JP2004077366A - Method and apparatus for predicting maximum and minimum flow of leakage containing seawater in underground water, and method and apparatus for predicting maximum and minimum flow of seawater or underground water flow in leakage containing seawater in underground water - Google Patents

Method and apparatus for predicting maximum and minimum flow of leakage containing seawater in underground water, and method and apparatus for predicting maximum and minimum flow of seawater or underground water flow in leakage containing seawater in underground water Download PDF

Info

Publication number
JP2004077366A
JP2004077366A JP2002240375A JP2002240375A JP2004077366A JP 2004077366 A JP2004077366 A JP 2004077366A JP 2002240375 A JP2002240375 A JP 2002240375A JP 2002240375 A JP2002240375 A JP 2002240375A JP 2004077366 A JP2004077366 A JP 2004077366A
Authority
JP
Japan
Prior art keywords
flow rate
value
seawater
dilution ratio
leak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002240375A
Other languages
Japanese (ja)
Other versions
JP4065163B2 (en
Inventor
Hiroyuki Sakai
坂井 宏行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2002240375A priority Critical patent/JP4065163B2/en
Publication of JP2004077366A publication Critical patent/JP2004077366A/en
Application granted granted Critical
Publication of JP4065163B2 publication Critical patent/JP4065163B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Lining And Supports For Tunnels (AREA)
  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily acquire predicted values of maximum flow and minimum flow of leakage containing seawater leaking to an underground structure without performing complicated hydraulic computation. <P>SOLUTION: The flow of the leakage containing seawater, and sodium ion concentration are measured. These measured values are substituted in expressions [sodium ion concentration] = k/[leakage flow] (4) and [sodium ion concentration] = α×[leakage flow] + β (5) to obtain constants k, α and β. A leakage flow value acquired by substituting the value 0 for the sodium ion concentration of the expression (5) is set as the predicted value A of maximum leakage flow, and the leakage flow value acquired by substituting the sodium ion concentration value of seawater for the sodium ion concentration of the expression (4) is set as the predicted value B of seawater flow in the leakage. A sodium ion concentration value C is obtained by substituting the predicted value B for the leakage flow of the expression (5), and the leakage flow value obtained by further substituting the sodium ion concentration value C for the sodium ion concentration of the expression (4) is set as the predicted value D of minimum leakage flow. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、海底トンネル等の地下構造物のように海底や海岸近傍にあって、地下水に海水を含有する漏水がある場合に、該漏水の最大流量、最小流量の予測方法および予測装置、地下水に海水を含有する漏水中の海水分流量または地下水分の最大流量、最小流量の予測方法および予測装置の技術分野に属するものである。
【0002】
【従来技術】
こんにち、地下水面や海面より低い位置にトンネルやボックスカルバート等の地下構造物を築造することが頻繁に行われ、このような地下構造物では、漏出した水の自然排水ができない場合が多く、このときには地下構造物の水没を避けるため漏出した水を動力ポンプを使って地上に汲み上げて排出することが要求される。この様な地下構造物における漏水の要因には地下水と海水との存在があげられるが、漏水中の海水分流量は、海水が海底下から地下構造物までしみ込む速度が一定であることから変化がほとんどないのに対し、地下水分流量は、梅雨や台風による集中的な大雨や逆に渇水等の自然環境(特に雨量)に左右されることもあって、緩慢ではあるが変化する。
ところでこのような地下構造物に漏出する地下水に海水を含有する漏水(以下「海水含有漏水」という)を動力ポンプを用いて排出する場合、地下構造物での最大および最小漏水流量が判れば、これに合わせた排水能力を有する動力ポンプを採用することができるが、従来、最大および最小漏水流量を予測する簡便な手段はなかった。
【0003】
【発明が解決しようとする課題】
そして、このような最大および最小の漏水流量の予測は、非常に面倒で緻密な水位観測を行った後、該観測結果に基づいて複雑な水理学的計算を行って求めているのが実情で、特に漏水箇所が何箇所もあるような場合、いちいちこれら漏水箇所ごとに最大および最小の漏水流量の予測をすることは事実上困難であった。そこで従来は、過去に測定した漏水流量の測定値に基づき、経験的に求めた安全係数(安全率)を乗じたものを最大の漏水流量であると予測するという手法を採用することもあるが、このような予測には確証がないことから不安が残り、このため、どうしても予測値を超えた能力のある動力ポンプを設置してしまうというのが現実であって、能力過剰ぎみで、設備投資の無駄となる一方で、万一、能力が過小であった場合には地下構造物が漏水によって埋没してしまうという問題が生じ、ここに本発明が解決せんとする課題がある。
さらにこのような漏水管理をする場合、漏水中の海水分流量、漏水中の地下水分の最大および最小流量の予測値が判れば、これらに基づいたきめ細かい漏水管理をすることができる。つまり漏水中の海水分流量を知ることができるということは、地下構造物に使用されている材料が、海水に含有される塩化物イオン等の劣化促進物によって受ける劣化度合の指標とすることも可能で、これを知ることは地下構造物の補修管理等に役立つことになる。一方、漏水中の地下水分の最小および最大流量を知ることができれば、地盤の状態や地下水流路の概要把握、地下水位の間接的な観測等ができ、これによって土砂災害の予知等に寄与できることになる。しかしながら従来、これらの値を知ることは難しく、そこでこれらについても簡便に算出できることが要求され、ここにも本発明が解決せんとする課題がある。
【0004】
【課題を解決するための手段】
本発明は、上記の如き実情に鑑みこれらの課題を解決することを目的として創作されたものであって、請求項1の発明は、地下水に海水を含有する漏水の最大流量を予測する方法であって、海水の希釈割合と漏水流量とから、
[希釈割合]=α×[漏水流量]+β
α、βは何れも定数
の関係式を求め、該関係式の希釈割合にゼロの値を算入したときに算出される漏水流量の値を漏水の最大流量の予測値とするものであることを特徴とする地下水に海水を含有する漏水の最大流量の予測方法である。
請求項2の発明は、地下水に海水を含有する漏水の最大流量を予測する装置であって、海水の希釈割合と漏水流量とから、
[希釈割合]=α×[漏水流量]+β
α、βは何れも定数
の関係式を求める手段と、該関係式の希釈割合にゼロの値を算入したときに算出される漏水流量の値を漏水の最大流量の予測値とする手段とを備えて構成されるものであることを特徴とする地下水に海水を含有する漏水の最大流量の予測装置である。
そしてこれら請求項1、2の発明のようにすることで、地下水に海水を含有する漏水の最大流量を簡便に予測できることになる。
請求項3の発明は、地下水に海水を含有する漏水の最小流量を予測する方法であって、海水の希釈割合と漏水流量とから、
[希釈割合]=α×[漏水流量]+β      (1)
[希釈割合]×[漏水流量]=k        (2)
α、β、kは何れも定数
の各関係式(1)および(2)を求め、関係式(2)の希釈割合に海水が非希釈状態である場合の値を算入して非希釈時の漏水流量の値を算出し、該非希釈時の漏水流量の値を関係式(1)の漏水流量に算入して希釈割合の値を算出し、該算出され希釈割合の値を関係式(2)の希釈割合に算入することで算出される値を漏水の最小流量の予測値とするものであることを特徴とする地下水に海水を含有する漏水の最小流量の予測方法である。
請求項4の発明は、地下水に海水を含有する漏水の最小流量を予測する装置であって、海水の希釈割合と漏水流量とから、
[希釈割合]=α×[漏水流量]+β      (1)
[希釈割合]×[漏水流量]=k        (2)
α、β、kは何れも定数
の各関係式(1)および(2)を求める手段と、関係式(2)の希釈割合に海水が非希釈状態である場合の値を算入して非希釈時の漏水流量の値を算出し、該非希釈時の漏水流量の値を関係式(1)の漏水流量に算入して希釈割合の値を算出し、該算出された希釈割合の値を関係式(2)の希釈割合に算入することで算出される値を漏水の最小流量の予測値とする手段とを備えて構成されるものであることを特徴とする地下水に海水を含有する漏水の最小流量の予測装置である。
そしてこれら請求項3、4の発明のようにすることで、地下水に海水を含有する漏水の最小流量を簡便に予測することができる。
請求項5の発明は、請求項1乃至4において、海水の希釈割合は、漏水中の海水由来成分の濃度を指標とすることを特徴とすることができ、このようにすることで、海水の希釈割合を簡単に求めることができる。
請求項6の発明は、請求項5において、海水由来成分は、ナトリウムイオン、カリウムイオン、マグネシウムイオン、カルシウムイオン、塩化物イオンおよび硫酸イオンの中から選択されるイオンであることを特徴とすることができ、このようにすることで海水の希釈割合を求めるための作業が容易になる。
請求項7の発明は、請求項1乃至4において、海水の希釈割合は、漏水の電気伝導率を指標とすることを特徴とすることができ、このようにしても海水の希釈割合を簡便に求めることができる。
請求項8の発明は、地下水に海水を含有する漏水中の海水分流量を予測する方法であって、海水の希釈割合と漏水流量とから、
[希釈割合]×[漏水流量]=k
kは定数
の関係式を求め、該関係式の希釈割合に海水が非希釈状態である場合の値を算入して算出される非希釈時の漏水流量の値を、漏水中の海水分流量の予測値であるとすることを特徴とする地下水に海水を含有する漏水中の海水分流量の予測方法である。
請求項9の発明は、地下水に海水を含有する漏水中の海水分流量を予測する装置であって、海水の希釈割合と漏水流量とから、
[希釈割合]×[漏水流量]=k
kは定数
の関係式を求める手段と、該関係式の希釈割合に海水が非希釈状態である場合の値を算入して算出される漏水流量の値を、漏水中の海水分流量の予測値であるとする手段とを備えて構成されるものであることを特徴とする地下水に海水を含有する漏水の最大流量装置である。
そして請求項8、9の発明のようにすることで、地下水に海水を含有する漏水の最大流量の予測が簡単にできることになる。
請求項10の発明は、地下水に海水を含有する漏水中の地下水分の最大流量を予測する方法であって、海水の希釈割合と漏水流量とから、
[希釈割合]=α×[漏水流量]+β      (1)
[希釈割合]×[漏水流量]=k        (2)
α、β、kは何れも定数
の各関係式(1)および(2)を求め、関係式(1)の希釈割合にゼロの値を算入したときに算出される漏水流量の値から、関係式(2)の希釈割合に海水が非希釈状態である場合の値を算入したときに算出される漏水流量の値を差し引いた値を、漏水中の地下水分の最大流量の予測値であるとすることを特徴とする地下水に海水を含有する漏水中の地下水分の最大流量の予測方法である。
請求項11の発明は、地下水に海水を含有する漏水中の地下水分の最大流量を予測する装置であって、海水の希釈割合と漏水流量とから、
[希釈割合]=α×[漏水流量]+β      (1)
[希釈割合]×[漏水流量]=k        (2)
α、β、kは何れも定数
の各関係式(1)および(2)を求める手段と、関係式(1)の希釈割合にゼロの値を算入したときに算出される漏水流量の値から、関係式(2)の希釈割合に海水が非希釈状態である場合の値を算入したときに算出される漏水流量の値を差し引いた値を、漏水中の地下水分の最大流量の予測値であるとする手段とを備えて構成されるものであることを特徴とする地下水に海水を含有する漏水中の地下水分の最大流量の予測装置である。
そして請求項10、11の発明のようにすることで、地下水に海水を含有する漏水中の地下水分の最大流量の予測が簡単にできることになる。
請求項12の発明は、地下水に海水を含有する漏水中の地下水分の最小流量を予測する方法であって、海水の希釈割合と漏水流量とから、
[希釈割合]=α×[漏水流量]+β      (1)
[希釈割合]×[漏水流量]=k        (2)
α、β、kは何れも定数
の各関係式(1)および(2)を求め、関係式(2)の希釈割合に海水が非希釈状態である場合の値を算入して非希釈時の漏水流量の値を算出し、該非希釈時の漏水流量の値を関係式(1)の漏水流量に算入することで希釈割合の値を算出し、該算出された希釈割合の値を関係式(2)の希釈割合に算入することで漏水流量の値を算出し、該算出される漏水流量の値から前記非希釈時の漏水流量の値を差し引いて得た値を、漏水中の地下水分流量の最小流量の予測値とするようにしたものであることを特徴とする地下水に海水を含有する漏水中の地下水分の最小流量の予測方法である。
請求項13の発明は、地下水に海水を含有する漏水中の地下水分の最小流量を予測する装置であって、海水の希釈割合と漏水流量とから、
[希釈割合]=α×[漏水流量]+β      (1)
[希釈割合]×[漏水流量]=k        (2)
α、β、kは何れも定数
の各関係式(1)および(2)を求める手段と、関係式(2)の希釈割合に海水が非希釈状態である場合の値を算入して非希釈時の漏水流量の値を算出し、該非希釈時の漏水流量の値を関係式(1)の漏水流量に算入して希釈割合の値を算出し、該算出した希釈割合の値を関係式(2)の希釈割合に算入することで漏水流量の値を算出する手段と、該算出された漏水流量の値から前記非希釈時の漏水流量の値を差し引いて得た値を漏水中の地下水分の最小流量の予測値であるとする手段とを備えて構成したことを特徴とする地下水に海水を含有する漏水中の地下水分の最小流量の予測装置である。
そしてこのようにすることで、地下水に海水を含有する漏水中の地下水分の最小流量の予測が簡単にできることになる。
【0005】
【発明の実施の形態】
ところで本発明を実施するにあたり、地下構造物において漏出する海水含有漏水の流量は、地下水分の流量と海水分の流量との和、つまり
[漏水流量]=[地下水分流量]+[海水分流量]   (3)
としてあらわされるが、このうちの地下水分流量は前述したように自然環境等により変化するのに対し、海水分量は海底からほぼ一定量が漏出するものと考えられることから、海水含有漏水は、海水と地下水との単純な希釈律に支配されていると予測される。このことは、海水が漏水によって希釈される割合、つまり海水の希釈割合(希釈度、希釈率)は、前記式(3)で算出される漏水流量に反比例することを意味する。一方、この希釈割合は、例えば漏水中の海水由来成分の濃度であらわすことができ、これを、海水由来成分のひとつであるナトリウムイオンの濃度と漏水流量との関係として式にあらわすと、
[ナトリウムイオン濃度]=k/[漏水流量]     (4)
kは定数
としてあらわされることになり、この反比例式(4)の曲線を図2に示す。
【0006】
一方、海水含有漏水の流量と該漏水中の海水由来成分のひとつであるナトリウムイオン濃度との関係を実際に測定して調べたところ、本発明の発明者は、これらが一次の関係式に近似できることを見出し、このことについては既に特開2001−141545号公報により公知となっている。つまり、
[ナトリウムイオン濃度]=α×[漏水流量]+β   (5)
α、βは何れも定数
としてあらわされ、この直線を図2に示す。
【0007】
ここで関係式(4)において、ナトリウムイオン濃度がゼロになる、つまり海水に含まれたナトリウムイオンが無限に希釈されるときは、横軸である漏水流量の漸近線に無限に近づくことになって無限大になる。これに対し、関係式(5)は、ナトリウムイオン濃度と漏水流量との測定値から、これらの関係が一次の関係式にあるとして数式化されたものであり、しかも漏水流量は、関係式(3)から海水分流量と地下水分流量との和であることから、関係式(5)においてナトリウムイオン濃度をゼロとして求められる漏水流量の値、つまり「−β/α(=A)」は、その測定場所における漏水流量の最大値であると考えることができ、そこでこの値を漏水の最大流量の予測値Aとして取り扱ってもよいといえる。
【0008】
一方、前述したナトリウムイオン濃度と漏水流量との測定値を関係式(4)に算入し、最小二乗法等の適宜の近似処理を行って定数kを算出して関係式(4)を具体化する。この具体化した関係式(4)に、ナトリウムイオンの海水での濃度(ナトリウムイオンの海水での濃度は11000μg mL−1(マイクログラム ミリリットルのマイナス1乗))を算入して漏水流量Bを算出する。ここで算出した漏水流量Bは、ナトリウムイオン濃度が海水と同じ濃度、つまり地下水分流量がゼロである非希釈時のものであると仮定して算出したものであるから、純粋に地下水が混じらない海水のみの漏水流量、つまり漏水中の海水分流量の予測値Bであるとすることができる。
【0009】
一方、ここでのナトリウムイオン濃度と漏水流量との測定値の関係は、前述した関係式(5)で具体的に与えられるのであるから、上記求めた海水分流量の予測値Bを関係式(5)に算入したときに得られるナトリウムイオン濃度の値Cは、該測定位置においてこれ以上はナトリウムイオン濃度が上昇しない値、つまり海水分流量に最小の地下水分流量が混じったときの濃度値(最大濃度値)Cであることを意味する。そしてこの最大濃度値Cを、前記具体式(4)に算入して求めて算出した漏水流量の値Dは、海水分流量と最小の地下水分流量の和である、つまり漏水の最小流量の予測値Dであるとして取り扱うことができることを意味する。そしてこの場合に、前記海水分流量の予測値Bと、漏水の最小流量の予測値Dとの差(=D−B)が漏水中の地下水分の最小流量の予測値として、また前記算出された漏水の最大流量の予測値Aとの差(=A−B)が漏水中の地下水分の最大流量の予測値として取り扱うことができることになる。
そしてこのように推測して得た最大および最小の漏水流量の予測値A、Dの範囲内に、実際に測定した漏水流量の測定値の最大値、最小値の何れも入っていることを確認し、本発明を完成するに至った。
【0010】
因みに、実際に濃度測定に用いる海水由来成分としては、ナトリウムイオンやカリウムイオン、マグネシウムイオン、カルシウムイオン等の陽イオン、塩化物イオンや硫酸イオン等の陰イオンが例示される。
本発明は、さらに敷衍して漏水中の海水由来成分の濃度というものは、海水分量がそれなりに存在する場合、希釈による損失(例えば、希釈により微量になったときの吸着等による損失)を無視できるため海水成分は単純な希釈律に支配されるから、該海水由来成分の濃度は、漏水による海水の希釈割合として相対的に表すことができ、そこでこの漏水による海水の希釈割合を何らかのかたちで実際に測定できればよいことになる。ところで、海水由来成分が漏水として漏出するまでの過程で生物代謝されず、また化学変化もしなければ、海水含有漏水中の海水由来成分の濃度はそのまま漏水の電気伝導率に置き換えられると推論でき、そこでこれを立証するため、海水含有漏水中の海水由来成分の濃度と、該漏水の電気伝導率との関係を調べたところ、図8に示すように、これらは一次関数の関係になっていることを確認した。従って、漏水の電気伝導率を式(4)および(5)のナトリウムイオン濃度に置き換える(この場合、k、αおよびβの定数は当然に変わる)ことで、同様にして最大および最小の漏水流量の予測値等を算出することもできる。
【0011】
【実施例】
次に、本発明の実施例について図面を用いて説明する。図1は既存の海底トンネルの概略縦断面図であって、該海底トンネルは、本坑1および作業坑2を有し、そのうちの本坑1は、トンネルの中間に向かうほど深くなるこう配変更点を有する略V字形の傾斜状態で築造されている。これに対して作業抗2は、前記本坑1の最深位置をこう配変更点として坑口に至るほど深くなるよう傾斜した略逆V字形に築造され、そして各坑口側の地上位置においてたて坑3、4が築造されている。
【0012】
そして前記本坑1の(a)〜(e)位置について、漏水の流量(m 日−1(メートルの3乗 日のマイナス1乗))を三角ぜき法にて測定すると共に、その漏水中のナトリウムイオン濃度(μg mL−1)を測定した。図3〜図7に前記各測定位置(a)〜(e)におけるナトリウムイオン濃度と漏水流量との測定値をプロットしたものを示す。そしてこれら測定値から式(4)および(5)の各定数を求め、前述した算出手順に基づき最大および最小の漏水流量の予測値を算出した結果を図9に示す。また、該図9には、前記各測定位置で測定された最大および最小の漏水流量の測定値を併記するが、これらから、実際の漏水流量の測定値は、何れも最大および最小の漏水流量の予測値の範囲内にあることが確認され、本発明の信頼性が確認される。また、これらのデータから、漏水中の海水分流量の予測値、漏水中の地下水分の最大および最小流量の予測値も求めることができ、そしてこれら求めた各予測値に基づいて漏出した漏水のきめ細かい排出管理をすることができる。
【0013】
前述したようにして最大および最小の漏水流量等の各予測値を求める場合、その計算手順をソフト化してパーソナルコンピューター等の高速演算処理手段に登録しておき、そして各測定データを入力することで自動的に算出するよう構成することができ、このようにしておけば、より簡便にこれら予測値を算出することができる。
【図面の簡単な説明】
【図1】海底トンネルの概略縦断面図である。
【図2】予測値の算出手法を説明するためのグラフ図である。
【図3】位置(a)での測定結果を示すグラフ図である。
【図4】位置(b)での測定結果を示すグラフ図である。
【図5】位置(c)での測定結果を示すグラフ図である。
【図6】位置(d)での測定結果を示すグラフ図である。
【図7】位置(e)での測定結果を示すグラフ図である。
【図8】地下水に海水を含有する漏水のナトリウムイオン濃度と電気伝導率との関係を示すグラフ図である。
【図9】算出された最大および最小の漏水流量の予測値と実測された最大および最小の漏水流量とを示した表図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and apparatus for predicting a maximum flow rate and a minimum flow rate of a groundwater, when there is a leak containing seawater in the groundwater near the seabed or a shore, such as an underground structure such as a submarine tunnel, The present invention belongs to the technical field of a prediction method and a prediction apparatus of a maximum flow rate and a minimum flow rate of sea water or underground water in a leak water containing seawater.
[0002]
[Prior art]
Today, underground structures such as tunnels and box culverts are frequently constructed below the water table or sea level, and such underground structures often do not allow natural drainage of leaked water. In this case, it is required that the leaked water be pumped to the ground using a power pump and discharged to avoid submergence of the underground structure. The cause of water leakage in such underground structures is the presence of groundwater and seawater.However, the seawater flow rate during the leakage varies due to the constant rate of penetration of seawater from under the seabed to the underground structures. On the other hand, the water flow rate under the ground changes slowly but slowly, depending on the natural environment (especially rainfall) such as intensive heavy rainfall due to the rainy season or typhoon and conversely drought.
By the way, when using a power pump to discharge a leak containing seawater into groundwater leaking into such an underground structure (hereinafter referred to as “seawater-containing leak”), if the maximum and minimum leak rates at the underground structure are known, Although a power pump having a drainage capacity corresponding to this can be adopted, there has been no simple means for estimating the maximum and minimum leak flow rates in the past.
[0003]
[Problems to be solved by the invention]
It is a fact that such a prediction of the maximum and minimum leakage flow rates is obtained by performing very complicated and precise water level observations and then performing complicated hydraulic calculations based on the observation results. In particular, when there are many leak points, it is practically difficult to predict the maximum and minimum leak flow rate for each of these leak points. Therefore, in the past, based on the measured values of leak water flow measured in the past, a method of multiplying an empirically obtained safety factor (safety factor) and predicting the maximum leak flow may be adopted. However, since such predictions are unconfirmed, there remains uncertainty. For this reason, it is a reality that a power pump with a capacity exceeding the predicted value is inevitably installed. On the other hand, if the capacity is too small, there is a problem that the underground structure is buried by water leakage, and there is a problem that the present invention cannot solve.
Furthermore, when such a leak management is performed, if the predicted values of the sea water flow rate in the leak water and the maximum and minimum flow rates of the underground water in the leak water are known, it is possible to perform a fine leak management based on these. In other words, being able to know the seawater flow rate during leaking water can be used as an indicator of the degree of deterioration of materials used for underground structures due to deterioration promoting substances such as chloride ions contained in seawater. It is possible, and knowing this will be useful for repair management of underground structures. On the other hand, if the minimum and maximum flow rates of groundwater in the leaked water can be known, it is possible to understand the state of the ground, the outline of the groundwater flow path, indirect observation of the groundwater level, etc., thereby contributing to the prediction of sediment disasters, etc. become. However, conventionally, it is difficult to know these values, and it is required that these values can be easily calculated, and there is a problem that the present invention does not solve.
[0004]
[Means for Solving the Problems]
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and has been made in order to solve these problems. The invention of claim 1 is a method for estimating a maximum flow rate of a leak containing seawater in groundwater. Then, from the dilution ratio of seawater and the leakage flow rate,
[Dilution ratio] = α × [Leakage flow rate] + β
α and β both obtain a relational expression of a constant, and assume that the value of the water leakage flow rate calculated when a value of zero is included in the dilution ratio of the relational expression is a predicted value of the maximum flow rate of the water leakage. This is a method for predicting the maximum flow rate of leaks containing seawater in groundwater.
The invention according to claim 2 is an apparatus for predicting the maximum flow rate of a leak containing seawater in groundwater, and the dilution ratio of the seawater and the leak flow rate,
[Dilution ratio] = α × [Leakage flow rate] + β
Both α and β are means for obtaining a relational expression of a constant, and means for setting the value of the leakage flow rate calculated when a value of zero is included in the dilution ratio of the relational expression as a predicted value of the maximum flow rate of the leakage. An apparatus for predicting the maximum flow rate of a leak containing seawater in groundwater, characterized in that the apparatus is provided and configured.
In addition, according to the first and second aspects of the present invention, it is possible to easily predict the maximum flow rate of the leakage water containing seawater in the groundwater.
The invention according to claim 3 is a method for predicting the minimum flow rate of leak water containing seawater in groundwater, wherein the dilution rate of seawater and the leak flow rate are based on
[Dilution ratio] = α × [Leakage flow rate] + β (1)
[Dilution ratio] × [Leakage flow rate] = k (2)
For α, β, and k, constants are obtained by the respective relational expressions (1) and (2), and a value in the case where seawater is in an undiluted state is included in the dilution ratio of the relational expression (2) to obtain The value of the water leakage flow rate is calculated, and the value of the water leakage flow rate at the time of non-dilution is included in the water leakage flow rate of relational expression (1) to calculate the value of the dilution ratio. A method for estimating the minimum flow rate of a leak containing seawater in groundwater, characterized in that a value calculated by incorporating the dilution rate into the dilution ratio is used as the predicted value of the minimum flow rate of the leak water.
The invention according to claim 4 is an apparatus for predicting a minimum flow rate of leak water containing seawater in groundwater, wherein the dilution rate of seawater and the leak flow rate are as follows:
[Dilution ratio] = α × [Leakage flow rate] + β (1)
[Dilution ratio] × [Leakage flow rate] = k (2)
Each of α, β, and k is a means for obtaining the relational expressions (1) and (2) of the constants, and the dilution ratio of the relational expression (2) includes the value in the case where the seawater is in an undiluted state. Calculate the value of the dilution rate by calculating the value of the leakage flow rate at the time, calculate the value of the dilution rate by incorporating the value of the leakage flow rate at the time of non-dilution into the leak rate of the relational expression (1), and calculate the value of the dilution rate by the relational equation. Means for calculating a value calculated by taking into account the dilution ratio in (2) as a predicted value of the minimum flow rate of leak water. It is a flow rate prediction device.
According to the third and fourth aspects of the invention, it is possible to easily predict the minimum flow rate of water leakage containing seawater in groundwater.
The invention of claim 5 can be characterized in that, in claims 1 to 4, the dilution ratio of seawater is based on the concentration of a component derived from seawater in the leaked water as an index. The dilution ratio can be easily obtained.
The invention according to claim 6 is characterized in that, in claim 5, the component derived from seawater is an ion selected from sodium ions, potassium ions, magnesium ions, calcium ions, chloride ions and sulfate ions. By doing so, the work for obtaining the dilution ratio of seawater is facilitated.
The invention of claim 7 can be characterized in that, in claims 1 to 4, the dilution ratio of seawater uses the electric conductivity of water leakage as an index. You can ask.
The invention according to claim 8 is a method for predicting a sea water flow rate in a leak water containing sea water in groundwater, wherein the sea water dilution ratio and the leak water flow rate are based on:
[Dilution ratio] x [Leakage flow rate] = k
k is a constant relational expression, the value of the undiluted leakage flow rate calculated by adding the value when the seawater is in an undiluted state to the dilution ratio of the relational expression, This is a method of predicting a seawater flow rate in a leak containing seawater in groundwater, which is a predicted value.
The invention according to claim 9 is an apparatus for predicting a seawater flow rate in a leakage water containing seawater in groundwater, wherein a dilution ratio of the seawater and a leakage flow rate are:
[Dilution ratio] x [Leakage flow rate] = k
k is a means for obtaining a relational expression of a constant, and a value of a leakage flow rate calculated by adding a value in a case where seawater is in an undiluted state to a dilution ratio of the relational expression is a predicted value of a seawater flow rate in the leakage water. A maximum flow rate device for leaking groundwater containing seawater.
According to the eighth and ninth aspects of the present invention, it is possible to easily estimate the maximum flow rate of the leakage water containing seawater in the groundwater.
The invention of claim 10 is a method for predicting the maximum flow rate of groundwater in a leak containing seawater in the groundwater, wherein the dilution ratio of the seawater and the leak flow rate are:
[Dilution ratio] = α × [Leakage flow rate] + β (1)
[Dilution ratio] × [Leakage flow rate] = k (2)
α, β, and k are all constants obtained from the relational expressions (1) and (2), and from the value of the water leakage flow rate calculated when a value of zero is included in the dilution ratio of the relational expression (1), The value obtained by subtracting the value of the leakage flow rate calculated when the value in the case where the seawater is in an undiluted state is included in the dilution ratio of the equation (2) is the predicted value of the maximum flow rate of the underground moisture in the leakage water. This is a method for predicting the maximum flow rate of groundwater in a leak containing seawater in groundwater.
The invention according to claim 11 is an apparatus for predicting the maximum flow rate of groundwater in a leak containing seawater in the groundwater, wherein the dilution rate of the seawater and the leak flow rate are:
[Dilution ratio] = α × [Leakage flow rate] + β (1)
[Dilution ratio] × [Leakage flow rate] = k (2)
α, β, and k are constants from the means for obtaining the relational expressions (1) and (2), and from the value of the water leakage flow rate calculated when a value of zero is included in the dilution ratio of the relational expression (1). The value obtained by subtracting the value of the leakage flow rate calculated when the value in the case where the seawater is in an undiluted state is included in the dilution ratio of the relational expression (2) is the predicted value of the maximum flow rate of the underground moisture in the leakage water. And a means for estimating the maximum flow rate of groundwater in a leak containing seawater in groundwater.
According to the tenth and eleventh aspects of the present invention, it is possible to easily predict the maximum flow rate of the underground water in the leak containing seawater in the underground water.
The invention of claim 12 is a method of predicting the minimum flow rate of groundwater in a leak containing seawater in the groundwater, wherein the dilution ratio of the seawater and the leak flow rate are:
[Dilution ratio] = α × [Leakage flow rate] + β (1)
[Dilution ratio] × [Leakage flow rate] = k (2)
For α, β, and k, constants are obtained by the respective relational expressions (1) and (2), and a value in the case where seawater is in an undiluted state is included in the dilution ratio of the relational expression (2) to obtain The value of the leak rate is calculated by calculating the value of the leak rate, and adding the value of the leak rate at the time of non-dilution to the leak rate of the relational expression (1). The value of the leakage flow rate is calculated by adding the value to the dilution ratio of 2), and the value obtained by subtracting the value of the leakage flow rate at the time of non-dilution from the calculated value of the leakage flow rate is the groundwater flow rate in the leakage water. A method for predicting the minimum flow rate of underground moisture in a leak containing seawater in groundwater, wherein the minimum flow rate is a predicted value of the minimum flow rate.
The invention of claim 13 is an apparatus for predicting a minimum flow rate of groundwater in a leak containing seawater in the groundwater, wherein the dilution ratio of the seawater and the leak flow rate are:
[Dilution ratio] = α × [Leakage flow rate] + β (1)
[Dilution ratio] × [Leakage flow rate] = k (2)
Each of α, β, and k is a means for obtaining the relational expressions (1) and (2) of the constants, and the dilution ratio of the relational expression (2) includes the value in the case where the seawater is in an undiluted state. The value of the leakage flow rate at the time is calculated, the value of the leakage flow rate at the time of non-dilution is included in the leakage flow rate of the relational expression (1), and the value of the dilution ratio is calculated. Means for calculating the value of the leakage flow rate by taking into account the dilution ratio in 2), and subtracting the value of the leakage flow rate at the time of non-dilution from the calculated value of the leakage flow rate to obtain the underground water content in the leakage water Means for predicting the minimum flow rate of the underground water. The apparatus for predicting the minimum flow rate of underground moisture in leaked water containing seawater in groundwater.
By doing so, it is possible to easily predict the minimum flow rate of the groundwater in the leakage water containing seawater in the groundwater.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
By the way, in carrying out the present invention, the flow rate of seawater-containing leaking water leaking from an underground structure is the sum of the flow rate of underground moisture and the flow rate of seawater, that is, [leakage flow rate] = [underground moisture flow rate] + [sea moisture flow rate] ] (3)
As described above, underground water flow varies depending on the natural environment as described above, whereas seawater content is considered to leak almost constant from the seabed. It is expected to be governed by a simple dilution rule with groundwater. This means that the rate at which seawater is diluted due to water leakage, that is, the dilution rate (dilution rate, dilution rate) of seawater, is inversely proportional to the water leakage flow rate calculated by equation (3). On the other hand, this dilution ratio can be represented by, for example, the concentration of the seawater-derived component in the leaked water, and expressing this in a formula as a relationship between the concentration of sodium ion, which is one of the seawater-derived components, and the flow rate of the leaked water,
[Sodium ion concentration] = k / [water leakage flow rate] (4)
k is represented as a constant, and the curve of the inverse proportional expression (4) is shown in FIG.
[0006]
On the other hand, when the relationship between the flow rate of the seawater-containing leak and the sodium ion concentration, which is one of the seawater-derived components in the leak, was actually measured and investigated, the inventors of the present invention found that these approximated a linear relationship. It has been found that this is possible, and this is already known from Japanese Patent Application Laid-Open No. 2001-141545. That is,
[Sodium ion concentration] = α × [water leakage flow rate] + β (5)
Both α and β are represented as constants, and this straight line is shown in FIG.
[0007]
Here, in the relational expression (4), when the sodium ion concentration becomes zero, that is, when the sodium ions contained in the seawater are infinitely diluted, the asymptote of the leakage flow rate on the horizontal axis approaches infinity. Become infinite. On the other hand, the relational expression (5) is a mathematical expression based on the measured values of the sodium ion concentration and the leakage flow rate, assuming that these relations are in a linear relational expression. From 3), since it is the sum of the sea water flow rate and the underground water flow rate, the value of the leak water flow rate obtained by setting the sodium ion concentration to zero in the relational expression (5), that is, “−β / α (= A)” is It can be considered that this is the maximum value of the water leakage flow rate at the measurement location, and it can be said that this value may be treated as the predicted value A of the maximum water leakage flow rate.
[0008]
On the other hand, the measured values of the sodium ion concentration and the flow rate of the leaked water are included in the relational expression (4), and an appropriate approximation process such as a least squares method is performed to calculate a constant k to realize the relational expression (4). I do. The leaked water flow rate B is calculated by taking into account the concentration of sodium ions in seawater (the concentration of sodium ions in seawater is 11000 μg mL −1 (microgram milliliters minus the first power)) in the embodied relational expression (4). I do. The calculated leakage water flow rate B is calculated based on the assumption that the sodium ion concentration is the same as that of seawater, that is, a non-dilution state in which the underground water flow rate is zero, so that purely groundwater does not mix. It may be the leakage flow rate of only seawater, that is, the predicted value B of the seawater flow rate in the leakage water.
[0009]
On the other hand, since the relationship between the measured value of the sodium ion concentration and the leaked water flow rate is specifically given by the above-described relational expression (5), the predicted value B of the sea water flow rate obtained above is calculated by the relational expression ( The value C of the sodium ion concentration obtained when the calculation is performed in 5) is a value at which the sodium ion concentration does not increase any more at the measurement position, that is, a concentration value when the minimum underground water flow is mixed with the sea water flow ( (Maximum density value) C. The value D of the leakage flow rate calculated by calculating the maximum concentration value C into the specific equation (4) is the sum of the sea water flow rate and the minimum underground water flow rate, that is, the prediction of the minimum flow rate of the leakage water. It means that it can be treated as having the value D. In this case, the difference (= DB) between the predicted value B of the sea water flow rate and the predicted value D of the minimum flow rate of the leaked water is calculated as the predicted value of the minimum flow rate of the subsurface water in the leaked water. The difference (= AB) from the predicted value A of the maximum flow rate of the leaked water can be treated as the predicted value of the maximum flow rate of the underground moisture in the leaked water.
Then, it is confirmed that both the maximum value and the minimum value of the actually measured leakage flow rate are within the range of the predicted values A and D of the maximum and minimum leakage flow rates obtained by such estimation. Thus, the present invention has been completed.
[0010]
Incidentally, examples of the components derived from seawater that are actually used for concentration measurement include cations such as sodium ion, potassium ion, magnesium ion and calcium ion, and anions such as chloride ion and sulfate ion.
According to the present invention, the concentration of the component derived from seawater in the leaked water is further extended to neglect the loss due to dilution (for example, the loss due to adsorption when the amount becomes very small by dilution) when the amount of seawater is present. Since the seawater component is governed by a simple dilution law, the concentration of the seawater-derived component can be relatively expressed as a dilution ratio of the seawater due to the leakage, and the dilution ratio of the seawater due to the leakage is somehow determined. It is only necessary to be able to actually measure. By the way, it can be inferred that the concentration of the seawater-derived component in the seawater-containing leak is directly replaced by the electrical conductivity of the leak if the seawater-derived component is not biologically metabolized in the process of leaking as a leak, and if there is no chemical change, In order to prove this, the relationship between the concentration of seawater-derived components in the seawater-containing leak and the electrical conductivity of the leak was examined. As shown in FIG. 8, these were in the form of linear functions. It was confirmed. Thus, by replacing the electrical conductivity of the leak with the sodium ion concentration of equations (4) and (5) (where the constants of k, α and β naturally change), the maximum and minimum leak rates are likewise obtained. Can be calculated.
[0011]
【Example】
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic longitudinal sectional view of an existing submarine tunnel. The submarine tunnel has a main shaft 1 and a working shaft 2, of which the main shaft 1 has a gradient change point that becomes deeper toward the middle of the tunnel. And is built in a substantially V-shaped inclined state. On the other hand, the work pit 2 is constructed in a substantially inverted V-shape that is inclined so as to be deeper toward the wellhead with the deepest position of the main well 1 being a gradient change point, and the vertical shaft 3 is located at a ground position on each wellhead side. 4 have been built.
[0012]
Then, for the positions (a) to (e) of the main shaft 1, the flow rate of water leakage (m 3 day -1 (the third power of the day minus the first power of day)) is measured by the triangular weir method, and the water leakage is measured. The sodium ion concentration (μg mL −1 ) was measured. FIGS. 3 to 7 show plots of measured values of the sodium ion concentration and the water leakage flow rate at the respective measurement positions (a) to (e). FIG. 9 shows the results of calculating the constants of the equations (4) and (5) from these measured values and calculating the maximum and minimum predicted values of the leakage flow rate based on the above-described calculation procedure. FIG. 9 also shows the measured values of the maximum and minimum leak flow rates measured at the respective measurement positions. From these, the measured values of the actual leak flow rates are all the maximum and minimum leak flow rates. , And the reliability of the present invention is confirmed. From these data, the predicted value of the sea water flow rate in the leaked water, the predicted value of the maximum and minimum flow rate of the underground water in the leaked water can also be obtained, and the leaked water based on each of the obtained predicted values can be obtained. Detailed emission management can be performed.
[0013]
As described above, when calculating the respective predicted values such as the maximum and minimum leakage flow rates, the calculation procedure is softened and registered in high-speed arithmetic processing means such as a personal computer, and each measurement data is input. It can be configured to calculate automatically, and in this way, these predicted values can be calculated more easily.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view of a submarine tunnel.
FIG. 2 is a graph for explaining a method of calculating a predicted value.
FIG. 3 is a graph showing a measurement result at a position (a).
FIG. 4 is a graph showing a measurement result at a position (b).
FIG. 5 is a graph showing a measurement result at a position (c).
FIG. 6 is a graph showing a measurement result at a position (d).
FIG. 7 is a graph showing a measurement result at a position (e).
FIG. 8 is a graph showing a relationship between sodium ion concentration and electric conductivity of leakage water containing seawater in groundwater.
FIG. 9 is a table showing the predicted values of the calculated maximum and minimum leak flow rates and the actually measured maximum and minimum leak flow rates.

Claims (13)

地下水に海水を含有する漏水の最大流量を予測する方法であって、海水の希釈割合と漏水流量とから、
[希釈割合]=α×[漏水流量]+β
α、βは何れも定数
の関係式を求め、該関係式の希釈割合にゼロの値を算入したときに算出される漏水流量の値を漏水の最大流量の予測値とするものであることを特徴とする地下水に海水を含有する漏水の最大流量の予測方法。
It is a method of predicting the maximum flow rate of leak water containing seawater in groundwater, from the dilution ratio of seawater and the leak flow rate,
[Dilution ratio] = α × [Leakage flow rate] + β
α and β both obtain a relational expression of a constant, and assume that the value of the water leakage flow rate calculated when a value of zero is included in the dilution ratio of the relational expression is a predicted value of the maximum flow rate of the water leakage. A method for predicting the maximum flow rate of leaks containing seawater in groundwater.
地下水に海水を含有する漏水の最大流量を予測する装置であって、海水の希釈割合と漏水流量とから、
[希釈割合]=α×[漏水流量]+β
α、βは何れも定数
の関係式を求める手段と、該関係式の希釈割合にゼロの値を算入したときに算出される漏水流量の値を漏水の最大流量の予測値とする手段とを備えて構成されるものであることを特徴とする地下水に海水を含有する漏水の最大流量の予測装置。
It is a device for predicting the maximum flow rate of leak water containing seawater in groundwater, from the dilution ratio of seawater and the leak flow rate,
[Dilution ratio] = α × [Leakage flow rate] + β
Both α and β are means for obtaining a relational expression of a constant, and means for setting the value of the leakage flow rate calculated when a value of zero is included in the dilution ratio of the relational expression as a predicted value of the maximum flow rate of the leakage. An apparatus for predicting the maximum flow rate of a leak containing seawater in groundwater, comprising:
地下水に海水を含有する漏水の最小流量を予測する方法であって、海水の希釈割合と漏水流量とから、
[希釈割合]=α×[漏水流量]+β      (1)
[希釈割合]×[漏水流量]=k        (2)
α、β、kは何れも定数
の各関係式(1)および(2)を求め、関係式(2)の希釈割合に海水が非希釈状態である場合の値を算入して非希釈時の漏水流量の値を算出し、該非希釈時の漏水流量の値を関係式(1)の漏水流量に算入して希釈割合の値を算出し、該算出され希釈割合の値を関係式(2)の希釈割合に算入することで算出される値を漏水の最小流量の予測値とするものであることを特徴とする地下水に海水を含有する漏水の最小流量の予測方法。
A method for predicting the minimum flow rate of leak water containing seawater in groundwater, from the dilution ratio of seawater and the leak flow rate,
[Dilution ratio] = α × [Leakage flow rate] + β (1)
[Dilution ratio] × [Leakage flow rate] = k (2)
For α, β, and k, constants are obtained by the respective relational expressions (1) and (2), and a value in the case where seawater is in an undiluted state is included in the dilution ratio of the relational expression (2) to obtain The value of the water leakage flow rate is calculated, and the value of the water leakage flow rate at the time of non-dilution is included in the water leakage flow rate of relational expression (1) to calculate the value of the dilution ratio. A method for predicting a minimum flow rate of a leak containing seawater in groundwater, wherein a value calculated by taking the value into the dilution ratio is used as a predicted value of the minimum flow rate of the leak water.
地下水に海水を含有する漏水の最小流量を予測する装置であって、海水の希釈割合と漏水流量とから、
[希釈割合]=α×[漏水流量]+β      (1)
[希釈割合]×[漏水流量]=k        (2)
α、β、kは何れも定数
の各関係式(1)および(2)を求める手段と、関係式(2)の希釈割合に海水が非希釈状態である場合の値を算入して非希釈時の漏水流量の値を算出し、該非希釈時の漏水流量の値を関係式(1)の漏水流量に算入して希釈割合の値を算出し、該算出された希釈割合の値を関係式(2)の希釈割合に算入することで算出される値を漏水の最小流量の予測値とする手段とを備えて構成されるものであることを特徴とする地下水に海水を含有する漏水の最小流量の予測装置。
It is a device for predicting the minimum flow rate of leak water containing seawater in groundwater, from the dilution ratio of seawater and the leak flow rate,
[Dilution ratio] = α × [Leakage flow rate] + β (1)
[Dilution ratio] × [Leakage flow rate] = k (2)
Each of α, β, and k is a means for obtaining the relational expressions (1) and (2) of the constants, and the dilution ratio of the relational expression (2) includes the value in the case where the seawater is in an undiluted state. Calculate the value of the dilution rate by calculating the value of the leakage flow rate at the time, calculate the value of the dilution rate by incorporating the value of the leakage flow rate at the time of non-dilution into the leak rate of the relational expression (1), and calculate the value of the dilution rate by the relational equation. Means for calculating a value calculated by taking into account the dilution ratio in (2) as a predicted value of the minimum flow rate of leak water. Flow rate prediction device.
請求項1乃至4において、海水の希釈割合は、漏水中の海水由来成分の濃度を指標とすることを特徴とする地下水に海水を含有する漏水の最大流量または最小流量の予測方法または予測装置。The method or apparatus for predicting a maximum flow rate or a minimum flow rate of a leak containing seawater in groundwater according to any one of claims 1 to 4, wherein the dilution ratio of the seawater is based on the concentration of a component derived from the seawater in the leak. 請求項5において、海水由来成分は、ナトリウムイオン、カリウムイオン、マグネシウムイオン、カルシウムイオン、塩化物イオンおよび硫酸イオンの中から選択されるイオンであることを特徴とする地下水に海水を含有する漏水の最大流量または最小流量の予測方法または予測装置。In claim 5, the seawater-derived component is an ion selected from among sodium ions, potassium ions, magnesium ions, calcium ions, chloride ions, and sulfate ions. A method or device for estimating the maximum or minimum flow. 請求項1乃至4において、海水の希釈割合は、漏水の電気伝導率を指標とすることを特徴とする地下水に海水を含有する漏水の最大流量または最小流量の予測方法または予測装置。5. The method or apparatus for predicting a maximum flow rate or a minimum flow rate of a leak containing seawater in groundwater according to claim 1, wherein the dilution ratio of the seawater is based on the electric conductivity of the leaked water. 地下水に海水を含有する漏水中の海水分流量を予測する方法であって、海水の希釈割合と漏水流量とから、
[希釈割合]×[漏水流量]=k
kは定数
の関係式を求め、該関係式の希釈割合に海水が非希釈状態である場合の値を算入して算出される非希釈時の漏水流量の値を、漏水中の海水分流量の予測値であるとすることを特徴とする地下水に海水を含有する漏水中の海水分流量の予測方法。
It is a method of predicting the sea water flow rate in the leak water containing seawater in the groundwater, from the dilution ratio of the sea water and the leak flow rate,
[Dilution ratio] x [Leakage flow rate] = k
k is a constant relational expression, the value of the undiluted leakage flow rate calculated by adding the value when the seawater is in an undiluted state to the dilution ratio of the relational expression, A method for predicting a seawater flow rate in a leak containing seawater in groundwater, wherein the method is a predicted value.
地下水に海水を含有する漏水中の海水分流量を予測する装置であって、海水の希釈割合と漏水流量とから、
[希釈割合]×[漏水流量]=k
kは定数
の関係式を求める手段と、該関係式の希釈割合に海水が非希釈状態である場合の値を算入して算出される漏水流量の値を、漏水中の海水分流量の予測値であるとする手段とを備えて構成されるものであることを特徴とする地下水に海水を含有する漏水中の海水分流量の予測装置。
It is a device for predicting the sea water flow rate in the leak water containing sea water in the groundwater, from the dilution ratio of the sea water and the leak flow rate,
[Dilution ratio] x [Leakage flow rate] = k
k is a means for obtaining a relational expression of a constant, and a value of a leakage flow rate calculated by adding a value in a case where seawater is in an undiluted state to a dilution ratio of the relational expression is a predicted value of a seawater flow rate in the leakage water. An apparatus for predicting a seawater flow rate in a leak containing groundwater containing seawater.
地下水に海水を含有する漏水中の地下水分の最大流量を予測する方法であって、海水の希釈割合と漏水流量とから、
[希釈割合]=α×[漏水流量]+β      (1)
[希釈割合]×[漏水流量]=k        (2)
α、β、kは何れも定数
の各関係式(1)および(2)を求め、関係式(1)の希釈割合にゼロの値を算入したときに算出される漏水流量の値から、関係式(2)の希釈割合に海水が非希釈状態である場合の値を算入したときに算出される漏水流量の値を差し引いた値を、漏水中の地下水分の最大流量の予測値であるとすることを特徴とする地下水に海水を含有する漏水中の地下水分の最大流量の予測方法。
It is a method of predicting the maximum flow rate of groundwater in a leak containing seawater in groundwater, and from the dilution ratio of the seawater and the leak rate,
[Dilution ratio] = α × [Leakage flow rate] + β (1)
[Dilution ratio] × [Leakage flow rate] = k (2)
α, β, and k are all constants obtained from the relational expressions (1) and (2), and from the value of the water leakage flow rate calculated when a value of zero is included in the dilution ratio of the relational expression (1), The value obtained by subtracting the value of the leakage flow rate calculated when the value in the case where the seawater is in an undiluted state is included in the dilution ratio of the equation (2) is the predicted value of the maximum flow rate of the underground moisture in the leakage water. A method of predicting the maximum flow rate of groundwater in a leak containing seawater in groundwater.
地下水に海水を含有する漏水中の地下水分の最大流量を予測する装置であって、海水の希釈割合と漏水流量とから、
[希釈割合]=α×[漏水流量]+β      (1)
[希釈割合]×[漏水流量]=k        (2)
α、β、kは何れも定数
の各関係式(1)および(2)を求める手段と、関係式(1)の希釈割合にゼロの値を算入したときに算出される漏水流量の値から、関係式(2)の希釈割合に海水が非希釈状態である場合の値を算入したときに算出される漏水流量の値を差し引いた値を、漏水中の地下水分の最大流量の予測値であるとする手段とを備えて構成されるものであることを特徴とする地下水に海水を含有する漏水中の地下水分の最大流量の予測装置。
It is a device that predicts the maximum flow rate of groundwater in the leak water containing seawater in the groundwater, and from the dilution ratio of the seawater and the leak flow rate,
[Dilution ratio] = α × [Leakage flow rate] + β (1)
[Dilution ratio] × [Leakage flow rate] = k (2)
α, β, and k are constants from the means for obtaining the relational expressions (1) and (2), and from the value of the water leakage flow rate calculated when a value of zero is included in the dilution ratio of the relational expression (1). The value obtained by subtracting the value of the leakage flow rate calculated when the value in the case where the seawater is in an undiluted state is included in the dilution ratio of the relational expression (2) is the predicted value of the maximum flow rate of the underground moisture in the leakage water. An apparatus for predicting the maximum flow rate of underground moisture in a leak containing seawater in groundwater, the apparatus comprising:
地下水に海水を含有する漏水中の地下水分の最小流量を予測する方法であって、海水の希釈割合と漏水流量とから、
[希釈割合]=α×[漏水流量]+β      (1)
[希釈割合]×[漏水流量]=k        (2)
α、β、kは何れも定数
の各関係式(1)および(2)を求め、関係式(2)の希釈割合に海水が非希釈状態である場合の値を算入して非希釈時の漏水流量の値を算出し、該非希釈時の漏水流量の値を関係式(1)の漏水流量に算入することで希釈割合の値を算出し、該算出された希釈割合の値を関係式(2)の希釈割合に算入することで漏水流量の値を算出し、該算出される漏水流量の値から前記非希釈時の漏水流量の値を差し引いて得た値を、漏水中の地下水分流量の最小流量の予測値とするようにしたものであることを特徴とする地下水に海水を含有する漏水中の地下水分の最小流量の予測方法。
A method of predicting the minimum flow rate of groundwater in a leak containing seawater in the groundwater, from the dilution ratio of the seawater and the leak rate,
[Dilution ratio] = α × [Leakage flow rate] + β (1)
[Dilution ratio] × [Leakage flow rate] = k (2)
For α, β, and k, constants are obtained by the respective relational expressions (1) and (2), and a value in the case where seawater is in an undiluted state is included in the dilution ratio of the relational expression (2) to obtain The value of the leak rate is calculated by calculating the value of the leak rate, and adding the value of the leak rate at the time of non-dilution to the leak rate of the relational expression (1). The value of the leakage flow rate is calculated by adding the value to the dilution ratio of 2), and the value obtained by subtracting the value of the leakage flow rate at the time of non-dilution from the calculated value of the leakage flow rate is the groundwater flow rate in the leakage water. A method for predicting a minimum flow rate of groundwater in a leak containing seawater in groundwater, wherein the minimum flowrate is a predicted value of a minimum flowrate.
地下水に海水を含有する漏水中の地下水分の最小流量を予測する装置であって、海水の希釈割合と漏水流量とから、
[希釈割合]=α×[漏水流量]+β      (1)
[希釈割合]×[漏水流量]=k        (2)
α、β、kは何れも定数
の各関係式(1)および(2)を求める手段と、関係式(2)の希釈割合に海水が非希釈状態である場合の値を算入して非希釈時の漏水流量の値を算出し、該非希釈時の漏水流量の値を関係式(1)の漏水流量に算入して希釈割合の値を算出し、該算出した希釈割合の値を関係式(2)の希釈割合に算入することで漏水流量の値を算出する手段と、該算出された漏水流量の値から前記非希釈時の漏水流量の値を差し引いて得た値を漏水中の地下水分の最小流量の予測値であるとする手段とを備えて構成したことを特徴とする地下水に海水を含有する漏水中の地下水分の最小流量の予測装置。
It is a device for predicting the minimum flow rate of groundwater in the leak water containing seawater in the groundwater, from the dilution ratio of the seawater and the leak flow rate,
[Dilution ratio] = α × [Leakage flow rate] + β (1)
[Dilution ratio] × [Leakage flow rate] = k (2)
Each of α, β, and k is a means for obtaining the relational expressions (1) and (2) of the constants, and the dilution ratio of the relational expression (2) includes the value in the case where the seawater is in an undiluted state. The value of the leakage flow rate at the time is calculated, the value of the leakage flow rate at the time of non-dilution is included in the leakage flow rate of the relational expression (1), and the value of the dilution ratio is calculated. Means for calculating the value of the leakage flow rate by taking into account the dilution ratio in 2), and subtracting the value of the leakage flow rate at the time of non-dilution from the calculated value of the leakage flow rate to obtain the underground water content in the leakage water Means for estimating the minimum flow rate of the groundwater. The apparatus for estimating the minimum flow rate of groundwater in underground water containing seawater.
JP2002240375A 2002-08-21 2002-08-21 Prediction method and prediction device for maximum flow rate of underground water in leaking water containing seawater in groundwater Expired - Fee Related JP4065163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002240375A JP4065163B2 (en) 2002-08-21 2002-08-21 Prediction method and prediction device for maximum flow rate of underground water in leaking water containing seawater in groundwater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002240375A JP4065163B2 (en) 2002-08-21 2002-08-21 Prediction method and prediction device for maximum flow rate of underground water in leaking water containing seawater in groundwater

Publications (2)

Publication Number Publication Date
JP2004077366A true JP2004077366A (en) 2004-03-11
JP4065163B2 JP4065163B2 (en) 2008-03-19

Family

ID=32023184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002240375A Expired - Fee Related JP4065163B2 (en) 2002-08-21 2002-08-21 Prediction method and prediction device for maximum flow rate of underground water in leaking water containing seawater in groundwater

Country Status (1)

Country Link
JP (1) JP4065163B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009276259A (en) * 2008-05-16 2009-11-26 Railway Technical Res Inst Coating substance abnormality determination device of underground structure, and method therefor
CN104179514A (en) * 2014-08-18 2014-12-03 同济大学 Method for water inrush prediction and seepage control for underwater-tunnel broken surrounding rocks
CN114611832A (en) * 2022-03-30 2022-06-10 河海大学 Seawater intrusion prediction method based on Bayesian multi-model set pair analysis

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009276259A (en) * 2008-05-16 2009-11-26 Railway Technical Res Inst Coating substance abnormality determination device of underground structure, and method therefor
CN104179514A (en) * 2014-08-18 2014-12-03 同济大学 Method for water inrush prediction and seepage control for underwater-tunnel broken surrounding rocks
CN114611832A (en) * 2022-03-30 2022-06-10 河海大学 Seawater intrusion prediction method based on Bayesian multi-model set pair analysis
CN114611832B (en) * 2022-03-30 2022-11-25 河海大学 Seawater intrusion prediction method based on Bayesian multi-model set pair analysis

Also Published As

Publication number Publication date
JP4065163B2 (en) 2008-03-19

Similar Documents

Publication Publication Date Title
Moradllo et al. Time-dependent performance of concrete surface coatings in tidal zone of marine environment
Dillon et al. Long-term phosphorus budgets and an examination of a steady-state mass balance model for central Ontario lakes
Rittirong et al. Electrokinetic improvement of soft clay using electrical vertical drains
Eid et al. Electro-migration of nitrate in sandy soil
JP2004077366A (en) Method and apparatus for predicting maximum and minimum flow of leakage containing seawater in underground water, and method and apparatus for predicting maximum and minimum flow of seawater or underground water flow in leakage containing seawater in underground water
JP4065154B2 (en) Leakage pumping amount control device
Shabanov et al. Electrophysical Monitoring of the processes of electroosmotic treatment of soil from oil pollution on laboratory installations
Dong et al. Modelling soil solute release and transport in run‐off on a loessial slope with and without surface stones
JP2010214282A (en) Method for estimating microorganism distribution of contaminated soil and nutrient salinity distribution
Abdikheibari et al. In-situ evaluation of predictive models for H2S gas emission and the performance of optimal dosage of suppressing chemicals in a laboratory-scale sewer
Helle et al. Predicting required time for stabilising Norwegian quick clays by potassium chloride
CN112288200A (en) Method and device for determining inland river oil spill emergency disposal scheme
Radu et al. Derivation of threshold values for groundwater in Romania, in order to distinguish point & diffuse pollution from natural background levels
Plugin et al. Independent diagnostic computer systems with the ability to restore operational characteristics of construction facilities
Iyama et al. Water quality index estimate for Isiodu River water during dredging in Niger Delta, Nigeria
Sabtan Performance of a steel structure on Ar-Rayyas Sabkha soils
Mercer et al. Modeling Ground-Water Flow at Love Canal, New York
Hong et al. Characterizing zeolite-amended soil-bentonite backfill for enhanced metals containment with vertical cutoff walls
JP4041033B2 (en) Deterioration prediction method for steel in submarine tunnel
JP3880327B2 (en) Judgment method and apparatus for stability of underground structure
Shu et al. Long-term environmental impact of an artificial island of solidified dredged marine silt
Al-Dosary et al. DIMENSIONAL ANALYSIS TO ESTIMATE THE UNSATURATED HYDRAULIC CONDUCTIVITY OF A SANDY LOAM SOIL IN THE AGRICULTURAL FIELD
Beal et al. Prediction of steady-state flux through variably saturated zones within a septic absorption trench
JP2005351821A (en) Method for estimating corrosion of embedded pipe
Inazumi et al. Performance of water cut-off and remediation promotion techniques at coastal waste landfill sites

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees