JP2004077412A - Moisture modulus sensor and culture solution supplying apparatus - Google Patents

Moisture modulus sensor and culture solution supplying apparatus Download PDF

Info

Publication number
JP2004077412A
JP2004077412A JP2002241576A JP2002241576A JP2004077412A JP 2004077412 A JP2004077412 A JP 2004077412A JP 2002241576 A JP2002241576 A JP 2002241576A JP 2002241576 A JP2002241576 A JP 2002241576A JP 2004077412 A JP2004077412 A JP 2004077412A
Authority
JP
Japan
Prior art keywords
medium
sensor
moisture content
liquid supply
culture solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002241576A
Other languages
Japanese (ja)
Inventor
Takahiro Kuriyama
栗山 孝浩
Masayuki Ito
伊東 正幸
Shinji Tajima
田島 新治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
Nishimu Electronics Industries Co Inc
Original Assignee
Kyushu Electric Power Co Inc
Nishimu Electronics Industries Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc, Nishimu Electronics Industries Co Inc filed Critical Kyushu Electric Power Co Inc
Priority to JP2002241576A priority Critical patent/JP2004077412A/en
Publication of JP2004077412A publication Critical patent/JP2004077412A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02P60/216

Landscapes

  • Hydroponics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a moisture modulus sensor which can rapidly and accurately measure a moisture modulus and to provide a culture solution supplying apparatus which can prepare an environment suitable for growing a plant with small wasteful expenses of the culture solution by utilizing this sensor. <P>SOLUTION: In the moisture modulus sensor 2 for measuring the moisture modulus in a culture medium 5 based on a voltage value of a composite interference wave generated on a coaxial line 10 by a traveling wave on the coaxial line 10 and a reflecting wave from the medium 5 by applying a high frequency wave generated from an oscillator 12 from a metal rod 9 inserted into the medium through the line 10 into the medium 5, the impedance of the oscillator 12 is mismatched to that of the line 10, and an influence of a salinity in the medium 5 to the measured moisture modulus of the sensor 2 is reduced. The culture solution supplying apparatus compares the measured moisture modulus in the medium measured real time by the sensor 2 installed in the medium with a previously input target moisture regain value, and supplies the culture solution. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、植物を栽培する培地への培養液の給液制御において、培地中の水分率を計測するための水分率センサー、及び計測した水分率値に基づいて培地の水分率管理を行うための培養液給液装置に関するものである。なお、本明細書において、培地とは土壌を含めレキ耕に用いられる細粒ボラ、砂、レキ等の固形の培地全体を指す。
【0002】
【従来の技術】
養液栽培において植物を栽培するに当たって、植物が植え付けられている培地の水分管理は極めて重要である。
【0003】
通常、養液栽培における給液制御はタイマーを用いた時間制御で行われている。ただし、タイマーによる給液制御では、植物にとって水分が必要なときの制御ではないため、晴天時の高温下では水分が不足の状態になり、雨天・曇天時には過剰な給液となる。培地を通過した過剰の培養液は肥料の冗費であり、培地を通過した過剰の培養液は地下へ浸透するので、窒素、リン分の多い培養液の地下への浸透は地下水汚染等の環境破壊につながる恐れがある。また、農業従事者の経験と勘により栽培環境の状態を観察して潅水を行う場合もある。この場合、たとえ最適な潅水量が得られたとしても、かなりの熟練を要し誰でもがすぐにその方法を活用できるものではない。
【0004】
培地中の水分率の計測方法としては、テンシオメータ法、電気抵抗法、熱伝導測定法、及び土壌の誘電特性を測定する方法がある。テンシオメータ法は、土壌中の水分を多孔質セラミックスを通して測定する水の浸透圧を利用した方法である。この方法を用いた水分率センサーや給液装置については、特開平4−63524号公報、及び特開平9−121699号公報に記載があるが、この方法は、古くから使われているものの反応速度が遅く、精密な給液制御には適さない。電気抵抗法は、培地の電気抵抗を測定して水分率を求める方法である。この方法を用いた水分率センサーや給液装置については、特開平2−40549号公報、特開平2−109919号公報、特開平5−199819号公報、特開平9−189693号公報、特開2000−103814号公報、及び特開2001−211768号公報に記載がある。この方法は、簡便であるが、培地中に蓄積された塩分の影響を非常に受けやすく、また、温度による影響も大きいので精密な給液制御には適さない。熱伝導測定法は、水分を含む培地中の熱の伝達速度から水分率を求める方法である。この方法を用いた水分率センサーや給液装置については、特開平4−240548号公報、特開平9−149737号公報、及び特開平11−281601号公報に記載がある。この方法は、周辺温度の影響を受けやすいので精密な給液制御には適さない。土壌の誘電特性を測定する方法は、培地中の水分率による培地の誘電率の変化から水分率を求める方法である。この方法を用いた水分率センサーや給液装置については、特開平2−238353号公報、特開平6−70652号公報、及び特開平9−196864号公報に記載がある。この方法は、測定時間は短時間であるが、周辺温度及び培地中の塩分の影響を受けるので精密な給液制御には適さない。以上のように、前述の各計測方法では迅速で精度の高い給液制御を行うことはできない。
【0005】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、迅速かつ正確に培地中の水分率を計測することができる水分率センサーと、この水分率センサーを利用して、培養液の冗費が少なく、植物の生育に好適な環境を作ることができる培養液給液装置を提供することにある。
【0006】
【課題を解決するための手段】
上記の課題を解決するために、本発明の水分率センサーは、土壌の誘電特性を測定する方法による従来の水分率センサーを改良したもので、同方法による従来の水分率センサーでは、電気回路を設計する際の技術常識に基づいて発振器と同軸線のインピーダンスを整合させるようにしていたのに対し、本発明は、発振器と同軸線のインピーダンスを整合させないようにすると、計測水分率値に対する培地中の塩分の影響を低減できるという新しい知見に基づいて完成されたものである。
【0007】
すなわち、本発明の水分率センサーは、発振器から発生した高周波を、同軸線を通して培地中に挿入した金属ロッドから培地中に加え、同軸線上の進行波と培地中からの反射波とにより同軸線上に発生した合成干渉波の電圧値に基づいて培地中の水分率を計測する水分率センサーにおいて、発振器と同軸線のインピーダンスを不整合とし、水分率センサーの計測水分率値に対する培地中の塩分の影響を低減したことを特徴とする。
【0008】
また、本発明の水分率センサーでは、周囲温度の変化による計測水分率値の変化を低減するために、合成干渉波の電圧値を検出するための検波ダイオードを有する検波回路と、検波ダイオードと同一の特性を持つ補償ダイオードを有する補償回路とを設け、検波ダイオード及び補償ダイオードには同一の一定電流を流し、周囲温度の変化による検波ダイオードの出力の変化を補償ダイオードの出力により補償すするようにすることもできる。
【0009】
さらに、本発明の水分率センサーでは、そのセンサー部となる金属ロッドを複数接続する場合、レキ等の粒径の大きい培地にも適用できるように、各金属ロッド間の間隔を培地中のレキ等の塊状物の粒径よりも大きく設定することもできる。
【0010】
以上の水分率センサーを利用した本発明の培養液給液装置は、前記水分率センサーと、培地に培養液を供給する給液手段と、培地に給液した培養液の給液量を計測する手段と、前記給液手段の給液動作を制御する給液制御手段と有する培養液給液装置であって、前記給液制御手段は、培地に設置した前記水分率センサーによってリアルタイムで計測した培地中の計測水分率値と、予め入力された目標水分率値とを比較して前記給液手段を作動させることを特徴とする。また、前記給液制御手段は、予め入力された、前記水分率センサーによる計測水分率値と培養液の電気伝導度との関係から、前記水分率センサーによる計測水分率値を補正し、計測水分率値に対する培養液の電気伝導度すなわち培地中の塩分濃度の影響を補正した計測水分値を出力することもできる。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を図面に示す実施例に基づき説明する。図1は、本発明に係る培養液給液装置の実施例を示す概略構成図である。図2は、本発明に係る水分率センサーの回路構成図である。
【0012】
本発明に係る培養液給液装置は、図1に示すように、給液制御手段としての給液制御装置1、水分率センサー2、給液手段としての給液ポンプ3、及び給液量を計測する手段としての流量計4から構成される。給液制御は、予め給液制御装置1に制御目標値である目標水分率値を入力しておき、水分率センサー2で計測した計測水分率値と目標水分率値とを比較し、計測水分率値が予め入力した目標水分率値より低下した場合、給液制御装置1から給液ポンプ3へ制御信号を出し、給液ポンプ3を作動させて、培養液タンク8内の培養液を給液管7を通して栽培ベッド6内の培地5へ供給する。給液ポンプ3を作動させて給液した培養液量は流量計4により計測され、給液制御装置1のモニターに表示される。実施例では、給液制御装置1に予め入力する目標水分率値と同時に、目標水分率値の許容幅、給液ポンプ3の作動時間及び給液周期を入力できるようにして、給液制御時に給液ポンプ3の過度のチャタリングを防ぐようにした。培地の水分率は複数の水分率センサー2を用いて計測し、平均値を目標水分率値と比較するようにした。また、給液制御装置1から給液ポンプ3へ作動信号が出ても、一定時間、流量計4が培養液の供給を感知しない場合、給液ポンプ3の空転等による異常が考えられる。そのような場合に、給液ポンプ3の破損を防ぐため、給液制御装置1から給液ポンプ3へ作動信号が出ても、一定時間、流量計4が培養液の供給を感知しない場合、一定時間後、給液制御装置1から給液ポンプ3の作動を強制的に中止する信号を発するとともに、警報を発するようにした。
【0013】
さらに給液制御装置1には、予め水分率センサー2による計測水分率値に対する培養液の電気伝導度(EC)の影響を示す相関特性を入力しておき、作業者が給液する培養液の電気伝導度(EC)を入力すれば、相関特性に基づき、水分率センサー2が計測した計測水分率値に補正をかけることができるようにした。補正後の計測水分率値は、給液制御装置1のモニターに表示される。
【0014】
水分率センサー2は、図2に示すように、金属ロッド9、同軸線10、インピーダンス調整回路11、発振器12、検波器13、補償回路20、及び変換器18から構成される。検波器13及び補償回路20はダイオード14,16と定電流回路15,17から構成されている。金属ロッド9は、培地中に挿入して設置される。実施例では、一つの水分率センサー2に3本の金属ロッド9を接続したが、各金属ロッド9間の間隔を粒径が大きいレキよりも広くして、レキ等の粒径の大きい培地にも適用できるようにした。また、各金属ロッド9の先端は、培地に挿入し易いように鋭くした。
【0015】
発振器12から高周波が、インピーダンス調整回路11を介して同軸線10及び金属ロッド9に向けて発振される。インピーダンス調整回路11は、発振器12と、金属ロッド9及び同軸線10との合成インピーダンスを調整のための回路である。インピーダンス調整回路11により、発振器12から発振された高周波が効率よく同軸線10及び金属ロッド9に伝達される。金属ロッド9から発振された高周波は、金属ロッド9が培地5に接触していることにより吸収・反射が起こる。特に培地5中に含有する水分により吸収・反射の度合いが大きく影響される。この時、同軸線10の長さを発振器12の高周波の波長に合わせて調整することで、同軸線10上に、同軸線10上の進行波と培地5から金属ロッド9を経由して戻ってくる反射波との合成干渉波ができる。この合成干渉波の電圧レベルを検出することで培地5中の水分率の変化が測定できる。その原理は、例えばTrans.of JSIDRE(農業土木学会論文集)No.182,pp.25〜30(1996.4)に記載されており、培地中の水分率が高くなると合成干渉波の電圧レベルも高くなるという関係になる。
【0016】
従来の土壌の誘電特性を測定する方法では、前述のとおり、培地5中に蓄積する塩分が計測水分率値に大きな影響を及ぼすが、本発明では、同軸線10とインピーダンス調整回路11の特性を調整することにより、発振器12と同軸線10とのインピーダンスを不整合とし、同軸線10上とインピーダンス調整回路11上で進行波と反射波との乱反射を起こさせた。これにより、培地5中に蓄積する塩分の影響を低減できることが実験的に確認できた。
【0017】
合成干渉波の電圧レベルを検出するために、検波器13は高周波を整流して直流レベルに変換する。検波器13に使用している検波ダイオード14は、温度及び通過電流により特性が変化するので補償回路20が必要となる。検波ダイオード14に流れる電流は、定電流回路15により固定している。また、補償回路20に使用する補償ダイオード16に流れる電流も同様の定電流回路17により固定している。この時、検波ダイオード14と補償ダイオード16に同一の特性を持つダイオード素子を用いて検波ダイオード14の損失分を補償ダイオード16の損失で補うことで、温度補償も可能にした。
【0018】
図3には、培地中に蓄積した塩分濃度に対する本発明及び従来の土壌の誘電特性を測定する方法による水分率センサーの特性を示す。実験では、予め十分に水洗し、高温で乾燥した培地を冷却後、電気伝導度(EC)の異なる培養液を用いて、体積水分率が同じで異なる塩分濃度(EC値で表示)を有する培地サンプルを作成して、塩分濃度に対する水分率センサーの特性を測定した。図3に示すように、本発明の水分率センサーの塩分濃度に対する特性の近似線の傾きは1.5、従来の水分率センサーの傾きは10であり、本発明の水分率センサーの塩分濃度に対する影響は非常に小さいことが分かる。また、この相関特性を、給液制御装置1内に予め記憶させておくことにより、給液制御装置1に給液する培養液の電気伝導度(EC値)を入力すれば、給液制御装置1にEC値に基づいて補正した計測水分率値を表示できるようになる。
【0019】
図4は、本発明の水分率センサーの温度特性図であり、水分率センサーの出力下限時(空気中)と出力上限時(水100%)での温度特性を示している。出力下限を約10mVとし出力上限を約1000mVに調整して、0℃〜60℃での出力の変化を測定した。図4に示すように、温室等での実用的な温度域では温度による影響は認められなかった。
【0020】
図5は、本発明の培養液給液装置を用いたトマト栽培での培地中の水分率の推移と給液制御状況を示す図である。水分率センサーを2本設置し、供試品種として桃太郎ヨークを用いて目標水分率値30vol%で給液制御を行った。日中に、培地中の水分率の低下が認められ、それに追随して給液制御が行われたことが分かる。
【0021】
表1に本発明による培養液給液装置を用いてトマト栽培を行った時の株・日あたりの給液量と排液量を示す。比較データとして従来の培養液給液装置(タイマー制御方式)によるトマト栽培での株・日あたりの給液量と排液量を示す。
【0022】
【表1】

Figure 2004077412
表1に示すように、本発明による培養液給液装置を使用することにより、給液量の節減及び培地からの排液量すなわち肥料の冗費を低減することができた。
【0023】
【発明の効果】
本発明の水分率センサーでは、同軸線上の進行波と培地中からの反射波とにより同軸線上に発生した合成干渉波の電圧値に基づいて培地中の水分率を計測するのでリアルタイムで培地中の水分率を計測することができ、また、発振器と同軸線のインピーダンスを不整合としたことにより、水分率センサーによる計測水分率値に対する培地中の塩分の影響を低減することができる。さらに合成干渉波の電圧値を検出するための検波回路に補償回路を接続すれば、温度変化による影響も低減することができる。したがって、培地中に蓄積した塩分の影響や温室内の急激な温度変化による影響を受けずにリアルタイムで水分率が測定できる。また、水分率センサーのセンサー部となる金属ロッドを複数接続する場合、各金属ロッド間の間隔を培地中のレキ等の塊状物の粒径よりも大きくすれば、レキ等の粒径の大きい培地にも適用範囲を拡げることができる。
【0024】
本発明の培養液給液装置では、給液制御装置に予め目標水分率値を入力しておき、水分率センサーにより計測した培地の計測水分率値と比較して給液手段を作動させることにより、常に培地が植物の生育に好適な水分状態になるように管理できる。
【0025】
本発明の培養液給液装置を使用して培養液栽培を行うことにより、従来の時間制御による給液方法に比べて、曇天・雨天時等の培養液の冗費を削減できる。また、従来では農業従事熟練者の経験によるところが大であった適時の給液に関しても、本発明の培養液給液装置では培地中の水分率を数値で示すことができるので、熟練者の経験を未習熟者でも活用することができる。
【0026】
さらに、数値化された給液管理と収穫物の品質とを関連づけることにより、目標とする作物品質を得る指標とすることができる。
【図面の簡単な説明】
【図1】本発明に係る培養液給液装置の実施例を示す概略構成図である。
【図2】本発明に係る水分率センサーの回路構成図である。
【図3】培地中に蓄積した塩分濃度に対する本発明及び従来の土壌の誘電特性を測定する方法による水分率センサーの特性を示す図である。
【図4】本発明の水分率センサーの温度特性図である。
【図5】本発明の培養液給液装置を用いたトマト栽培での培地中の水分率の推移と給液制御状況を示す図である。
【符号の説明】
1 給液制御装置
2 水分率センサー
3 給液ポンプ
4 流量計
5 培地
6 栽培ベッド
7 給液管
8 培養液タンク
9 金属ロッド
10 同軸線
11 インピーダンス調整回路
12 発振器
13 検波器
14 検波ダイオード
15 定電流回路
16 補償ダイオード
17 定電流回路
18 変換器
19 センサー出力
20 補償回路[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is to control the supply of the culture solution to the culture medium for cultivating plants, a moisture content sensor for measuring the moisture content in the culture medium, and to manage the moisture content of the culture medium based on the measured moisture content value The present invention relates to a culture solution feeding device. In the present specification, the term “medium” refers to the entire solid medium such as fine-grained mullet, sand, and rub, including soil, which is used for cultivation.
[0002]
[Prior art]
In cultivating plants in hydroponic culture, it is extremely important to control the water content of the medium in which the plants are planted.
[0003]
Usually, the liquid supply control in the nutrient solution cultivation is performed by time control using a timer. However, the liquid supply control by the timer is not a control when water is required for the plant, so that the water becomes insufficient at a high temperature in fine weather and becomes excessive when rainy or cloudy. Excess culture broth that has passed through the medium is a waste of fertilizer, and excess culture broth that has passed through the medium penetrates underground. May lead to destruction. In some cases, irrigation is performed by observing the state of the cultivation environment based on the experience and intuition of the farmer. In this case, even if an optimal amount of irrigation is obtained, considerable skill is required and not everyone can use the method immediately.
[0004]
As a method of measuring the moisture content in the medium, there are a tensiometer method, an electric resistance method, a heat conduction measurement method, and a method of measuring the dielectric properties of soil. The tensiometer method is a method using the osmotic pressure of water for measuring the moisture in soil through porous ceramics. Japanese Patent Application Laid-Open Nos. 4-63524 and 9-121699 disclose a moisture content sensor and a liquid supply device using this method. However, it is not suitable for precise liquid supply control. The electric resistance method is a method of measuring the electric resistance of a culture medium to obtain a moisture content. The moisture percentage sensor and the liquid supply device using this method are described in JP-A-2-40549, JP-A-2-109919, JP-A-5-199819, JP-A-9-189593, and JP-A-2000-189593. JP-A-103814 and JP-A-2001- 211768. Although this method is simple, it is very susceptible to the effects of salts accumulated in the culture medium, and is not suitable for precise liquid supply control because it is greatly affected by temperature. The heat conduction measurement method is a method for obtaining a moisture content from a heat transfer rate in a medium containing moisture. The moisture content sensor and the liquid supply device using this method are described in JP-A-4-240548, JP-A-9-149737, and JP-A-11-281601. This method is not suitable for precise liquid supply control because it is easily affected by the ambient temperature. The method of measuring the dielectric properties of the soil is a method of obtaining the moisture content from a change in the permittivity of the medium due to the moisture content in the medium. The moisture percentage sensor and the liquid supply device using this method are described in JP-A-2-238353, JP-A-6-70652, and JP-A-9-196864. Although this method has a short measurement time, it is not suitable for precise liquid supply control because it is affected by the ambient temperature and the salt content in the medium. As described above, it is not possible to perform quick and accurate liquid supply control with each of the above-described measurement methods.
[0005]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to provide a moisture content sensor that can quickly and accurately measure the moisture content in a medium, and using this moisture content sensor, reduce the redundant cost of the culture solution and reduce the growth of plants. It is an object of the present invention to provide a culture solution supply device that can create a suitable environment for the culture.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the moisture content sensor of the present invention is an improvement of a conventional moisture content sensor based on a method for measuring the dielectric properties of soil. While the impedance of the oscillator and the coaxial line were matched based on the technical common sense at the time of design, the present invention, if the impedance of the oscillator and the coaxial line were not matched, the medium in the medium relative to the measured moisture content value It has been completed based on a new finding that the effect of salt content can be reduced.
[0007]
That is, the moisture content sensor of the present invention applies high frequency generated from the oscillator to the culture medium from the metal rod inserted into the culture medium through the coaxial line, and the coaxial line is formed by the traveling wave on the coaxial line and the reflected wave from the culture medium. In a moisture content sensor that measures the moisture content in the medium based on the voltage value of the generated synthetic interference wave, the impedance of the oscillator and the coaxial line are mismatched, and the effect of salt in the culture medium on the moisture content value measured by the moisture content sensor Is reduced.
[0008]
Further, in the moisture content sensor of the present invention, in order to reduce a change in the measured moisture content value due to a change in the ambient temperature, a detection circuit having a detection diode for detecting a voltage value of the combined interference wave is the same as the detection diode. A compensating circuit having a compensating diode having the characteristic described above, wherein the same constant current is applied to the detecting diode and the compensating diode so that a change in the output of the detecting diode due to a change in the ambient temperature is compensated by the output of the compensating diode. You can also.
[0009]
Furthermore, in the moisture content sensor of the present invention, when a plurality of metal rods serving as the sensor portion are connected, the interval between the metal rods is adjusted so as to be applicable to a medium having a large particle size such as a reki. Can be set to be larger than the particle size of the aggregate.
[0010]
The culture solution feeder of the present invention using the above-described water content sensor, the water content sensor, a liquid supply means for supplying the culture solution to the medium, and measures the supply amount of the culture solution supplied to the medium. Means, and a culture liquid supply device having a liquid supply control means for controlling a liquid supply operation of the liquid supply means, wherein the liquid supply control means is a culture medium measured in real time by the moisture content sensor installed in the culture medium. The liquid supply means is operated by comparing a measured moisture content value in the inside with a target moisture content value input in advance. Further, the liquid supply control means corrects the moisture content value measured by the moisture content sensor from the relationship between the moisture content value measured by the moisture content sensor and the electrical conductivity of the culture solution, which is input in advance, and It is also possible to output a measured water value in which the influence of the electric conductivity of the culture solution, that is, the salt concentration in the medium, on the rate value is corrected.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described based on examples shown in the drawings. FIG. 1 is a schematic configuration diagram showing an embodiment of a culture solution supply device according to the present invention. FIG. 2 is a circuit configuration diagram of the moisture content sensor according to the present invention.
[0012]
As shown in FIG. 1, the culture solution supply device according to the present invention includes a supply control device 1 as a supply control device, a water content sensor 2, a supply pump 3 as a supply device, and a supply amount. It comprises a flow meter 4 as a means for measuring. In the liquid supply control, a target moisture percentage value which is a control target value is input to the liquid supply control device 1 in advance, and the measured moisture percentage value measured by the moisture percentage sensor 2 is compared with the target moisture percentage value. When the rate value is lower than the target moisture rate value input in advance, a control signal is sent from the liquid supply control device 1 to the liquid supply pump 3 and the liquid supply pump 3 is operated to supply the culture liquid in the culture liquid tank 8. The liquid is supplied to the culture medium 5 in the cultivation bed 6 through the liquid tube 7. The amount of culture solution supplied by operating the liquid supply pump 3 is measured by the flow meter 4 and displayed on the monitor of the liquid supply control device 1. In the embodiment, the allowable width of the target moisture content value, the operation time of the fluid supply pump 3 and the fluid supply cycle can be input simultaneously with the target moisture content value previously input to the fluid supply control device 1 so that the fluid content can be controlled at the time of fluid supply control. Excessive chattering of the liquid supply pump 3 is prevented. The moisture content of the medium was measured using a plurality of moisture content sensors 2, and the average value was compared with a target moisture content value. Further, even if an operation signal is output from the liquid supply control device 1 to the liquid supply pump 3, if the flow meter 4 does not sense the supply of the culture solution for a certain period of time, an abnormality due to idling of the liquid supply pump 3 or the like may be considered. In such a case, in order to prevent the liquid supply pump 3 from being damaged, even if an operation signal is output from the liquid supply control device 1 to the liquid supply pump 3, if the flow meter 4 does not sense the supply of the culture solution for a certain period of time, After a certain time, a signal for forcibly stopping the operation of the liquid supply pump 3 is issued from the liquid supply control device 1 and an alarm is issued.
[0013]
Further, a correlation characteristic indicating the influence of the electric conductivity (EC) of the culture solution on the moisture content value measured by the moisture content sensor 2 is input to the liquid supply control device 1 in advance, and the culture solution supplied by the operator is input. By inputting the electric conductivity (EC), the measured moisture content value measured by the moisture content sensor 2 can be corrected based on the correlation characteristic. The corrected measured moisture content value is displayed on the monitor of the liquid supply control device 1.
[0014]
As shown in FIG. 2, the moisture percentage sensor 2 includes a metal rod 9, a coaxial line 10, an impedance adjustment circuit 11, an oscillator 12, a detector 13, a compensation circuit 20, and a converter 18. The detector 13 and the compensation circuit 20 are composed of diodes 14 and 16 and constant current circuits 15 and 17. The metal rod 9 is inserted and set in the culture medium. In the embodiment, three metal rods 9 are connected to one moisture content sensor 2, but the interval between the metal rods 9 is wider than that of a reki having a large particle size, and a medium such as a reki having a large particle size is used. Also made it applicable. The tip of each metal rod 9 was sharpened so that it could be easily inserted into the culture medium.
[0015]
A high frequency is oscillated from the oscillator 12 toward the coaxial line 10 and the metal rod 9 via the impedance adjustment circuit 11. The impedance adjustment circuit 11 is a circuit for adjusting the combined impedance of the oscillator 12, the metal rod 9, and the coaxial line 10. The high frequency oscillated from the oscillator 12 is efficiently transmitted to the coaxial line 10 and the metal rod 9 by the impedance adjustment circuit 11. The high frequency oscillated from the metal rod 9 is absorbed and reflected by the metal rod 9 being in contact with the culture medium 5. In particular, the degree of absorption and reflection is greatly affected by the moisture contained in the culture medium 5. At this time, the length of the coaxial line 10 is adjusted according to the high-frequency wavelength of the oscillator 12 so that the traveling wave on the coaxial line 10 and the culture medium 5 return to the coaxial line 10 via the metal rod 9. A combined interference wave with the coming reflected wave is generated. By detecting the voltage level of the synthetic interference wave, the change in the water content in the culture medium 5 can be measured. The principle is described in, for example, Trans. of JSIDRE (Transactions of the Japanese Society of Agricultural Engineers) No. 182, pp. 25 to 30 (1996. 4), and the relationship is such that as the water content in the medium increases, the voltage level of the synthetic interference wave also increases.
[0016]
In the conventional method for measuring the dielectric properties of soil, as described above, the salt accumulated in the culture medium 5 has a large effect on the measured moisture content, but in the present invention, the characteristics of the coaxial line 10 and the impedance adjustment circuit 11 are changed. By adjusting the impedance, the impedance between the oscillator 12 and the coaxial line 10 was mismatched, and irregular reflection of the traveling wave and the reflected wave was caused on the coaxial line 10 and the impedance adjusting circuit 11. Thus, it was experimentally confirmed that the influence of the salt accumulated in the medium 5 can be reduced.
[0017]
In order to detect the voltage level of the combined interference wave, the detector 13 rectifies the high frequency and converts it to a DC level. Since the characteristics of the detection diode 14 used in the detector 13 change depending on the temperature and the passing current, a compensation circuit 20 is required. The current flowing through the detection diode 14 is fixed by the constant current circuit 15. The current flowing through the compensation diode 16 used in the compensation circuit 20 is also fixed by the same constant current circuit 17. At this time, by using diode elements having the same characteristics as the detecting diode 14 and the compensating diode 16, the loss of the detecting diode 14 is compensated for by the loss of the compensating diode 16, thereby enabling temperature compensation.
[0018]
FIG. 3 shows the characteristics of the moisture content sensor according to the present invention and the conventional method for measuring the dielectric properties of soil with respect to the concentration of salt accumulated in the medium. In the experiment, after washing the medium that had been sufficiently washed in advance and dried at a high temperature, the culture medium having different electric conductivity (EC) was used, and the medium having the same volumetric water content and different salt concentration (indicated by EC value) was used. A sample was prepared, and the characteristics of the moisture sensor for the salt concentration were measured. As shown in FIG. 3, the slope of the approximation line of the characteristic with respect to the salt concentration of the moisture content sensor of the present invention is 1.5, the slope of the conventional moisture content sensor is 10, and the slope of the moisture content sensor of the present invention with respect to the salt concentration is 10. It can be seen that the effect is very small. The correlation characteristic is stored in advance in the liquid supply control device 1 so that the electric conductivity (EC value) of the culture solution to be supplied to the liquid supply control device 1 can be input. In FIG. 1, the measured moisture content value corrected based on the EC value can be displayed.
[0019]
FIG. 4 is a temperature characteristic diagram of the moisture content sensor of the present invention, showing the temperature characteristics of the moisture content sensor at the lower limit of output (in air) and at the upper limit of output (100% water). The lower limit of the output was adjusted to about 10 mV, and the upper limit of the output was adjusted to about 1000 mV, and the change in output at 0 ° C to 60 ° C was measured. As shown in FIG. 4, there was no effect of temperature in a practical temperature range in a greenhouse or the like.
[0020]
FIG. 5 is a diagram showing the transition of the water content in the culture medium and the state of liquid supply control in tomato cultivation using the culture liquid supply device of the present invention. Two moisture content sensors were installed, and liquid supply was controlled at a target moisture content value of 30 vol% using Momotaro York as a test variety. During the day, a decrease in the water content in the medium was observed, indicating that the supply control was performed in accordance therewith.
[0021]
Table 1 shows the liquid supply amount and the drainage amount per strain / day when tomato cultivation was performed using the culture liquid supply device according to the present invention. As comparative data, the liquid supply amount and the drainage amount per plant / day in tomato cultivation by a conventional culture liquid supply device (timer control method) are shown.
[0022]
[Table 1]
Figure 2004077412
As shown in Table 1, the use of the culture solution feeder according to the present invention was able to reduce the amount of feed and the amount of drainage from the medium, that is, the redundant cost of fertilizer.
[0023]
【The invention's effect】
In the moisture content sensor of the present invention, the moisture content in the medium is measured in real time based on the voltage value of the synthetic interference wave generated on the coaxial line by the traveling wave on the coaxial line and the reflected wave from the medium, so that the The moisture content can be measured, and the influence of the salt in the medium on the moisture content measured by the moisture content sensor can be reduced by making the impedance of the oscillator and the coaxial line mismatch. Further, if a compensation circuit is connected to a detection circuit for detecting the voltage value of the combined interference wave, the influence of a temperature change can be reduced. Therefore, the moisture content can be measured in real time without being affected by the salt content accumulated in the culture medium or abrupt temperature change in the greenhouse. Further, when connecting a plurality of metal rods serving as the sensor unit of the moisture content sensor, if the distance between the metal rods is larger than the particle size of the lump or the like in the medium, the medium having a large particle size such as the reki The range of application can be expanded.
[0024]
In the culture solution supply device of the present invention, the target water content value is input in advance to the liquid supply control device, and the liquid supply means is operated by comparing with the measured moisture content value of the medium measured by the moisture content sensor. The medium can always be controlled so that the medium is in a water state suitable for plant growth.
[0025]
By performing the culture solution cultivation using the culture solution supply device of the present invention, it is possible to reduce the redundant cost of the culture solution in cloudy weather, rainy weather, and the like, as compared with the conventional time-controlled liquid supply method. In addition, regarding the timely liquid supply, which has conventionally been largely based on the experience of a skilled agricultural worker, the culture medium supply device of the present invention can indicate the moisture content in the culture medium by a numerical value. Can be used even by unskilled persons.
[0026]
Further, by associating the quantified liquid supply management with the quality of the crop, it can be used as an index for obtaining a target crop quality.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an embodiment of a culture solution supply device according to the present invention.
FIG. 2 is a circuit configuration diagram of the moisture content sensor according to the present invention.
FIG. 3 is a diagram showing characteristics of a moisture content sensor according to the present invention and a conventional method for measuring the dielectric characteristics of soil with respect to the concentration of salt accumulated in a medium.
FIG. 4 is a temperature characteristic diagram of the moisture content sensor of the present invention.
FIG. 5 is a diagram showing a change in water content in a culture medium and a state of liquid supply control in tomato cultivation using the culture liquid supply device of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Supply control apparatus 2 Moisture sensor 3 Supply pump 4 Flowmeter 5 Medium 6 Culture bed 7 Supply tube 8 Culture solution tank 9 Metal rod 10 Coaxial line 11 Impedance adjustment circuit 12 Oscillator 13 Detector 14 Detector diode 15 Constant current Circuit 16 Compensation diode 17 Constant current circuit 18 Converter 19 Sensor output 20 Compensation circuit

Claims (5)

発振器から発生した高周波を、同軸線を通して培地中に挿入した金属ロッドから培地中に加え、同軸線上の進行波と培地中からの反射波とにより同軸線上に発生した合成干渉波の電圧値に基づいて培地中の水分率を計測する水分率センサーにおいて、発振器と同軸線のインピーダンスを不整合とし、水分率センサーの計測水分率値に対する培地中の塩分の影響を低減したことを特徴とする水分率センサー。The high frequency generated by the oscillator is applied to the medium from a metal rod inserted into the medium through the coaxial line, and based on the voltage value of the synthetic interference wave generated on the coaxial line by the traveling wave on the coaxial line and the reflected wave from the medium. In the moisture content sensor that measures the moisture content in the culture medium, the impedance of the oscillator and the coaxial line are mismatched, and the influence of the salt content in the culture medium on the measured moisture content value of the moisture content sensor is reduced. sensor. 合成干渉波の電圧値を検出するための検波ダイオードを有する検波回路と、検波ダイオードと同一の特性を持つ補償ダイオードを有する補償回路とを設け、検波ダイオード及び補償ダイオードには同一の一定電流を流し、周囲温度の変化による検波ダイオードの出力の変化を補償ダイオードの出力により補償すするようにした請求項1に記載の水分率センサー。A detection circuit having a detection diode for detecting the voltage value of the combined interference wave and a compensation circuit having a compensation diode having the same characteristics as the detection diode are provided, and the same constant current is applied to the detection diode and the compensation diode. 2. The moisture sensor according to claim 1, wherein a change in output of the detection diode due to a change in ambient temperature is compensated for by an output of the compensation diode. 複数の金属ロッドを有し、各金属ロッド間の間隔を培地中のレキ等の塊状物の粒径よりも大きくした請求項1又は2に記載の水分率センサー。3. The moisture content sensor according to claim 1, further comprising a plurality of metal rods, wherein an interval between the metal rods is larger than a particle size of a lump or the like in the culture medium. 4. 請求項1、2又は3に記載の水分率センサーと、培地に培養液を供給する給液手段と、培地に給液した培養液の給液量を計測する手段と、前記給液手段の給液動作を制御する給液制御手段と有する培養液給液装置であって、
前記給液制御手段は、培地に設置した前記水分率センサーによってリアルタイムで計測した培地中の計測水分率値と、予め入力された目標水分率値とを比較して前記給液手段を作動させる培養液給液装置。
A water content sensor according to claim 1, 2 or 3, a liquid supply means for supplying a culture solution to the medium, a means for measuring a supply amount of the culture solution supplied to the medium, and a supply means for the liquid supply means. A culture solution supply device having a supply control means for controlling a liquid operation,
The liquid supply control means compares the measured water content value in the medium measured in real time by the water content sensor installed in the medium with a previously input target water content value, and activates the liquid supply means. Liquid supply device.
前記給液制御手段は、予め入力された、前記水分率センサーによる計測水分率値と培養液の電気伝導度との関係から、前記水分率センサーによる計測水分率値を補正する請求項4に記載の培養液給液装置。The said liquid supply control means corrects the water content measured by the water content sensor from the relationship between the water content measured by the water content sensor and the electrical conductivity of the culture solution, which is input in advance. Culture medium feeding device.
JP2002241576A 2002-08-22 2002-08-22 Moisture modulus sensor and culture solution supplying apparatus Pending JP2004077412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002241576A JP2004077412A (en) 2002-08-22 2002-08-22 Moisture modulus sensor and culture solution supplying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002241576A JP2004077412A (en) 2002-08-22 2002-08-22 Moisture modulus sensor and culture solution supplying apparatus

Publications (1)

Publication Number Publication Date
JP2004077412A true JP2004077412A (en) 2004-03-11

Family

ID=32024016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002241576A Pending JP2004077412A (en) 2002-08-22 2002-08-22 Moisture modulus sensor and culture solution supplying apparatus

Country Status (1)

Country Link
JP (1) JP2004077412A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007058836A1 (en) * 2007-12-05 2009-06-10 Forschungszentrum Jülich GmbH Method and device for determining biomass and determining the moisture content of soil by means of dielectric measurements in the microwave resonator
WO2010095920A1 (en) * 2009-02-19 2010-08-26 Mimos Berhad A sensor profile adjuster
KR102054429B1 (en) * 2019-07-22 2019-12-10 (주)이레아이에스 Method and apparatus for measuring the state of substrates in nutriculture

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007058836A1 (en) * 2007-12-05 2009-06-10 Forschungszentrum Jülich GmbH Method and device for determining biomass and determining the moisture content of soil by means of dielectric measurements in the microwave resonator
WO2010095920A1 (en) * 2009-02-19 2010-08-26 Mimos Berhad A sensor profile adjuster
CN102404987A (en) * 2009-02-19 2012-04-04 马来西亚微电子系统有限公司 A sensor profile adjuster
CN102404987B (en) * 2009-02-19 2013-06-12 马来西亚微电子系统有限公司 A sensor profile adjuster
KR102054429B1 (en) * 2019-07-22 2019-12-10 (주)이레아이에스 Method and apparatus for measuring the state of substrates in nutriculture

Similar Documents

Publication Publication Date Title
JP5394080B2 (en) Fertilizer management controller using soil EC sensor in conjunction with irrigation controller.
CN104904569B (en) A kind of intelligent irrigation regulator control system and method based on the estimation of dynamic water content
CN106376437A (en) Alternative irrigation intelligent control system
BRPI0818834A2 (en) ADAPTABLE SUPPLY SOURCES FOR APPLICATION CONTROLLERS
CN108848845A (en) A kind of intelligent irrigation fertilization system based on cloud computing
US20180279568A1 (en) Horticultural method and apparatus
CN105684838A (en) Rotational irrigation system and method for plants according to environmental parameters
CN116508468A (en) Greenhouse environment monitoring and water and fertilizer integrated control system, platform and method
JP2004077412A (en) Moisture modulus sensor and culture solution supplying apparatus
WO2023070357A1 (en) High-reliability and low-cost agricultural internet of things system based on optical fiber sensing and artificial intelligence
Karthikamani et al. IOT based smart irrigation system using Raspberry Pi
CN113940182A (en) Automatic irrigation control system in farmland
CN209390677U (en) Intelligent precisely liquid manure system
CN210071788U (en) Device for monitoring water and nutrient absorption of crops
CN204405506U (en) A kind of evaporator metal corrosion measurement system
Haziq et al. High-efficiency Low-cost Smart IoT Agriculture Irrigation, Soil's Fertility and Moisture Controlling System
Maulini et al. Monitoring of pH, amonia (NH3) and temperature parameters aquaponic water in the 4.0 revolution era
CN205962156U (en) Automatic gardens sprinkling irrigation machine based on thing networking
CN207400103U (en) A kind of intelligent accurate water-saving irrigation system sensed based on PLC and Internet of Things
Moussa et al. IoT based smart irrigation system
CN2913972Y (en) Permanent greensward humiture control device using heat pump technology
CN104977166A (en) Comprehensive drip irrigation tape performance evaluation system
CN204482573U (en) A kind of automatic sprinkling system
Lokhande et al. IOT based automatic farm monitoring
CN109601098A (en) A kind of planting vegetable in greenhouse liquid manure one automatic spraying device