JP2004077122A - Measuring method of cancer marker - Google Patents

Measuring method of cancer marker Download PDF

Info

Publication number
JP2004077122A
JP2004077122A JP2002180802A JP2002180802A JP2004077122A JP 2004077122 A JP2004077122 A JP 2004077122A JP 2002180802 A JP2002180802 A JP 2002180802A JP 2002180802 A JP2002180802 A JP 2002180802A JP 2004077122 A JP2004077122 A JP 2004077122A
Authority
JP
Japan
Prior art keywords
cells
cancer
cell
correlation
ifnγ
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002180802A
Other languages
Japanese (ja)
Inventor
Kyokuho Yagita
八木田 旭邦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ORIENT CANCER THERARY KK
Original Assignee
ORIENT CANCER THERARY KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ORIENT CANCER THERARY KK filed Critical ORIENT CANCER THERARY KK
Priority to JP2002180802A priority Critical patent/JP2004077122A/en
Publication of JP2004077122A publication Critical patent/JP2004077122A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new method for determining effectiveness in immunotherapy by measuring a CD4+CD25-T cell and/or a CD4+CD25+T cell. <P>SOLUTION: The measuring method of cancer markers includes a examination means of cancer for measuring the CD4+CD25+T cell, allowing the CD4+CD25+T cell to restrainedly act on an activation killer T cell, and performing determination; an examination means of cancer for measuring the CD4+CD25-T cell and judging that the CD4+CD25-T cell acts on CTL activation; and a determining means for determining the effectiveness in cancer treatment for measuring the ratio of (CD4+CD25-T cell) to (CD4+CD25+T cell). Approving the ratio is effective as the marker in the cancer treatment. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野】
本発明は、CD4+CD25−T細胞及び/又はCD4+CD25+T細胞を測定し、その免疫療法の有効性を判断するための新規な手段の提供に関する。
【0002】
【従来の技術】
ガン(malignant neoplasms)(cancer)の予防または治療のために有用な物質の選別には、従来、ガン細胞へのその直接的作用が重要視されていた。免疫賦活剤がガン治療に有用であることは認められていたが、免疫賦活剤として得られた化合物はいずれもその抗ガン効果が微弱であり、免疫療法単独または化学療法との併用治療によってもガンの十分な治療効果は達成されていない。
【0003】
本発明者の医学博士、八木田は、先にガン治療における画期的な手法として、インターロイキン12(IL−12)を生体内で誘発する物質の有用性に着目し、キノコ菌糸体加工物がその機能を有することを発見し、新免疫療法(Novel Immunotherapy for cancer)(NITC)ともいうべきガン治療法を確立した。従来IL−12は、抗ガン効果があるものの生体内にIL−12自体を直接投与した場合には副作用を生じるために患者が治療に耐えられないという事実があり、それ自体を抗ガン剤として使用できなかった。しかし、八木田が報告したキノコ菌糸体加工物を含む製剤は、ガンの治療において著しい治癒・延命効果を達成した。つまり八木田は、IL−12を生体内で誘発できる有効量のキノコ菌糸体加工物を投与することにより、ガンの治療目的を達成した(特開平10−139670号公報)。
【0004】
IL−12は、TNFα→IFNγ→IL−12→CTL活性というルートでキラーT細胞の活性化効果と増強効果をもつ。つまりIL−12の産生増強は、キラーT細胞の活性化と増強により抗ガン効果が期待される。
【0005】
八木田は、IL−12の産生増強の系とは別にNKT細胞の活性化が抗ガン効果に有用であることを報告している。谷口等は、NKT細胞が有するVα24Vβ11という特異的なT細胞抗原受容体(TCR)が認識する特異的な糖脂質抗原を発見し、この抗原が、αガラクトシルセラミドであることを報告している。更に、αガラクトシルセラミドを投与した担ガンマウスでは、NKT細胞が活性化され、ガンの消失はみられないものの転移が抑制されることを証明した。
NKT細胞には、もう一つの受容体としてNK細胞抗原受容体(NKR−P1;ナチュラルキラー受容体P1)があることは報告されている(特集 NKT細胞の基礎と臨床:最新医学55巻4号2000年818〜823ページ)。NKR−P1もNKT細胞の活性化に関与し、この活性化が抗ガン効果がより優位であることを八木田は見出している。
【0006】
NK細胞についても生体の抗ガン作用に係わるという報告がなされているが、これまでNK細胞の活性と臨床的な抗ガン効果とが相関せず、IL−12の産生誘発量とNK細胞の活性とが完全な逆相関を示すことが八木田により証明されており、ヒトにおける抗ガン作用についてのNK細胞の関与は疑問視されていた。
【0007】
【発明が解決しようとする課題】
本発明は、CD4+CD25−T細胞及び/又はCD4+CD25+T細胞を測定し、各測定結果の検定の意味するところを分析し、新免疫療法の完成を課題とする。
【0008】
【課題を解決するための手段】
【0009】
すなわち本発明は、
1.CD4+CD25+T細胞を測定し、それが活性化キラーT細胞に抑制的に働いていることと判定する癌の検査手段。
2.CD4+CD25−T細胞を測定し、それがCTL活性化に働いていることと判定する癌の検査手段。
3.CD4+CD25−T細胞/ CD4+CD25+T細胞の比を測定する癌治療の有効性の判定手段。
4.ガンの免疫治療剤のスクリーニング方法であって、CD4+CD25−T細胞/ CD4+CD25+T細胞の比を検定し、CD4+CD25−T細胞の優位をもって有効と判定するガンの免疫治療剤のスクリーニング方法。
5.前項1〜3の何れか一に記載の情報を自然法則を利用した媒体に担持した商業用媒体。
6.前項5の商業用媒体を利用した商業方法。
からなる。
【0010】
【発明の実施の形態】
以下、本発明を詳しく説明するが、本明細書中で使用されている技術的および科学的用語は、別途定義されていない限り、本発明の属する技術分野において通常の知識を有する者により普通に理解される意味を持つ。
【0011】
本発明者の医学博士八木田のガン新免疫療法とは4つの異なる作用機序を組み合わせることからなる治療手段である。
第一の作用機序は、血管新生阻害物質(ベターシャーク)を投与してガンへの血流を障害してガン縮小をはかる方法である。これは血管内皮細胞増殖因子(VEGF)を測定することでその効果は判定が可能である。血管新生阻害作用はVEGF値のマイナス値(−VEGF)で評価できる。このVEGF値の替わりにFGF、HGFなどのその他の血管増殖因子を用いることも血管新生阻害能を評価することが可能である。またVEGFの替わりに血管新生阻害因子の正数値でもその評価が可能である(例えばエンドスタチン値)。
【0012】
他の一つの作用機序は、β1,3グルカン構造を担持する化合物を投与してTh1サイトカイン(TNFα、IFNγ、IL−12)を誘導してCTLを活性化する方法である。CTL活性はCD8(+)パーフォリン産生能力で判定が可能であるが、このCD8(+)パーフォリン値には細胞障害性T細胞(CTL)と免疫抑制性T細胞(STC; Suppressor T cell)とがあり、前者はガン細胞を障害し、後者はガンの増殖に作用する。したがってその絶体値では評価はできない。しかし前者はIFNγが10 IU/ml以上かもしくはIL−12値が7.8 pg/ml以上であればCTLであり、IFNγとIL−12が低値であればSTCと判定される。そこでCTL活性は、IFNγ産生能力(IFNγ値)もしくはIL−12産生能力(IL−12値)で評価が可能である。
【0013】
第三及び第四の作用機序であるα1,3グルカン構造を担持する化合物の投与によって活性化されるeffector細胞はNK細胞とNKT細胞である。このNKとNKT細胞とはNKR−P1(NK細胞受容体CD161(+))を共有しており、前者はCD3(−)CD161(+)の表面マーカーでNK細胞数は測定可能であり、その活性化はCD3(−)CD161(+)パーフォリン産生能力で判定が可能である。一方後者のNKT細胞はCD3(+)CD161(+)でその細胞数は測定が可能となり、そのパーフォリン産生能力でNKT細胞の活性化は測定可能である。
【0014】
本発明は、臨床における結果と、NK細胞の活性化能、NKT細胞の活性化能、血管新生阻害能、IL−12の誘導産生能、及びIFNγの誘導産生能の相関性に加えて、CD4+CD25−T細胞及び/又はCD4+CD25+T細胞の動態を検討することにより行われた。本発明者は、新免疫療法(NITC)として、ガン患者にα1,3グルカン構造を担持する化合物、β1,3グルカン構造を担持する化合物と血管新生阻害作用物質(サメ軟骨)を併用し、IL−12、IFNγ他の各種サイトカイン、CD4+CD25−T細胞、CD4+CD25+T細胞を測定した。その結果、CD4+CD25−T細胞及びCD4+CD25+T細胞を測定し、その比を検定し、マーカーとすることはガンの検査手段として意義があることを見出した。
【0015】
CD25はインターロイキン2(IL−2)受容体α鎖である。最近、ヘルパーT細胞Th(CD4)のなかにCD25(+)とCD25(−)細胞とがあることが分かっている。CD4+CD25+T細胞が自己免疫疾患の発病に重要な役割を演じていることが知られている。しかし、癌免疫療法でどのような作用を示しているかは不明である。
【0016】
今回、新免疫療法を施行している65例において、この細胞がどのように関与しているかを検討し、CD4+CD25−T細胞はCTL活性化と関係があり、癌免疫療法の効果と密接な関係を有すること、CD4+CD25−T細胞/CD4+CD25+T細胞比は、CD4+CD25−T細胞の優位が癌免疫療法の効果と密接な関係を有することを見出した。
【0017】
この意義を見出したことによりCD4+CD25−T細胞、CD4+CD25+T細胞、及びCD4+CD25−T細胞/CD4+CD25+T細胞比の測定は、有用なCTL活性化剤のスクリーニング方法に適用可能であり、このスクリーニング方法を利用すればCTL活性化能を担持する新規β1,3グルカンの特定が可能であることも見出した。
【0018】
以上のような情報は、自然法則を利用した媒体に担持すれば有用な商業用媒体となり、またその商業用媒体は有用な商業方法を提供する。
【0019】
本発明においてCTL活性化剤(IL−12産生誘導剤、INFγ産生誘導剤)は、本発明の測定法による結果を指標として、その活性化を誘導または増強し、さらに活性化を維持できる処方にて用いられる。すなわち、指標をもとに、その活性化を誘導または増強し、さらに活性化を維持できる投与量、ならびに投与期間を選択して用いられる。具体的には、その投与量は、CTL活性化剤(IL−12産生誘導剤、INFγ産生誘導剤)であるβ−1,3グルカン構造を持つ化合物は1g〜10g/日程度、好ましくは3g〜6g/日程度である。また、投与期間は一般的には10日間〜24ヶ月間、投与頻度は1〜3回/日で、好ましくは連日投与である。当該CTL活性化剤(IL−12産生誘導剤、INFγ産生誘導剤)は、好適には経口摂取される。無論、投与量を減少させ、これらを非経口に耐え得る品質に調製することで、非経口摂取(静脈内または筋肉内投与などを含む)も可能である。
【0020】
測定は、ガン患者の血液を用いて、血中細胞について細胞表面抗原であるCD4、CD25について陽性・陰性で区別し、各細胞の割合を、フローサイトメトリーを用いたTwo Color検査により常法通り測定した。
【0021】
(サイトカインを測定するための試料の調製)
まず、血液より単核球画分を分離調製する。ヘパリン加末梢血をリン酸緩衝生理食塩水(Phosphate Buffered Saline)(PBS)で2倍に希釈して混和した後、Ficoll−Conray液(比重1.077)上に重層し、400Gで20分間遠沈後、単核球画分を採取する。洗浄後、10%牛胎児血清(FBS)を加えたRPMI−1640培地を加え、細胞数を1×10個となるように調製する。得られた細胞浮遊液200μlにフィトヘマグルチニン(Phytohemagglutinin)(DIFCO社製)を20μg/mlの濃度となるように加え、96穴マイクロプレートにて5%CO2存在下、37℃で24時間培養し、該培養した細胞溶液中のサイトカインを測定する試料とする。
【0022】
(IL−12の測定)
IL−12量の測定は自体公知の臨床、生化学的検査を利用できるが、R&D SYSTEMS社やMBL社より入手することのできる酵素免疫測定法(ELISA)による測定キットが使用される。ここではR&D SYSTEMS社の測定キットを用いた。実際には96穴マイクロプレートの各穴に測定用希釈液Assay Diluent RD1Fを50μl、標準液(standard)または実施例1で調製した試料を200μlずつ分注した後、室温にて静置して2時間反応させた。その後、西洋わさびパーオキシダーゼ(horse radish peroxidase)(HRP)標識抗IL−12抗体を200μlずつ分注し2時間室温で静置した。各穴の反応液を除去し3回洗浄後、発色基質溶液を200μlずつ分注し、20分間室温静置後、酵素反応停止溶液を50μlずつ分注した。550nmを対照として450nmにおける各穴の吸光度をEmax(和光純薬株式会社製)にて測定した。IL−12量は、pg/mlとして表される。ここでIL−12産生誘発能とは、末梢血単核球画分が刺激により産生するIL−12量を、7.8pg/ml以上に増強せしめる機能、またはある物質を投与する前のIL−12産生量より増強せしめる機能を意味する。
【0023】
(IFNγの測定)
IFNγの測定は、BioSource Europe S.社のIFNγ EASIAキットを用いて、酵素免疫測定法(EIA法)で測定した。実際には96穴マイクロプレートの各穴に標準液(standard)または上記調製した試料を2倍希釈したものを50μlずつ分注し、HRP標識抗IFN−γ抗体を50μlずつ分注し更に振盪しながら2時間室温で反応させた。各穴の反応液を除去し3回洗浄後、発色基質溶液を200μlずつ分注し、振盪しながら15分間室温で反応させ、酵素反応停止溶液を50μlずつ分注した。630nmを対照として450nmおよび490nmにおける各穴の吸光度をEmax(和光純薬株式会社製)にて測定した。IFNγ量は、IU/mlとして表される。
【0024】
(パーフォリン産生細胞の測定)
末梢血中のリンパ球について、細胞表面抗原であるCD8が陽性でかつパーフォリンが陽性の細胞の割合を、フローサイトメトリーを用いたThree Color検査により常法通り測定する。具体的には、採取した血液に固定液を加えて細胞を固定し、膜透過液を添加後抗パーフォリン抗体(Pharmingen社製)を添加して反応させ、さらにPRE−Cy5標識二次抗体(DAKO社性)を添加して反応させ、ついで抗CD8抗体を添加して反応させ、その後フローサイトメトリーで測定する。
【実施例】
以下に、実施例を用いて本発明を具体的に説明するが、本発明は本実施例に限定されるものではない。
【0025】
【実施例1】
患者には、IL−X(東西医薬)、さめ軟骨(セイシン企業)、及びα1,3構造をもつ糖類が、各推奨処方により投与された。処置患者群についてIL−12の誘導産生能、IFNγ誘導産生能、及びCD4+CD25−T細胞、CD4+CD25+T細胞、パーフォリン産生細胞の寄与の関係を分析した。
【0026】
CD4+CD25+T細胞とCD8+パーフォリン産生細胞(CD8+PER+)との相関を検討したのが図1である。
全症例(65例)、CR(治癒)(n=17)、PR(部分治癒)(n=14)、LNC(長期間癌増殖無)(n=8)、SNC(短期間癌増殖無)(n=7)、PD(無効)(n=14)、初診(n=5)のいずれにおいても逆相関を示した。
この事実はCD4+CD25+T細胞が活性化キラーT細胞に抑制的に働いていることを示している。
【0027】
CD4+CD25+T細胞とIL−12との相関を検討し、図2に示した。IL−12とCD4+CD25+T細胞との相関は、全体では緩い正の相関を示している。またCR(n=17例)、PR(n=14例)、LNC(n=8例)ではそれぞれ正の相関を示す傾向が認められた。一方SNC(n=7例)、PD(n=14例)では逆相関の傾向が認められた。
【0028】
CD4+CD25+T細胞とIFNγとの相関を図3に示した。IL−12と同様にIFNγにおいてもCR、PRおよびLNCで正の相関を示す傾向が認められ、SNCとPD症例では逆相関の傾向を示している。この事実は有効例ではCD4+CD25+T細胞の免疫抑制に抵抗してTh1サイトカイン働いている可能性が示唆される。またSNCとPD症例においてTh1サイトカイン値が高い症例ではCD4+CD25+T細胞が抑制的に作用し、Th1サイトカイン値が低い症例ではCD4+CD25+T細胞が免疫抑制的に働いていることが示唆される。有効例ではTh1サイトカインがCD4+CD25+T細胞に打ち勝って免疫活性すなわちCD8+パーフォリン+T細胞が働いていると考えられる。
一方、無効例ではTh1サイトカイン値が低いかもしくはCD4+CD25+T細胞のいずれかどちらかが免疫抑制的に働いていると考えられる。
【0029】
IL−10とCD4+CD25+T細胞との相関を図4に示した。全症例でIL−10とCD4+CD25+T細胞とは正の相関を示し、LNC(n=8)以外は全て正の相関を示した。この事実はNITC治療例ではIL−10とCD4+CD25+T細胞とはいずれも免疫抑制的に働いていることが示唆された。
【0030】
CD4+CD25+T細胞はTGFβを産生して免疫抑制的に働いている可能性も考えられる。そこでこの細胞とCD4+CD25+TGFβ+T細胞との相関を検討すると正の相関を示した。この事実はこのCD4+CD25+T細胞が強力な免疫抑制作用を持つTGFβを産生して抑制的に働いている可能性も考えられる(図5)。
【0031】
CD4+CD25−T細胞はIL−2とIFNγを産生してキラーT細胞(CD8+T細胞)を活性化するものと考えられている。そこでIFNγとCD4+CD25−T細胞との相関を検討したのが図6である。CD4+CD25−T細胞とIFNγとは正の相関が認められた。
【0032】
次にCD4+CD25−T細胞のなかでIFNγを産生する細胞(CD4+CD25−IFNγ+)とIFNγとの相関も正の相関を示した(図7)。
CD4+CD25−T細胞とCD4+CD25−IFNγ+T細胞との相関においても正の相関を示した。
【0033】
CD4+CD25+T細胞が30%以上を示す症例すなわちCD8+細胞に強力に抑制している症例について有効例と無効例とでその割合を比較した(図8)。
前者が20.5%であったのに対し、後者の無効例では47.6%と有意差が認められた(p<0.05)。すなわちCD4+CD25+T細胞がCD8+パーフォリン産生細胞を抑制し、NITC治療症例で抑制的に働いていることが認められた。
【0034】
また、CD4+CD25−T細胞/ CD4+CD25+T細胞の比を有効例(CR+PR+LNC)の39例と無効例(SNC+PD)の21例と比較したが、有効例で高い値を示した(p<0.01)。この事実はCD4+CD25+T細胞の免疫抑制に働くカットオフ値は30%が適切と考えられた。
【発明の効果】
以上の結果によれば、、CD4+CD25−T細胞、CD4+CD25+T細胞、CD4+CD25−T細胞/ CD4+CD25+T細胞比を検定することは、癌治療におけるマーカーとして有用であり、新規な意義を提供するものであり、ガン治療における画期的な成果を達成するものであることを確認した。
【0035】
【図面の簡単な説明】
【図1】CD8+PER+とCD4+CD25+T細胞の相関を示す。
【図2】IL−12とCD4+CD25+T細胞の相関を示す。
【図3】IFNγとCD4+CD25+T細胞の相関を示す。
【図4】IL−10とCD4+CD25+T細胞の相関を示す。
【図5】CD4+CD25+とCD4+CD25+TGFβ+の相関を示す。
【図6】CD4+CD25−T細胞とIFNγの相関を示す。
【図7】CD4+CD25−とCD4+CD25−IFNγ+の相関を示す。
【図8】CD4+CD25+T細胞が30%以上の症例を示す。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to the provision of a novel means for measuring CD4 + CD25-T cells and / or CD4 + CD25 + T cells and judging the effectiveness of the immunotherapy.
[0002]
[Prior art]
In the selection of a substance useful for the prevention or treatment of cancer (malignant neoplasms) (cancer), its direct action on cancer cells has conventionally been emphasized. Although immunostimulants were found to be useful for treating cancer, all of the compounds obtained as immunostimulants had weak anticancer effects, and were not treated with immunotherapy alone or in combination with chemotherapy. A sufficient therapeutic effect of cancer has not been achieved.
[0003]
The present inventor's medical doctor, Yagida, first focused on the usefulness of a substance that induces interleukin 12 (IL-12) in vivo as an epoch-making technique in cancer treatment. They discovered that they have that function and established a cancer treatment that could be called a novel immunotherapy for cancer (NITC). Conventionally, IL-12 has an anticancer effect, but there is a fact that if IL-12 itself is directly administered into a living body, a patient cannot tolerate the treatment due to side effects. Could not be used. However, the preparation containing a processed mushroom mycelium reported by Yagida achieved a remarkable healing / life extension effect in the treatment of cancer. That is, Yagida achieved the purpose of treating cancer by administering an effective amount of a processed mushroom mycelium capable of inducing IL-12 in vivo (Japanese Patent Application Laid-Open No. 10-139670).
[0004]
IL-12 has an effect of activating and enhancing killer T cells through the route of TNFα → IFNγ → IL-12 → CTL activity. That is, enhancement of IL-12 production is expected to have an anticancer effect due to activation and enhancement of killer T cells.
[0005]
Yagida reports that activation of NKT cells, apart from a system for enhancing IL-12 production, is useful for anticancer effects. Taniguchi et al. Discovered a specific glycolipid antigen recognized by a specific T cell antigen receptor (TCR) called Vα24Vβ11 possessed by NKT cells, and reported that this antigen was α-galactosylceramide. Furthermore, it was demonstrated that NKT cells were activated in cancer-bearing mice to which α-galactosylceramide was administered, and metastasis was suppressed, although cancer disappearance was not observed.
It has been reported that NKT cells include the NK cell antigen receptor (NKR-P1; natural killer receptor P1) as another receptor (special issue: Basic and clinical aspects of NKT cells: the latest medicine, vol. 55, No. 4). 2000 pp. 818-823). Yagida has found that NKR-P1 is also involved in the activation of NKT cells, and this activation has a more superior anticancer effect.
[0006]
It has been reported that NK cells are also involved in the anticancer activity of the living body. However, the activity of NK cells has not been correlated with the clinical anticancer effect. Has been shown by Yagida to show a complete inverse correlation, and the involvement of NK cells in anticancer activity in humans has been questioned.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to measure CD4 + CD25-T cells and / or CD4 + CD25 + T cells, analyze the meaning of the assay of each measurement result, and complete a new immunotherapy.
[0008]
[Means for Solving the Problems]
[0009]
That is, the present invention
1. A means for examining cancer that measures CD4 + CD25 + T cells and determines that they act suppressively on activated killer T cells.
2. A means for examining cancer that measures CD4 + CD25-T cells and determines that they are acting on CTL activation.
3. Means for determining the efficacy of cancer treatment by measuring the ratio of CD4 + CD25-T cells / CD4 + CD25 + T cells.
4. A method for screening an immunotherapeutic agent for cancer, comprising examining the ratio of CD4 + CD25-T cells / CD4 + CD25 + T cells, and determining that the cancer is effective with the superiority of CD4 + CD25-T cells.
5. A commercial medium in which the information according to any one of the preceding items 1 to 3 is carried on a medium utilizing the law of nature.
6. A commercial method using the commercial medium according to item 5 above.
Consists of
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.Unless defined otherwise, technical and scientific terms used herein are commonly used by those skilled in the art to which this invention belongs. Have an understood meaning.
[0011]
The present inventor's medical doctor, Dr. Yagida's cancer immunotherapy is a therapeutic means consisting of combining four different mechanisms of action.
The first mechanism of action is a method of reducing the cancer by administering an angiogenesis inhibitor (better shark) to impair the blood flow to the cancer. This effect can be determined by measuring vascular endothelial cell growth factor (VEGF). The angiogenesis inhibitory effect can be evaluated by a negative value of the VEGF value (−VEGF). The use of other vascular growth factors such as FGF and HGF instead of this VEGF value can also evaluate the ability to inhibit angiogenesis. In addition, the evaluation can be performed by using a positive value of an angiogenesis inhibitor instead of VEGF (for example, an endostatin value).
[0012]
Another mechanism of action is a method of activating CTL by inducing Th1 cytokines (TNFα, IFNγ, IL-12) by administering a compound having a β1,3 glucan structure. The CTL activity can be determined by CD8 (+) perforin-producing ability. The CD8 (+) perforin level includes cytotoxic T cells (CTL) and immunosuppressive T cells (STC; Suppressor T cell). Yes, the former damages cancer cells, and the latter affects cancer growth. Therefore, it cannot be evaluated with its absolute value. However, the former is a CTL if IFNγ is 10 IU / ml or more or an IL-12 value is 7.8 pg / ml or more, and is determined to be STC if IFNγ and IL-12 are low. Therefore, the CTL activity can be evaluated based on the ability to produce IFNγ (IFNγ value) or the ability to produce IL-12 (IL-12 value).
[0013]
The effector cells activated by administration of the compound having the α1,3 glucan structure, which is the third and fourth mechanism of action, are NK cells and NKT cells. The NK and NKT cells share NKR-P1 (NK cell receptor CD161 (+)), and the former can measure the number of NK cells with the surface marker of CD3 (-) CD161 (+). Activation can be determined by the ability to produce CD3 (-) CD161 (+) perforin. On the other hand, the latter NKT cells can be measured with CD3 (+) CD161 (+) and the number of the cells can be measured, and NKT cell activation can be measured by its perforin-producing ability.
[0014]
The present invention relates to the correlation between the clinical results and the ability to activate NK cells, the ability to activate NKT cells, the ability to inhibit angiogenesis, the ability to induce and produce IL-12, and the ability to induce and produce IFNγ. -By examining the kinetics of T cells and / or CD4 + CD25 + T cells. As a new immunotherapy (NITC), the present inventor used a compound having a α1,3 glucan structure, a compound having a β1,3 glucan structure and an angiogenesis inhibitory substance (shark cartilage) in cancer patients in combination with IL. -12, various cytokines such as IFNγ, CD4 + CD25-T cells, and CD4 + CD25 + T cells were measured. As a result, it was found that CD4 + CD25-T cells and CD4 + CD25 + T cells were measured and their ratios were examined, and that using them as markers was significant as a means for testing cancer.
[0015]
CD25 is the interleukin 2 (IL-2) receptor α-chain. Recently, it has been found that among helper T cells Th (CD4), there are CD25 (+) and CD25 (−) cells. It is known that CD4 + CD25 + T cells play an important role in the pathogenesis of autoimmune diseases. However, it is unclear what effect it has on cancer immunotherapy.
[0016]
In this study, we examined how these cells are involved in 65 patients undergoing new immunotherapy and found that CD4 + CD25-T cells are related to CTL activation and closely related to the effects of cancer immunotherapy. And the ratio of CD4 + CD25-T cells / CD4 + CD25 + T cells was found to be dominant in CD4 + CD25-T cells and closely related to the effects of cancer immunotherapy.
[0017]
Based on the finding of this significance, the measurement of CD4 + CD25-T cells, CD4 + CD25 + T cells, and the ratio of CD4 + CD25-T cells / CD4 + CD25 + T cells can be applied to a useful method for screening for a CTL activator. It has also been found that it is possible to specify a novel β1,3 glucan having CTL activating ability.
[0018]
Such information becomes a useful commercial medium if it is carried on a medium utilizing the laws of nature, and the commercial medium provides a useful commercial method.
[0019]
In the present invention, the CTL activator (IL-12 production inducer, INFγ production inducer) is formulated into a formulation capable of inducing or enhancing its activation and further maintaining its activation, using the result of the measurement method of the present invention as an index. Used. That is, based on the index, a dose capable of inducing or enhancing its activation and further maintaining the activation, and an administration period are selected and used. Specifically, the dose of the compound having a β-1,3 glucan structure, which is a CTL activator (IL-12 production inducer, INFγ production inducer), is about 1 g to 10 g / day, preferably 3 g. 66 g / day. In addition, the administration period is generally 10 days to 24 months, and the administration frequency is 1 to 3 times / day, preferably daily administration. The CTL activator (IL-12 production inducer, INFγ production inducer) is preferably taken orally. Of course, parenteral ingestion (including intravenous or intramuscular administration, etc.) is also possible by reducing the dosage and preparing them to a quality that can be tolerated parenterally.
[0020]
The measurement was performed using the blood of a cancer patient, and blood cells were discriminated as positive or negative for cell surface antigens CD4 and CD25, and the ratio of each cell was determined by a Two Color test using flow cytometry as usual. It was measured.
[0021]
(Preparation of sample for measuring cytokine)
First, a mononuclear cell fraction is separated and prepared from blood. Heparinized peripheral blood is diluted two-fold with phosphate buffered saline (PBS) and mixed, then overlaid on Ficoll-Conray solution (specific gravity 1.077) and centrifuged at 400 G for 20 minutes. After sedimentation, the mononuclear cell fraction is collected. After washing, RPMI-1640 medium supplemented with 10% fetal bovine serum (FBS) is added to adjust the number of cells to 1 × 10 6 . Phytohemagglutinin (manufactured by DIFCO) was added to 200 μl of the obtained cell suspension at a concentration of 20 μg / ml, and the cells were cultured in a 96-well microplate in the presence of 5% CO 2 at 37 ° C. for 24 hours. This is used as a sample for measuring cytokines in the cultured cell solution.
[0022]
(Measurement of IL-12)
Although the clinical and biochemical tests known per se can be used for the measurement of the amount of IL-12, a measurement kit based on enzyme immunoassay (ELISA) available from R & D SYSTEMS or MBL is used. Here, a measurement kit from R & D SYSTEMS was used. Actually, 50 μl of the assay diluent Assay Diluent RD1F and 200 μl of the standard solution (standard) or the sample prepared in Example 1 were dispensed into each well of the 96-well microplate, and then allowed to stand at room temperature for 2 hours. Allowed to react for hours. Thereafter, horseradish peroxidase (HRP) -labeled anti-IL-12 antibody was dispensed in 200 μl portions and left at room temperature for 2 hours. After removing the reaction solution in each well and washing three times, 200 μl of the chromogenic substrate solution was dispensed, and the mixture was allowed to stand at room temperature for 20 minutes, and then 50 μl of the enzyme reaction stop solution was dispensed. Using 550 nm as a control, the absorbance of each well at 450 nm was measured by Emax (manufactured by Wako Pure Chemical Industries, Ltd.). The amount of IL-12 is expressed as pg / ml. Here, the ability to induce IL-12 production refers to a function of enhancing the amount of IL-12 produced by stimulation of the peripheral blood mononuclear cell fraction to 7.8 pg / ml or more, or an IL-12 level before administering a certain substance. 12 means a function to enhance the production amount.
[0023]
(Measurement of IFNγ)
The measurement of IFNγ was performed using BioSource Europe S.D. The enzyme immunoassay (EIA method) was used for measurement using an IFNγ EASIA kit manufactured by KK. Actually, 50 μl of a standard solution or a two-fold diluted sample prepared above was dispensed into each well of a 96-well microplate, and 50 μl of the HRP-labeled anti-IFN-γ antibody was dispensed and shaken. For 2 hours at room temperature. After removing the reaction solution in each well and washing three times, 200 μl of the chromogenic substrate solution was dispensed, reacted at room temperature for 15 minutes while shaking, and 50 μl of the enzyme reaction termination solution was dispensed. Using 630 nm as a control, the absorbance of each hole at 450 nm and 490 nm was measured by Emax (manufactured by Wako Pure Chemical Industries, Ltd.). IFNγ amounts are expressed as IU / ml.
[0024]
(Measurement of perforin-producing cells)
For lymphocytes in peripheral blood, the proportion of cells positive for CD8, which is a cell surface antigen, and positive for perforin is measured by a Three Color test using flow cytometry in a usual manner. Specifically, a fixative is added to the collected blood to fix the cells, a membrane permeate is added, an anti-perforin antibody (Pharmingen) is added, and a reaction is performed. Further, a PRE-Cy5-labeled secondary antibody (DAKO) is added. And then reacting by adding an anti-CD8 antibody, and then measuring by flow cytometry.
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to the Examples.
[0025]
Embodiment 1
Patients were administered IL-X (East and West Pharmaceuticals), shark cartilage (Seishin Enterprise), and saccharides having an α1,3 structure according to each recommended regimen. The relationship between the induction-producing ability of IL-12, the induction-producing ability of IFNγ, and the contribution of CD4 + CD25-T cells, CD4 + CD25 + T cells, and perforin-producing cells was analyzed for the treated patient groups.
[0026]
FIG. 1 shows the correlation between CD4 + CD25 + T cells and CD8 + perforin-producing cells (CD8 + PER +).
All cases (65 cases), CR (healing) (n = 17), PR (partial healing) (n = 14), LNC (no long term cancer growth) (n = 8), SNC (short term cancer growth no) (N = 7), PD (ineffective) (n = 14), and first visit (n = 5) showed an inverse correlation.
This fact indicates that CD4 + CD25 + T cells are acting suppressively on activated killer T cells.
[0027]
The correlation between CD4 + CD25 + T cells and IL-12 was examined and is shown in FIG. The correlation between IL-12 and CD4 + CD25 + T cells shows a loose positive correlation as a whole. In addition, CR (n = 17 cases), PR (n = 14 cases), and LNC (n = 8 cases) tended to show a positive correlation, respectively. On the other hand, a tendency of inverse correlation was observed in SNC (n = 7 cases) and PD (n = 14 cases).
[0028]
The correlation between CD4 + CD25 + T cells and IFNγ is shown in FIG. Similarly to IL-12, IFNγ also showed a positive correlation between CR, PR and LNC, and SNC and PD cases showed a reverse correlation. This fact suggests that, in an effective example, the Th1 cytokine may act by resisting immunosuppression of CD4 + CD25 + T cells. Further, it is suggested that CD4 + CD25 + T cells act in a suppressive manner in cases where the Th1 cytokine level is high in SNC and PD cases, and that CD4 + CD25 + T cells act in an immunosuppressive manner in cases where the Th1 cytokine level is low. In an effective example, it is considered that the Th1 cytokine overcomes CD4 + CD25 + T cells and the immune activity, that is, CD8 + perforin + T cells are working.
On the other hand, in the ineffective cases, it is considered that either the Th1 cytokine level is low or either one of CD4 + CD25 + T cells acts immunosuppressively.
[0029]
The correlation between IL-10 and CD4 + CD25 + T cells is shown in FIG. In all cases, IL-10 and CD4 + CD25 + T cells showed a positive correlation, and all showed a positive correlation except for LNC (n = 8). This fact suggested that in the case of NITC treatment, both IL-10 and CD4 + CD25 + T cells worked immunosuppressively.
[0030]
It is also possible that CD4 + CD25 + T cells produce TGFβ and act immunosuppressively. Therefore, when the correlation between these cells and CD4 + CD25 + TGFβ + T cells was examined, a positive correlation was shown. This fact suggests that these CD4 + CD25 + T cells may produce TGFβ having a strong immunosuppressive action and act in a suppressive manner (FIG. 5).
[0031]
CD4 + CD25-T cells are thought to produce IL-2 and IFNγ to activate killer T cells (CD8 + T cells). Therefore, FIG. 6 shows the correlation between IFNγ and CD4 + CD25-T cells. A positive correlation was observed between CD4 + CD25-T cells and IFNγ.
[0032]
Next, among CD4 + CD25-T cells, the correlation between IFNγ-producing cells (CD4 + CD25-IFNγ +) and IFNγ also showed a positive correlation (FIG. 7).
The correlation between CD4 + CD25-T cells and CD4 + CD25-IFNγ + T cells also showed a positive correlation.
[0033]
The ratio was compared between effective cases and ineffective cases in cases where CD4 + CD25 + T cells showed 30% or more, that is, cases in which CD8 + cells were strongly suppressed (FIG. 8).
The former was 20.5%, while the latter invalid case showed a significant difference of 47.6% (p <0.05). That is, it was confirmed that CD4 + CD25 + T cells suppressed CD8 + perforin-producing cells, and acted suppressively in NITC-treated cases.
[0034]
In addition, the ratio of CD4 + CD25-T cells / CD4 + CD25 + T cells was compared with 39 cases of effective cases (CR + PR + LNC) and 21 cases of invalid cases (SNC + PD), and the effective cases showed high values (p <0.01). This fact suggests that a cut-off value of 30% that works for immunosuppression of CD4 + CD25 + T cells is appropriate.
【The invention's effect】
According to the above results, assaying CD4 + CD25-T cells, CD4 + CD25 + T cells, CD4 + CD25-T cells / CD4 + CD25 + T cell ratios is useful as a marker in cancer treatment and provides a novel meaning, and It was confirmed that it achieved a breakthrough in treatment.
[0035]
[Brief description of the drawings]
FIG. 1 shows the correlation between CD8 + PER + and CD4 + CD25 + T cells.
FIG. 2 shows the correlation between IL-12 and CD4 + CD25 + T cells.
FIG. 3 shows the correlation between IFNγ and CD4 + CD25 + T cells.
FIG. 4 shows the correlation between IL-10 and CD4 + CD25 + T cells.
FIG. 5 shows the correlation between CD4 + CD25 + and CD4 + CD25 + TGFβ +.
FIG. 6 shows the correlation between CD4 + CD25-T cells and IFNγ.
FIG. 7 shows the correlation between CD4 + CD25− and CD4 + CD25−IFNγ +.
FIG. 8 shows a case where CD4 + CD25 + T cells are 30% or more.

Claims (6)

CD4+CD25+T細胞を測定し、それが活性化キラーT細胞に抑制的に働いていることと判定する癌の検査手段。A means for examining cancer that measures CD4 + CD25 + T cells and determines that they act suppressively on activated killer T cells. CD4+CD25−T細胞を測定し、それがCTL活性化に働いていることと判定する癌の検査手段。A means for examining cancer that measures CD4 + CD25-T cells and determines that they act on CTL activation. CD4+CD25−T細胞/ CD4+CD25+T細胞の比を測定する癌治療の有効性の判定手段。Means for determining the efficacy of cancer treatment by measuring the ratio of CD4 + CD25−T cells / ΔCD4 + CD25 + T cells. ガンの免疫治療剤のスクリーニング方法であって、CD4+CD25−T細胞/ CD4+CD25+T細胞の比を検定し、CD4+CD25−T細胞の優位をもって有効と判定するガンの免疫治療剤のスクリーニング方法。A method for screening an immunotherapeutic agent for cancer, which comprises examining the ratio of CD4 + CD25-T cells / CD4 + CD25 + T cells, and judging that the cancer is effective with the superiority of CD4 + CD25-T cells. 請求項1〜3の何れか一に記載の情報を自然法則を利用した媒体に担持した商業用媒体。A commercial medium carrying the information according to any one of claims 1 to 3 on a medium utilizing the law of nature. 請求項5の商業用媒体を利用した商業方法。
からなる。
A commercial method using the commercial medium of claim 5.
Consists of
JP2002180802A 2002-06-18 2002-06-21 Measuring method of cancer marker Withdrawn JP2004077122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002180802A JP2004077122A (en) 2002-06-18 2002-06-21 Measuring method of cancer marker

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002177811 2002-06-18
JP2002180802A JP2004077122A (en) 2002-06-18 2002-06-21 Measuring method of cancer marker

Publications (1)

Publication Number Publication Date
JP2004077122A true JP2004077122A (en) 2004-03-11

Family

ID=32032497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002180802A Withdrawn JP2004077122A (en) 2002-06-18 2002-06-21 Measuring method of cancer marker

Country Status (1)

Country Link
JP (1) JP2004077122A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011530077A (en) * 2008-08-04 2011-12-15 シンメッド リサーチ ゲーエムベーハー A method for characterizing, specifically quantifying, molecular markers that are absorbed from tissues into cells by circulating macrophages that are recycled from the tissues to the circulatory system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011530077A (en) * 2008-08-04 2011-12-15 シンメッド リサーチ ゲーエムベーハー A method for characterizing, specifically quantifying, molecular markers that are absorbed from tissues into cells by circulating macrophages that are recycled from the tissues to the circulatory system

Similar Documents

Publication Publication Date Title
Pedersen et al. Indometacin in vitro and in vivo abolishes post-exercise suppression of natural killer cell activity in peripheral blood
EP3107538B1 (en) Combination therapy for hepatocellular carcinoma
Bloomfield et al. In-vitro glucocorticoid studies for predicting response to glucocorticoid therapy in adults with malignant lymphoma
Fowler et al. Clinical “cytokine storm” as revealed by monocyte intracellular flow cytometry: correlation of tumor necrosis factor α with severe gut graft-versus-host disease
Rubin et al. Defective human mononuclear leukocyte chemotaxis as an index of host resistance to malignant melanoma
Niitsu et al. A high serum soluble Fas/APO-1 level is associated with a poor outcome of aggressive non-Hodgkin’s lymphoma
KR20050043736A (en) Anticancer compositions
McKeever et al. Helper and suppressor T lymphocyte function in severe alcoholic liver disease.
JP2004077122A (en) Measuring method of cancer marker
Madu Presenting features and treatment outcomes of chronic lymphocytic leukaemia in a resource poor Southern Nigeria
JP2004020487A (en) Method of inspecting cancer
WO2003039567A1 (en) Anticancer compositions
US6464981B2 (en) Therapeutic agent for a cancer and method of screening the same, and health-care auxiliary food
Holcombe et al. Association of immune parameters with clinical outcome in stage III colon cancer: results of Southwest Oncology Group Protocol 9009
JPWO2003031969A1 (en) New immunoassay method
Abraham et al. Vitiligo, rheumatoid arthritis and pernicious anemia
Carbone et al. Decreased expression of activation markers on CD4 T lymphocytes of HIV-infected long-term non-progressors
EP1300681A1 (en) Means of assaying immune function
Holcombe et al. Alteration in lymphocyte phenotype associated with administration of adjuvant levamisole and 5-fluorouracil
ElAlfy et al. Pan Arab Conference for Bleeding Disorders
Fraaij et al. Initation of highly active antiretroviral therapy leads to an HIV-specific immune response in a seronegative infant
JPWO2005071409A1 (en) Pancreatic cancer therapeutic agent
WO2005054496A1 (en) Method of examining cell kinetics
Miguez-Burbano et al. Discontinuation of secondary prophylaxis and the risk of Pneumocystis carinii pneumonia
JP3464662B2 (en) Cancer malignancy determination method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050906