JP2004076568A - Bag body for civil engineering, method for laying bag body for civil engineering and its structure - Google Patents

Bag body for civil engineering, method for laying bag body for civil engineering and its structure Download PDF

Info

Publication number
JP2004076568A
JP2004076568A JP2003178452A JP2003178452A JP2004076568A JP 2004076568 A JP2004076568 A JP 2004076568A JP 2003178452 A JP2003178452 A JP 2003178452A JP 2003178452 A JP2003178452 A JP 2003178452A JP 2004076568 A JP2004076568 A JP 2004076568A
Authority
JP
Japan
Prior art keywords
civil engineering
bag
engineering bag
outer cylinder
inner cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003178452A
Other languages
Japanese (ja)
Other versions
JP4219747B2 (en
Inventor
▲からさき▼ 和孝
Kazutaka Karasaki
Junichi Goto
後藤 順一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ashimori Industry Co Ltd
Original Assignee
Ashimori Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ashimori Industry Co Ltd filed Critical Ashimori Industry Co Ltd
Priority to JP2003178452A priority Critical patent/JP4219747B2/en
Publication of JP2004076568A publication Critical patent/JP2004076568A/en
Application granted granted Critical
Publication of JP4219747B2 publication Critical patent/JP4219747B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Lining And Supports For Tunnels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bag body for civil engineering, a method for laying the bag body for civil engineering and its structure in which the bag body assuredly expands to its end part in a space formed between the drilled surface of a hollow part such as a tunnel and a reaction member provided in the hollow part, the space of the butted part of the end parts of the bag bodies can be reduced to the utmost and injected grout can be pressurized and dehydrated to its center. <P>SOLUTION: In the bag body 1c for civil engineering, both end parts 3c of a tubular bag body are closed and the space 6c capable of expanding is formed therein. Both the end parts 3c are connected together by a connecting member 8c disposed in the tubular bag body. The expansion in the longitudinal direction of the space 6c is regulated by the connecting member 8c. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、特に、トンネルなどの空洞部の掘削面と、該空洞部内に設けられた反力部材と、の間に形成される隙間に配置され、グラウト等を注入し掘削面の沈下抑制を行う土木用袋体及びその土木用袋体敷設方法ならびにその構造体に関する。
【0002】
【従来の技術】
トンネルなどの空洞部を掘削する際は、H型鋼材を円弧状に曲げた支保工を掘削された掘削面に沿って設置し、地山の緩みや掘削面の崩壊を防止している。この支保工と掘削面との間には必ず隙間が生じる。この隙間に袋体を間詰し、袋体内にグラウト等を注入して地山と密着した状態で凝固させる工法がある。このような工法はプレロードシェル工法(例えば、特公平2−5237号公報)と呼ばれ、地山にプレロードをかけ、地山の沈下抑制を行っている。
【0003】
また、めがねトンネルの施工においては、まず左右に隣り合う本坑位置の中間に中央導坑を掘削して形成し、次にめがねトンネルの中心となる中壁コンクリートを作り、その上に本坑の支保工を建て込みながら本坑の掘削を行うという手順で施工が行われる。この支保工を設置するため、中壁コンクリート上面と掘削面との間に、大きな隙間がトンネル長さ方向に沿って必要となる。この大きな隙間に、径が大きい袋体を連続的に並べて間詰を行い、支保工を設置した後に袋体内にグラウト等を注入して地山の沈下抑制を行っている。
【0004】
前述した隙間に間詰される袋体は、端部で縫製、金具のかしめ、鉄板などの板で挟むというような方法で袋体に注入されるグラウト等をシールしている。
【0005】
【発明が解決しようとする課題】
しかしながら、このような方法で袋体の端部をシールすると、袋体は端部まで膨らまないので、袋体端部付近には隙間が残ることになる。特に、袋体端部同士を突き合わせて並べた場合では、突き合わせ部に大きな隙間が残ることになる。また、このような袋体の中心部では、注入されたグラウトの加圧脱水がしにくいため中心部に余剰水が残り、注入停止後に脱水によって収縮するというような問題があった。
【0006】
本発明では、以上のような問題点を考慮して、トンネルなどの空洞部の掘削面と、該空洞部内に設けられた反力部材との間に形成される隙間に、袋体端部まで確実に膨張し、袋体端部同士の突き合わせ部の隙間を極力小さくでき、さらに注入されたグラウトの中心部まで加圧脱水できる土木用袋体及びその土木用袋体敷設方法ならびにその構造体を提供することを目的とする。
【0007】
【課題を解決するための手段】
前記課題を解決するための本発明の請求項1に記載の土木用袋体は、筒状袋体の両端部が閉塞され、内部に膨張可能な空間が形成されている土木用袋体であって、前記両端部を前記筒状袋体内に配置される連結部材で連結し、前記空間の筒長方向の膨張を前記連結部材で規制することを特徴とするものである。
【0008】
このような構成によると、本来の筒状袋体の両端部が、連結部材によって筒長方向の膨張を規制され、筒状袋体の内側に存在する。従って、新しく存在する土木用袋体の両端部は、土木用袋体の径方向に膨張する膨張径と略等しく膨張するため、所定の位置で確実に間詰ができる。また、土木用袋体端部同士を突き合わせて並べて使用する場合では、突き合わせ部の隙間が極力小さくなる。
【0009】
また、本発明の請求項2に記載の土木用袋体は、外筒と、前記外筒内に挿入された内筒とで構成され、前記外筒と前記内筒の両端が連続的になるように連結されており、前記外筒と前記内筒との間に膨張可能な空間が形成されていることを特徴とするものである。
【0010】
このような構成によると、両端部が、土木用袋体の径方向に膨張する膨張径と略等しく膨張するため、所定位置で確実に間詰ができる。また、土木用袋体端部同士を突き合わせて並べて使用する場合では、突き合わせ部の隙間が極力小さくなる。
【0011】
また、本発明の請求項3に記載の土木用袋体は、請求項1において、前記連結部材は、排水性を有することを特徴とする。
【0012】
このような構成によると、土木用袋体にグラウトが注入され加圧されると両端部より連結部材に張力がかかり、排水性を有する連結部材が土木用袋体の中心部で直線状に張られて位置することになる。そして、その連結部材を通って脱水が起こり、土木用袋体中心部まで十分に脱水される。従って、土木用袋体内へのグラウト注入停止後のブリージングが無く、収縮が少なくなる。
【0013】
また、本発明の請求項4に記載の土木用袋体は、請求項2において、前記外筒と前記内筒とが一枚の筒状袋体で形成されてなり、前記筒状袋体の一方の端部が折り返されて他方の端部と連結されてなるものである。
【0014】
このような構成によると、製造方法が簡易となる。しかも、外筒及び内筒の長さの範囲内で反転可能な土木用袋体となる。また、両端部が、土木用袋体の径方向に膨張する膨張径と略等しく膨張するため、所定位置に確実に間詰ができる。また、土木用袋体端部同士を突き合わせて並べて使用する場合では、突き合わせ部の隙間が極力小さくなる。
【0015】
また、本発明の請求項5に記載の土木用袋体は、請求項4において、前記筒状袋体が、異径筒状織物でなることを特徴とするものである。
【0016】
このような構成によると、異径筒状織物を使用することによって、グラウトが注入され加圧されても、織物のたて糸及びよこ糸に均等に力が作用し、大きな圧力にも耐えることができる。土木用袋体の中心位置に内筒が形成されグラウトの脱水が向上する。
【0017】
また、本発明の請求項6に記載の土木用袋体は、請求項2乃至5のいずれかにおいて、前記内筒の内側に閉塞防止部材が挿入されたことを特徴とするものである。
【0018】
このような構成によると、土木用袋体の中心部からの排水効率が向上する。従って、中心部までの脱水がより確実となって、グラウトの凝固時間が短くなり、施工時間が短縮される。特に、異径筒状織物からなる土木用袋体を使用する場合には、排水材の位置が中心部となるので、より排水効率が高くなる。
【0019】
また、本発明の請求項7に記載の土木用袋体敷設方法は、掘削によって形成された空洞部の掘削面と前記空洞部内に設けられた反力部材との間に形成される隙間に、外筒と、前記外筒内に挿入された内筒とで構成され、前記外筒と前記内筒の両端が連続的になるように連結されてなる土木用袋体を配置し、前記外筒と前記内筒との間の膨張可能な空間内に自硬性流体を加圧充填した後、硬化させて前記隙間を埋めるものである。
【0020】
このような方法によると、土木用袋体内に自硬性流体を注入した際、土木用袋体の両端部が、土木用袋体の径方向に膨張する膨張径と略等しく膨張するため、所定位置に確実に間詰ができ、さらに掘削面に対してプレロードをかけ、地山を抑制することができる。また、土木用袋体端部同士を突き合わせて並べて使用する場合では、突き合わせ部の隙間が極力小さくなる。
【0021】
また、本発明の請求項8に記載の構造体は、掘削によって形成された空洞部の掘削面と前記空洞部内に設けられた反力部材との間に形成される隙間に、外筒と、前記外筒内に挿入された内筒とで構成され、前記外筒と前記内筒の両端が連続的になるように連結されてなる土木用袋体を配置し、前記外筒と前記内筒との間の膨張可能な空間内に自硬性流体を加圧充填した後、硬化させて前記隙間を埋めるものである。
【0022】
このような構造体によると、土木用袋体内への自硬性流体の注入停止後、土木用袋体の中心部より脱水され、ブリージングが無く、収縮の少ないものができる。また、中心部からの脱水で自硬性流体の凝固時間が短くなることによって、施工時間を短縮することができる。
【0023】
【発明の実施の形態】
本発明の実施の形態例を図1乃至図10に基づいて以下に説明する。
【0024】
図1(a)は本実施の形態例での土木用袋体の斜視図を示し、図1(b)は土木用袋体の軸方向の断面図を示す。土木用袋体1は、外側に面する外筒2と、内側に折り込まれた内筒3と、外筒2と内筒3との間に膨張可能な空間6が形成されており、その空間6と連通した外筒2の穴から突出する逆止弁付ノズル4と、逆止弁付ノズル4に接続されたホース5とで構成される。なお、内筒3に、外筒2と内筒3の端部同士を連続して縫製した縫製部10がある。
【0025】
外筒2と内筒3とは、同一の直径を有するものであって、その素材も同一のものである。また、外筒2と内筒3とは、その両端で連続的に連結されており、全体にエンドレス構造となっている。この外筒2及び内筒3は、ポリエステル製の筒状織物などで排水性を有する筒状袋体より形成されている。この筒状袋体の素材は、排水性を有するものであればポリエステル等何れであっても適用され、特に限定するものではない。土木用袋体1が織物で形成されることによって、外筒2と内筒3との間に形成された空間6にグラウト等の自硬性流体が注入され加圧されても、織物のたて糸及びよこ糸に均等に力が作用し、大きな圧力にも耐えることができる。
【0026】
また、この筒状袋体は、異径のものも好適に使用することができる。異径筒状織物を使用した場合では、後述するように土木用袋体の中心位置に内筒が形成されているので、外筒と内筒との間に形成された空間にグラウト等の自硬性流体が注入され加圧されても、土木用袋体の中心部から脱水することができる。
【0027】
外筒2及び内筒3は、それぞれ固定的なものではなく、相互に入れ換わり得るものである。この土木用袋体1は、外筒2と内筒3とは素材も直径も同一であり、全体に亘って均一な状態にある。そのため、土木用袋体1の長さの半分が外筒2を構成し、残りの半分が内筒3を構成している。従って、この土木用袋体1に外力を加えれば、外筒2が内筒3へ、内筒3が外筒2へと反転して入れ換わることが可能である。
【0028】
図1(b)に示す縫製部10は、外筒2と内筒3の端部を連続して縫製されたものである。この縫製部10を図1(b)に示すように土木用袋体1の内側に存在させることによって、新たな土木用袋体1の両端部7が形成されることになる。
【0029】
この両端部7は、土木用袋体1の径方向に膨張する膨張径と略等しく膨張することができる。従って、後述するような掘削面と中壁コンクリートとの隙間に確実に間詰ができ、さらに土木用袋体1の端部7同士を突き合わせて並べて使用する場合では、突き合わせ部の隙間が極力小さくなる。
【0030】
逆止弁付ノズル4は、公知の構造のものを用いることができる。逆止弁付ノズル4から、外筒2と内筒3との間に形成された空間6内に、グラウト等の自硬性流体を供給することができる。また、逆止弁付ノズル4を使用することによって、グラウト等の自硬性流体の逆流を防ぐことができ、空間6内に留まらせることができる。
【0031】
ホース5は、逆止弁付ノズル4に連結されており、ホース5から逆止弁4を介して外筒2と内筒3との間に形成された空間6内にグラウト等の自硬性流体を供給することができる。
【0032】
なお、逆止弁付ノズル4及びホース5は、固定手段としても機能する。図1(b)で、逆止弁付ノズル4及びホース5が、土木用袋体1の右端にくる状態から、左端にくる状態までの範囲で、土木用袋体1は軸方向に反転可能である。
【0033】
図1(c)は他の実施の形態例での土木用袋体の軸方向の断面図を示す。土木用袋体1cは、外側に面する外筒2cと、両端部3cを土木用袋体1cの内側で連結している連結部材8cと、外筒2cと連結部材8cとの間に膨張可能な空間6cが形成されており、その空間6cと連通した外筒2cの穴から突出する逆止弁付ノズル4cと、逆止弁付ノズル4cに接続されたホース5cとで構成される。なお、外筒2c、逆止弁付ノズル4c、ホース5c等は、前述したものと同様のものを使用することができる。
【0034】
外筒2cの両端部3cが、土木用袋体1cの内側の連結部材8cで連結されることによって、筒長方向の空間6cの膨張が規制され、両端部3cが土木用袋体1cの内側に存在する。従って、外筒2cと連結部材8cとの間の空間6cにグラウト等の自硬性流体が逆止弁付ノズル4c、ホース5cを介して供給されると、外筒2cと連結部材8cとの間の空間6cが膨張し、新たな土木用袋体1cの両端部7cが形成されることになる。
【0035】
図1(c)に示すこの新たな両端部7cは、土木用袋体1cの径方向に膨張する膨張径と略等しく膨張することができる。従って、後述するような掘削面と中壁コンクリートとの隙間に確実に間詰ができ、さらに土木用袋体端部同士を突き合わせて並べて使用する場合では、突き合わせ部の隙間が極力小さくなる。
【0036】
また、連結部材8cは、織物等の排水性を有するベルト状物、ロープ状物等が好適に使用できる。このような連結部材をもちいた土木用袋体にグラウト等の自硬性流体を空間に注入し、加圧すると空間が膨張し両端部3cより連結部材に張力がかかり、連結部材が土木用袋体の中心部で直線状に張られて位置することになる。そして、その連結部材を通ってグラウト等の自硬性流体の脱水が起こり、土木用袋体中心部まで十分に脱水されることになる。従って、土木用袋体内へのグラウト注入停止後のブリージングが無く、収縮を少なくすることができる。
【0037】
次に、図2(a)〜(f)に、土木用袋体1の製造工程を示す。
【0038】
図2(a)に示す筒状織物1aが、図2(b)に示すように扁平に畳まれる。筒状織物1aの一端を裏返して、図2(c)に示すように端部を揃える。これにより、一端が連続的に連結された外筒2と内筒3とが形成される。
【0039】
そして、図2(d)に示すように、外筒2と内筒3の開放側を一体的に縫製し、縫製部10とする。この時、外筒2と内筒3との間の空間6と連通する逆止弁付ノズル4を取り付けておく。
【0040】
次に、図2(e)に示すように、逆止弁付ノズル4を取り付けた後、図2(f)に示すように、縫製部10を内筒3の奥に押し込む。これにより、土木用袋体1が形成される。この土木用袋体1は、図2(f)において、縫製部10が土木用袋体1の右端にくる位置から左端にくる位置までの範囲で、反転可能である。
【0041】
また、土木用袋体の他の実施の形態例として、図3(a)〜(f)に、外筒と内筒の両端が連続的に連結されている土木用袋体11の製造工程の断面図を示す。
【0042】
図3(a)の筒状織物11aが、図3(b)に示すように扁平に畳まれる。筒状織物11aの一端を裏返して、図3(c)に示すように端部を揃える。これにより、一端が連続的に連結された外筒12と内筒13とが形成される。
【0043】
そして、図3(d)に示すように、外筒12と内筒13の開放側を袖状に縫製し、縫製部20とする。この時、外筒12と内筒13との間の空間16と連通する逆止弁付ノズル14を取り付けておく。
【0044】
次に、図3(e)に示すように、逆止弁付ノズル14を取り付けた後、図3(f)に示すように、縫製部20を内筒13の奥に押し込む。これにより、土木用袋体11が形成される。この土木用袋体11は、逆止弁付ノズル14に固定手段を設けなければ、エンドレスに反転可能である
【0045】
土木用袋体1は、外筒2と内筒3の開放側を一体的に縫製するため、縫製の工程が簡易である。反転する範囲が限られてしまうが、用途によっては十分目的を果たす反転の範囲が得られる。逆止弁付ノズル4が設けられることにより限定される軸方向に移動可能な範囲と、縫製部10により限定される軸方向に移動可能な範囲は一致するため、逆止弁付ノズルを設ける場合は、簡易な方法で製造できる土木用袋体1とすればよい。また、土木用袋体11は、外筒12と内筒13とを袖状に縫製するため、エンドレスに反転可能である。
【0046】
次に、めがねトンネルの施工時における土木用袋体を用いた構造体についての一実施の形態例を説明するものであり、特に限定するものではない。
【0047】
図4は、めがねトンネルの施工時におけるトンネル断面を示すものである。図4に示す左右に隣り合う2つ本坑21、22は、掘削等によって形成される。これらの本坑21、22は、同時に掘削して形成するのではなく、はじめに2つの本坑21、22の中間位置を掘削して空洞部23(一般的には、中央導坑と呼ばれる)を形成し、その空洞部23に中壁コンクリート24をトンネル長さ方向に形成する。後に、この中壁コンクリート24は2つの本坑21、22の共通した側壁となる。また、中壁コンクリート24上面に後述する土木用袋体30を乗せ、土木用袋体30内にグラウトを注入加圧し、掘削面に対してプレロードをかけ、地山の沈下抑制を行うことができる。従って、中壁コンクリート24は、反力部材としても成り立ち、利用することができる。
【0048】
また、図4のようなトンネル断面の場合では、先行して小さい断面を有する本坑21を掘削し、支保工を建て込みながら形成する。そして、少し遅れて大きな断面を有する本坑22も同じようにして形成する。これらの本坑21、22を形成する際に、地山の緩みや掘削面の崩壊を防ぐための支保工を本坑21、22の長さ方向に所定の間隔で、中壁コンクリート24の上面25にのせるようにして掘削面26に沿って設置する。なお、中壁コンクリート24と空洞部23上部の掘削面26との間には、支保工を設置するための大きな隙間27が空洞部23の長さ方向に沿って必要となる。
【0049】
このようなめがねトンネルの施工時において、空洞部23に形成される中壁コンクリート24の上面25と掘削面26との間の隙間27に土木用袋体30を図5に示すように端部を突き合わせるように並べて設置し、土木用袋体30内の空間にグラウト等の自硬性流体を加圧充填した後、硬化させて隙間27を埋め、構造体とした。なお、以下に示す自硬性流体にグラウトを用いた例を示すが特に限定するものではない。
【0050】
また、土木用袋体30には、前述したように端部が径方向に膨張する膨張径と略等しく膨張し、端部同士を突き合わせて並べて使用する場合に突き合わせ部の隙間が極力小さくなり、且つ土木用袋体の内側より脱水することができるものであれば良い。例えば、図6に示すような小径部31φ400mm×2000mm(テーパ部含む)、大径部32φ1000×2000mmの全長6000mmのポリエステル製異径筒状織物を用いることができる。この小径部31から大径部32までは、滑らかなテーパ形状を有しており、大径部32外面の略中心には、グラウト等の自硬性流体を注入するための逆止弁ノズル33を設けている。
【0051】
この土木用袋体30は、図7に示すように異径筒状織物の小径部31の両端部を異径筒状袋体内に向かって折り返して端部同士を縫製して接続し、異径筒状袋体内側の略中心部に位置するようにして得たものである。このようにして、図7に示すような外筒34と、内筒35が形成される。
【0052】
また、土木用袋体30の内筒35に閉塞防止材36を挿入している。この閉塞防止材36としては、プラッスチック製のネット状のもの(以下、メッシュともいう)を用いた。メッシュの厚みは、約3mmで目の大きさが6mmのものを、幅400mm、長さ2000mmにカットして使用した。この閉塞防止材36は、土木用袋体30の空間37にグラウトを加圧注入した時に圧力によって、内筒35が閉塞されることを防ぎ、グラウト注入停止後、土木用袋体30の中心部の脱水を確実にすることができ、排水効率が向上する。従って、グラウトの凝固時間が短くなり、施工時間が短縮される。また、異径筒状織物からなる土木用袋体30では、内筒35が中心位置に形成されるので閉塞防止材36が中心部に配置され、より排水効率が高くなる。
【0053】
また、閉塞防止材36は、内筒35が閉塞することを防ぎ、グラウトが脱水できれば特に限定されるものではない。つまり、パイプに穴を明けたもの、コイル状物、砂などを透水性布で包み込んだドレーン材など種々のものを適用することができる。
【0054】
また、図8(a)に土木用袋体端部同士を突き合わせて設置した状況説明図を示す。図8(b)には、従来の袋体端部同士を突き合わせて設置した状況説明図を示す。図8(a)(b)に示す土木用袋体30と袋体40は、前述した隙間27に突き合わせて並べた状況を示している。図8(a)に示すように土木用袋体30の端部は、図8(b)に示す袋体端部を金具でかしめたものと比較して突き合わせ部に生じる隙間27が極力小さくなることが良く理解できる。このように土木用袋体30の端部は、土木用袋体30の径方向に膨張する膨張径と略等しく膨張し、確実に隙間を小さくして埋めることができる。
【0055】
以上のようにして、土木用袋体30の空間37にグラウトを注入して硬化させて、空洞部23に形成される中壁コンクリート24の上面25と掘削面26との隙間27を埋め、構造体とするものである。
【0056】
以下に、めがねトンネルの施工時において土木用袋体30の敷設方法について説明するが一実施の形態例を説明するものであり、特に限定するものではない。
【0057】
図4に示す土木用袋体30は、ポリエステル製の織物なので折り畳まれて施工現場に搬入される。そして、折り畳まれた土木用袋体30を長さ方向に広げ、作業者によって、掘削面26と中壁コンクリート24の間の隙間27に土木用袋体30の端部が突き合わせるように並べて設置される。
【0058】
次に、土木用袋体30の逆止弁付ノズル33にホースを接続する。このホースの他端には、グラウトを吐出するグラウトポンプが接続されている。このグラウトポンプは、一般的に使用されているものを適用することができる。グラウトポンプからホース、逆止弁付ノズル33を介して、土木用袋体30内の空間37にグラウトが注入される。この注入方法としては、一度に多量のグラウトを注入するのではなく、繰り返し注入を行う。
【0059】
このようにグラウトを注入することによって、グラウト注入中に土木用袋体30の外筒34表面から余剰水が滲み出し、さらに内筒35からも挿入されていた閉塞防止材36をつたって余剰水が出てき、土木用袋体30に加圧されていた圧力が減少する。そして、さらに注入加圧を行う。この作業を繰り返し行った後、注入を停止する。このように注入を繰り返し行うことによって、地山の掘削面26に対して、中壁コンクリート(反力部材)24を反力にして、プレロードをかけて地山を抑制することができる。
【0060】
このようにしてグラウトの注入停止後、グラウトが硬化し、隙間27を埋め、地山にプレロードをかけることが可能な土木用袋体30を敷設することができる。
【0061】
また、本発明に係る土木用袋体は、前述の実施の形態例に限定されるものでなく、以下に示すような地盤改良用としても使用することができる。
【0062】
例えば、図9に示すように地盤40に掘削して形成された孔41内に土木用袋体45と、土木用袋体45に取り付けられた逆止弁付ノズルと接続できる注入管42とを、土木用袋体45の端部48が孔41の底面43に接する位置まで挿入する。
【0063】
次に、土木用袋体45内に、注入管42と逆止弁付ノズルを介してグラウトを繰り返し加圧注入し、図10のように孔41の両側壁44間の幅以上に、土木用袋体45を膨張させ、地盤40を圧縮し、グラウトを硬化させる。この後、注入管は撤去しても良いし、そのまま埋め殺しにしても良い。
【0064】
このようにして地盤40に対して孔41内から圧縮することができ、且つグラウトを硬化させた土木用袋体45を改良体として地盤40に存在させることにより、地盤40が圧縮された状態を保つことができる。
【0065】
また、土木用袋体45は、前述した土木用袋体の長さや径が異なるだけで、素材や形状は同様のものを用いることができ、特に限定されるものではない。従って、土木用袋体45内へのグラウト注入停止後は、外筒46と内筒47から脱水され、グラウトの硬化の際にブリージングが無く、収縮が少なくなる。また、図10に示すように土木用袋体45は、端部48が土木用袋体45の径方向に膨張する膨張径と略等しく膨張するため、孔41の底面43に対して接する端部48の接触面積が大きくなり、より大きな上載荷重に対して支持力を有することができる。
【0066】
以上のようにして、土木用袋体45を地盤中に改良体として存在させ、上載荷重に対して高い支持力が得られる地盤改良をすることができる。
【0067】
また、本発明に係る土木用袋体50は、図11に示すような地盤シール用としても使用することができる。
この土木用袋体50は、外筒と、外筒内に挿入された内筒とで構成され、前記外筒と前記内筒の両端が連続的になるように連結されており、前記外筒と前記内筒との間に膨張可能な空間が形成されている。例えば、前記外筒と前記内筒とが一枚の筒状袋体で形成されてなり、前記筒状袋体の一方の端部が折り返されて他方の端部と連結されてなり、さらに前記筒状袋体が、異径筒状織物でなるものが好適に用いられる。
【0068】
図11(a)において、土木用袋体50は、先行地山改良および先受け工法での坑内切羽において、フォアパイル51と掘削切羽52に設けられた掘削孔53とのシールに使用される。ドリルジャンボ54により、掘削切羽52に掘削孔53を開設し、この掘削孔53内にフォアパイル51を挿入する。
このフォアパイル51の基端(掘削孔53の入口付近)に、土木用袋体50が被せられている(図11(b)参照)。また、フォアパイル51には注入用の適宜の孔51aが設けられている。ポンプ55による加圧注入により、土木用袋体50内にモルタル等の自硬性流体を注入する。
自硬性流体の圧力により土木用袋体50内の余分な水分が排出され、袋体50内部はフォアパイル51をしっかり把持しながら膨らんでいく。袋体50の外周は掘削孔53に食い込んだ状態となり、フォアパイル51と掘削孔53との間をシールする(図11(c)参照)。
その後、ポンプ55をフォアパイル51に接続し、フォアパイル51の孔51aから掘削孔53内に薬液を加圧注入する。膨張状態の袋体50により薬液の漏れが防止される。
【0069】
この工法では、フォアパイル51に対する袋体50の取り付けは、袋体50の中心孔にフォアパイル51を通すだけであるため、簡単にできる。取り付けのための、特別の治具は必要ない。また、袋体50の取り付け位置は、袋体50をフォアパイル51に沿って移動させるだけで簡単に調整できる。
【0070】
また、本発明に係る土木用袋体60は、図12に示すような地盤への柱体敷設用としても使用することができる。
この土木用袋体60は、図11の袋体50と同じものが好適に用いられる。
標識や支柱等の柱体61の地盤側先端に袋体60を被せる。なお、この袋体60の長さは、後述する掘削孔63の深さにほぼ等しいかやや短いものが好適に用いられる。
【0071】
図12(a)において、地盤62に掘削孔63を成形した後、袋体60が被せられた柱体61の先端を掘削孔63の底に設置する。その後、袋体60の注入孔60aを経由して自硬性流体を打設する。
図12(b)のように、打設した自硬性流体は袋体60の外部に余分な水分を排出し、袋体60の内部は柱体61をしっかり把持し、袋体60の外周は掘削孔63に密着する。そして、袋体60内に強固な固形層が形成され、標識や支柱等の柱体61は、地盤62に強固に設置される。
【0072】
以上のように、この工法では、袋体60を用いて柱体61を簡単且つ確実に地盤に敷設することができる。
【0073】
【発明の効果】
請求項1によると、本来の筒状袋体の両端部が、連結部材によって筒長方向の膨張を規制され、筒状袋体の内側に存在する。従って、新しく存在する土木用袋体の両端部は、土木用袋体の径方向に膨張する膨張径と略等しく膨張するため、所定の位置で確実に間詰ができる。また、土木用袋体端部同士を突き合わせて並べて使用する場合では、突き合わせ部の隙間が極力小さくなる。
【0074】
請求項2によると、両端部が、土木用袋体の径方向に膨張する膨張径と略等しく膨張するため、所定位置で確実に間詰ができる。また、土木用袋体端部同士を突き合わせて並べて使用する場合では、突き合わせ部の隙間が極力小さくなる。
【0075】
請求項3によると、土木用袋体にグラウトが注入され加圧されると両端部より連結部材に張力がかかり、排水性を有する連結部材が土木用袋体の中心部で直線状に張られて位置することになる。そして、その連結部材を通って脱水が起こり、土木用袋体中心部まで十分に脱水される。従って、土木用袋体内へのグラウト注入停止後のブリージングが無く、収縮が少なくなる。
【0076】
請求項4によると、製造方法が簡易となる。しかも、外筒及び内筒の長さの範囲内で反転可能な土木用袋体となる。また、両端部が、土木用袋体の径方向に膨張する膨張径と略等しく膨張するため、所定位置に確実に間詰ができる。また、土木用袋体端部同士を突き合わせて並べて使用する場合では、突き合わせ部の隙間が極力小さくなる。
【0077】
請求項5によると、異径筒状織物を使用することによって、グラウトが注入され加圧されても、織物のたて糸及びよこ糸に均等に力が作用し、大きな圧力にも耐えることができる。土木用袋体の中心位置に内筒が形成されグラウトの脱水が向上する。
【0078】
請求項6によると、土木用袋体の中心部からの排水効率が向上する。従って、中心部までの脱水がより確実となって、グラウトの凝固時間が短くなり、施工時間が短縮される。特に、異径筒状織物からなる土木用袋体を使用する場合には、排水材の位置が中心部となるので、より排水効率が高くなる。
【0079】
請求項7によると、土木用袋体内に自硬性流体を注入した際、土木用袋体の両端部が、土木用袋体の径方向に膨張する膨張径と略等しく膨張するため、所定位置に確実に間詰ができ、さらに掘削面に対してプレロードをかけ、地山を抑制することができる。また、土木用袋体端部同士を突き合わせて並べて使用する場合では、突き合わせ部の隙間が極力小さくなる。
【0080】
請求項8によると、土木用袋体内への自硬性流体の注入停止後、土木用袋体の中心部より脱水され、ブリージングが無く、収縮の少ないものができる。また、中心部からの脱水で自硬性流体の凝固時間が短くなることによって、施工時間を短縮することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態例に用いた土木用袋体の、(a)は斜視図で、(b)は軸方向の断面図であり、(c)は他の実施の形態例に用いた土木用袋体の軸方向の断面図である。
【図2】本発明の実施の形態例に用いた土木用袋体の製造工程の断面図である。
【図3】本発明の他の実施の形態例の土木用袋体の製造工程の断面図である。
【図4】本発明の他の実施の形態例を用いためがねトンネル施工時におけるトンネル断面図である。
【図5】図4におけるA−A´断面図である。
【図6】本発明の他の実施の形態例に用いた土木用袋体の異径筒状織物の概略側面図である。
【図7】本発明の他の実施の形態例に用いた土木用袋体の概略側面図である。
【図8】本発明の他の実施の形態例に用いた土木用袋体の、(a)は端部同士を突き合わせて設置した状況説明図であり、(b)は、従来の袋体の端部同士を突き合わせて設置した状況説明図である。
【図9】本発明に係る土木用袋体を用いた地盤改良の施工時における一実施の形態例の説明図である。
【図10】本発明に係る土木用袋体を用いた地盤改良の施工時における一実施の形態例の説明図である。
【図11】本発明に係る土木用袋体を用いた地盤シール工法における一実施の形態例の説明図である。
【図12】本発明に係る土木用袋体を用いた柱体敷設工法における一実施の形態例の説明図である。
【符号の説明】
1、1c 土木用袋体
2、2c 外筒
3 内筒
3c 端部
6、6c 空間
7、7c 端部
8c 連結部材
10 縫製部
21、22 本坑
23 空洞部(中央導坑)
24 中壁コンクリート(反力部材)
25 上面
26 掘削面
27 隙間
30 土木用袋体
34 外筒
35 内筒
36 閉塞防止材
37 空間
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is particularly arranged in a gap formed between a digging surface of a hollow portion such as a tunnel and a reaction force member provided in the hollow portion, and injects grout or the like to suppress settlement of the digging surface. The present invention relates to a civil engineering bag, a method of laying the civil engineering bag, and a structure thereof.
[0002]
[Prior art]
When excavating a hollow part such as a tunnel, a support constructed by bending an H-shaped steel material into an arc shape is installed along the excavated surface to prevent loosening of the ground and collapse of the excavated surface. There is always a gap between this support and the excavation surface. There is a method in which a bag is filled in the gap, grout or the like is injected into the bag, and the bag is solidified in close contact with the ground. Such a construction method is referred to as a preload shell construction method (for example, Japanese Patent Publication No. 2-5237), in which preload is applied to the ground to suppress settlement of the ground.
[0003]
In addition, in the construction of the eyeglass tunnel, first, a central shaft is excavated and formed in the middle of the main shaft position adjacent to the left and right, then the middle wall concrete that becomes the center of the eyeglass tunnel is made, and Construction is performed by the procedure of excavating the main pit while building a shoring. In order to install this shoring, a large gap is required between the upper surface of the middle concrete wall and the excavated surface along the tunnel length direction. A bag with a large diameter is continuously arranged in the large gap to fill the space, grout or the like is injected into the bag after the support is installed, and the settlement of the ground is suppressed.
[0004]
The bag filled in the above-mentioned gap seals grout or the like injected into the bag by a method such as sewing at an end portion, caulking a metal fitting, and sandwiching between metal plates or the like.
[0005]
[Problems to be solved by the invention]
However, if the end of the bag is sealed in such a manner, the bag does not expand to the end, so that a gap remains near the end of the bag. In particular, in the case where the ends of the bag body are aligned with each other, a large gap remains at the butted portion. In addition, in the central portion of such a bag, there is a problem that since the injected grout is hardly dehydrated under pressure, excess water remains in the central portion and shrinks due to dehydration after stopping the injection.
[0006]
In the present invention, in consideration of the above problems, the gap formed between the excavated surface of a cavity such as a tunnel and a reaction force member provided in the cavity, the end of the bag body A civil engineering bag capable of reliably inflating, minimizing a gap between butted portions of bag ends, and capable of dehydrating under pressure up to the center of the injected grout, a method of laying the civil engineering bag, and a structure thereof. The purpose is to provide.
[0007]
[Means for Solving the Problems]
The civil engineering bag according to claim 1 of the present invention for solving the above problems is a civil engineering bag in which both ends of a cylindrical bag are closed and an inflatable space is formed therein. Then, the both ends are connected by a connecting member arranged in the cylindrical bag, and expansion of the space in the tube length direction is regulated by the connecting member.
[0008]
According to such a configuration, both ends of the original tubular bag body are restricted from expanding in the tube length direction by the connecting member, and are present inside the tubular bag body. Therefore, since the both ends of the newly existing civil engineering bag expand substantially equal to the expansion diameter of the civil engineering bag which expands in the radial direction, the space can be reliably filled at a predetermined position. In addition, when the ends of the civil engineering bag are used side by side, the gap between the butted portions is as small as possible.
[0009]
Further, the civil engineering bag according to claim 2 of the present invention includes an outer cylinder and an inner cylinder inserted into the outer cylinder, and both ends of the outer cylinder and the inner cylinder are continuous. And an expandable space is formed between the outer cylinder and the inner cylinder.
[0010]
According to such a configuration, since both ends inflate substantially the same as the inflated diameter that expands in the radial direction of the civil engineering bag, clogging can be reliably performed at a predetermined position. In addition, when the ends of the civil engineering bag are used side by side, the gap between the butted portions is as small as possible.
[0011]
The civil engineering bag according to a third aspect of the present invention is characterized in that, in the first aspect, the connecting member has a drainage property.
[0012]
According to such a configuration, when grout is injected into the civil engineering bag and pressurized, tension is applied to the connecting member from both ends, and the draining coupling member is stretched linearly at the center of the civil engineering bag. Will be located. Then, dehydration occurs through the connecting member, and is sufficiently dehydrated up to the center of the civil engineering bag. Therefore, there is no breathing after the grout injection into the civil engineering bag is stopped, and the shrinkage is reduced.
[0013]
Further, the civil engineering bag according to claim 4 of the present invention is the civil engineering bag according to claim 2, wherein the outer cylinder and the inner cylinder are formed by a single cylindrical bag. One end is folded back and connected to the other end.
[0014]
According to such a configuration, the manufacturing method is simplified. In addition, the civil engineering bag can be inverted within the range of the length of the outer cylinder and the inner cylinder. In addition, since both ends inflate substantially equal to the inflation diameter that expands in the radial direction of the civil engineering bag, the predetermined position can be reliably filled. In addition, when the ends of the civil engineering bag are used side by side, the gap between the butted portions is as small as possible.
[0015]
A civil engineering bag according to a fifth aspect of the present invention is the civil engineering bag according to the fourth aspect, wherein the cylindrical bag is made of a different-diameter cylindrical fabric.
[0016]
According to such a configuration, even when grout is injected and pressurized, a force acts evenly on the warp and weft yarns of the woven fabric and can withstand a large pressure by using the cylindrical woven fabric having a different diameter. An inner cylinder is formed at the center position of the civil engineering bag, and the dewatering of the grout is improved.
[0017]
Further, the civil engineering bag according to claim 6 of the present invention is characterized in that, in any of claims 2 to 5, a blockage preventing member is inserted inside the inner cylinder.
[0018]
According to such a configuration, drainage efficiency from the center of the civil engineering bag is improved. Therefore, dehydration to the center is more reliable, the solidification time of the grout is shortened, and the construction time is shortened. In particular, when a civil engineering bag made of a cylindrical fabric having a different diameter is used, the position of the drainage material is located at the center, so that the drainage efficiency is further improved.
[0019]
In the method for laying a civil engineering bag according to claim 7 of the present invention, a gap formed between an excavation surface of a cavity formed by excavation and a reaction member provided in the cavity is provided. An outer cylinder and an inner cylinder inserted into the outer cylinder, wherein a civil engineering bag body is arranged in which both ends of the outer cylinder and the inner cylinder are connected so as to be continuous; A self-hardening fluid is pressurized and filled in an expandable space between the inner cylinder and the inner cylinder, and then cured to fill the gap.
[0020]
According to such a method, when the self-hardening fluid is injected into the civil engineering bag body, both ends of the civil engineering bag body are inflated substantially equal to the inflated diameter that expands in the radial direction of the civil engineering bag body. In addition, the clogging can be surely performed, and the excavated surface can be preloaded to suppress the ground. In addition, when the ends of the civil engineering bag are used side by side, the gap between the butted portions is as small as possible.
[0021]
Further, the structure according to claim 8 of the present invention includes an outer cylinder in a gap formed between an excavation surface of a cavity formed by excavation and a reaction member provided in the cavity. A civil engineering bag, comprising: an inner cylinder inserted into the outer cylinder, wherein both ends of the outer cylinder and the inner cylinder are connected so as to be continuous, and the outer cylinder and the inner cylinder are arranged. Is filled with a self-hardening fluid under pressure and then cured to fill the gap.
[0022]
According to such a structure, after the injection of the self-hardening fluid into the civil engineering bag is stopped, the central portion of the civil engineering bag is dehydrated, and there is no breathing and little shrinkage. In addition, since the solidification time of the self-hardening fluid is shortened by dehydration from the center, the construction time can be shortened.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described below with reference to FIGS.
[0024]
FIG. 1A is a perspective view of a civil engineering bag according to the present embodiment, and FIG. 1B is an axial sectional view of the civil engineering bag. The civil engineering bag 1 has an outer cylinder 2 facing outward, an inner cylinder 3 folded inward, and an inflatable space 6 formed between the outer cylinder 2 and the inner cylinder 3. The nozzle 4 is provided with a check valve-equipped nozzle 4 protruding from a hole of the outer cylinder 2 communicating with the nozzle 6, and a hose 5 connected to the check valve-equipped nozzle 4. The inner cylinder 3 has a sewn portion 10 in which the ends of the outer cylinder 2 and the inner cylinder 3 are continuously sewn.
[0025]
The outer cylinder 2 and the inner cylinder 3 have the same diameter and the same material. Further, the outer cylinder 2 and the inner cylinder 3 are continuously connected at both ends thereof, and have an endless structure as a whole. The outer tube 2 and the inner tube 3 are formed of a tubular bag having drainage properties, such as a polyester tubular fabric. As the material of the tubular bag, any material such as polyester can be applied as long as it has a drainage property, and there is no particular limitation. Even when a self-hardening fluid such as grout is injected into the space 6 formed between the outer cylinder 2 and the inner cylinder 3 and pressurized by forming the civil engineering bag body 1 with the woven fabric, the warp yarn and the warp of the woven fabric are formed. The force acts evenly on the weft thread and can withstand large pressures.
[0026]
Further, as this cylindrical bag, one having a different diameter can be suitably used. In the case of using a cylindrical fabric having a different diameter, the inner cylinder is formed at the center position of the civil engineering bag body as described later, so that a space such as grout is formed in a space formed between the outer cylinder and the inner cylinder. Even if a hard fluid is injected and pressurized, it can be dewatered from the center of the civil engineering bag.
[0027]
The outer cylinder 2 and the inner cylinder 3 are not fixed, but can be interchanged with each other. In the civil engineering bag 1, the outer cylinder 2 and the inner cylinder 3 have the same material and the same diameter, and are in a uniform state throughout. Therefore, half of the length of the civil engineering bag 1 constitutes the outer cylinder 2 and the other half constitutes the inner cylinder 3. Therefore, when an external force is applied to the civil engineering bag 1, the outer cylinder 2 can be reversed and replaced with the inner cylinder 3 and the inner cylinder 3 can be replaced with the outer cylinder 2.
[0028]
The sewing portion 10 shown in FIG. 1 (b) is one in which the end portions of the outer cylinder 2 and the inner cylinder 3 are continuously sewn. By arranging the sewn portion 10 inside the civil engineering bag 1 as shown in FIG. 1 (b), both ends 7 of the new civil engineering bag 1 are formed.
[0029]
Both ends 7 can be inflated substantially equal to the inflated diameter of the civil engineering bag 1 that expands in the radial direction. Therefore, a gap between the excavated surface and the concrete on the inner wall as described later can be reliably filled. Further, when the ends 7 of the civil engineering bag 1 are used side by side, the gap between the butted portions is as small as possible. Become.
[0030]
As the nozzle 4 with a check valve, a nozzle having a known structure can be used. A self-hardening fluid such as grout can be supplied from the nozzle 4 with a check valve into the space 6 formed between the outer cylinder 2 and the inner cylinder 3. In addition, by using the nozzle 4 with a check valve, backflow of a self-hardening fluid such as grout can be prevented, and it can be kept in the space 6.
[0031]
The hose 5 is connected to the nozzle 4 with a check valve, and a self-hardening fluid such as grout is provided in a space 6 formed between the outer cylinder 2 and the inner cylinder 3 via the check valve 4 from the hose 5. Can be supplied.
[0032]
In addition, the nozzle 4 with a check valve and the hose 5 also function as fixing means. In FIG. 1 (b), the civil engineering bag 1 can be axially inverted in a range from the state where the nozzle 4 with the check valve and the hose 5 come to the right end of the civil engineering bag 1 to the state where it comes to the left end. It is.
[0033]
FIG. 1C shows an axial sectional view of a civil engineering bag according to another embodiment. The civil engineering bag 1c is inflatable between the outer cylinder 2c facing outward, the connecting member 8c connecting both ends 3c inside the civil engineering bag 1c, and the outer cylinder 2c and the connecting member 8c. A non-return valve-equipped nozzle 4c protruding from a hole in the outer cylinder 2c communicating with the space 6c, and a hose 5c connected to the check valve-equipped nozzle 4c. The outer cylinder 2c, the nozzle 4c with a check valve, the hose 5c, and the like can be the same as those described above.
[0034]
By connecting both ends 3c of the outer cylinder 2c with the connecting member 8c inside the civil engineering bag 1c, expansion of the space 6c in the cylinder length direction is regulated, and both ends 3c are formed inside the civil engineering bag 1c. Exists. Therefore, when a self-hardening fluid such as grout is supplied to the space 6c between the outer cylinder 2c and the connecting member 8c through the check valve-equipped nozzle 4c and the hose 5c, the space between the outer cylinder 2c and the connecting member 8c is reduced. Is expanded, and both ends 7c of the new civil engineering bag 1c are formed.
[0035]
The new ends 7c shown in FIG. 1 (c) can inflate substantially the same as the expansion diameter of the civil engineering bag 1c which expands in the radial direction. Therefore, the gap between the excavated surface and the concrete on the inner wall, which will be described later, can be reliably filled. Further, when the ends of the civil engineering bag are used side by side, the gap between the butted portions is as small as possible.
[0036]
Further, as the connecting member 8c, a belt-like material, a rope-like material, or the like having a drainage property such as a fabric can be suitably used. A self-hardening fluid such as grout is injected into the space using the connecting member, and the space expands when pressurized, and the space is expanded and tension is applied to the connecting member from both ends 3c. At the center of the line. Then, the self-hardening fluid such as grout is dehydrated through the connecting member, and is sufficiently dehydrated to the center portion of the civil engineering bag. Therefore, there is no breathing after the grout injection into the civil engineering bag is stopped, and the shrinkage can be reduced.
[0037]
Next, FIGS. 2A to 2F show a manufacturing process of the civil engineering bag 1.
[0038]
The tubular fabric 1a shown in FIG. 2A is folded flat as shown in FIG. 2B. One end of the tubular fabric 1a is turned over, and the ends are aligned as shown in FIG. Thereby, the outer cylinder 2 and the inner cylinder 3 whose one ends are continuously connected are formed.
[0039]
Then, as shown in FIG. 2D, the open sides of the outer cylinder 2 and the inner cylinder 3 are integrally sewn to form a sewn portion 10. At this time, a nozzle 4 with a check valve that communicates with the space 6 between the outer cylinder 2 and the inner cylinder 3 is attached.
[0040]
Next, as shown in FIG. 2 (e), after attaching the nozzle 4 with a check valve, the sewing part 10 is pushed into the inner cylinder 3 as shown in FIG. 2 (f). Thereby, the civil engineering bag 1 is formed. This civil engineering bag 1 can be inverted in the range from the position where the sewing portion 10 comes to the right end to the position where it comes to the left end of the civil engineering bag 1 in FIG.
[0041]
Further, as another embodiment of the civil engineering bag, FIGS. 3A to 3F show a process of manufacturing the civil engineering bag 11 in which both ends of the outer cylinder and the inner cylinder are continuously connected. FIG.
[0042]
The tubular fabric 11a in FIG. 3A is folded flat as shown in FIG. 3B. One end of the tubular fabric 11a is turned over, and the ends are aligned as shown in FIG. Thereby, the outer cylinder 12 and the inner cylinder 13 whose one ends are continuously connected are formed.
[0043]
Then, as shown in FIG. 3D, the open sides of the outer cylinder 12 and the inner cylinder 13 are sewn in a sleeve shape to form a sewn portion 20. At this time, a nozzle 14 with a check valve that communicates with a space 16 between the outer cylinder 12 and the inner cylinder 13 is attached.
[0044]
Next, as shown in FIG. 3 (e), after attaching the nozzle 14 with a check valve, the sewing portion 20 is pushed into the inner cylinder 13 as shown in FIG. 3 (f). Thereby, the civil engineering bag 11 is formed. This civil engineering bag body 11 can be turned endlessly unless a fixing means is provided in the nozzle 14 with a check valve.
[0045]
Since the open side of the outer cylinder 2 and the inner cylinder 3 is integrally sewn in the civil engineering bag 1, the sewing process is simple. Although the range of inversion is limited, an inversion range that sufficiently satisfies the purpose is obtained depending on the application. Since the range movable in the axial direction limited by the provision of the nozzle 4 with a check valve and the range movable in the axial direction defined by the sewing portion 10 coincide with each other, the case where the nozzle with a check valve is provided May be a civil engineering bag 1 that can be manufactured by a simple method. Further, the civil engineering bag body 11 is endlessly reversible because the outer cylinder 12 and the inner cylinder 13 are sewn in a sleeve shape.
[0046]
Next, an embodiment of the structure using the civil engineering bag at the time of constructing the glasses tunnel will be described, and there is no particular limitation.
[0047]
FIG. 4 shows a cross section of the tunnel when constructing the glasses tunnel. The two main shafts 21 and 22 adjacent to each other as shown in FIG. 4 are formed by excavation or the like. These main shafts 21 and 22 are not excavated and formed at the same time, but first, an intermediate position between the two main shafts 21 and 22 is excavated to form a hollow portion 23 (generally referred to as a central shaft). Then, the intermediate wall concrete 24 is formed in the cavity 23 in the tunnel length direction. Later, the intermediate wall concrete 24 becomes a common side wall of the two main shafts 21 and 22. In addition, a civil engineering bag 30 described later is placed on the upper surface of the middle wall concrete 24, grout is injected and pressurized into the civil engineering bag 30, and a preload is applied to the excavated surface, thereby suppressing settlement of the ground. . Therefore, the intermediate wall concrete 24 can be formed and used as a reaction force member.
[0048]
In the case of a tunnel cross section as shown in FIG. 4, the main shaft 21 having a small cross section is excavated in advance, and the main shaft 21 is formed while a shoring is being built. Then, the main shaft 22 having a large cross section with a slight delay is formed in the same manner. When forming the main shafts 21 and 22, a support for preventing loosening of the ground and collapse of the excavated surface is provided at predetermined intervals in the length direction of the main shafts 21 and 22 at the upper surface of the inner concrete wall 24. It is installed along the excavation surface 26 so as to be placed on the excavation surface 25. In addition, a large gap 27 for installing a shoring is required along the length direction of the hollow portion 23 between the intermediate wall concrete 24 and the excavated surface 26 above the hollow portion 23.
[0049]
At the time of constructing such a glasses tunnel, an end of the civil engineering bag 30 is inserted into a gap 27 between the upper surface 25 of the intermediate wall concrete 24 formed in the hollow portion 23 and the excavated surface 26 as shown in FIG. After being placed side by side so as to face each other, a space inside the civil engineering bag 30 was filled with a self-hardening fluid such as grout under pressure, and then cured to fill the gaps 27 to form a structure. An example in which grout is used for the self-hardening fluid shown below is shown, but is not particularly limited.
[0050]
In addition, the civil engineering bag 30, as described above, the end portion expands substantially equal to the expansion diameter that expands in the radial direction, and when the end portions are used side by side, the gap between the butted portions becomes as small as possible. Any material can be used as long as it can be dewatered from the inside of the civil engineering bag. For example, as shown in FIG. 6, a polyester diametrical cylindrical woven fabric having a small diameter portion 31φ400 mm × 2000 mm (including a tapered portion) and a large diameter portion 32φ1000 × 2000 mm and a total length of 6000 mm can be used. The small-diameter portion 31 to the large-diameter portion 32 have a smooth tapered shape, and a check valve nozzle 33 for injecting a self-hardening fluid such as grout is provided substantially at the center of the outer surface of the large-diameter portion 32. Provided.
[0051]
As shown in FIG. 7, the civil engineering bag 30 is formed by folding both ends of the small-diameter portion 31 of the different-diameter tubular fabric toward the different-diameter tubular bag, sewing the ends together, and connecting them. This is obtained by being located at a substantially central portion inside the cylindrical bag. In this way, an outer cylinder 34 and an inner cylinder 35 as shown in FIG. 7 are formed.
[0052]
Further, a blockage preventing member 36 is inserted into the inner cylinder 35 of the civil engineering bag 30. As the blocking prevention material 36, a plastic net-like material (hereinafter, also referred to as a mesh) was used. The mesh having a thickness of about 3 mm and a mesh size of 6 mm was used after being cut into a width of 400 mm and a length of 2000 mm. The blockage preventing material 36 prevents the inner cylinder 35 from being closed by pressure when grout is injected into the space 37 of the civil engineering bag 30 by pressure, and after the grout is stopped, the central portion of the civil engineering bag 30. Dewatering can be ensured, and drainage efficiency is improved. Therefore, the solidification time of the grout is shortened, and the construction time is shortened. Further, in the civil engineering bag 30 made of the different-diameter tubular woven fabric, since the inner cylinder 35 is formed at the center position, the blockage preventing member 36 is arranged at the center, and the drainage efficiency is further improved.
[0053]
In addition, the blockage preventing member 36 is not particularly limited as long as the blockage of the inner cylinder 35 can be prevented and the grout can be dewatered. That is, various materials such as a pipe having a hole, a coil, a drain material in which sand or the like is wrapped with a water-permeable cloth, and the like can be applied.
[0054]
FIG. 8 (a) is a diagram illustrating a situation in which the ends of the civil engineering bag are placed in contact with each other. FIG. 8 (b) shows a situation explanatory view in which the conventional bag body is installed with the ends thereof abutting each other. 8A and 8B show a state in which the civil engineering bag 30 and the bag 40 are arranged side by side with the gap 27 described above. As shown in FIG. 8A, the end of the civil engineering bag 30 has as small a gap 27 as possible at the butted portion as compared with the case where the bag end shown in FIG. 8B is swaged with metal fittings. I can understand well. As described above, the end of the civil engineering bag 30 expands substantially the same as the expansion diameter of the civil engineering bag 30 that expands in the radial direction, and the gap can be reliably reduced and filled.
[0055]
As described above, grout is injected into the space 37 of the civil engineering bag 30 and hardened to fill the gap 27 between the upper surface 25 and the excavated surface 26 of the intermediate wall concrete 24 formed in the hollow portion 23, Body.
[0056]
In the following, a method of laying the civil engineering bag 30 during construction of the eyeglass tunnel will be described, but this is an example of an embodiment and is not particularly limited.
[0057]
The civil engineering bag 30 shown in FIG. 4 is a polyester woven fabric, so that it is folded and carried into the construction site. Then, the folded civil engineering bag 30 is spread in the length direction, and is set by an operator such that an end of the civil engineering bag 30 abuts a gap 27 between the excavated surface 26 and the middle wall concrete 24. Is done.
[0058]
Next, a hose is connected to the nozzle 33 with a check valve of the civil engineering bag 30. A grout pump for discharging grout is connected to the other end of the hose. As this grout pump, a generally used pump can be applied. Grout is injected from the grout pump into the space 37 in the civil engineering bag 30 via a hose and a nozzle 33 with a check valve. As an injection method, a large amount of grout is not injected at once but is injected repeatedly.
[0059]
By injecting the grout in this manner, during the grout injection, excess water seeps out of the surface of the outer cylinder 34 of the civil engineering bag 30, and further adheres to the blocking prevention material 36 inserted from the inner cylinder 35, thereby causing excess water to flow. Appears, and the pressure applied to the civil engineering bag 30 decreases. Then, injection and pressurization are further performed. After repeating this operation, the injection is stopped. By repeatedly performing the injection in this way, it is possible to suppress the ground by applying a preload to the middle wall concrete (reaction member) 24 against the excavated surface 26 of the ground.
[0060]
In this way, after the grout injection is stopped, the grout hardens, the gap 27 is filled, and the civil engineering bag 30 capable of preloading the ground can be laid.
[0061]
Further, the civil engineering bag according to the present invention is not limited to the above-described embodiment, and can be used for ground improvement as described below.
[0062]
For example, as shown in FIG. 9, a civil engineering bag 45 and an injection pipe 42 that can be connected to a check valve attached nozzle attached to the civil engineering bag 45 in a hole 41 formed by excavating the ground 40. Then, the civil engineering bag body 45 is inserted until the end portion 48 contacts the bottom surface 43 of the hole 41.
[0063]
Next, grout is repeatedly pressurized and injected into the civil engineering bag 45 via the injection pipe 42 and the nozzle with the check valve, and the grout is injected into the civil engineering bag 45 more than the width between both side walls 44 of the hole 41 as shown in FIG. The bag 45 is expanded, the ground 40 is compressed, and the grout is hardened. Thereafter, the injection tube may be removed or may be buried as it is.
[0064]
In this way, the ground 40 can be compressed from the inside of the hole 41, and the ground 40 can be compressed as a result of the civil engineering bag 45 having the grout hardened being present as an improved body in the ground 40. Can be kept.
[0065]
The material and shape of the civil engineering bag 45 are not particularly limited, except that the above-mentioned civil engineering bag is different in length and diameter. Therefore, after the grouting into the civil engineering bag 45 is stopped, the grout is dehydrated from the outer tube 46 and the inner tube 47, and there is no breathing when the grout is hardened, and the shrinkage is reduced. Further, as shown in FIG. 10, since the end portion 48 of the civil engineering bag body 45 expands substantially equal to the expansion diameter of the civil engineering bag body 45 that expands in the radial direction, the end portion of the civil engineering bag body 45 that contacts the bottom surface 43 of the hole 41 is formed. The contact area of the contact 48 can be increased, and can have a supporting force against a larger overload.
[0066]
As described above, the civil engineering bag body 45 is provided as an improved body in the ground, and the ground can be improved so that a high supporting force can be obtained with respect to the overload.
[0067]
Further, the civil engineering bag 50 according to the present invention can also be used for ground sealing as shown in FIG.
The civil engineering bag body 50 includes an outer cylinder and an inner cylinder inserted into the outer cylinder, and is connected so that both ends of the outer cylinder and the inner cylinder are continuous. An expandable space is formed between the inner cylinder and the inner cylinder. For example, the outer cylinder and the inner cylinder are formed of a single cylindrical bag, and one end of the cylindrical bag is folded back and connected to the other end, and further, A tubular bag made of a different-diameter tubular woven fabric is preferably used.
[0068]
In FIG. 11A, the civil engineering bag body 50 is used for sealing the fore pile 51 and the excavation hole 53 provided in the excavation face 52 in the underground face by the preceding ground improvement method and the precedent construction method. A drill hole 53 is opened in the drilling face 52 by the drill jumbo 54, and the fore pile 51 is inserted into the drill hole 53.
A civil engineering bag 50 is placed on the base end of the fore pile 51 (near the entrance of the excavation hole 53) (see FIG. 11B). The fore pile 51 is provided with an appropriate hole 51a for injection. A self-hardening fluid such as mortar is injected into the civil engineering bag 50 by pressure injection by the pump 55.
Excess water in the civil engineering bag 50 is discharged by the pressure of the self-hardening fluid, and the inside of the bag 50 expands while firmly gripping the fore pile 51. The outer periphery of the bag body 50 is cut into the excavation hole 53 to seal the gap between the fore pile 51 and the excavation hole 53 (see FIG. 11C).
Thereafter, the pump 55 is connected to the fore pile 51, and a chemical solution is injected under pressure into the excavation hole 53 from the hole 51 a of the fore pile 51. The inflation state of the bag 50 prevents leakage of the chemical solution.
[0069]
According to this method, the bag body 50 can be easily attached to the fore pile 51 simply by passing the fore pile 51 through the center hole of the bag body 50. No special jig is required for installation. Further, the attachment position of the bag body 50 can be easily adjusted only by moving the bag body 50 along the fore pile 51.
[0070]
The civil engineering bag body 60 according to the present invention can also be used for laying a pillar on the ground as shown in FIG.
As the civil engineering bag 60, the same one as the bag 50 of FIG. 11 is suitably used.
The bag body 60 is placed on the ground-side tip of a pillar 61 such as a sign or a pillar. The length of the bag body 60 is preferably approximately equal to or slightly shorter than the depth of the excavation hole 63 described later.
[0071]
In FIG. 12A, after forming an excavation hole 63 in the ground 62, the tip of the column 61 covered with the bag body 60 is installed at the bottom of the excavation hole 63. Thereafter, a self-hardening fluid is poured through the injection hole 60a of the bag body 60.
As shown in FIG. 12 (b), the poured self-hardening fluid discharges excess moisture to the outside of the bag body 60, the inside of the bag body 60 firmly grips the column 61, and the outer periphery of the bag body 60 is excavated. It adheres to the hole 63. Then, a strong solid layer is formed in the bag body 60, and the pillars 61 such as signs and columns are firmly installed on the ground 62.
[0072]
As described above, according to this construction method, the column 61 can be easily and reliably laid on the ground using the bag 60.
[0073]
【The invention's effect】
According to the first aspect, both ends of the original tubular bag are restricted from expanding in the tubular length direction by the connecting member, and are present inside the tubular bag. Therefore, since the both ends of the newly existing civil engineering bag expand substantially equal to the expansion diameter of the civil engineering bag which expands in the radial direction, the space can be reliably filled at a predetermined position. In addition, when the ends of the civil engineering bag are used side by side, the gap between the butted portions is as small as possible.
[0074]
According to the second aspect, the both ends inflate substantially the same as the inflated diameter in the radial direction of the civil engineering bag, so that clogging can be reliably performed at a predetermined position. In addition, when the ends of the civil engineering bag are used side by side, the gap between the butted portions is as small as possible.
[0075]
According to the third aspect, when grout is injected into the civil engineering bag and pressurized, tension is applied to the connecting member from both ends, and the draining coupling member is stretched linearly at the center of the civil engineering bag. Position. Then, dehydration occurs through the connecting member, and is sufficiently dehydrated up to the center of the civil engineering bag. Therefore, there is no breathing after the grout injection into the civil engineering bag is stopped, and the shrinkage is reduced.
[0076]
According to claim 4, the manufacturing method is simplified. In addition, the civil engineering bag can be inverted within the range of the length of the outer cylinder and the inner cylinder. In addition, since both ends inflate substantially equal to the inflation diameter that expands in the radial direction of the civil engineering bag, the predetermined position can be reliably filled. In addition, when the ends of the civil engineering bag are used side by side, the gap between the butted portions is as small as possible.
[0077]
According to the fifth aspect, even when grout is injected and pressurized, the warp yarn and the weft yarn of the woven fabric are evenly acted on by using the different-diameter tubular woven fabric, so that it can withstand a large pressure. An inner cylinder is formed at the center position of the civil engineering bag, and the dewatering of the grout is improved.
[0078]
According to claim 6, the drainage efficiency from the center of the civil engineering bag is improved. Therefore, dehydration to the center is more reliable, the solidification time of the grout is shortened, and the construction time is shortened. In particular, when a civil engineering bag made of a cylindrical fabric having a different diameter is used, the position of the drainage material is located at the center, so that the drainage efficiency is further improved.
[0079]
According to claim 7, when the self-hardening fluid is injected into the civil engineering bag body, both ends of the civil engineering bag body are inflated substantially equal to the inflated diameter that expands in the radial direction of the civil engineering bag body. Clogging can be reliably performed, and a preload can be applied to the excavated surface to suppress the ground. In addition, when the ends of the civil engineering bag are used side by side, the gap between the butted portions is as small as possible.
[0080]
According to the eighth aspect, after the injection of the self-hardening fluid into the civil engineering bag body is stopped, the central part of the civil engineering bag body is dehydrated, there is no breathing, and there is little shrinkage. In addition, since the solidification time of the self-hardening fluid is shortened by dehydration from the center, the construction time can be shortened.
[Brief description of the drawings]
1A is a perspective view, FIG. 1B is an axial cross-sectional view, and FIG. 1C is another embodiment of the civil engineering bag used in the embodiment of the present invention. FIG. 3 is an axial cross-sectional view of the civil engineering bag used in FIG.
FIG. 2 is a cross-sectional view of a manufacturing process of the civil engineering bag used in the embodiment of the present invention.
FIG. 3 is a cross-sectional view of a manufacturing process of a civil engineering bag according to another embodiment of the present invention.
FIG. 4 is a cross-sectional view of a tunnel during construction of an eyeglass tunnel using another embodiment of the present invention.
FIG. 5 is a sectional view taken along line AA ′ in FIG. 4;
FIG. 6 is a schematic side view of a cylindrical woven fabric having a different diameter of a civil engineering bag used in another embodiment of the present invention.
FIG. 7 is a schematic side view of a civil engineering bag used in another embodiment of the present invention.
8 (a) is an explanatory view showing a situation in which the ends of the civil engineering bag used in another embodiment of the present invention are installed in a state where the ends thereof are abutted with each other, and FIG. It is explanatory drawing of the situation which installed the end part butted.
FIG. 9 is an explanatory view of one embodiment at the time of soil improvement using the civil engineering bag according to the present invention.
FIG. 10 is an explanatory diagram of one embodiment at the time of soil improvement using the civil engineering bag according to the present invention.
FIG. 11 is an explanatory diagram of one embodiment of a ground sealing method using a civil engineering bag according to the present invention.
FIG. 12 is an explanatory diagram of one embodiment of a pillar laying method using a civil engineering bag according to the present invention.
[Explanation of symbols]
1,1c Civil engineering bag
2, 2c outer cylinder
3 inner cylinder
3c end
6, 6c space
7, 7c end
8c connecting member
10 Sewing part
21, 22 main shaft
23 hollow part (central shaft)
24 Middle wall concrete (reaction member)
25 Top
26 Drilling surface
27 gap
30 Civil engineering bags
34 outer cylinder
35 inner cylinder
36 Blockage prevention material
37 Space

Claims (8)

筒状袋体の両端部が閉塞され、内部に膨張可能な空間が形成されている土木用袋体であって、前記両端部を前記筒状袋体内に配置される連結部材で連結し、前記空間の筒長方向の膨張を前記連結部材で規制することを特徴とする土木用袋体。Both ends of the tubular bag are closed, and an inflatable space is formed in the civil engineering bag, wherein the both ends are connected by a connecting member arranged in the tubular bag. A civil engineering bag, wherein expansion of a space in a cylinder length direction is restricted by the connecting member. 外筒と、前記外筒内に挿入された内筒とで構成され、前記外筒と前記内筒の両端が連続的になるように連結されており、前記外筒と前記内筒との間に膨張可能な空間が形成されていることを特徴とする土木用袋体。An outer cylinder and an inner cylinder inserted into the outer cylinder are connected so that both ends of the outer cylinder and the inner cylinder are continuous, and between the outer cylinder and the inner cylinder. An inflatable space is formed in the bag for civil engineering. 前記連結部材は、排水性を有することを特徴とする請求項1に記載の土木用袋体。The civil engineering bag according to claim 1, wherein the connection member has a drainage property. 前記外筒と前記内筒とが一枚の筒状袋体で形成されてなり、前記筒状袋体の一方の端部が折り返されて他方の端部と連結されてなる請求項2に記載の土木用袋体。The said outer cylinder and the said inner cylinder are formed by one sheet | seat cylindrical bag body, One end part of the said cylindrical bag body is folded back and connected with the other end part. Civil engineering bag. 前記筒状袋体が、異径筒状織物でなることを特徴とする請求項4に記載の土木用袋体。The civil engineering bag according to claim 4, wherein the cylindrical bag is made of a different-diameter tubular woven fabric. 前記内筒の内側に閉塞防止部材が挿入されたことを特徴とする請求項2乃至5のいずれかに記載の土木用袋体。The civil engineering bag according to any one of claims 2 to 5, wherein a blockage preventing member is inserted inside the inner cylinder. 掘削によって形成された空洞部の掘削面と前記空洞部内に設けられた反力部材との間に形成される隙間に、外筒と、前記外筒内に挿入された内筒とで構成され、前記外筒と前記内筒の両端が連続的になるように連結されてなる土木用袋体を配置し、前記外筒と前記内筒との間の膨張可能な空間内に自硬性流体を加圧充填した後、硬化させて前記隙間を埋める土木用袋体敷設方法。An outer cylinder and an inner cylinder inserted into the outer cylinder are formed in a gap formed between an excavation surface of the cavity formed by excavation and a reaction member provided in the cavity, A civil engineering bag body is provided in which both ends of the outer cylinder and the inner cylinder are connected so as to be continuous, and self-hardening fluid is applied to an inflatable space between the outer cylinder and the inner cylinder. A method of laying a civil engineering bag, which fills the gap by hardening after pressure filling. 掘削によって形成された空洞部の掘削面と前記空洞部内に設けられた反力部材との間に形成される隙間に、外筒と、前記外筒内に挿入された内筒とで構成され、前記外筒と前記内筒の両端が連続的になるように連結されてなる土木用袋体を配置し、前記外筒と前記内筒との間の膨張可能な空間内に自硬性流体を加圧充填した後、硬化させて前記隙間を埋める構造体。An outer cylinder and an inner cylinder inserted into the outer cylinder are formed in a gap formed between an excavation surface of the cavity formed by excavation and a reaction member provided in the cavity, A civil engineering bag body is provided in which both ends of the outer cylinder and the inner cylinder are connected so as to be continuous, and self-hardening fluid is applied to an inflatable space between the outer cylinder and the inner cylinder. A structure that fills the gap by hardening after pressure filling.
JP2003178452A 2002-06-21 2003-06-23 Civil engineering bag Expired - Fee Related JP4219747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003178452A JP4219747B2 (en) 2002-06-21 2003-06-23 Civil engineering bag

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002181242 2002-06-21
JP2003178452A JP4219747B2 (en) 2002-06-21 2003-06-23 Civil engineering bag

Publications (2)

Publication Number Publication Date
JP2004076568A true JP2004076568A (en) 2004-03-11
JP4219747B2 JP4219747B2 (en) 2009-02-04

Family

ID=32032598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003178452A Expired - Fee Related JP4219747B2 (en) 2002-06-21 2003-06-23 Civil engineering bag

Country Status (1)

Country Link
JP (1) JP4219747B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006104751A (en) * 2004-10-05 2006-04-20 Ashimori Ind Co Ltd Bag for civil engineering
JP2006104691A (en) * 2004-10-01 2006-04-20 Ashimori Ind Co Ltd Bag for civil engineering
JP2006183703A (en) * 2004-12-27 2006-07-13 Ashimori Ind Co Ltd Check valve for filling fluid material
JP2006283281A (en) * 2005-03-31 2006-10-19 Ashimori Ind Co Ltd Bag body for civil engineering work
JP2007203231A (en) * 2006-02-03 2007-08-16 Ps Mitsubishi Construction Co Ltd Bagging and dewatering method and its equipment
JP2008291574A (en) * 2007-05-28 2008-12-04 Asahi Kasei Construction Materials Co Ltd Bag body for pile body, pile with bag body, and pile body installation method
WO2009053797A2 (en) * 2007-10-24 2009-04-30 Skarboevig Nils Mittet Mine support grout bags and grout packs
JP2010159623A (en) * 2009-12-11 2010-07-22 Ashimori Ind Co Ltd Bag body for civil engineering

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006104691A (en) * 2004-10-01 2006-04-20 Ashimori Ind Co Ltd Bag for civil engineering
JP4481130B2 (en) * 2004-10-01 2010-06-16 芦森工業株式会社 Civil engineering bag
JP4481134B2 (en) * 2004-10-05 2010-06-16 芦森工業株式会社 Civil engineering bag
JP2006104751A (en) * 2004-10-05 2006-04-20 Ashimori Ind Co Ltd Bag for civil engineering
JP2006183703A (en) * 2004-12-27 2006-07-13 Ashimori Ind Co Ltd Check valve for filling fluid material
JP4533128B2 (en) * 2004-12-27 2010-09-01 芦森工業株式会社 Check valve for filling fluid material
JP2006283281A (en) * 2005-03-31 2006-10-19 Ashimori Ind Co Ltd Bag body for civil engineering work
JP4490859B2 (en) * 2005-03-31 2010-06-30 芦森工業株式会社 Civil engineering bag
JP2007203231A (en) * 2006-02-03 2007-08-16 Ps Mitsubishi Construction Co Ltd Bagging and dewatering method and its equipment
JP2008291574A (en) * 2007-05-28 2008-12-04 Asahi Kasei Construction Materials Co Ltd Bag body for pile body, pile with bag body, and pile body installation method
WO2009053797A3 (en) * 2007-10-24 2009-10-15 Skarboevig Nils Mittet Mine support grout bags and grout packs
WO2009053797A2 (en) * 2007-10-24 2009-04-30 Skarboevig Nils Mittet Mine support grout bags and grout packs
US8414226B2 (en) 2007-10-24 2013-04-09 Nils Mittet Skarbövig Mine support grout bags and grout packs
JP2010159623A (en) * 2009-12-11 2010-07-22 Ashimori Ind Co Ltd Bag body for civil engineering

Also Published As

Publication number Publication date
JP4219747B2 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
EP1375754B1 (en) A packing apparatus and method for soil nailing
JP6252842B2 (en) Construction method of outer shield tunnel
KR101657058B1 (en) Double inflatable grouting equipment and the grouting method using the same
JP2004027813A5 (en)
KR101541718B1 (en) The grouting method using the double paker type grouting equipment
KR100331969B1 (en) An apparatus and method for multi-step grouting using FRP tube
KR100760293B1 (en) Tunnel construction method for shallow overburden tunnel
KR101457309B1 (en) Mortar grouting apparatus with tension bag and grouting construction method using the same
KR100795202B1 (en) Pressurized grouting packer with waterproof function
JP2009102836A (en) Sealing method for civil engineering work
JP4451553B2 (en) Buoyancy prevention structure and construction method thereof
KR20090024434A (en) Limit expansion packer, anchoring method using pressing and reaming &amp; water stopping anchoring method using pressing
JP4219747B2 (en) Civil engineering bag
JP2008248524A (en) Method of placing steel pipe pile
KR20020009300A (en) apparatus and method for earth anchor using expansible packer
KR100958053B1 (en) Water stopping anchoring method using pressing
KR20200048265A (en) Steel pipe multi-stage grouting device
KR101874464B1 (en) Bottom-up ground reinforcement anchor with Front drain pipe
KR20200099358A (en) Method of grouting with steel pipe for reinforcemnet of tunnel section and structure by the same in constructing tunnel
JP2533853B2 (en) Pile construction method
JP2000045260A (en) Aseismatic natural ground reinforcing earth engineering method
KR101158416B1 (en) Punching inlet hole sealing apparatus in an anchoring working
JP2005120576A (en) Tunnel cut-off structure and its construction method
JP3355282B2 (en) Construction method of perforated sheet pile and continuous underground wall having permeation section using this sheet pile
JPH11200365A (en) Anchor device for anchor and anchoring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080325

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080822

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees