JP2004079201A - Lead acid storage battery - Google Patents

Lead acid storage battery Download PDF

Info

Publication number
JP2004079201A
JP2004079201A JP2002233736A JP2002233736A JP2004079201A JP 2004079201 A JP2004079201 A JP 2004079201A JP 2002233736 A JP2002233736 A JP 2002233736A JP 2002233736 A JP2002233736 A JP 2002233736A JP 2004079201 A JP2004079201 A JP 2004079201A
Authority
JP
Japan
Prior art keywords
separator
thickness
positive
pressing
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002233736A
Other languages
Japanese (ja)
Inventor
Sanehiro Oda
小田  修弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2002233736A priority Critical patent/JP2004079201A/en
Publication of JP2004079201A publication Critical patent/JP2004079201A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lead acid storage battery which is low in failure rate of assembly and excellent in large current discharging performance and life performance while an element is retained under high pressure. <P>SOLUTION: In the lead acid storage battery equipped with an electrode plate group (element) obtained by laminating positive and negative electrode plates through a separator, the separator is pressed in advance, and the battery is equipped with the electrode plate group (element) satisfying the relationship of 1<T<SB>1</SB>/d≤2 and T<SB>2</SB>/d≥0.8, (wherein T<SB>1</SB>is the thickness (mm) of the separator; T<SB>2</SB>is the thickness (mm) of the separator after pressed; and d is the interval (mm) between the positive and negative electrode plates). <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
鉛蓄電池に関するものである。
【0002】
【従来の技術】
鉛蓄電池には電解液が十分に存在する液式鉛蓄電池と電解液をセパレータに含浸・保持させただけで流動電解液の存在しないいわゆる制御弁式(シール式)鉛蓄電池とがある。後者は、無保守・無漏液の特性を有していることから近年その用途が拡大しており、それに伴って、高出力化・長寿命化の要求が強くなってきている。このタイプは流動電解液が存在せず、セパレータに含浸・保持されているだけの構造であるので放電時にセパレータ中の電解液が極板へスムーズに移動する必要があり、極板とセパレータとの密着が重要である。そのため正・負極板間に挿入されるセパレータの弾力特性を利用して、極板群(以降エレメントという)の厚みを電槽セルの内側の幅寸法より大きい状態に形成し、セルの内側の幅寸法まで圧迫して挿入する。そうすれば、セパレータの反発力によって、極板は絶えず圧迫を受け、セパレータと極板との密着性が維持される。
【0003】
さらに、このタイプの鉛蓄電池では、セパレータの極板に対する圧迫が放電性能だけでなく寿命性能に対しても重要である。すなわち、鉛蓄電池の寿命劣化は正極格子の腐食あるいは正極活物質の軟化脱落であり、セパレータの反発力によってエレメント、特に正極板に強い圧迫がかかっているとそれらを抑制できる。したがって、セパレータの圧迫度が高いほど長寿命特性が得られる。
【0004】
通常、エレメントは両端から圧力を加えながら多数個セルからなるモノブロック電槽に挿入されるが、セパレータ厚を厚くするほどその反発力により、エレメントが膨らみ、電槽挿入時にエレメント全体を圧迫するだけでは、負極端板と電槽とが干渉し、挿入が困難になったり、挿入できても極板が変形し、内部短絡が発生したりする問題を抱えている。したがって、エレメントに加えられる圧迫力は、50Kgf/dm程度が限度であった。
【0005】
【発明が解決しようとする課題】
発明が解決しようとする課題は、上記問題を解決し、エレメントが高圧迫を維持しながらも組立不良率が低く、高率放電性能、寿命性能の優れた鉛蓄電池を提供するものである。
【0006】
【課題を解決するための手段】
課題を解決する手段として、請求項1によれば正・負極板がセパレータを介して積層された極板群(エレメント)を備えた鉛蓄電池において、前記セパレータがあらかじめプレスされたものであって、プレス前のセパレータ厚みをT(mm)、プレス後の厚みをT(mm)、正・負極板間をd(mm)とした時に、1<T/d≦2でかつ、T/d≧0.8である極板群(エレメント)を備えたことを特徴とするものである。
【0007】
正・負極板がセパレータを介して積層されたエレメントを電槽に挿入した際に、絶えず極板に圧迫を加えるためにはエレメント厚みを電槽厚みより厚くして、圧迫を加えながら挿入するが、圧迫力を高くすればするほど挿入が困難になる。そこで発明者は、セパレータをあらかじめプレスすれば、挿入の際、エレメントの厚みが極端に厚くならず挿入が容易になり、しかも、高率放電性能が維持されることを見出した。その際に、セパレータのプレス前の厚みをT(mm)、プレス後の厚みをT(mm)、正・負極板間をd(mm)とした時に、1<T/d≦2でかつ、T/d≧0.8の関係を維持すれば、最も効果的であることがわかった。すなわち、T/dにおいては、セパレータの厚みTが正・負極板間dより小さければ圧迫がかからなくなるので1以上は必要であるが、2以上になると例え、あらかじめプレスしてセパレータ厚みを薄くしてもエレメントの挿入が困難になる場合があるので2以下が好ましい。一方、プレス後の厚みに関しては、T/dを0.8以下にまでプレスするとエレメントの挿入は容易になるが、プレスによりセパレータがへたり、エレメントが圧迫力を維持する点では逆効果になってしまう恐れがある。
【0008】
ここでの、プレス前のセパレータの厚みは、セパレータ厚を一般的に定義している20Kgf/dmの荷重を加えときの厚みをいう。
【0009】
また、プレス後のセパレータの厚みは、ロールプレスの場合、2つのロールの間隔を、また、平プレスの場合は、プレス面に設けたプレス止めの厚みをプレス後の厚みとそれぞれ定義する。すなわち、ロールプレスの場合、2つのロールの間隔を1.5mmに設置した場合、セパレータのプレス後の厚み1.5mmと定義し、平プレスの場合は、厚み1.5mmのプレス止め設けそれ以上セパレータがプレスされないようにした場合、プレス後のセパレータ厚みを1.5mmと定義する。
【0010】
【発明の実施の形態】
本発明の実施の形態は、エレメントに挿入されるセパレータをあらかじめプレスすることによって組立性を改善し、しかも高率放電性能を維持しようとするものであるが、その際、セパレータのプレス前の厚みをT(mm)、プレス後の厚みをT(mm)、正・負極板間をd(mm)とした時に、1<T/d≦2でかつ、T/d≧0.8にすることが最も効果的であることを具体的に示すために実施例により以下に説明する。
【0011】
【実施例】
本発明の効果を明らかにするために、正・負極板にPb−0.07質量%Ca−1.3質量%Sn合金からなる鋳造格子をそれぞれ用い、通常の活物質を塗布した正極板3枚、負極板4枚構成の公称容量・定格容量、12V、7Ah(20hR)の制御弁式鉛蓄電池を用いて試験を行った。その際の正・負極板間dは1.5mmとし、セパレータには、1μm以下の極細ガラス繊維からなるガラスセパレータを用いた。
〔実施例1〕
実施例1では、正・負極板間が1.5mmで、プレス前の厚みが2.5mmのセパレータに対して、組立前に1.5mmまでプレス加工を行ったものを用いたエレメントをA1、同じ厚みでプレス加工を行わなかったセパレータを用いたエレメントをB1とし、また、プレス前の厚みが正・負極板間と同じ厚みの1.5mmのセパレータを用い、プレスを行わなかったエレメントをC1とした。これらのエレメントを電槽に挿入して蓄電池を作製した。その際の組立不良率を調査した。次いで、これらの蓄電池に希硫酸電解液を注入し、化成を行い、高率放電性能3CA(C:定格容量、A:電流の単位)(21A)の評価を行った。試作内容および試験結果を表1に示す。高率放電性能は組立前にプレスされていないセパレータを用いたB1の放電持続時間を100としてその比較で表した。
【0012】
【表1】

Figure 2004079201
【0013】
表1から明らかなように、エレメントの組立前にセパレータをあらかじめプレスしなかったB1は組立不良率が大幅に増加したのに対して、組立前にプレスしたA1は高率放電性能を維持しながら、組立性が改善された。セパレータ厚みが正・負極板間と同じものを用いたC1は極板間に十分な圧迫がかかっていないために高率放電性能が劣った。
【0014】
以上の結果から、組立前に、セパレータをプレスすることが高率放電性能を維持しながら組立性を改善できることが分かった。
〔実施例2〕
実施例2では、正・負極板間dを1.5mm、プレス前のセパレータ厚みを2.5mmとし、ロールプレス間の間隔を種々かえてプレス後のセパレータ厚みを変化させ、エレメントA2〜F2を組み立てた。これらのエレメントを用いて実施例1と同様の蓄電池を作製し、組立不良率の調査および高率放電性能(3CA)評価を行った。試作内容、組立不良率および高率放電試験の結果を表2ならびに図1に示す。これらに示す高率放電性能は実施例1で示した厚み2.5mmでプレス加工されていないセパレータを用いたB1の放電持続時間を100としてその比較で表した。
【0015】
【表2】
Figure 2004079201
【0016】
表2および図1が示すように、エレメントの組立前にセパレータをプレスすることで、高率放電性能を維持しながら組立性を改善できることがより明らかになった。しかし、T/dが0.8を下回ると高率放電性能が低下した。これは、プレスのし過ぎで、セパレータのガラス繊維径が破壊されへたってしまったためと考えられる。また、T/dが大きい、すなわち、プレスが少なかった場合、組立不良率が若干高かった。したがって、高率放電性能を維持しながら組立性を改善するためには、T/dが1〜1.2とするのが好ましい。
〔実施例3〕
実施例3では、プレス前の厚みが異なるセパレータに対して組立前に正・負極板間d(1.5mm)(T/d=1)までプレスしたセパレータを用いてエレメントA3〜F3を組み立てた。これらのエレメントを用いて実施例1と同様の蓄電池を作製し、組立不良率および高率放電性能(3CA)の評価を行った。試作内容および試験結果を表3および図2に示す。これらに示す高率放電性能は実施例1で示した厚み2.5mmで組立前にプレスされていないセパレータを用いたB1の放電持続時間を100としてその比較で表した。
【0017】
【表3】
Figure 2004079201
【0018】
表3および図2に示すように、プレス前のセパレータ厚みをT、正・負極板間をdとしたときにT/dが2を上回ったA3では組立不良率が2.5%と高かった。このように、組立前のセパレータの厚みが厚すぎると、例え組立前にセパレータをプレスしても、依然セパレータが反発力を維持しており、エレメントの電槽への挿入が困難で組立不良率が高くなった。したがって、組立性がよく、しかも優れた高率放電性能を維持するためには、T/dは1.4〜1.8が好ましいといえる。
【0019】
以上の結果から、蓄電池の組立性がよく、優れた高率放電性能を得るためには、プレス前のセパレータ厚みT、プレス後のセパレータ厚みをT、正・負極板間をdとした時に1<T/d≦2でかつ、T/d≧0.8を維持することが必要であることが明らかになった。
【0020】
実施例では、本発明の効果を高率放電性能にのみ言及したが、1<T/d≦2でかつ、T/d≧0.8を維持することはエレメントが高圧迫を維持していることであり、上述したように寿命性能についても当然優れた性能が得られることは言うまでもない。
【0021】
【発明の効果】
以上説明したように、正・負極板がセパレータを介して積層されたエレメントにおいて、前記セパレータのプレス前の厚みをT、プレス後の厚みをT、正・負極板間をdとした時に1<T/d≦2でかつ、T/d≧0.8を維持することによって、組立性が改善され、しかも優れた高率放電性能および寿命性能が得られその工業的効果が大である。
【図面の簡単な説明】
【図1】T/dと組立不良率および高率放電性能との関係を示す図
【図2】T/dと組立不良率および高率放電性能との関係を示す図[0001]
TECHNICAL FIELD OF THE INVENTION
It relates to a lead storage battery.
[0002]
[Prior art]
Lead-acid batteries include a liquid-type lead-acid battery in which a sufficient amount of electrolyte is present and a so-called control valve-type (seal-type) lead-acid battery in which only a separator is impregnated with and held by an electrolyte and no flowing electrolyte is present. The latter has characteristics of no maintenance and no leakage, and its use has been expanding in recent years. Accordingly, demands for higher output and longer life have been increasing. Since this type has a structure in which no flowing electrolyte is present and is merely impregnated and held in the separator, the electrolyte in the separator needs to move smoothly to the electrode plate during discharge, and the Adhesion is important. Therefore, utilizing the elastic characteristics of the separator inserted between the positive and negative electrodes, the thickness of the electrode group (hereinafter referred to as the element) is formed to be larger than the width of the inside of the battery cell, and the width of the inside of the cell is formed. Insert by pressing to the size. Then, the electrode plate is constantly pressed by the repulsive force of the separator, and the adhesion between the separator and the electrode plate is maintained.
[0003]
Further, in this type of lead-acid battery, the compression of the separator against the electrode plate is important not only for the discharge performance but also for the life performance. That is, the life deterioration of the lead-acid battery is corrosion of the positive electrode grid or softening and falling off of the positive electrode active material, and when the element, especially the positive electrode plate is strongly pressed by the repulsive force of the separator, these can be suppressed. Therefore, the longer the degree of compression of the separator, the longer the life characteristics can be obtained.
[0004]
Normally, the element is inserted into a monoblock battery case consisting of many cells while applying pressure from both ends, but as the separator thickness increases, the resilience of the element causes the element to swell and only presses the entire element when inserting the battery case In this case, there is a problem that the negative electrode end plate and the battery case interfere with each other to make insertion difficult, or that even if insertion is possible, the electrode plate is deformed and an internal short circuit occurs. Therefore, the pressing force applied to the element was limited to about 50 kgf / dm 2 .
[0005]
[Problems to be solved by the invention]
The problem to be solved by the invention is to solve the above-mentioned problems and to provide a lead-acid battery having a low defective assembly rate, an excellent high-rate discharge performance and an excellent life performance while maintaining high pressure of the element.
[0006]
[Means for Solving the Problems]
As means for solving the problem, according to claim 1, in a lead-acid battery provided with an electrode plate group (element) in which positive and negative electrode plates are stacked via a separator, the separator is pre-pressed, When the separator thickness before pressing is T 1 (mm), the thickness after pressing is T 2 (mm), and the distance between the positive and negative electrodes is d (mm), 1 <T 1 / d ≦ 2 and T 2 It is characterized by comprising an electrode group (element) satisfying /d≧0.8.
[0007]
When inserting the element in which the positive and negative electrode plates are laminated via the separator into the battery case, in order to constantly apply pressure to the electrode plate, make the element thickness larger than the battery case thickness and insert while applying pressure. However, the higher the compression force, the more difficult the insertion becomes. Therefore, the inventor has found that if the separator is pressed in advance, the element does not become extremely thick at the time of insertion, the insertion becomes easy, and the high rate discharge performance is maintained. At this time, when the thickness of the separator before pressing is T 1 (mm), the thickness after pressing is T 2 (mm), and the distance between the positive and negative electrodes is d (mm), 1 <T 1 / d ≦ 2. It was found that maintaining the relationship of T 2 /d≧0.8 was most effective. That is, in the case of T 1 / d, if the thickness T 1 of the separator is smaller than the distance d between the positive and negative electrodes, no pressure is applied. Therefore, at least 1 is necessary. It is preferable to set the thickness to 2 or less, since the insertion of the element may be difficult even if the thickness is reduced. On the other hand, regarding the thickness after pressing, if T 2 / d is pressed to 0.8 or less, the insertion of the element becomes easy, but the separator is depressed by the pressing and the effect of maintaining the pressing force of the element is adversely affected. There is a risk of becoming.
[0008]
Here, the thickness of the separator before pressing refers to the thickness when a load of 20 kgf / dm 2 , which generally defines the thickness of the separator, is applied.
[0009]
In the case of a roll press, the thickness of the separator after pressing is defined as the interval between two rolls, and in the case of a flat press, the thickness of a press stop provided on the pressing surface is defined as the thickness after pressing. That is, in the case of a roll press, when the interval between the two rolls is set to 1.5 mm, the thickness of the separator after pressing is defined as 1.5 mm, and in the case of a flat press, a 1.5 mm thick press stop is provided. When the separator is not pressed, the separator thickness after pressing is defined as 1.5 mm.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The embodiment of the present invention is to improve the assemblability by pre-pressing the separator inserted into the element, and to maintain the high rate discharge performance. Is T 1 (mm), the thickness after pressing is T 2 (mm), and the distance between the positive and negative electrodes is d (mm), where 1 <T 1 / d ≦ 2 and T 2 / d ≧ 0. An example will be described below to specifically show that setting to 8 is most effective.
[0011]
【Example】
In order to clarify the effects of the present invention, a positive electrode plate 3 coated with a normal active material using a casting grid made of a Pb-0.07 mass% Ca-1.3 mass% Sn alloy for each of the positive and negative electrode plates. The test was performed using a control valve type lead storage battery of 12 V, 7 Ah (20 hR) having a nominal capacity and a rated capacity of four sheets and four negative plates. The distance d between the positive and negative electrodes was 1.5 mm, and a glass separator made of ultrafine glass fiber of 1 μm or less was used as the separator.
[Example 1]
In the first embodiment, an element using a separator having a thickness of 1.5 mm between the positive and negative electrodes and a thickness of 2.5 mm before pressing and having been pressed to 1.5 mm before assembly is A1, An element using the separator having the same thickness and not subjected to the press working was designated as B1, and an element having a thickness before pressing of 1.5 mm having the same thickness as that between the positive and negative electrodes was used and the element not subjected to the press was designated as C1. And These elements were inserted into a battery case to produce a storage battery. The defective assembly rate at that time was investigated. Next, a dilute sulfuric acid electrolyte solution was injected into these storage batteries to perform chemical conversion, and high-rate discharge performance 3CA (C: rated capacity, A: unit of current) (21A) was evaluated. Table 1 shows the details of the prototype and the test results. The high rate discharge performance was expressed by comparing the discharge duration of B1 using a separator that was not pressed before assembly with 100 as the comparison.
[0012]
[Table 1]
Figure 2004079201
[0013]
As is evident from Table 1, B1 in which the separator was not pre-pressed before assembling the element greatly increased the defective assembly rate, whereas A1 pressed before assembling maintained the high rate discharge performance. And the assemblability was improved. C1 using the same separator thickness as that between the positive and negative electrode plates was inferior in high-rate discharge performance because sufficient pressure was not applied between the electrode plates.
[0014]
From the above results, it was found that pressing the separator before assembling can improve assemblability while maintaining high-rate discharge performance.
[Example 2]
In Example 2, the distance d between the positive and negative electrodes was 1.5 mm, the thickness of the separator before pressing was 2.5 mm, the distance between the roll presses was varied, and the thickness of the separator after pressing was changed. Assembled. Using these elements, a storage battery similar to that of Example 1 was manufactured, and the failure rate of assembly and the high-rate discharge performance (3CA) were evaluated. Table 2 and FIG. 1 show the details of the trial production, the defective assembly rate, and the results of the high-rate discharge test. The high-rate discharge performances shown in these figures are shown by comparing the discharge duration of B1 using the unpressed separator having a thickness of 2.5 mm shown in Example 1 with 100, as a comparison.
[0015]
[Table 2]
Figure 2004079201
[0016]
As shown in Table 2 and FIG. 1, it became clear that pressing the separator before assembling the element can improve the assemblability while maintaining the high rate discharge performance. However, when T 2 / d was less than 0.8, the high-rate discharge performance was reduced. This is considered to be because the glass fiber diameter of the separator was destroyed due to excessive pressing. When T 2 / d was large, that is, when the number of presses was small, the defective assembly rate was slightly high. Therefore, in order to improve the assemblability while maintaining the high rate discharge performance, it is preferable that T 2 / d be 1 to 1.2.
[Example 3]
In Example 3, assembled elements A3~F3 using a separator was pressed before assembly with respect to the separator thickness before the press is different to the positive and negative electrode plates d (1.5mm) (T 2 / d = 1) Was. Using these elements, a storage battery similar to that of Example 1 was manufactured, and the assembly failure rate and the high-rate discharge performance (3CA) were evaluated. Table 3 and FIG. 2 show the details of the prototype and the test results. The high-rate discharge performance shown in these figures was expressed by comparing the discharge duration of B1 using the separator having a thickness of 2.5 mm shown in Example 1 which was not pressed before assembling with 100 as the discharge duration.
[0017]
[Table 3]
Figure 2004079201
[0018]
As shown in Table 3 and FIG. 2, when the separator thickness before pressing is T 1 and the distance between the positive and negative electrodes is d, the defective assembly rate is 2.5% for A3 where T 1 / d exceeds 2. it was high. Thus, if the thickness of the separator before assembly is too thick, even if the separator is pressed before assembly, the separator still maintains the repulsive force, and it is difficult to insert the element into the battery case, resulting in a defective assembly rate. Became higher. Therefore, good assembly property, yet in order to maintain excellent high rate discharge performance, T 1 / d can be said to 1.4-1.8 is preferable.
[0019]
From the above results, in order to obtain good assemblability of the storage battery and to obtain excellent high rate discharge performance, the separator thickness T 1 before pressing, the separator thickness after pressing T 2 , and the distance between the positive and negative electrode plates were d. It has become clear that it is sometimes necessary to maintain 1 <T 1 / d ≦ 2 and maintain T 2 /d≧0.8.
[0020]
In the examples, the effect of the present invention was mentioned only for high-rate discharge performance, but maintaining 1 <T 1 / d ≦ 2 and maintaining T 2 /d≧0.8 means that the element maintains high pressure. As described above, it goes without saying that excellent life performance can be obtained naturally.
[0021]
【The invention's effect】
As described above, in the element in which the positive and negative electrodes are laminated with the separator interposed therebetween, when the thickness of the separator before pressing is T 1 , the thickness after pressing is T 2 , and the distance between the positive and negative electrodes is d, By maintaining 1 <T 1 / d ≦ 2 and T 2 /d≧0.8, assemblability is improved, and excellent high-rate discharge performance and life performance are obtained, and the industrial effect is great. It is.
[Brief description of the drawings]
FIG. 1 is a diagram showing a relationship between T 2 / d and a defective assembly rate and high-rate discharge performance. FIG. 2 is a diagram showing a relationship between T 1 / d and a defective assembly rate and high-rate discharge performance.

Claims (1)

正・負極板がセパレータを介して積層された極板群(エレメント)を備えた鉛蓄電池において、前記セパレータがあらかじめプレスされたものであって、プレス前のセパレータ厚みをT(mm)、プレス後の厚みをT(mm)、正・負極板間をd(mm)とした時に、1<T/d≦2でかつ、T/d≧0.8である極板群(エレメント)を備えたことを特徴とする鉛蓄電池。In a lead-acid battery provided with an electrode plate group (element) in which positive and negative electrode plates are laminated with a separator interposed therebetween, the separator is pre-pressed, and the separator thickness before pressing is T 1 (mm). When the thickness afterward is T 2 (mm) and the distance between the positive and negative electrodes is d (mm), an electrode plate group (element that satisfies 1 <T 1 / d ≦ 2 and T 2 /d≧0.8) A lead-acid battery characterized by comprising:
JP2002233736A 2002-08-09 2002-08-09 Lead acid storage battery Pending JP2004079201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002233736A JP2004079201A (en) 2002-08-09 2002-08-09 Lead acid storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002233736A JP2004079201A (en) 2002-08-09 2002-08-09 Lead acid storage battery

Publications (1)

Publication Number Publication Date
JP2004079201A true JP2004079201A (en) 2004-03-11

Family

ID=32018792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002233736A Pending JP2004079201A (en) 2002-08-09 2002-08-09 Lead acid storage battery

Country Status (1)

Country Link
JP (1) JP2004079201A (en)

Similar Documents

Publication Publication Date Title
KR20080095166A (en) Method of manufacturing square flat secondary battery
JP2022120074A (en) Three-dimensional battery with compressible cathode
CN110571472A (en) electrode core body of flexible battery and preparation method and application thereof
WO2006113924A3 (en) Safer high energy battery
EP2092586A1 (en) Bipolar battery
JP2004079201A (en) Lead acid storage battery
CN113328211B (en) High-energy-density lithium primary battery negative plate and preparation method thereof
JP4433593B2 (en) Control valve type lead acid battery
CN115172649A (en) Negative plate, battery and method for preparing battery
JP2003338310A (en) Lead storage battery
CN208240790U (en) A kind of battery pole piece, Battery Pole Core and battery
JPH10144340A (en) Cylindrical tightly closed type lead acid battery
JP2619624B2 (en) Method for manufacturing prismatic alkaline battery
JP3405101B2 (en) Sealed lead-acid battery
JP4292666B2 (en) Sealed lead acid battery
KR20120091184A (en) Electrochemical cell and method for producing such a cell
JP2002343366A (en) Electrode plate for alkaline storage battery and alkaline battery using same
KR200173954Y1 (en) Electrode of lithium ion secondary battery
CN220086305U (en) Battery structure with current collector
JP3395464B2 (en) Sealed lead-acid battery
JPS63148556A (en) Paste type lead acid battery
KR100328681B1 (en) Zinc electrode for alkali zinc secondary battery
JP5600940B2 (en) Lead battery
WO2004084331A1 (en) Method of producing lattice body for lead storage battery, and lead storage battery
JP3511858B2 (en) Lead storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050808

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100105