JP2004020487A - Method of inspecting cancer - Google Patents

Method of inspecting cancer Download PDF

Info

Publication number
JP2004020487A
JP2004020487A JP2002178590A JP2002178590A JP2004020487A JP 2004020487 A JP2004020487 A JP 2004020487A JP 2002178590 A JP2002178590 A JP 2002178590A JP 2002178590 A JP2002178590 A JP 2002178590A JP 2004020487 A JP2004020487 A JP 2004020487A
Authority
JP
Japan
Prior art keywords
cancer
cells
cd11c
ifnγ
marker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002178590A
Other languages
Japanese (ja)
Inventor
Kyokuho Yagita
八木田 旭邦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ORIENT CANCER THERARY KK
Original Assignee
ORIENT CANCER THERARY KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ORIENT CANCER THERARY KK filed Critical ORIENT CANCER THERARY KK
Priority to JP2002178590A priority Critical patent/JP2004020487A/en
Publication of JP2004020487A publication Critical patent/JP2004020487A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treatment method of cancer employing DC (dendritic cells) in white blood cells as a marker and a means for determining the effectiveness of a treatment medicine for cancer. <P>SOLUTION: A means for examining cancer by measuring DC1[CD11c(+)] of DC (dendritic cells) in white blood cells and employs them as a marker, a means for examining cancer by examining the correlation between the DC1 and IL-12 derivatives or IFN<SB>γ</SB>, a means for examining cancer by further measuring DC2[CD11c(-)], evaluates the ratio of DC1/DC2, and employs it as a marker, and a method of screening an immunotherapeutic reagent for cancer by evaluating the DC1 or the ratio of DC1/DC2, and determining the effectiveness by the dominance of the DC1, are obtained. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野】
本発明は、新免疫療法のための新規な手段の提供に関する。特に、白血球中のDC(樹状細胞)をマーカーにした癌治療における又は癌治療剤の有効性の判定のための手段を提供する。
【0002】
【従来の技術】
ガン(malignant neoplasms)(cancer)の予防または治療のために有用な物質の選別には、従来、ガン細胞へのその直接的作用が重要視されていた。免疫賦活剤がガン治療に有用であることは認められていたが、免疫賦活剤として得られた化合物はいずれもその抗ガン効果が微弱であり、免疫療法単独または化学療法との併用治療によってもガンの十分な治療効果は達成されていない。
【0003】
本発明者の医学博士、八木田は、先にガン治療における画期的な手法として、インターロイキン12(IL−12)を生体内で誘発する物質の有用性に着目し、キノコ菌糸体加工物がその機能を有することを発見し、新免疫療法(Novel Immunotherapy for cancer)(NITC)ともいうべきガン治療法を確立した。従来IL−12は、抗ガン効果があるものの生体内にIL−12自体を直接投与した場合には副作用を生じるために患者が治療に耐えられないという事実があり、それ自体を抗ガン剤として使用できなかった。しかし、八木田が報告したキノコ菌糸体加工物を含む製剤は、ガンの治療において著しい治癒・延命効果を達成した。つまり八木田は、IL−12を生体内で誘発できる有効量のキノコ菌糸体加工物を投与することにより、ガンの治療目的を達成した(特開平10−139670号公報)。
【0004】
IL−12は、TNFα→IFNγ→IL−12→CTL活性というルートでキラーT細胞の活性化効果と増強効果をもつ。つまりIL−12の産生増強は、キラーT細胞の活性化と増強により抗ガン効果が期待される。
【0005】
八木田は、IL−12の産生増強の系とは別にNKT細胞の活性化が抗ガン効果に有用であることを報告している。谷口等は、NKT細胞が有するVα24Vβ11という特異的なT細胞抗原受容体(TCR)が認識する特異的な糖脂質抗原を発見し、この抗原が、αガラクトシルセラミドであることを報告している。更に、αガラクトシルセラミドを投与した担ガンマウスでは、NKT細胞が活性化され、ガンの消失はみられないものの転移が抑制されることを証明した。
NKT細胞には、もう一つの受容体としてNK細胞抗原受容体(NKR−P1;ナチュラルキラー受容体P1)があることは報告されている(特集 NKT細胞の基礎と臨床:最新医学55巻4号2000年818〜823ページ)。NKR−P1もNKT細胞の活性化に関与し、この活性化が抗ガン効果がより優位であることを八木田は見出している。
【0006】
NK細胞についても生体の抗ガン作用に係わるという報告がなされているが、これまでNK細胞の活性と臨床的な抗ガン効果とが相関せず、IL−12の産生誘発量とNK細胞の活性とが完全な逆相関を示すことが八木田により証明されており、ヒトにおける抗ガン作用についてのNK細胞の関与は疑問視されていた。
【0007】
【発明が解決しようとする課題】
本発明は、新免疫療法において、CTL活性(IL−12の誘導産生能、IFNγの誘導産生能)、NKT活性、NK活性、血管新生阻害作用〔−VEGF:VEGF(血管新生増生因子)の逆数(VEGF測定数値にマイナス1を掛けて算出したパラメーター数値)〕の測定に加えて、新たにDC(樹状細胞)をも測定し、その測定値を使い各測定結果の検定の意味するところを分析し、CTL活性、NKT活性、NK活性及び−VEGFに加えてDCのガン治療における意義を見出すことによって、新免疫療法の完成を課題とする。
【0008】
【課題を解決するための手段】
本発明は、DCの動態とガンへの効果には相関性が存在することを見出し、本発明からなる新免疫療法のあらたな手段を達成した。
【0009】
すなわち本発明は、
1.白血球中のDC(樹状細胞)のDC1〔CD11c(+)〕を測定し、マーカーとするガンの検査手段。
2.DC1とIL−12誘導量又はIFNγの相関を検査する前項1のガンの検査手段。
3.白血球中のDC(樹状細胞)のDC2〔CD11c(−)〕をも測定し、DC1/DC2比を検定し、マーカーとする前項1のガンの検査手段。
4.ガンの免疫治療剤のスクリーニング方法であって、DC1を検定し又はDC1/DC2比を検定し、DC1優位をもって有効と判定するガンの免疫治療剤のスクリーニング方法。
5.前項1〜3の何れか一に記載の情報を自然法則を利用した媒体に担持した商業用媒体。
6.前項5の商業用媒体を利用した商業方法。
からなる。
【0010】
【発明の実施の形態】
以下、本発明を詳しく説明するが、本明細書中で使用されている技術的および科学的用語は、別途定義されていない限り、本発明の属する技術分野において通常の知識を有する者により普通に理解される意味を持つ。
【0011】
本発明者の医学博士八木田のガン新免疫療法とは4つの異なる作用機序を組み合わせることからなる治療手段である。
第一の作用機序は、血管新生阻害物質(ベターシャーク)を投与してガンへの血流を障害してガン縮小をはかる方法である。これは血管内皮細胞増殖因子(VEGF)を測定することでその効果は判定が可能である。血管新生阻害作用はVEGF値のマイナス値(−VEGF)で評価できる。このVEGF値の替わりにFGF、HGFなどのその他の血管増殖因子を用いることも血管新生阻害能を評価することが可能である。またVEGFの替わりに血管新生阻害因子の正数値でもその評価が可能である(例えばエンドスタチン値)。
【0012】
他の一つの作用機序は、β1,3グルカン構造を担持する化合物を投与してTh1サイトカイン(TNFα、IFNγ、IL−12)を誘導してCTLを活性化する方法である。CTL活性はCD8(+)パーフォリン産生能力で判定が可能であるが、このCD8(+)パーフォリン値には細胞障害性T細胞(CTL)と免疫抑制性T細胞(STC; Suppressor T cell)とがあり、前者はガン細胞を障害し、後者はガンの増殖に作用する。したがってその絶体値では評価はできない。しかし前者はIFNγが10 IU/ml以上かもしくはIL−12値が7.8 pg/ml以上であればCTLであり、IFNγとIL−12が低値であればSTCと判定される。そこでCTL活性は、IFNγ産生能力(IFNγ値)もしくはIL−12産生能力(IL−12値)で評価が可能である。
【0013】
第三及び第四の作用機序であるα1,3グルカン構造を担持する化合物の投与によって活性化されるeffector細胞はNK細胞とNKT細胞である。このNKとNKT細胞とはNKR−P1(NK細胞受容体CD161(+))を共有しており、前者はCD3(−)CD161(+)の表面マーカーでNK細胞数は測定可能であり、その活性化はCD3(−)CD161(+)パーフォリン産生能力で判定が可能である。一方後者のNKT細胞はCD3(+)CD161(+)でその細胞数は測定が可能となり、そのパーフォリン産生能力でNKT細胞の活性化は測定可能である。
【0014】
したがってガン治療における新免疫療法(NITC)であっても一般的な免疫療法であっても以下の測定項目でそれぞれのeffector細胞もしくは血管新生阻害作用を評価することが可能である。具体的には、CTL活性はIFNγあるいはIL−12の誘導産生能力で評価が可能である。NK細胞の活性化はCD3(−)CD161(+)もしくはCD3(−)CD161(+)パーフォリン値でも評価可能である。NKT細胞の活性化はCD3(+)CD161(+)もしくはCD3(+)CD161(+)パーフォリン値でも評価が可能である。
【0015】
本発明は、臨床における結果と、NK細胞の活性化能、NKT細胞の活性化能、血管新生阻害能、IL−12の誘導産生能、及びIFNγの誘導産生能の相関性に加えて、DC(樹状細胞)動態を検討することにより行われた。本発明者は、新免疫療法(NITC)として、ガン患者にα1,3グルカン構造を担持する化合物、β1,3グルカン構造を担持する化合物と血管新生阻害作用物質(サメ軟骨)を併用し、IL−12、IFNγ他の各種サイトカイン、DCを測定した。その結果、DC1〔CD11c(+)〕、DC2〔CD11c(−)〕を測定し、又そのDC1/DC2比を検定し、マーカーとすることはガンの検査手段として意義があることを見出した。
【0016】
この意義を見出したことによりDC1〔CD11c(+)〕、DC2〔CD11c(−)〕の測定は、有用なCTL活性化剤のスクリーニング方法に適用可能であり、このスクリーニング方法を利用すればCTL活性化能を担持する新規β1,3グルカンの特定が可能であることも見出した。本発明では、β1,3グルカン構造を持つ茸菌糸体組成物製剤(例えばILX、ILY:東西医薬品)が、CD8ーフォリン産生能の測定を組み合わせれば当業者は容易にCTL活性化剤を特定可能である。
【0017】
以上のような情報は、自然法則を利用した媒体に担持すれば有用な商業用媒体となり、またその商業用媒体は有用な商業方法を提供する。
【0018】
本発明においてCTL活性化剤(IL−12産生誘導剤、INFγ産生誘導剤)は、本発明の測定法による結果を指標として、その活性化を誘導または増強し、さらに活性化を維持できる処方にて用いられる。すなわち、指標をもとに、その活性化を誘導または増強し、さらに活性化を維持できる投与量、ならびに投与期間を選択して用いられる。具体的には、その投与量は、CTL活性化剤(IL−12産生誘導剤、INFγ産生誘導剤)であるβ−1,3グルカン構造を持つ化合物は1g〜10g/日程度、好ましくは3g〜6g/日程度である。また、投与期間は一般的には10日間〜24ヶ月間、投与頻度は1〜3回/日で、好ましくは連日投与である。当該CTL活性化剤(IL−12産生誘導剤、INFγ産生誘導剤)は、好適には経口摂取される。無論、投与量を減少させ、これらを非経口に耐え得る品質に調製することで、非経口摂取(静脈内または筋肉内投与などを含む)も可能である。
【0019】
細胞および各サイトカインの測定方法を以下に例示する。
DC(樹状細胞)の測定は、全白血球の中からDC(樹状細胞)を選択する目的で、HLA−DR(+)でCocktail(−)[CD3(−)、CD14(−)、CD16(−)、CD19(−)、CD20(−)、CD56(−)]の細胞にゲートをかける。さらに、この細胞集団の中で(A)DC1:CD11c(+)と(B)DC2:CD11c(−)とに分ける。(図1)にその詳細を提示した。何れも既知繁用手段によった。
【0020】
実施例ではガン患者の血液を用いて、血中細胞について細胞表面抗原であるCD11cについて陽性・陰性で区別し、各細胞の割合を、フローサイトメトリーを用いたTwo Color検査により常法通り測定した。
【0021】
(サイトカインを測定するための試料の調製)
まず、血液より単核球画分を分離調製する。ヘパリン加末梢血をリン酸緩衝生理食塩水(Phosphate Buffered Saline)(PBS)で2倍に希釈して混和した後、Ficoll−Conray液(比重1.077)上に重層し、400Gで20分間遠沈後、単核球画分を採取する。洗浄後、10%牛胎児血清(FBS)を加えたRPMI−1640培地を加え、細胞数を1×10個となるように調製する。得られた細胞浮遊液200μlにフィトヘマグルチニン(Phytohemagglutinin)(DIFCO社製)を20μg/mlの濃度となるように加え、96穴マイクロプレートにて5%CO2存在下、37℃で24時間培養し、該培養した細胞溶液中のサイトカインを測定する試料とする。
【0022】
(IL−12の測定)
IL−12量の測定は自体公知の臨床、生化学的検査を利用できるが、R&D SYSTEMS社やMBL社より入手することのできる酵素免疫測定法(ELISA)による測定キットが使用される。ここではR&D SYSTEMS社の測定キットを用いた。実際には96穴マイクロプレートの各穴に測定用希釈液Assay Diluent RD1Fを50μl、標準液(standard)または実施例1で調製した試料を200μlずつ分注した後、室温にて静置して2時間反応させた。その後、西洋わさびパーオキシダーゼ(horse radish peroxidase)(HRP)標識抗IL−12抗体を200μlずつ分注し2時間室温で静置した。各穴の反応液を除去し3回洗浄後、発色基質溶液を200μlずつ分注し、20分間室温静置後、酵素反応停止溶液を50μlずつ分注した。550nmを対照として450nmにおける各穴の吸光度をEmax(和光純薬株式会社製)にて測定した。IL−12量は、pg/mlとして表される。ここでIL−12産生誘発能とは、末梢血単核球画分が刺激により産生するIL−12量を、7.8pg/ml以上に増強せしめる機能、またはある物質を投与する前のIL−12産生量より増強せしめる機能を意味する。
【0023】
(IFNγの測定)
IFNγの測定は、BioSource Europe S.社のIFNγ EASIAキットを用いて、酵素免疫測定法(EIA法)で測定した。実際には96穴マイクロプレートの各穴に標準液(standard)または上記調製した試料を2倍希釈したものを50μlずつ分注し、HRP標識抗IFN−γ抗体を50μlずつ分注し更に振盪しながら2時間室温で反応させた。各穴の反応液を除去し3回洗浄後、発色基質溶液を200μlずつ分注し、振盪しながら15分間室温で反応させ、酵素反応停止溶液を50μlずつ分注した。630nmを対照として450nmおよび490nmにおける各穴の吸光度をEmax(和光純薬株式会社製)にて測定した。IFNγ量は、IU/mlとして表される。
【0024】
【実施例】
以下に、実施例を用いて本発明を具体的に説明するが、本発明は本実施例に限定されるものではない。
【0025】
【実施例1】
患者には、IL−X(東西医薬)、さめ軟骨(セイシン企業)、及びα1,3構造をもつ糖類が、各推奨処方により投与された。処置患者群の有効例(CR/完治、PR/部分治癒、LNC/長期ガン増殖無)と無効例(SNC/短期ガン増殖無、PD/無効)で、IL−12の誘導産生能、IFNγ誘導産生能、及びDC1〔CD11c(+)〕、DC2〔CD11c(−)〕の寄与の関係を分析した。
【0026】
図2はDC1とIL−12の関係を示し、有効例及び無効例のいずれとも正の相関を示す。図3はDC1とIFNγの関係を示し、有効例及び無効例のいずれとも正の相関を示す。図4はDC1/DC2比とIFNγの関係を示し、有効例で正の相関を示し、無効例で逆相関を示した。また、DC1/DC2比とIL−12の関係でも、有効例で正の相関を示し、無効例で逆相関を示した。
【0027】
【発明の効果】
以上の結果によれば、DC1、DC2及びDC1/DC2比は、癌治療におけるマーカーとして有用であり、新規な意義を提供するものであり、ガン治療における画期的な成果を達成した。
【図面の簡単な説明】
【図1】DC分離法の説明図。
【図2】DC1とIL−12の相関図。
【図3】DC1とIFNγの相関図。
【図4】DC1/DC2比とIFNγの相関図
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to the provision of novel means for neo-immunotherapy. In particular, the present invention provides a means for determining the efficacy of a cancer therapeutic or in cancer treatment using DC (dendritic cells) in leukocytes as a marker.
[0002]
[Prior art]
In the selection of a substance useful for the prevention or treatment of cancer (malignant neoplasms) (cancer), its direct action on cancer cells has conventionally been emphasized. Although immunostimulants were found to be useful for treating cancer, all of the compounds obtained as immunostimulants had weak anticancer effects, and were not treated with immunotherapy alone or in combination with chemotherapy. A sufficient therapeutic effect of cancer has not been achieved.
[0003]
The present inventor's medical doctor, Yagida, first focused on the usefulness of a substance that induces interleukin 12 (IL-12) in vivo as an epoch-making technique in cancer treatment. They discovered that they have that function and established a cancer treatment that could be called a novel immunotherapy for cancer (NITC). Conventionally, IL-12 has an anticancer effect, but there is a fact that if IL-12 itself is directly administered into a living body, a patient cannot tolerate the treatment due to side effects. Could not be used. However, the preparation containing a processed mushroom mycelium reported by Yagida achieved a remarkable healing / life extension effect in the treatment of cancer. That is, Yagida achieved the purpose of treating cancer by administering an effective amount of a processed mushroom mycelium capable of inducing IL-12 in vivo (Japanese Patent Application Laid-Open No. 10-139670).
[0004]
IL-12 has an effect of activating and enhancing killer T cells through the route of TNFα → IFNγ → IL-12 → CTL activity. That is, enhancement of IL-12 production is expected to have an anticancer effect due to activation and enhancement of killer T cells.
[0005]
Yagida reports that activation of NKT cells, apart from a system for enhancing IL-12 production, is useful for anticancer effects. Taniguchi et al. Discovered a specific glycolipid antigen recognized by a specific T cell antigen receptor (TCR) called Vα24Vβ11 possessed by NKT cells, and reported that this antigen was α-galactosylceramide. Furthermore, it was demonstrated that NKT cells were activated in cancer-bearing mice to which α-galactosylceramide was administered, and metastasis was suppressed, although cancer disappearance was not observed.
It has been reported that NKT cells include the NK cell antigen receptor (NKR-P1; natural killer receptor P1) as another receptor (special issue: Basic and clinical aspects of NKT cells: the latest medicine, vol. 55, No. 4). 2000 pp. 818-823). Yagida has found that NKR-P1 is also involved in the activation of NKT cells, and this activation has a more superior anticancer effect.
[0006]
It has been reported that NK cells are also involved in the anticancer activity of the living body. However, the activity of NK cells has not been correlated with the clinical anticancer effect. Has been shown by Yagida to show a complete inverse correlation, and the involvement of NK cells in anticancer activity in humans has been questioned.
[0007]
[Problems to be solved by the invention]
The present invention relates to a novel immunotherapy, in which CTL activity (IL-12 induction production ability, IFNγ induction production ability), NKT activity, NK activity, angiogenesis inhibitory action [-VEGF: reciprocal of VEGF (angiogenesis growth factor)] (Parameter value calculated by multiplying the measured value of VEGF by minus one)], DC (dendritic cell) is also newly measured, and the measured value is used to indicate the significance of the test of each measurement result. By analyzing and finding significance in cancer treatment of DC in addition to CTL activity, NKT activity, NK activity and -VEGF, it is an issue to complete a new immunotherapy.
[0008]
[Means for Solving the Problems]
The present invention has found that there is a correlation between the kinetics of DC and the effect on cancer, and has achieved a new means of a novel immunotherapy comprising the present invention.
[0009]
That is, the present invention
1. A cancer test means that measures DC1 [CD11c (+)] of DC (dendritic cells) in leukocytes and uses it as a marker.
2. The means for examining cancer according to the preceding clause 1, which examines the correlation between DC1 and the amount of induced IL-12 or IFNγ.
3. The means for examining cancer according to 1 above, which also measures DC2 [CD11c (−)] of DCs (dendritic cells) in leukocytes, examines the DC1 / DC2 ratio, and uses as a marker.
4. A method for screening an immunotherapeutic agent for cancer, which comprises assaying DC1 or assaying the DC1 / DC2 ratio to determine that the cancer is effective with DC1 superiority.
5. A commercial medium in which the information according to any one of the preceding items 1 to 3 is carried on a medium utilizing the law of nature.
6. A commercial method using the commercial medium according to item 5 above.
Consists of
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.Unless defined otherwise, technical and scientific terms used herein are commonly used by those skilled in the art to which this invention belongs. Have an understood meaning.
[0011]
The present inventor's medical doctor, Dr. Yagida's cancer immunotherapy is a therapeutic means consisting of combining four different mechanisms of action.
The first mechanism of action is a method of reducing the cancer by administering an angiogenesis inhibitor (better shark) to impair the blood flow to the cancer. This effect can be determined by measuring vascular endothelial cell growth factor (VEGF). The angiogenesis inhibitory effect can be evaluated by a negative value of the VEGF value (−VEGF). The use of other vascular growth factors such as FGF and HGF instead of this VEGF value can also evaluate the ability to inhibit angiogenesis. In addition, the evaluation can be performed by using a positive value of an angiogenesis inhibitor instead of VEGF (for example, an endostatin value).
[0012]
Another mechanism of action is a method of activating CTL by inducing Th1 cytokines (TNFα, IFNγ, IL-12) by administering a compound having a β1,3 glucan structure. The CTL activity can be determined by CD8 (+) perforin-producing ability. The CD8 (+) perforin level includes cytotoxic T cells (CTL) and immunosuppressive T cells (STC; Suppressor T cell). Yes, the former damages cancer cells, and the latter affects cancer growth. Therefore, it cannot be evaluated with its absolute value. However, the former is a CTL if IFNγ is 10 IU / ml or more or an IL-12 value is 7.8 pg / ml or more, and is determined to be STC if IFNγ and IL-12 are low. Therefore, the CTL activity can be evaluated based on the ability to produce IFNγ (IFNγ value) or the ability to produce IL-12 (IL-12 value).
[0013]
The effector cells activated by administration of the compound having the α1,3 glucan structure, which is the third and fourth mechanism of action, are NK cells and NKT cells. The NK and NKT cells share NKR-P1 (NK cell receptor CD161 (+)), and the former can measure the number of NK cells with the surface marker of CD3 (-) CD161 (+). Activation can be determined by the ability to produce CD3 (-) CD161 (+) perforin. On the other hand, the latter NKT cells can be measured with CD3 (+) CD161 (+) and the number of the cells can be measured, and NKT cell activation can be measured by its perforin-producing ability.
[0014]
Therefore, it is possible to evaluate each effector cell or angiogenesis inhibitory effect by the following measurement items, whether it is a new immunotherapy (NITC) in cancer treatment or a general immunotherapy. Specifically, CTL activity can be evaluated based on the ability to induce and produce IFNγ or IL-12. NK cell activation can also be assessed by CD3 (-) CD161 (+) or CD3 (-) CD161 (+) perforin levels. NKT cell activation can also be assessed by CD3 (+) CD161 (+) or CD3 (+) CD161 (+) perforin levels.
[0015]
In addition to the correlation between the clinical results and the ability to activate NK cells, the ability to activate NKT cells, the ability to inhibit angiogenesis, the ability to induce and produce IL-12, and the ability to induce and produce IFNγ, the present invention (Dendritic cells) were performed by examining the kinetics. As a new immunotherapy (NITC), the present inventor used a compound having a α1,3 glucan structure, a compound having a β1,3 glucan structure and an angiogenesis inhibitory substance (shark cartilage) in cancer patients in combination with IL. -12, IFNγ and other various cytokines and DC were measured. As a result, DC1 [CD11c (+)] and DC2 [CD11c (-)] were measured, and the DC1 / DC2 ratio was tested, and it was found that the use of the marker as a marker was significant as a means for testing cancer.
[0016]
Based on the finding of this significance, the measurement of DC1 [CD11c (+)] and DC2 [CD11c (-)] can be applied to a useful method for screening for a CTL activator. It has also been found that it is possible to specify a novel β1,3 glucan that carries a chelating ability. In the present invention, those skilled in the art can easily identify a CTL activator by combining a mushroom mycelium composition preparation having a β1,3 glucan structure (eg, ILX, ILY: Tozai Pharmaceutical) with measurement of CD8-forin-producing ability. It is.
[0017]
Such information becomes a useful commercial medium if it is carried on a medium utilizing the laws of nature, and the commercial medium provides a useful commercial method.
[0018]
In the present invention, the CTL activator (IL-12 production inducer, INFγ production inducer) is formulated into a formulation capable of inducing or enhancing its activation and further maintaining its activation, using the result of the measurement method of the present invention as an index. Used. That is, based on the index, a dose capable of inducing or enhancing its activation and further maintaining the activation, and an administration period are selected and used. Specifically, the dose of the compound having a β-1,3 glucan structure, which is a CTL activator (IL-12 production inducer, INFγ production inducer), is about 1 g to 10 g / day, preferably 3 g. 66 g / day. In addition, the administration period is generally 10 days to 24 months, and the administration frequency is 1 to 3 times / day, preferably daily administration. The CTL activator (IL-12 production inducer, INFγ production inducer) is preferably taken orally. Of course, parenteral ingestion (including intravenous or intramuscular administration, etc.) is also possible by reducing the dosage and preparing them to a quality that can be tolerated parenterally.
[0019]
The method for measuring cells and each cytokine is exemplified below.
The measurement of DC (dendritic cells) was performed using HLA-DR (+) with Cocktail (-) [CD3 (-), CD14 (-), CD16] in order to select DC (dendritic cells) from whole leukocytes. (−), CD19 (−), CD20 (−), CD56 (−)] cells are gated. Furthermore, in this cell population, it is divided into (A) DC1: CD11c (+) and (B) DC2: CD11c (−). (FIG. 1) provides the details. In each case, known conventional means were used.
[0020]
In Examples, using blood of a cancer patient, blood cells were discriminated positively and negatively for CD11c, which is a cell surface antigen, and the ratio of each cell was measured by a Two Color test using flow cytometry as usual. .
[0021]
(Preparation of sample for measuring cytokine)
First, a mononuclear cell fraction is separated and prepared from blood. Heparinized peripheral blood is diluted two-fold with phosphate buffered saline (PBS) and mixed, then overlaid on Ficoll-Conray solution (specific gravity 1.077) and centrifuged at 400 G for 20 minutes. After sedimentation, the mononuclear cell fraction is collected. After washing, RPMI-1640 medium supplemented with 10% fetal bovine serum (FBS) is added to adjust the number of cells to 1 × 10 6 . Phytohemagglutinin (manufactured by DIFCO) was added to 200 μl of the obtained cell suspension at a concentration of 20 μg / ml, and the cells were cultured in a 96-well microplate in the presence of 5% CO 2 at 37 ° C. for 24 hours. This is used as a sample for measuring cytokines in the cultured cell solution.
[0022]
(Measurement of IL-12)
Although the clinical and biochemical tests known per se can be used for the measurement of the amount of IL-12, a measurement kit based on enzyme immunoassay (ELISA) available from R & D SYSTEMS or MBL is used. Here, a measurement kit from R & D SYSTEMS was used. Actually, 50 μl of the assay diluent Assay Diluent RD1F and 200 μl of the standard solution (standard) or the sample prepared in Example 1 were dispensed into each well of the 96-well microplate, and then allowed to stand at room temperature for 2 hours. Allowed to react for hours. Thereafter, horseradish peroxidase (HRP) -labeled anti-IL-12 antibody was dispensed in 200 μl portions and left at room temperature for 2 hours. After removing the reaction solution in each well and washing three times, 200 μl of the chromogenic substrate solution was dispensed, and the mixture was allowed to stand at room temperature for 20 minutes, and then 50 μl of the enzyme reaction stop solution was dispensed. Using 550 nm as a control, the absorbance of each well at 450 nm was measured by Emax (manufactured by Wako Pure Chemical Industries, Ltd.). The amount of IL-12 is expressed as pg / ml. Here, the ability to induce IL-12 production refers to a function of enhancing the amount of IL-12 produced by stimulation of the peripheral blood mononuclear cell fraction to 7.8 pg / ml or more, or an IL-12 level before administering a certain substance. 12 means a function to enhance the production amount.
[0023]
(Measurement of IFNγ)
The measurement of IFNγ was performed using BioSource Europe S.D. The enzyme immunoassay (EIA method) was used for measurement using an IFNγ EASIA kit manufactured by KK. Actually, 50 μl of a standard solution or a two-fold diluted sample prepared above was dispensed into each well of a 96-well microplate, and 50 μl of the HRP-labeled anti-IFN-γ antibody was dispensed and shaken. For 2 hours at room temperature. After removing the reaction solution in each well and washing three times, 200 μl of the chromogenic substrate solution was dispensed, reacted at room temperature for 15 minutes while shaking, and 50 μl of the enzyme reaction termination solution was dispensed. Using 630 nm as a control, the absorbance of each hole at 450 nm and 490 nm was measured by Emax (manufactured by Wako Pure Chemical Industries, Ltd.). IFNγ amounts are expressed as IU / ml.
[0024]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to the Examples.
[0025]
Embodiment 1
Patients were administered IL-X (East and West Pharmaceuticals), shark cartilage (Seishin Enterprise), and saccharides having an α1,3 structure according to each recommended regimen. In the effective cases (CR / complete cure, PR / partial cure, LNC / no long-term cancer growth) and ineffective cases (SNC / short-term cancer growth, PD / ineffective) of the treated patient group, IL-12-induced production ability, IFNγ induction The relationship between the production ability and the contribution of DC1 [CD11c (+)] and DC2 [CD11c (-)] was analyzed.
[0026]
FIG. 2 shows the relationship between DC1 and IL-12, and shows a positive correlation with both the valid example and the invalid example. FIG. 3 shows the relationship between DC1 and IFNγ, and shows a positive correlation with both the valid example and the invalid example. FIG. 4 shows the relationship between the DC1 / DC2 ratio and IFNγ. The valid example shows a positive correlation, and the invalid example shows an inverse correlation. Also, in the relationship between the DC1 / DC2 ratio and IL-12, a positive correlation was shown in the valid example, and an inverse correlation was shown in the invalid example.
[0027]
【The invention's effect】
According to the above results, DC1, DC2 and DC1 / DC2 ratio are useful as markers in cancer treatment, provide new significance, and have achieved epoch-making results in cancer treatment.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a DC separation method.
FIG. 2 is a correlation diagram between DC1 and IL-12.
FIG. 3 is a correlation diagram between DC1 and IFNγ.
FIG. 4 is a correlation diagram between DC1 / DC2 ratio and IFNγ.

Claims (6)

白血球中のDC(樹状細胞)のDC1〔CD11c(+)〕を測定し、マーカーとするガンの検査手段。A cancer test means that measures DC1 [CD11c (+)] of DC (dendritic cells) in leukocytes and uses it as a marker. DC1とIL−12誘導量又はIFNγの相関を検査する請求項1のガンの検査手段。2. The cancer detecting means according to claim 1, wherein the correlation between DC1 and the amount of induced IL-12 or IFNγ is examined. 白血球中のDC(樹状細胞)のDC2〔CD11c(−)〕をも測定し、DC1/DC2比を検定し、マーカーとする請求項1のガンの検査手段。2. The cancer inspection means according to claim 1, wherein DC2 [CD11c (-)] of DC (dendritic cells) in leukocytes is also measured, and the DC1 / DC2 ratio is assayed to be used as a marker. ガンの免疫治療剤のスクリーニング方法であって、DC1を検定し又はDC1/DC2比を検定し、DC1優位をもって有効と判定するガンの免疫治療剤のスクリーニング方法。A method for screening an immunotherapeutic agent for cancer, comprising assaying DC1 or assaying the DC1 / DC2 ratio to determine that the cancer is effective with DC1 superiority. 請求項1〜3の何れか一に記載の情報を自然法則を利用した媒体に担持した商業用媒体。A commercial medium carrying the information according to any one of claims 1 to 3 on a medium utilizing the law of nature. 請求項5の商業用媒体を利用した商業方法。A commercial method using the commercial medium of claim 5.
JP2002178590A 2002-06-19 2002-06-19 Method of inspecting cancer Withdrawn JP2004020487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002178590A JP2004020487A (en) 2002-06-19 2002-06-19 Method of inspecting cancer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002178590A JP2004020487A (en) 2002-06-19 2002-06-19 Method of inspecting cancer

Publications (1)

Publication Number Publication Date
JP2004020487A true JP2004020487A (en) 2004-01-22

Family

ID=31176271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002178590A Withdrawn JP2004020487A (en) 2002-06-19 2002-06-19 Method of inspecting cancer

Country Status (1)

Country Link
JP (1) JP2004020487A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038527A1 (en) * 2004-10-01 2006-04-13 Three B Co., Ltd. Antitumor immunostimulant containing extract from pleurotus cornucopiae as active ingredient
WO2024083790A1 (en) * 2022-10-17 2024-04-25 Institut Gustave Roussy Cd207 dendritic cells as a biomarker for tumoural progression and therapeutic target

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038527A1 (en) * 2004-10-01 2006-04-13 Three B Co., Ltd. Antitumor immunostimulant containing extract from pleurotus cornucopiae as active ingredient
WO2024083790A1 (en) * 2022-10-17 2024-04-25 Institut Gustave Roussy Cd207 dendritic cells as a biomarker for tumoural progression and therapeutic target

Similar Documents

Publication Publication Date Title
Su et al. Urinary phthalate metabolites, coronary heart disease, and atherothrombotic markers
Budkowska et al. The circadian rhythm of selected parameters of the hemostasis system in healthy people
Chenillot et al. High sensitivity C-reactive protein: biological variations and reference limits
EP3107538B1 (en) Combination therapy for hepatocellular carcinoma
Ziliotto et al. Hemostasis biomarkers in multiple sclerosis
Okonko et al. Erythropoietin resistance contributes to anaemia in chronic heart failure and relates to aberrant JAK–STAT signal transduction
Inönü et al. Salivary Del‐1, IL‐17, and LFA‐1 levels in periodontal health and disease
Akimova et al. Obesity-related IL-18 impairs T-regulatory cell function and promotes lung ischemia–reperfusion injury
JP7401460B2 (en) Biomarkers for combination therapy including lenvatinib and PD-1 antagonists
Munemasa et al. Osteoprogenitor differentiation is not affected by immunomodulatory thalidomide analogs but is promoted by low bortezomib concentration, while both agents suppress osteoclast differentiation
McKeever et al. Helper and suppressor T lymphocyte function in severe alcoholic liver disease.
Folsom et al. Fibrinogen, plasminogen activator inhibitor-1, and carotid intima-media wall thickness in the NHLBI Family Heart Study
Lanser et al. Trauma serum suppresses superoxide production by normal neutrophils
JP2004020487A (en) Method of inspecting cancer
Noble et al. Effect of age on plasma membrane asymmetry and membrane fluidity in human leukocytes and platelets
Pavlik et al. Esterase activity, exclusion of propidium iodide, and proliferation in tumor cells exposed to anticancer agents: phenomena relevant to chemosensitivity determinations
Madu Presenting features and treatment outcomes of chronic lymphocytic leukaemia in a resource poor Southern Nigeria
JP2004077122A (en) Measuring method of cancer marker
Semeraro et al. Increased procoagulant activity of peripheral blood monocytes in human and experimental obstructive jaundice
CN101910840A (en) Assay and method for the assessment of responders and non-responders to NK cell modulation by immunoglobulin therapy
JP2005156482A (en) Method for measuring blood coagulation ability, and reagent for measuring blood coagulation ability
US20040248214A1 (en) Novel method of assaying immune activity
Rahman et al. Factor IX deficiency in the nephrotic syndrome: studies with prothrombin complex concentrate
Bernardi et al. Hemostasis biomarkers in multiple sclerosis.
OKEKE et al. Inflammation-mediated changes in haemostatic variables of pulmonary tuberculosis infected subjects in the course of treatment.

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050906