用複合蓋の製造方法。
(1) On the surface of a battery lid including an end of an ignition terminal, an electric bridge lead wire connected to the ignition terminal, and a piezoelectric ignition plug connected to the electric bridge lead, A step of applying a high-viscosity insulating agent outside the portion where the bridge lead wire and the piezoelectric ignition plug are located,
(2) A step of applying a low-viscosity insulating material to the inside of the high-viscosity insulating material on the surface so as to cover the ignition terminal, the electric bridge lead wire, and the piezoelectric ignition plug before the high-viscosity insulating material solidifies. And (3) a method for manufacturing a composite lid for a thermal battery, comprising a step of laminating and attaching a heat insulator to the battery lid before the low-viscosity insulating agent and the high-viscosity insulating agent solidify.
前記高粘度絶縁剤の粘度が、4.5〜100Pa・s(23℃時)である請求項1記載の熱電池用複合蓋の製造方法。The method for producing a composite lid for a thermal battery according to claim 1, wherein the viscosity of the high-viscosity insulating agent is 4.5 to 100 Pa · s (at 23 ° C). 前記低粘度絶縁剤の粘度が、0.6〜5Pa・s(23℃時)である請求項1または2記載の熱電池用複合蓋の製造方法。The method for producing a composite lid for a thermal battery according to claim 1, wherein the viscosity of the low-viscosity insulating agent is 0.6 to 5 Pa · s (at 23 ° C.).
JP2002235809A 2002-08-13 2002-08-13 Method for manufacturing composite lid for thermal battery Expired - Fee Related JP4167026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002235809A JP4167026B2 (en) 2002-08-13 2002-08-13 Method for manufacturing composite lid for thermal battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002235809A JP4167026B2 (en) 2002-08-13 2002-08-13 Method for manufacturing composite lid for thermal battery

Publications (2)

Publication Number Publication Date
JP2004079280A true JP2004079280A (en) 2004-03-11
JP4167026B2 JP4167026B2 (en) 2008-10-15

Family

ID=32020194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002235809A Expired - Fee Related JP4167026B2 (en) 2002-08-13 2002-08-13 Method for manufacturing composite lid for thermal battery

Country Status (1)

Country Link
JP (1) JP4167026B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016013278A (en) * 2014-07-02 2016-01-28 セイコーエプソン株式会社 Lid, gas cell, sealing method of gas cell, manufacturing method of lid, and lid array substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016013278A (en) * 2014-07-02 2016-01-28 セイコーエプソン株式会社 Lid, gas cell, sealing method of gas cell, manufacturing method of lid, and lid array substrate
CN105310682A (en) * 2014-07-02 2016-02-10 精工爱普生株式会社 Lid, gas cell, sealing method for gas cell, manufacturing method for lid, and lid array substrate

Also Published As

Publication number Publication date
JP4167026B2 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
KR100624950B1 (en) Battery outer case having heat spreading layer and lithium polymer battery using it
EP2733767A2 (en) Cylindrical rechargeable battery
JP2006093131A (en) Lithium-polymer battery and its manufacturing method
JP5001616B2 (en) All solid state secondary battery
JP2002083590A (en) Battery electrode, its manufacturing method and nonaqueous electrolyte secondary battery using them
TW201037738A (en) Electronic component manufacturing method
JP2004079280A (en) Manufacturing method for complex lid for thermal battery
TW201351756A (en) Method for manufacturing battery cell of novel structure
JPS61171065A (en) Thermal cell
JP2007035407A (en) Manufacturing method of complex lid for thermal battery, complex lid for thermal battery, and thermal battery equipped with same
JP2010061941A (en) Coin type lithium secondary battery
JP2011258481A (en) Lithium ion battery
JPH11111138A (en) Substrate type thermal fuse, thermal fuse provided with substrate type resistor, and manufacture of these fuses
JP4080038B2 (en) Manufacturing method of temperature fuse and resistor
JP2004055465A (en) Thermal battery
JP3178234B2 (en) Thermal battery with piezoelectric igniter
JP2003077530A (en) Method of manufacturing nonaqueous electrolyte battery
JP3178222B2 (en) Thermal battery
JP4381092B2 (en) Thermal battery
JPS62126545A (en) Alkaline battery
JP4166971B2 (en) Thermal battery
JP3971883B2 (en) Thermal battery
JP2017027969A (en) Electrochemical device
JPS5853027Y2 (en) thermal battery
JP2005322519A (en) Thermal battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080731

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees