JP2004075931A - Vinyl ester resin, vinyl ester resin composition and cured product thereof - Google Patents

Vinyl ester resin, vinyl ester resin composition and cured product thereof Download PDF

Info

Publication number
JP2004075931A
JP2004075931A JP2002240919A JP2002240919A JP2004075931A JP 2004075931 A JP2004075931 A JP 2004075931A JP 2002240919 A JP2002240919 A JP 2002240919A JP 2002240919 A JP2002240919 A JP 2002240919A JP 2004075931 A JP2004075931 A JP 2004075931A
Authority
JP
Japan
Prior art keywords
vinyl ester
ester resin
parts
acid
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002240919A
Other languages
Japanese (ja)
Other versions
JP3653513B2 (en
Inventor
Shige Kaku
郭 ▲樹▼
Takuya Kikawa
木川 卓也
Mitsuhiro Yada
矢田 光広
Kiichi Hosoda
細田 喜一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Highpolymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Highpolymer Co Ltd filed Critical Showa Highpolymer Co Ltd
Priority to JP2002240919A priority Critical patent/JP3653513B2/en
Publication of JP2004075931A publication Critical patent/JP2004075931A/en
Application granted granted Critical
Publication of JP3653513B2 publication Critical patent/JP3653513B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vinyl ester resin having high crosslinking density and giving a cured product having excellent physical properties such as heat-resistance, toughness, solvent resistance, corrosion resistance, water resistance, boiling water resistance, luster, transparency, strength and hardness and provide a vinyl ester resin composition having high strength and good corrosion resistance and useful as corrosion resistant materials, molding materials, coating materials, paint, adhesives, etc. <P>SOLUTION: The vinyl ester resin is produced by reacting (a) an epoxy resin having ≥2 glycidyl groups in one molecule with (b) an ethylenic unsaturated monocarboxylic acid and/or (c) a polybasic acid and esterifying at least a part of the primary and/or secondary hydroxy groups in the reaction product (A) with (d) an ethylenically unsaturated monocarboxylic acid. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ビニルエステル樹脂およびビニルエステル樹脂組成物ならびにその硬化物に関する。詳しくは、硬化性に優れ、耐熱性、靭性、耐溶剤性、耐食性、耐水性、耐煮沸性、光沢、透明性、強度、硬度等の物理性状に優れたビニルエステル樹脂およびビニルエステル樹脂組成物ならびにその硬化物に関する。
【0002】
【従来の技術】
ビニルエステル樹脂は、一般にスチレンモノマーや(メタ)アクリレート類の反応性希釈剤で希釈された状態で用いられ、その硬化物は優れた耐食性、耐薬品性、耐水性、耐熱性を有することから、幅広い産業に用いられている。ガラス繊維や炭素繊維を配合した繊維強化プラスチック、無機フィラーを配合したライニング用途、水酸化アルミニウムを配合した人工大理石、あるいは感光性を生かしたソルダーレジストなどその用途は多岐にわたっている。
ビニルエステル樹脂は、分子中に少なくとも一つのエポキシ基を有するエポキシ化合物と分子中に少なくとも一つの重合性の不飽和基を有する不飽和カルボン酸(例えば(メタ)アクリル酸)とを触媒の存在下で付加反応させることにより得られる。得られるビニルエステル樹脂の性状は、出発原料のエポキシ化合物の種類によっても大きく異なり、要求性能に応じて使い分けているのが実情である。出発原料として使用されるエポキシ化合物の種類にも限界があるため、用途に適した物性を付与するために各種の工夫がなされてきている。
例えば、グリシジルエーテルから誘導されるビニルエステル樹脂に靭性を付与しようとする場合、予めジグリシジルエーテルと二価のフェノールとを反応せしめて分子量の大きなジグリシジルエーテルを合成し、その後ビニルエステル化を行なうようなことも行われている。この様にして得られるビニルエステル樹脂の硬化物では架橋点間距離が長くなり靭性が向上するが、反面架橋密度が低下することになり、熱変形温度が低下することが知られている。この他にも、ビニルエステル樹脂の有するヒドロキシル基を利用したウレタン変性、酸無水物変性等が行われている。
一般に、熱硬化性樹脂の物性を向上させるためには、オリゴマー状の樹脂の分子量を高くすることが有利であると考えられているが、ビニルエステル樹脂の場合、分子量の向上を図ろうとすると、分子量向上のために官能基を消費することが多く、結果として硬化に関与する不飽和基密度の低下を来たすことになり、耐熱性や硬化性、光感度等が低下する。
【0003】
【発明が解決しようとする課題】
従って本発明の目的は、高い架橋密度を与え、得られる硬化物が耐熱性、靭性、耐溶剤性、耐食性、耐水性、耐煮沸性、光沢、透明性、強度、硬度等の物理性状に優れるビニルエステル樹脂を提供することにある。また、高強度で、耐食性の良好な、耐食材料、成形材料、コーティング材料、塗料、接着剤等に有用なビニルエステル樹脂組成物を提供することにある。
【0004】
【課題を解決するための手段】
本発明者らは、ビニルエステル樹脂の分子量を高くすることによって、ともすると起こりやすい耐熱性の低下を防ぐビニルエステル樹脂を鋭意検討した。
本発明は、2個以上のグリシジル基を1分子内にもつエポキシ樹脂(a)と、エチレン性不飽和モノカルボン酸(b)および/または多塩基酸(c)とを反応させ、反応物(A)を得、前記反応物(A)の1級および/または2級のヒドロキシル基の一部または全てをエチレン性不飽和モノカルボン酸(d)でエステル化反応させて得られるビニルエステル樹脂を提供するものである。
また、本発明は、エポキシ樹脂(a)が、グリシジル基を1分子内に2個もつ前記のビニルエステル樹脂を提供するものである。
また、本発明は、エポキシ樹脂(a)が、ビスフェノール型エポキシ樹脂である前記のビニルエステル樹脂を提供するものである。
また、本発明は、エチレン性不飽和モノカルボン酸(b)および(d)が、(メタ)アクリル酸である前記のビニルエステル樹脂を提供するものである。
また、本発明は、前記のビニルエステル樹脂および反応性希釈剤(g)を含むビニルエステル樹脂組成物を提供するものである。
また、本発明は、さらに、硬化剤(h)を含む前記のビニルエステル樹脂組成物を提供するものである。
また、本発明は、さらに、光重合開始剤(i)を含む前記のビニルエステル樹脂組成物を提供するものである。
また、本発明は、前記のビニルエステル樹脂組成物を硬化させた硬化物を提供するものである。
【0005】
【発明の実施の形態】
以下に本発明を詳細に説明する。
本発明のビニルエステル樹脂は、2個以上のグリシジル基を1分子内にもつエポキシ樹脂(a)と、エチレン性不飽和モノカルボン酸(b)および/または多塩基酸(c)とを反応させ、反応物(A)を得、前記反応物(A)の1級および/または2級のヒドロキシル基の一部または全てをエチレン性不飽和モノカルボン酸(d)でエステル化反応させて得ることができる。
前記反応物(A)は、分子内に1級および/または2級のヒドロキシル基を2個以上有し、このヒドロキシル基が、前記エチレン性不飽和カルボン酸(d)でエステル化された構造をもつことで分子量当たりのエチレン性不飽和結合数、すなわち架橋可能な反応基を従来のビニルエステル樹脂より多くもたせることが可能となる。
【0006】
本発明に用いられる2個以上のグリシジル基を1分子内にもつエポキシ樹脂(a)の具体的な例は、ビスフェノール型エポキシ樹脂(例えば、ビスフェノールA、ビスフェノールF、ビスフェノールSおよびテトラブロモビスフェノールA等のビスフェノール類とエピクロルヒドリンおよび/またはメチルエピクロルヒドリンとを反応させて得られるもの、あるいはビスフェノールAのグリシジルエーテルと前記ビスフェノール類の縮合物とエピクロルヒドリンおよび/またはメチルエピクロルヒドリンとを反応させて得られるもの等)、ビフェニル型エポキシ樹脂(例えば、ビフェノールとエピクロルヒドリンおよび/またはメチルエピクロルヒドリンとを反応させて得られるもの等で、具体例として、ジャパンエポキシエジン製 エピコート YX−4000)、ナフタレン型エポキシ樹脂(例えば、ジヒドロキシナフタレンとエピクロルヒドリンおよび/またはメチルエピクロルヒドリンとを反応させて得られるもの等で、具体例として、大日本インキ化学工業製 EPICLON HP−4032)、アルキルジフェノール型エポキシ樹脂(例えば、アルキルジフェノールとエピクロルヒドリンおよび/またはメチルエピクロルヒドリンとを反応させて得られるもの等で、具体例として、大日本インキ化学工業製 EPICLON EXA−7120)、ジグリシジルエステル型エポキシ樹脂(例えば、ダイマー酸ジグリシジルエステル、ヘキサヒドロフタル酸ジグリシジルエステル等)、グリシジルアミン型エポキシ樹脂(例えば、ジグリシジルアニリン、ジグリシジルトルイジン等)、脂環式型エポキシ樹脂(例えば、アリサイクリックジエポキシアセタール、アリサイクリックジエポキシアジペート、アリサイクリックジエポキシカルボキシレート等)、さらに、前記エポキシ樹脂とジイソシアネートとを反応させて得られるオキサゾリドン環を有する(具体例として、旭化成エポキシ製 アラルダイト AER4152)等、ノボラック型エポキシ樹脂(例えば、エピクロルヒドリンまたはメチルエピクロルヒドリンとフェノールノボラックまたはクレゾールノボラックとの反応で得られるエポキシ化合物等)、トリスフェノールメタン型エポキシ樹脂(例えば、トリスフェノールメタン、トリスクレゾールメタン等とエピクロルヒドリンおよび/またはメチルエピクロルヒドリンとを反応させて得られるもの等)を挙げることができるが、これらに限られるものではない。また、これらのエポキシ樹脂(a)は、1種または2種以上混合して用いてもよい。特に好ましいのは、耐熱性、耐薬品性に優れ、且つ反応においてはゲル化せず直鎖状に分子量が増加するビスフェノール型エポキシ樹脂であり、さらに好ましくはゲル化せず直鎖状に分子量が増加する分子内に2個のグリシジル基をもつビスフェノール型エポキシ樹脂である。
【0007】
次に前記2個以上のグリシジル基を1分子内にもつエポキシ樹脂(a)と反応するエチレン性不飽和モノカルボン酸(b)としては、例えば、(メタ)アクリル酸、クロトン酸、桂皮酸等を挙げることができる。また、1個のヒドロキシル基と2個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレートと多塩基酸無水物との反応物等も用いることができるが、好ましくは(メタ)アクリル酸である。
【0008】
本発明に用いられる多塩基酸(c)としては、例えば、マロン酸、コハク酸、グルタル酸、アジピン酸、フタル酸、フマル酸、マレイン酸、イタコン酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、エチレングリコール・2モル無水マレイン酸付加物、ポリエチレングリコール・2モル無水マレイン酸付加物、プロピレングリコール・2モル無水マレイン酸付加物、ポリプロピレングリコール・2モル無水マレイン酸付加物等が挙げられる。
【0009】
また、多塩基酸(c)としては、ヒドロキシル基を有するカルボン酸であってもよく、グリシジル基とカルボキシル基との反応で生じるヒドロキシル基以上に、反応物(A)のもつヒドロキシル基を増加させる目的として有用であり、例えば、リンゴ酸、酒石酸、ムチン酸等を挙げることができる。
【0010】
反応物(A)を得るにあたって、エチレン性不飽和モノカルボン酸(b)と多塩基酸(c)との割合は、任意の割合でよいが、エチレン性不飽和モノカルボン酸(b)単独あるいは多塩基酸(c)単独であってもよい。しかし本発明の効果を充分に得るためには、エチレン性不飽和モノカルボン酸(b)と多塩基酸(c)とのモル比は、前者:後者として20:1〜1:5の範囲が好ましく、さらに好ましくは5:1〜1:1の範囲である。エチレン性不飽和モノカルボン酸(b)の割合が、1:5を下回ると分子量が増大し過ぎてしまい、本発明のビニルエステル樹脂は感光性樹脂材料として適さず、20:1を上回ると充分な分子量増大の効果が得られない。
さらに、反応物(A)を生成する場合のエポキシ樹脂(a)と、エチレン性不飽和モノカルボン酸(b)と、多塩基酸(c)との割合は、エポキシ樹脂(a)のエポキシ基1当量に対し、エチレン性不飽和モノカルボン酸(b)と多塩基酸(c)とのカルボキシル基当量の和は、0.9〜1.1当量が好ましく、さらに好ましくは、0.95〜1.05当量の範囲である。カルボキシル基当量が0.9未満では、反応時にゲル化しやすく、1.1を超えると未反応の酸が多くなりすぎ、臭気、安全性の点で好ましくない。
【0011】
次に、前記反応物(A)の1級および/または2級のヒドロキシル基の一部または全てを、エチレン性不飽和モノカルボン酸(d)でエステル化反応させて、さらにエチレン性不飽和基を導入した本発明のビニルエステル樹脂を得ることができる。このとき反応に用いられるエチレン性不飽和モノカルボン酸(d)としては、前記(b)成分と同様なものでよく、例えば、(メタ)アクリル酸、クロトン酸、桂皮酸等が挙げられるが、これらの酸塩化物も挙げることができる。また、1個のヒドロキシル基と2個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレートと多塩基酸無水物との反応物等も用いることができるが、好ましくは(メタ)アクリル酸、およびこれらの酸塩化物である。
【0012】
前記反応物(A)の1級および/または2級のヒドロキシル基に対して、エチレン性不飽和モノカルボン酸(d)により導入されたエステル構造の割合は、該反応物(A)の1級および/または2級のヒドロキシル基の1%以上であり、好ましくは10%以上であり、さらに好ましくは50%以上である。該反応物(A)の1級および/または2級のヒドロキシル基の1%以上であるとビニルエステル樹脂の硬化性の改善が発現され、さらに10%以上であるとその硬化性の改善が明瞭となる。
【0013】
本発明のビニルエステル樹脂の分子量は、ポリスチレン換算の数平均分子量で500〜12000の範囲であり、好ましくは700〜10000の範囲である。分子量が500未満であると架橋密度が高くなり、硬化物の靭性が低下し、分子量が12000を超えると粘度が高くなりすぎ作業性に支障をきたすため好ましくない。
【0014】
本発明によるビニルエステル樹脂の合成方法は、特に制限されないが、例えば、通常のビニルエステル樹脂の合成方法と同様に、2個以上のグリシジル基を1分子内にもつエポキシ樹脂(a)にエチレン性不飽和モノカルボン酸(b)および/または多塩基酸(c)の各所定量を、触媒を用いてエステル化反応し、反応により生成した反応物(A)の1級および/または2級のヒドロキシル基にエチレン性不飽和モノカルボン酸(d)を、触媒を用いて脱水縮合させて得られる。エチレン性不飽和モノカルボン酸(d)は、酸塩化物、酸無水物を用いてもよい。
【0015】
また、ビニルエステル樹脂は、分子内のヒドロキシル基をエチレン性不飽和モノカルボン酸(d)でエステル化された構造であるが、一部のヒドロキシル基を酸無水物と反応させてエステル化することも可能で、これにより得られるビニルエステル樹脂は、硬化性が良好で、且つアルカリ土類金属酸化物等による増粘が可能なものである。この時使用できる酸無水物としては、例えば、無水マレイン酸、無水コハク酸、無水イタコン酸、無水フタル酸、無水テトラヒドロフタル酸、無水ヘキサヒドロフタル酸、メチルヘキサヒドロ無水フタル酸、無水エンドメチレンテトラヒドロフタル酸、無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸二無水物等が挙げることができ、これらを単独あるいは2種以上併用することもできる。
例えば、反応物(A)のヒドロキシル基1モルに対して、0.05〜0.4モルの酸無水物を反応させるのが、ビニルエステル樹脂の良好な増粘性の点で好ましい。
【0016】
本発明の別の見地によれば、前記ビニルエステル樹脂および反応性希釈剤(g)を含むビニルエステル樹脂組成物が提供される。また、前記ビニルエステル樹脂組成物は、硬化剤(h)を含むことができ、硬化性ビニルエステル樹脂組成物を提供することができる。また、前記ビニルエステル樹脂組成物は、光重合開始剤(i)を含むことができ、光硬化性ビニルエステル樹脂組成物を提供することができる。さらに、本発明は、前記ビニルエステル樹脂組成物、前記硬化性ビニルエステル樹脂組成物および前記光硬化性ビニルエステル樹脂組成物を硬化させた硬化物を提供するものである。
【0017】
本発明のビニルエステル樹脂組成物において、反応性希釈剤(g)を添加することができる。利用できる反応性希釈剤(g)としては、例えば、スチレン、α−メチルスチレン、α−クロロメチルスチレン、ビニルトルエン、ジビニルベンゼン、ジアリルフタレート、ジアリルベンゼンホスホネート等の芳香族ビニル系モノマー類;酢酸ビニル、アジピン酸ビニル等のビニルエステルモノマー類;メチル(メタ)アクリレート、エチル(メタ)アクリレート、(メタ)アクリレート、ブチル(メタ)アクリレート、β−ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、(ジ)エチレングリコールジ(メタ)アクリレート、プロピレングリコール(ジ)エチレングリコール(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、トリス(ヒドロキシエチル)イソシアヌレートのトリ(メタ)アクリレート、等の(メタ)アクリル系モノマー;トリアリルシアヌレート等を挙げることができ、これらの1種または2種以上を用いることができる。
反応性希釈剤(g)の配合量は、ビニルエステル樹脂100重量部に対して、25〜150重量部が好ましく、より好ましくは60〜100重量部である。
【0018】
本発明のビニルエステル樹脂組成物は、通常の不飽和ポリエステル樹脂、ビニルエステル樹脂の硬化の際に用いる硬化剤(h)および必要に応じて硬化促進剤を添加することで容易に硬化することができる。本発明に使用される硬化剤(h)としては、例えば、メチルエチルケトンパーオキサイド、ベンゾイルパーオキサイド、t−ブチルハイドロパーオキサオド、t−ブチルパーオキシベンゾエート、ジクミルパーオキサイド、クメンハイドロキシパーオキサイド、ラウロイルパーオキサイド等の有機過酸化物、アゾビスイソブチロニトリル等のアゾ系化合物が挙げられる。
硬化剤(h)の配合量は、ビニルエステル樹脂100重量部に対して、0.1〜5.0重量部が好ましく、より好ましくは0.5〜3.0重量部である。
熱重合では硬化促進剤を混合して用いてもよく、硬化促進剤としては、例えばナフテン酸コバルト、オクタン酸コバルト、アセチルアセトン、あるいはジメチルアニリン、ジエチルアニリン等の3級アミン等が挙げられる。
硬化促進剤の配合量は、ビニルエステル樹脂100重量部に対して、0.005〜5.0重量部が好ましく、より好ましくは0.01〜3.0重量部である。
【0019】
また、本発明のビニルエステル樹脂組成物は、紫外線照射などにより光硬化させるために光重合開始剤(i)を添加することができる。利用できる光重合開始剤(i)としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル等のベンゾインとそのアルキルエーテル類;アセトフェノン、2,2−ジメトキシ−2−フェニルアセトフェノン、1,1−ジクロロアセトフェノン、4−(1−t−ブチルジオキシ−1−メチルエチル)アセトフェノン等のアセトフェノン類;2−メチルアントラキノン、2−アミルアントラキノン、2−t−ブチルアントラキノン、1−クロロアントラキノン等のアントラキノン類;2,4−ジメチルチオキサントン、2,4−ジイソプロピルチオキサントン、2−クロロチオキサントン等のチオキサントン類;アセトフェノンジメチルケタール、ベンジルジメチルケタール等のケタール類;ベンゾフェノン、4−(1−t−ブチルジオキシ−1−メチルエチル)ベンゾフェノン、3,3’,4,4’−テトラキス(t−ブチルジオキシカルボニル)ベンゾフェノン等のベンゾフェノン類;2−メチル−1−[4−(メチルチオ)フェニル]−2−モルホリノ−プロパン−1−オンや2−ベンジル−2−ジメチルアミノ−1−(4−モルホリノフェニル)ブタノン−1;アシルホスフィンオキサイド類およびキサントン類等が挙げられる。
光重合開始剤(i)の配合量は、ビニルエステル樹脂100重量部に対して、0.5〜30重量部で配合することが好ましい。
【0020】
さらには、本発明のビニルエステル樹脂組成物は、通常用いられる離型剤、滑剤、可塑剤、酸化防止剤、紫外線防止剤、難燃剤、重合抑制剤、充填材、増粘剤、低収縮化剤、顔料、等の公知の添加剤を用途に応じて使用してもよい。さらに、各種強化繊維を補強用繊維として用い、繊維強化複合材料とすることも可能である。
【0021】
【実施例】
以下に実施例および比較例を示して、本発明を具体的に説明する。なお、「部」および「%」とあるのは、特に断らない限り、全て重量基準である。
【0022】
[合成例1]
四つ口フラスコに攪拌器、温度計、空気封入管、還流冷却管をセットした反応装置に、フェノールノボラック型エポキシ樹脂〔エピクロンN−740、大日本インキ化学工業(株)製、エポキシ当量180〕180部、メチルイソブチルケトン62.0部、フマル酸17.4部、アクリル酸50.4部、トリフェニルフォスフィン0.8部、メチルハイドロキノン0.2部を仕込み、空気を吹き込みながら、120℃で8時間反応を続け、酸価0.5KOHmg/gの反応物を得た。
次に温度を10℃まで下げ、メチルイソブチルケトン240部を仕込み、アクリル酸クロリド54.4部とトリエチルアミン60.6部を10℃を保ちながら滴下して攪拌し続けた。これを水洗してトリエチルアミン塩酸塩を取り除き、減圧乾燥後、固形分濃度55%となるようにスチレンに溶解、ビニルエステル樹脂(A)−1を得た。ポリスチレン換算の数平均分子量は、1500であった。
【0023】
[合成例2]
合成例1と同一実験装置に、ビスフェノールA型エポキシ樹脂〔アラルダイトAER2603、旭化成エポキシ(株)製、エポキシ当量188〕188部、メチルイソブチルケトン63.3部、フマル酸29.0部、アクリル酸36部、トリフェニルフォスフィン0.8部、メチルハイドロキノン0.2部を仕込み、空気を吹き込みながら、120℃で8時間反応を続け、酸価0.5KOHmg/gの反応物を得た。
次に温度を10℃まで下げ、メチルイソブチルケトン253部を仕込み、アクリル酸クロリド63.5部とトリエチルアミン70.7部を10℃を保ちながら滴下して攪拌し続けた。これを水洗してトリエチルアミン塩酸塩を取り除き、減圧乾燥後、固形分濃度55%となるようにスチレンに溶解、ビニルエステル樹脂(A)−2を得た。ポリスチレン換算の数平均分子量は、4600であった。
【0024】
[合成例3]
合成例1と同一実験装置に、ビスフェノールA型エポキシ樹脂〔エポトートYD−128、東都化成(株)製、エポキシ当量190〕190部、メチルイソブチルケトン67.4部、アジピン酸36.5部、メタクリル酸43.0部、トリフェニルフォスフィン0.8部、メチルハイドロキノン0.2部を仕込み、空気を吹き込みながら、120℃で8時間反応を続け、酸価0.5KOHmg/gの反応物を得た。
次に温度を10℃まで下げ、メチルイソブチルケトン275部を仕込み、メタクリル酸クロリド73.3部とトリエチルアミン70.7部を10℃を保ちながら滴下して攪拌し続けた。これを水洗してトリエチルアミン塩酸塩を取り除き、減圧乾燥後、固形分濃度55%となるようにスチレンに溶解、ビニルエステル樹脂(A)−3を得た。ポリスチレン換算の数平均分子量は、5200であった。
【0025】
[合成例4]
合成例1と同一実験装置に、ビスフェノールA型エポキシ樹脂〔アラルダイトAER2603、旭化成エポキシ(株)製、エポキシ当量188〕188部、メチルイソブチルケトン69.3部、シクロヘキサンジカルボン酸43.0部、メタクリル酸43.0部、トリフェニルフォスフィン0.8部、メチルハイドロキノン0.2部を仕込み、空気を吹き込みながら、120℃で8時間反応を続け、酸価0.5KOHmg/gの反応物を得た。
次に温度を10℃まで下げ、メチルイソブチルケトン291部を仕込み、メタクリル酸クロリド83.7部とトリエチルアミン80.8部を10℃を保ちながら滴下して攪拌し続けた。これを水洗してトリエチルアミン塩酸塩を取り除き、減圧乾燥後、固形分濃度55%となるようにスチレンに溶解、ビニルエステル樹脂(A)−4を得た。ポリスチレン換算の数平均分子量は、6800であった。
【0026】
[合成例5]
合成例1と同一実験装置に、ビスフェノールA型エポキシ樹脂〔エポトートYD−128、東都化成(株)製、エポキシ当量190〕190部、メチルイソブチルケトン66.4部、イタコン酸32.5部、メタクリル酸43.0部、トリフェニルフォスフィン0.8部、メチルハイドロキノン0.2部を仕込み、空気を吹き込みながら、120℃で8時間反応を続け、酸価0.5KOHmg/gの反応物を得た。
次に温度を10℃まで下げ、メチルイソブチルケトン283部を仕込み、メタクリル酸クロリド83.7部とトリエチルアミン80.8部を10℃を保ちながら滴下して攪拌し続けた。これを水洗してトリエチルアミン塩酸塩を取り除き、減圧乾燥後、固形分濃度55%となるようにスチレンに溶解、ビニルエステル樹脂(A)−5を得た。ポリスチレン換算の数平均分子量は、6200であった。
【0027】
[合成例6]
合成例1と同一実験装置に、ビスフェノールA型エポキシ樹脂〔アラルダイトAER2603、旭化成エポキシ(株)製、エポキシ当量188〕188部、メチルイソブチルケトン64.4部、リンゴ酸33.5部、アクリル酸36部、トリフェニルフォスフィン0.8部、メチルハイドロキノン0.2部を仕込み、空気を吹き込みながら、120℃で8時間反応を続け、酸価0.5KOHmg/gの反応物を得た。
次に温度を10℃まで下げ、メチルイソブチルケトン257部を仕込み、アクリル酸クロリド63.5部とトリエチルアミン70.7部を10℃を保ちながら滴下して攪拌し続けた。これを水洗してトリエチルアミン塩酸塩を取り除き、減圧乾燥後、固形分濃度55%となるようにスチレンに溶解、ビニルエステル樹脂(A)−6を得た。ポリスチレン換算の数平均分子量は、5400であった。
【0028】
[合成例7]
合成例1と同一実験装置に、ビスフェノールA型エポキシ樹脂〔エポトートYD−128、東都化成(株)製、エポキシ当量190〕190部、メチルイソブチルケトン65.9部、酒石酸37.5部、アクリル酸36部、トリフェニルフォスフィン0.8部、メチルハイドロキノン0.2部を仕込み、空気を吹き込みながら、120℃で8時間反応を続け、酸価0.5KOHmg/gの反応物を得た。
次に温度を10℃まで下げ、メチルイソブチルケトン261部を仕込み、アクリル酸クロリド63.5部とトリエチルアミン70.7部を10℃を保ちながら滴下して攪拌し続けた。これを水洗してトリエチルアミン塩酸塩を取り除き、減圧乾燥後、固形分濃度55%となるようにスチレンに溶解、ビニルエステル樹脂(A)−7を得た。ポリスチレン換算の数平均分子量は、5600であった。
【0029】
[合成例8]
合成例1と同一実験装置に、ビスフェノールF型エポキシ樹脂〔エポミックR110、三井化学(株)製、エポキシ当量170〕170部、メチルイソブチルケトン60.5部、フマル酸40.6部、メタクリル酸25.8部、トリフェニルフォスフィン0.8部、メチルハイドロキノン0.2部を仕込み、空気を吹き込みながら、120℃で8時間反応を続け、酸価0.5KOHmg/gの反応物を得た。
次に温度を10℃まで下げ、メチルイソブチルケトン265部を仕込み、メタクリル酸クロリド83.7部とトリエチルアミン80.8部を10℃を保ちながら滴下して攪拌し続けた。これを水洗してトリエチルアミン塩酸塩を取り除き、減圧乾燥後、固形分濃度55%となるようにスチレンに溶解、ビニルエステル樹脂(A)−8を得た。ポリスチレン換算の数平均分子量は、7800であった。
【0030】
[比較合成例1]
四つ口フラスコに攪拌器、温度計、空気封入管、還流冷却管をセットした反応装置に、ビスフェノールA型エポキシ樹脂〔アラルダイトAER2603、旭化成エポキシ(株)製、エポキシ当量188〕188部、メタクリル酸86.0部、トリフェニルフォスフィン0.8部、メチルハイドロキノン0.2部を仕込み、空気を吹き込みながら、120℃で8時間反応を続け、酸価1.0KOHmg/gの反応物を得た。固形分濃度55%となるようにスチレンに溶解、ビニルエステル樹脂(B)−1を得た。ポリスチレン換算の数平均分子量は、320であった。
【0031】
[比較合成例2]
比較合成例1と同一実験装置に、ビスフェノールA型エポキシ樹脂〔アラルダイトAER2603、旭化成エポキシ(株)製、エポキシ当量188〕188部、ビスフェノールA34.2部、トリエチルアミン0.7部を仕込み140℃で2時間反応させた。次いでメタクリル酸60.2部、トリフェニルフォスフィン0.8部、メチルハイドロキノン0.2部を仕込み、空気を吹き込みながら、120℃で8時間反応を続け、酸価1.0KOHmg/gの反応物を得た。固形分濃度55%となるようにスチレンに溶解、ビニルエステル樹脂(B)−2を得た。ポリスチレン換算の数平均分子量は、1800であった。
【0032】
[比較合成例3]
比較合成例1と同一実験装置に、フェノールノボラック型エポキシ樹脂〔エピクロンN−740、大日本インキ化学工業(株)製、エポキシ当量180〕180部、アクリル酸72.0部、トリフェニルフォスフィン0.8部、メチルハイドロキノン0.2部を仕込み、空気を吹き込みながら、120℃で8時間反応を続け、酸価1.5KOHmg/gの反応物を得た。固形分濃度55%となるようにスチレンに溶解、ビニルエステル樹脂(B)−3を得た。ポリスチレン換算の数平均分子量は、3000であった。
【0033】
[実施例1〜8および比較例1〜3]
合成例1〜8で得た(A)−1〜(A)−8および比較合成例1〜3得た(B)−1〜(B)−3のビニルエステル樹脂100部に対し、それぞれメチルエチルケトンパーオキサイド1.5部、ナフテン酸コバルト0.5部添加し、充分混合して各々のビニルエステル樹脂組成物を得た。次いで、該ビニルエステル樹脂組成物を用いて、注型板を作製した。得られた注型板を用い、引張り強度、引張り伸び率、熱変形温度、耐煮沸性、耐薬品性(耐アルカリ性、耐酸性、耐溶剤性)を評価した。評価結果を表1に示す。
【0034】
<引張り強度および引張り伸び率>
JIS K 7113に準拠し、注型板の引張り強度(MPa)および引張り伸び率(%)を測定した。
<熱変形温度>
JIS K 6911に準拠し、注型板の熱変形温度(℃)を測定した。
<耐煮沸性>
JIS K 7209に準拠し、注型板の耐煮沸性を重量変化(%)により測定した。
<耐薬品性試験>
JIS K 7114に準拠し、以下の薬品における注型板の外観変化を目視により確認した。
耐アルカリ性;23℃、10%水酸化ナトリウム
耐酸性;23℃、35%塩酸
耐溶剤性;23℃、酢酸エチル
評価基準は、外観変化項目の光沢損失、変色、クラック、膨潤、溶解の内、○は全て異常無し、△は1または2項目該当、×は3〜5項目該当とした。
【0035】
【表1】

Figure 2004075931
【0036】
実施例1〜8で得られたビニルエステル樹脂組成物は、さらに、ガラス繊維や炭素繊維を配合し、繊維強化プラスチックとして、化学工業プラント関連のパイプ、タンク等の成形品や、ライニング材料として、また、無機フィラーを配合し、人工大理石調のバスタブ、キッチンカウンターの用途で用いられる。
【0037】
【発明の効果】
本発明によれば、高い架橋密度を与え、得られる硬化物が耐熱性、靭性、耐溶剤性、耐食性、耐水性、耐煮沸性、光沢、透明性、強度、硬度等の物理性状に優れるビニルエステル樹脂が提供される。また、高強度で、耐食性の良好な、耐食材料、成形材料、コーティング材料、塗料、接着剤等に有用なビニルエステル樹脂組成物が提供される。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a vinyl ester resin, a vinyl ester resin composition, and a cured product thereof. Specifically, vinyl ester resins and vinyl ester resin compositions which are excellent in curability and have excellent physical properties such as heat resistance, toughness, solvent resistance, corrosion resistance, water resistance, boiling resistance, gloss, transparency, strength, hardness and the like. And a cured product thereof.
[0002]
[Prior art]
Vinyl ester resins are generally used in a state diluted with a reactive diluent such as styrene monomer or (meth) acrylate, and the cured product has excellent corrosion resistance, chemical resistance, water resistance, and heat resistance. Used in a wide range of industries. Fiber reinforced plastics containing glass fibers and carbon fibers, linings containing inorganic fillers, artificial marbles containing aluminum hydroxide, and solder resists utilizing photosensitivity are widely used.
A vinyl ester resin is prepared by reacting an epoxy compound having at least one epoxy group in a molecule with an unsaturated carboxylic acid having at least one polymerizable unsaturated group (eg, (meth) acrylic acid) in the presence of a catalyst. To give an addition reaction. The properties of the obtained vinyl ester resin greatly vary depending on the type of the epoxy compound as a starting material, and the actual situation is that it is properly used depending on the required performance. Since there is a limit to the type of epoxy compound used as a starting material, various devices have been devised in order to impart physical properties suitable for use.
For example, when it is intended to impart toughness to a vinyl ester resin derived from glycidyl ether, diglycidyl ether and divalent phenol are reacted in advance to synthesize a large molecular weight diglycidyl ether, and then vinyl esterification is performed. Something like that has been done. It is known that in the cured product of the vinyl ester resin thus obtained, the distance between cross-linking points is increased and the toughness is improved, but on the other hand, the cross-linking density is lowered and the heat deformation temperature is lowered. Other than these, urethane modification, acid anhydride modification, and the like utilizing a hydroxyl group of a vinyl ester resin are performed.
In general, it is considered that it is advantageous to increase the molecular weight of an oligomeric resin in order to improve the physical properties of a thermosetting resin, but in the case of a vinyl ester resin, if an attempt is made to improve the molecular weight, In many cases, functional groups are consumed to improve the molecular weight, resulting in a decrease in the density of unsaturated groups involved in curing, resulting in reduced heat resistance, curability, photosensitivity and the like.
[0003]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to provide a high crosslink density and obtain a cured product having excellent physical properties such as heat resistance, toughness, solvent resistance, corrosion resistance, water resistance, boiling resistance, gloss, transparency, strength, and hardness. It is to provide a vinyl ester resin. Another object of the present invention is to provide a vinyl ester resin composition having high strength and good corrosion resistance, which is useful for a corrosion-resistant material, a molding material, a coating material, a paint, an adhesive, and the like.
[0004]
[Means for Solving the Problems]
The present inventors have intensively studied a vinyl ester resin that prevents a decrease in heat resistance that is likely to occur by increasing the molecular weight of the vinyl ester resin.
The present invention comprises reacting an epoxy resin (a) having two or more glycidyl groups in one molecule with an ethylenically unsaturated monocarboxylic acid (b) and / or a polybasic acid (c) to form a reactant ( A), and a vinyl ester resin obtained by subjecting part or all of the primary and / or secondary hydroxyl groups of the reactant (A) to an esterification reaction with an ethylenically unsaturated monocarboxylic acid (d). To provide.
The present invention also provides the above vinyl ester resin in which the epoxy resin (a) has two glycidyl groups in one molecule.
Further, the present invention provides the above vinyl ester resin, wherein the epoxy resin (a) is a bisphenol type epoxy resin.
The present invention also provides the above vinyl ester resin wherein the ethylenically unsaturated monocarboxylic acids (b) and (d) are (meth) acrylic acid.
The present invention also provides a vinyl ester resin composition containing the vinyl ester resin and a reactive diluent (g).
Further, the present invention provides the above-mentioned vinyl ester resin composition further containing a curing agent (h).
The present invention further provides the above-mentioned vinyl ester resin composition further containing a photopolymerization initiator (i).
The present invention also provides a cured product obtained by curing the vinyl ester resin composition.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
The vinyl ester resin of the present invention is obtained by reacting an epoxy resin (a) having two or more glycidyl groups in one molecule with an ethylenically unsaturated monocarboxylic acid (b) and / or a polybasic acid (c). To obtain a reactant (A) and subjecting a part or all of the primary and / or secondary hydroxyl groups of the reactant (A) to an esterification reaction with an ethylenically unsaturated monocarboxylic acid (d). Can be.
The reactant (A) has a structure in which two or more primary and / or secondary hydroxyl groups are present in the molecule, and the hydroxyl group is esterified with the ethylenically unsaturated carboxylic acid (d). This makes it possible to increase the number of ethylenically unsaturated bonds per molecular weight, ie, the number of crosslinkable reactive groups, as compared with conventional vinyl ester resins.
[0006]
Specific examples of the epoxy resin (a) having two or more glycidyl groups in one molecule used in the present invention include bisphenol type epoxy resins (for example, bisphenol A, bisphenol F, bisphenol S, tetrabromobisphenol A, etc.). Those obtained by reacting the bisphenols with epichlorohydrin and / or methyl epichlorohydrin, or those obtained by reacting a glycidyl ether of bisphenol A with a condensate of the bisphenols with epichlorohydrin and / or methyl epichlorohydrin), Biphenyl type epoxy resin (for example, a resin obtained by reacting biphenol with epichlorohydrin and / or methyl epichlorohydrin, and specific examples thereof include Epikop manufactured by Japan Epoxy Edin. YX-4000), naphthalene type epoxy resins (for example, those obtained by reacting dihydroxynaphthalene with epichlorohydrin and / or methyl epichlorohydrin, and specific examples thereof include EPICLON HP-4032 manufactured by Dainippon Ink and Chemicals, alkyl Diphenol type epoxy resin (for example, a resin obtained by reacting alkyl diphenol with epichlorohydrin and / or methyl epichlorohydrin, and specific examples thereof, EPICLON EXA-7120 manufactured by Dainippon Ink and Chemicals, diglycidyl ester type epoxy resin) Resins (eg, diglycidyl dimer acid ester, diglycidyl hexahydrophthalate ester), glycidylamine type epoxy resins (eg, diglycidyl aniline, diglycidyl toluidine) Etc.), alicyclic epoxy resins (eg, alicyclic diepoxy acetal, alicyclic diepoxy adipate, alicyclic diepoxy carboxylate, etc.), and further obtained by reacting the epoxy resin with a diisocyanate. Novolak type epoxy resins (for example, epoxy compounds obtained by the reaction of epichlorohydrin or methyl epichlorohydrin with phenol novolak or cresol novolak) having an oxazolidone ring (for example, Araldite AER4152 manufactured by Asahi Kasei Epoxy), trisphenol methane type epoxy Resins (eg, those obtained by reacting trisphenolmethane, triscresolmethane, etc. with epichlorohydrin and / or methyl epichlorohydrin) It can gel, but not limited thereto. These epoxy resins (a) may be used alone or in combination of two or more. Particularly preferred is a bisphenol-type epoxy resin which has excellent heat resistance, chemical resistance, and does not gel in the reaction and has a linearly increased molecular weight, and more preferably has a linear molecular weight without gelation. It is a bisphenol type epoxy resin having two glycidyl groups in the molecule that increases.
[0007]
Next, as the ethylenically unsaturated monocarboxylic acid (b) which reacts with the epoxy resin (a) having two or more glycidyl groups in one molecule, for example, (meth) acrylic acid, crotonic acid, cinnamic acid, etc. Can be mentioned. In addition, a reaction product of a polyfunctional (meth) acrylate having one hydroxyl group and two or more (meth) acryloyl groups and a polybasic acid anhydride can be used, but (meth) acrylic acid is preferable. It is.
[0008]
The polybasic acid (c) used in the present invention includes, for example, malonic acid, succinic acid, glutaric acid, adipic acid, phthalic acid, fumaric acid, maleic acid, itaconic acid, tetrahydrophthalic acid, hexahydrophthalic acid, ethylene Glycol / 2 mol maleic anhydride adduct, polyethylene glycol / 2 mol maleic anhydride adduct, propylene glycol / 2 mol maleic anhydride adduct, polypropylene glycol / 2 mol maleic anhydride adduct and the like.
[0009]
Further, the polybasic acid (c) may be a carboxylic acid having a hydroxyl group, and increases the number of hydroxyl groups of the reactant (A) more than the hydroxyl group generated by the reaction between the glycidyl group and the carboxyl group. It is useful for the purpose, and examples thereof include malic acid, tartaric acid, and mucinic acid.
[0010]
In obtaining the reactant (A), the ratio between the ethylenically unsaturated monocarboxylic acid (b) and the polybasic acid (c) may be any ratio, but the ethylenically unsaturated monocarboxylic acid (b) alone or The polybasic acid (c) may be used alone. However, in order to sufficiently obtain the effects of the present invention, the molar ratio between the ethylenically unsaturated monocarboxylic acid (b) and the polybasic acid (c) is preferably in the range of 20: 1 to 1: 5 as the former: the latter. Preferably, it is more preferably in the range of 5: 1 to 1: 1. If the ratio of the ethylenically unsaturated monocarboxylic acid (b) is less than 1: 5, the molecular weight will increase too much, and the vinyl ester resin of the present invention is not suitable as a photosensitive resin material. The effect of increasing the molecular weight cannot be obtained.
Furthermore, the ratio of the epoxy resin (a), the ethylenically unsaturated monocarboxylic acid (b), and the polybasic acid (c) when the reactant (A) is formed is determined by the epoxy group of the epoxy resin (a). The sum of the carboxyl group equivalents of the ethylenically unsaturated monocarboxylic acid (b) and the polybasic acid (c) is preferably 0.9 to 1.1 equivalents, more preferably 0.95 to 1 equivalent. It is in the range of 1.05 equivalents. If the carboxyl group equivalent is less than 0.9, gelling tends to occur during the reaction, and if it exceeds 1.1, the amount of unreacted acid becomes too large, which is not preferable in terms of odor and safety.
[0011]
Next, a part or all of the primary and / or secondary hydroxyl groups of the reactant (A) are subjected to an esterification reaction with an ethylenically unsaturated monocarboxylic acid (d), and the ethylenically unsaturated group is further reacted. Can be obtained. At this time, the ethylenically unsaturated monocarboxylic acid (d) used in the reaction may be the same as the component (b), and examples thereof include (meth) acrylic acid, crotonic acid, and cinnamic acid. These acid chlorides can also be mentioned. In addition, a reaction product of a polyfunctional (meth) acrylate having one hydroxyl group and two or more (meth) acryloyl groups and a polybasic acid anhydride can be used, but (meth) acrylic acid is preferable. , And their acid chlorides.
[0012]
The ratio of the ester structure introduced by the ethylenically unsaturated monocarboxylic acid (d) to the primary and / or secondary hydroxyl groups of the reactant (A) is different from the primary and secondary hydroxyl groups of the reactant (A). And / or 1% or more of the secondary hydroxyl group, preferably 10% or more, and more preferably 50% or more. When the content of the primary and / or secondary hydroxyl groups in the reaction product (A) is 1% or more, the curability of the vinyl ester resin is improved, and when the content is 10% or more, the improvement in the curability is clear. It becomes.
[0013]
The molecular weight of the vinyl ester resin of the present invention is in the range of 500 to 12,000, preferably 700 to 10,000 in terms of the number average molecular weight in terms of polystyrene. If the molecular weight is less than 500, the crosslink density becomes high, and the toughness of the cured product decreases. If the molecular weight exceeds 12,000, the viscosity becomes too high and the workability is hindered, which is not preferable.
[0014]
The method for synthesizing the vinyl ester resin according to the present invention is not particularly limited. For example, similarly to the general method for synthesizing a vinyl ester resin, an epoxy resin (a) having two or more glycidyl groups in one molecule may be ethylenic. A predetermined amount of each of the unsaturated monocarboxylic acid (b) and / or the polybasic acid (c) is subjected to an esterification reaction using a catalyst, and a primary and / or secondary hydroxyl of the reaction product (A) produced by the reaction is reacted. The group is obtained by subjecting an ethylenically unsaturated monocarboxylic acid (d) to dehydration condensation using a catalyst. As the ethylenically unsaturated monocarboxylic acid (d), an acid chloride or an acid anhydride may be used.
[0015]
In addition, the vinyl ester resin has a structure in which a hydroxyl group in the molecule is esterified with an ethylenically unsaturated monocarboxylic acid (d). However, some of the hydroxyl groups are esterified by reacting with an acid anhydride. The vinyl ester resin obtained thereby has good curability and can be thickened by an alkaline earth metal oxide or the like. Acid anhydrides that can be used at this time include, for example, maleic anhydride, succinic anhydride, itaconic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, endmethylenetetrahydroanhydride Examples thereof include phthalic acid, trimellitic anhydride, pyromellitic anhydride, and benzophenonetetracarboxylic dianhydride. These may be used alone or in combination of two or more.
For example, it is preferable to react 0.05 to 0.4 mol of an acid anhydride with 1 mol of a hydroxyl group of the reactant (A) from the viewpoint of good thickening of the vinyl ester resin.
[0016]
According to another aspect of the present invention, there is provided a vinyl ester resin composition comprising the vinyl ester resin and a reactive diluent (g). Further, the vinyl ester resin composition can include a curing agent (h), and can provide a curable vinyl ester resin composition. Further, the vinyl ester resin composition can include a photopolymerization initiator (i), and can provide a photocurable vinyl ester resin composition. Further, the present invention provides a cured product obtained by curing the vinyl ester resin composition, the curable vinyl ester resin composition, and the photocurable vinyl ester resin composition.
[0017]
In the vinyl ester resin composition of the present invention, a reactive diluent (g) can be added. Examples of usable reactive diluents (g) include, for example, aromatic vinyl monomers such as styrene, α-methylstyrene, α-chloromethylstyrene, vinyltoluene, divinylbenzene, diallyl phthalate, and diallyl benzene phosphonate; vinyl acetate And vinyl ester monomers such as vinyl adipate; methyl (meth) acrylate, ethyl (meth) acrylate, (meth) acrylate, butyl (meth) acrylate, β-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, (Di) ethylene glycol di (meth) acrylate, propylene glycol (di) ethylene glycol (meth) acrylate, trimethylolpropane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, (Meth) acrylic monomers such as pentaerythritol tetra (meth) acrylate, pentaerythritol hexa (meth) acrylate, tris (hydroxyethyl) isocyanurate tri (meth) acrylate; triallyl cyanurate; One or more of these can be used.
The amount of the reactive diluent (g) is preferably 25 to 150 parts by weight, more preferably 60 to 100 parts by weight, based on 100 parts by weight of the vinyl ester resin.
[0018]
The vinyl ester resin composition of the present invention can be easily cured by adding an ordinary unsaturated polyester resin, a curing agent (h) used for curing the vinyl ester resin and, if necessary, a curing accelerator. it can. Examples of the curing agent (h) used in the present invention include methyl ethyl ketone peroxide, benzoyl peroxide, t-butyl hydroperoxide, t-butyl peroxybenzoate, dicumyl peroxide, cumene hydroxy peroxide, lauroyl. Organic peroxides such as peroxides, and azo compounds such as azobisisobutyronitrile are exemplified.
The compounding amount of the curing agent (h) is preferably 0.1 to 5.0 parts by weight, more preferably 0.5 to 3.0 parts by weight, based on 100 parts by weight of the vinyl ester resin.
In the thermal polymerization, a curing accelerator may be mixed and used. Examples of the curing accelerator include cobalt naphthenate, cobalt octoate, acetylacetone, and tertiary amines such as dimethylaniline and diethylaniline.
The compounding amount of the curing accelerator is preferably 0.005 to 5.0 parts by weight, more preferably 0.01 to 3.0 parts by weight, based on 100 parts by weight of the vinyl ester resin.
[0019]
In addition, the photopolymerization initiator (i) can be added to the vinyl ester resin composition of the present invention for photocuring by ultraviolet irradiation or the like. Examples of usable photopolymerization initiator (i) include benzoin such as benzoin, benzoin methyl ether and benzoin ethyl ether and alkyl ethers thereof; acetophenone, 2,2-dimethoxy-2-phenylacetophenone, and 1,1-dichloro. Acetophenones such as acetophenone and 4- (1-t-butyldioxy-1-methylethyl) acetophenone; anthraquinones such as 2-methylanthraquinone, 2-amylanthraquinone, 2-t-butylanthraquinone and 1-chloroanthraquinone; Thioxanthones such as 4-dimethylthioxanthone, 2,4-diisopropylthioxanthone and 2-chlorothioxanthone; ketals such as acetophenone dimethyl ketal and benzyl dimethyl ketal; benzophenone; Benzophenones such as -t-butyldioxy-1-methylethyl) benzophenone and 3,3 ', 4,4'-tetrakis (t-butyldioxycarbonyl) benzophenone; 2-methyl-1- [4- (methylthio) phenyl 2-morpholino-propan-1-one and 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butanone-1; acylphosphine oxides and xanthones.
The photopolymerization initiator (i) is preferably blended in an amount of 0.5 to 30 parts by weight based on 100 parts by weight of the vinyl ester resin.
[0020]
Furthermore, the vinyl ester resin composition of the present invention comprises a commonly used release agent, lubricant, plasticizer, antioxidant, ultraviolet ray inhibitor, flame retardant, polymerization inhibitor, filler, thickener, low shrinkage Known additives such as agents, pigments and the like may be used according to the application. Furthermore, it is also possible to use various reinforcing fibers as reinforcing fibers to obtain a fiber-reinforced composite material.
[0021]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. Note that “parts” and “%” are based on weight unless otherwise specified.
[0022]
[Synthesis Example 1]
A phenol novolak type epoxy resin (Epiclon N-740, manufactured by Dainippon Ink and Chemicals, Inc., epoxy equivalent 180) was set in a reactor in which a stirrer, a thermometer, an air sealing tube, and a reflux condenser were set in a four-necked flask. 180 parts, 62.0 parts of methyl isobutyl ketone, 17.4 parts of fumaric acid, 50.4 parts of acrylic acid, 0.8 parts of triphenylphosphine and 0.2 parts of methylhydroquinone were charged. For 8 hours to obtain a reaction product having an acid value of 0.5 KOHmg / g.
Next, the temperature was lowered to 10 ° C., 240 parts of methyl isobutyl ketone was charged, and 54.4 parts of acrylic acid chloride and 60.6 parts of triethylamine were added dropwise while maintaining the temperature at 10 ° C., and stirring was continued. This was washed with water to remove triethylamine hydrochloride, dried under reduced pressure, and dissolved in styrene so as to have a solid concentration of 55% to obtain a vinyl ester resin (A) -1. The number average molecular weight in terms of polystyrene was 1500.
[0023]
[Synthesis Example 2]
In the same experimental apparatus as in Synthesis Example 1, 188 parts of bisphenol A type epoxy resin [Araldite AER2603, manufactured by Asahi Kasei Epoxy Corporation, epoxy equivalent 188], 63.3 parts of methyl isobutyl ketone, 29.0 parts of fumaric acid, and acrylic acid 36 Parts, 0.8 parts of triphenylphosphine and 0.2 parts of methylhydroquinone, and the reaction was continued at 120 ° C. for 8 hours while blowing air to obtain a reaction product having an acid value of 0.5 KOH mg / g.
Next, the temperature was lowered to 10 ° C., 253 parts of methyl isobutyl ketone were charged, and 63.5 parts of acrylic acid chloride and 70.7 parts of triethylamine were added dropwise at 10 ° C., and stirring was continued. This was washed with water to remove triethylamine hydrochloride, dried under reduced pressure, and dissolved in styrene so as to have a solid concentration of 55% to obtain a vinyl ester resin (A) -2. The number average molecular weight in terms of polystyrene was 4,600.
[0024]
[Synthesis Example 3]
In the same experimental apparatus as in Synthesis Example 1, 190 parts of bisphenol A type epoxy resin [Epototo YD-128, manufactured by Toto Kasei Co., Ltd., epoxy equivalent 190], 67.4 parts of methyl isobutyl ketone, 36.5 parts of adipic acid, methacrylic acid 43.0 parts of an acid, 0.8 parts of triphenylphosphine and 0.2 parts of methylhydroquinone were charged and the reaction was continued at 120 ° C. for 8 hours while blowing air to obtain a reaction product having an acid value of 0.5 KOH mg / g. Was.
Next, the temperature was lowered to 10 ° C., 275 parts of methyl isobutyl ketone were charged, and 73.3 parts of methacrylic acid chloride and 70.7 parts of triethylamine were added dropwise while maintaining the temperature at 10 ° C., and stirring was continued. This was washed with water to remove triethylamine hydrochloride, dried under reduced pressure, and then dissolved in styrene so as to have a solid concentration of 55% to obtain a vinyl ester resin (A) -3. The number average molecular weight in terms of polystyrene was 5,200.
[0025]
[Synthesis Example 4]
In the same experimental apparatus as in Synthesis Example 1, 188 parts of bisphenol A type epoxy resin [Araldite AER2603, manufactured by Asahi Kasei Epoxy Co., Ltd., epoxy equivalent 188], 69.3 parts of methyl isobutyl ketone, 43.0 parts of cyclohexanedicarboxylic acid, methacrylic acid 43.0 parts, 0.8 parts of triphenylphosphine and 0.2 parts of methylhydroquinone were charged, and the reaction was continued at 120 ° C. for 8 hours while blowing air to obtain a reaction product having an acid value of 0.5 KOH mg / g. .
Next, the temperature was lowered to 10 ° C., 291 parts of methyl isobutyl ketone were charged, 83.7 parts of methacrylic acid chloride and 80.8 parts of triethylamine were added dropwise at 10 ° C., and stirring was continued. This was washed with water to remove triethylamine hydrochloride, dried under reduced pressure, and dissolved in styrene so as to have a solid concentration of 55% to obtain a vinyl ester resin (A) -4. The number average molecular weight in terms of polystyrene was 6,800.
[0026]
[Synthesis Example 5]
In the same experimental apparatus as in Synthesis Example 1, 190 parts of bisphenol A type epoxy resin [Epototo YD-128, manufactured by Toto Kasei Co., Ltd., epoxy equivalent 190], 190 parts of methyl isobutyl ketone, 66.4 parts of itaconic acid, 32.5 parts of methacrylic acid 43.0 parts of an acid, 0.8 parts of triphenylphosphine and 0.2 parts of methylhydroquinone were charged and the reaction was continued at 120 ° C. for 8 hours while blowing air to obtain a reaction product having an acid value of 0.5 KOH mg / g. Was.
Next, the temperature was lowered to 10 ° C., 283 parts of methyl isobutyl ketone were charged, 83.7 parts of methacrylic acid chloride and 80.8 parts of triethylamine were added dropwise at 10 ° C., and stirring was continued. This was washed with water to remove triethylamine hydrochloride, dried under reduced pressure, and dissolved in styrene so as to have a solid concentration of 55% to obtain a vinyl ester resin (A) -5. The number average molecular weight in terms of polystyrene was 6,200.
[0027]
[Synthesis Example 6]
In the same experimental apparatus as in Synthesis Example 1, 188 parts of bisphenol A type epoxy resin [Araldite AER2603, manufactured by Asahi Kasei Epoxy Co., Ltd., epoxy equivalent 188], 64.4 parts of methyl isobutyl ketone, 33.5 parts of malic acid, acrylic acid 36 Parts, 0.8 parts of triphenylphosphine and 0.2 parts of methylhydroquinone, and the reaction was continued at 120 ° C. for 8 hours while blowing air to obtain a reaction product having an acid value of 0.5 KOH mg / g.
Next, the temperature was lowered to 10 ° C., 257 parts of methyl isobutyl ketone were charged, and 63.5 parts of acrylic acid chloride and 70.7 parts of triethylamine were added dropwise at 10 ° C., and stirring was continued. This was washed with water to remove triethylamine hydrochloride, dried under reduced pressure, and dissolved in styrene so as to have a solid content concentration of 55% to obtain a vinyl ester resin (A) -6. The number average molecular weight in terms of polystyrene was 5,400.
[0028]
[Synthesis Example 7]
In the same experimental apparatus as in Synthesis Example 1, 190 parts of bisphenol A type epoxy resin [Epototo YD-128, manufactured by Toto Kasei Co., Ltd., epoxy equivalent 190], 65.9 parts of methyl isobutyl ketone, 37.5 parts of tartaric acid, acrylic acid 36 parts, 0.8 parts of triphenylphosphine and 0.2 parts of methylhydroquinone were charged, and the reaction was continued at 120 ° C. for 8 hours while blowing air to obtain a reaction product having an acid value of 0.5 KOH mg / g.
Next, the temperature was lowered to 10 ° C., 261 parts of methyl isobutyl ketone were charged, and 63.5 parts of acrylic acid chloride and 70.7 parts of triethylamine were added dropwise while maintaining the temperature at 10 ° C., and stirring was continued. This was washed with water to remove triethylamine hydrochloride, dried under reduced pressure, and dissolved in styrene so as to have a solid concentration of 55% to obtain a vinyl ester resin (A) -7. The number average molecular weight in terms of polystyrene was 5,600.
[0029]
[Synthesis Example 8]
In the same experimental apparatus as in Synthesis Example 1, 170 parts of bisphenol F type epoxy resin [Epomic R110, manufactured by Mitsui Chemicals, Inc., epoxy equivalent 170], 170 parts of methyl isobutyl ketone, 40.5 parts of fumaric acid, 25 parts of methacrylic acid 0.8 parts, 0.8 parts of triphenylphosphine and 0.2 parts of methylhydroquinone were charged, and the reaction was continued at 120 ° C. for 8 hours while blowing air to obtain a reaction product having an acid value of 0.5 KOH mg / g.
Next, the temperature was lowered to 10 ° C., 265 parts of methyl isobutyl ketone were charged, and 83.7 parts of methacrylic acid chloride and 80.8 parts of triethylamine were added dropwise at 10 ° C., and stirring was continued. This was washed with water to remove triethylamine hydrochloride, dried under reduced pressure, and dissolved in styrene so as to have a solid concentration of 55% to obtain a vinyl ester resin (A) -8. The number average molecular weight in terms of polystyrene was 7,800.
[0030]
[Comparative Synthesis Example 1]
188 parts of bisphenol A type epoxy resin [Araldite AER2603, manufactured by Asahi Kasei Epoxy Co., Ltd., epoxy equivalent 188] was placed in a reaction apparatus in which a stirrer, a thermometer, an air sealing tube, and a reflux condenser were set in a four-neck flask, methacrylic acid 86.0 parts, 0.8 parts of triphenylphosphine and 0.2 parts of methylhydroquinone were charged, and the reaction was continued at 120 ° C. for 8 hours while blowing air to obtain a reaction product having an acid value of 1.0 KOH mg / g. . The vinyl ester resin (B) -1 was dissolved in styrene so as to have a solid content concentration of 55%. The number average molecular weight in terms of polystyrene was 320.
[0031]
[Comparative Synthesis Example 2]
The same experimental apparatus as in Comparative Synthesis Example 1 was charged with 188 parts of a bisphenol A type epoxy resin [Araldite AER2603, manufactured by Asahi Kasei Epoxy Co., Ltd., epoxy equivalent 188], 34.2 parts of bisphenol A, and 0.7 part of triethylamine, and heated at 140 ° C. for 2 hours. Allowed to react for hours. Then, 60.2 parts of methacrylic acid, 0.8 parts of triphenylphosphine, and 0.2 parts of methylhydroquinone were charged, and the reaction was continued at 120 ° C. for 8 hours while blowing air into the reaction product to obtain an acid value of 1.0 KOH mg / g. Got. The vinyl ester resin (B) -2 was dissolved in styrene so as to have a solid concentration of 55%. The number average molecular weight in terms of polystyrene was 1,800.
[0032]
[Comparative Synthesis Example 3]
In the same experimental apparatus as in Comparative Synthesis Example 1, 180 parts of a phenol novolak type epoxy resin (Epiclon N-740, manufactured by Dainippon Ink and Chemicals, Inc., epoxy equivalent 180), 180 parts of acrylic acid, 72.0 parts of triphenylphosphine 0 0.8 parts and 0.2 parts of methylhydroquinone were charged, and the reaction was continued at 120 ° C. for 8 hours while blowing air to obtain a reaction product having an acid value of 1.5 KOH mg / g. The vinyl ester resin (B) -3 was dissolved in styrene so as to have a solid content of 55%. The number average molecular weight in terms of polystyrene was 3,000.
[0033]
[Examples 1 to 8 and Comparative Examples 1 to 3]
To 100 parts of the vinyl ester resin of (A) -1 to (A) -8 obtained in Synthesis Examples 1 to 8 and (B) -1 to (B) -3 obtained in Comparative Synthesis Examples 1 to 3, methyl ethyl ketone was used, respectively. 1.5 parts of peroxide and 0.5 parts of cobalt naphthenate were added and mixed well to obtain each vinyl ester resin composition. Next, a casting plate was produced using the vinyl ester resin composition. Using the obtained casting plate, tensile strength, tensile elongation, heat deformation temperature, boiling resistance, and chemical resistance (alkali resistance, acid resistance, solvent resistance) were evaluated. Table 1 shows the evaluation results.
[0034]
<Tensile strength and tensile elongation>
According to JIS K7113, the tensile strength (MPa) and the tensile elongation (%) of the casting plate were measured.
<Heat deformation temperature>
In accordance with JIS K 6911, the heat distortion temperature (° C.) of the casting plate was measured.
<Boil resistance>
According to JIS K 7209, the boiling resistance of the cast plate was measured by weight change (%).
<Chemical resistance test>
In accordance with JIS K 7114, the appearance change of the casting plate in the following chemicals was visually confirmed.
Alkali resistance; 23 ° C, 10% sodium hydroxide
Acid resistance; 23 ° C, 35% hydrochloric acid
Solvent resistance; 23 ° C, ethyl acetate
The evaluation criteria were gloss loss, discoloration, cracks, swelling, and dissolution of appearance change items, ○ was all normal, Δ was 1 or 2 items, and × was 3 to 5 items.
[0035]
[Table 1]
Figure 2004075931
[0036]
The vinyl ester resin compositions obtained in Examples 1 to 8 were further blended with glass fibers and carbon fibers, and as fiber-reinforced plastics, molded products such as pipes and tanks related to chemical industry plants, and as lining materials, In addition, it is used for artificial marble-like bathtubs and kitchen counters by blending inorganic fillers.
[0037]
【The invention's effect】
According to the present invention, a vinyl that gives a high crosslink density and has excellent physical properties such as heat resistance, toughness, solvent resistance, corrosion resistance, water resistance, boiling resistance, gloss, transparency, strength, and hardness is obtained. An ester resin is provided. Further, there is provided a vinyl ester resin composition having high strength and good corrosion resistance, which is useful for corrosion-resistant materials, molding materials, coating materials, paints, adhesives, and the like.

Claims (8)

2個以上のグリシジル基を1分子内にもつエポキシ樹脂(a)と、エチレン性不飽和モノカルボン酸(b)および/または多塩基酸(c)とを反応させ、反応物(A)を得、前記反応物(A)の1級および/または2級のヒドロキシル基の一部または全てをエチレン性不飽和モノカルボン酸(d)でエステル化反応させて得られるビニルエステル樹脂。An epoxy resin (a) having two or more glycidyl groups in one molecule is reacted with an ethylenically unsaturated monocarboxylic acid (b) and / or a polybasic acid (c) to obtain a reactant (A). A vinyl ester resin obtained by subjecting part or all of the primary and / or secondary hydroxyl groups of the reaction product (A) to an esterification reaction with an ethylenically unsaturated monocarboxylic acid (d). エポキシ樹脂(a)が、グリシジル基を1分子内に2個もつ請求項1に記載のビニルエステル樹脂。The vinyl ester resin according to claim 1, wherein the epoxy resin (a) has two glycidyl groups in one molecule. エポキシ樹脂(a)が、ビスフェノール型エポキシ樹脂である請求項1または2に記載のビニルエステル樹脂。The vinyl ester resin according to claim 1 or 2, wherein the epoxy resin (a) is a bisphenol-type epoxy resin. エチレン性不飽和モノカルボン酸(b)および(d)が、(メタ)アクリル酸である請求項1ないし3のいずれか1項に記載のビニルエステル樹脂。The vinyl ester resin according to any one of claims 1 to 3, wherein the ethylenically unsaturated monocarboxylic acids (b) and (d) are (meth) acrylic acid. 請求項1ないし4のいずれか1項に記載のビニルエステル樹脂および反応性希釈剤(g)を含むビニルエステル樹脂組成物。A vinyl ester resin composition comprising the vinyl ester resin according to any one of claims 1 to 4 and a reactive diluent (g). さらに、硬化剤(h)を含む請求項5に記載のビニルエステル樹脂組成物。The vinyl ester resin composition according to claim 5, further comprising a curing agent (h). さらに、光重合開始剤(i)を含む請求項5に記載のビニルエステル樹脂組成物。The vinyl ester resin composition according to claim 5, further comprising a photopolymerization initiator (i). 請求項6または7に記載のビニルエステル樹脂組成物を硬化させた硬化物。A cured product obtained by curing the vinyl ester resin composition according to claim 6.
JP2002240919A 2002-08-21 2002-08-21 Vinyl ester resin, vinyl ester resin composition and cured product thereof Expired - Fee Related JP3653513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002240919A JP3653513B2 (en) 2002-08-21 2002-08-21 Vinyl ester resin, vinyl ester resin composition and cured product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002240919A JP3653513B2 (en) 2002-08-21 2002-08-21 Vinyl ester resin, vinyl ester resin composition and cured product thereof

Publications (2)

Publication Number Publication Date
JP2004075931A true JP2004075931A (en) 2004-03-11
JP3653513B2 JP3653513B2 (en) 2005-05-25

Family

ID=32023568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002240919A Expired - Fee Related JP3653513B2 (en) 2002-08-21 2002-08-21 Vinyl ester resin, vinyl ester resin composition and cured product thereof

Country Status (1)

Country Link
JP (1) JP3653513B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006321947A (en) * 2005-05-20 2006-11-30 Japan U-Pica Co Ltd Epoxy(meth)acrylate compound and photocurable and/or thermosetting resin composition containing the compound and its cured product
JP2007031575A (en) * 2005-07-27 2007-02-08 Dainippon Ink & Chem Inc Method for preparing branched polyether resin composition and preparing an acid pendant branched polyether resin composition
KR100882019B1 (en) * 2007-03-28 2009-02-04 주식회사 에이피에스 Adhesive composition having excellent anti corrosion for FRP material adhesion and manufacturing method thereof
JP2009269954A (en) * 2008-05-01 2009-11-19 Goo Chemical Co Ltd Carboxy group-containing novolac-type resin and cured product thereof
WO2009150769A1 (en) * 2008-06-09 2009-12-17 互応化学工業株式会社 Carboxyl group-containing resin, curable composition containing carboxyl group-containing resin, and cured product of the composition
JP2010024336A (en) * 2008-07-18 2010-02-04 Goo Chemical Co Ltd Alkali developable curable composition, and cured material of the same
KR101163732B1 (en) 2010-08-18 2012-07-12 애경화학 주식회사 Flame retardant photocurable resin composition and photocurable sheet material comprising same
CN113355916A (en) * 2021-06-22 2021-09-07 江苏恒神股份有限公司 Carbon fiber bundling agent, carbon fiber bundle for winding forming, and preparation method and application thereof
CN113388236A (en) * 2021-06-28 2021-09-14 常州天马集团有限公司(原建材二五三厂) Corrosion-resistant gel coat and preparation method thereof
WO2022044507A1 (en) * 2020-08-31 2022-03-03 昭和電工株式会社 Curable resin composition, electric/electronic component, and method for manufacturing electric/electronic component
CN114773574A (en) * 2022-05-18 2022-07-22 张国华 Anti-aging high-toughness vinyl resin and preparation method thereof
CN116675863A (en) * 2023-07-03 2023-09-01 淮安巴德聚氨酯科技有限公司 Corrosion-resistant high-strength silane modified polyester resin and processing technology thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006321947A (en) * 2005-05-20 2006-11-30 Japan U-Pica Co Ltd Epoxy(meth)acrylate compound and photocurable and/or thermosetting resin composition containing the compound and its cured product
JP2007031575A (en) * 2005-07-27 2007-02-08 Dainippon Ink & Chem Inc Method for preparing branched polyether resin composition and preparing an acid pendant branched polyether resin composition
KR100882019B1 (en) * 2007-03-28 2009-02-04 주식회사 에이피에스 Adhesive composition having excellent anti corrosion for FRP material adhesion and manufacturing method thereof
JP2009269954A (en) * 2008-05-01 2009-11-19 Goo Chemical Co Ltd Carboxy group-containing novolac-type resin and cured product thereof
US8148047B2 (en) 2008-06-09 2012-04-03 Goo Chemical Company, Ltd. Carboxyl resin, hardening composition containing carboxyl resin, and hardened material thereof
WO2009150769A1 (en) * 2008-06-09 2009-12-17 互応化学工業株式会社 Carboxyl group-containing resin, curable composition containing carboxyl group-containing resin, and cured product of the composition
JP2010024336A (en) * 2008-07-18 2010-02-04 Goo Chemical Co Ltd Alkali developable curable composition, and cured material of the same
KR101163732B1 (en) 2010-08-18 2012-07-12 애경화학 주식회사 Flame retardant photocurable resin composition and photocurable sheet material comprising same
WO2022044507A1 (en) * 2020-08-31 2022-03-03 昭和電工株式会社 Curable resin composition, electric/electronic component, and method for manufacturing electric/electronic component
CN113355916A (en) * 2021-06-22 2021-09-07 江苏恒神股份有限公司 Carbon fiber bundling agent, carbon fiber bundle for winding forming, and preparation method and application thereof
CN113388236A (en) * 2021-06-28 2021-09-14 常州天马集团有限公司(原建材二五三厂) Corrosion-resistant gel coat and preparation method thereof
CN114773574A (en) * 2022-05-18 2022-07-22 张国华 Anti-aging high-toughness vinyl resin and preparation method thereof
CN116675863A (en) * 2023-07-03 2023-09-01 淮安巴德聚氨酯科技有限公司 Corrosion-resistant high-strength silane modified polyester resin and processing technology thereof

Also Published As

Publication number Publication date
JP3653513B2 (en) 2005-05-25

Similar Documents

Publication Publication Date Title
US3892819A (en) Impact resistant vinyl ester resin and process for making same
CN101568515B (en) Resin composition suitable for (re) lining of tubes, tanks and vessels
JP3653513B2 (en) Vinyl ester resin, vinyl ester resin composition and cured product thereof
JP3638924B2 (en) Polycarboxylic acid resin, polycarboxylic acid resin composition, and cured product thereof
US4383091A (en) Urethane modified polymers having hydroxyl groups
JPH09110948A (en) Vinyl ester resin composition and cured article
JP2943148B2 (en) Thermosetting resin composition
US4766184A (en) Polycarbonate modified vinyl esters
JP3659639B2 (en) Vinyl ester resin, vinyl ester resin composition, and cured product thereof
JP4768161B2 (en) Radical polymerizable resin composition
JP2003040954A (en) Radical-polymerizable resin composition
JP4768162B2 (en) Radical polymerizable resin composition
WO2020040052A1 (en) Curable resin composition and cured product therefrom
JPS5936118A (en) Thermosetting epoxy acrylate resin composition
JPH0959499A (en) Corrosion preventive lining composition
JP2935890B2 (en) Dicyclopentadiene-modified unsaturated polyester composition and use thereof
JP3212894B2 (en) Resin composition for molding material and molding material using the composition
JP2851414B2 (en) Heat resistant vinyl ester resin composition
JP7160648B2 (en) Curable resin composition
JP3538481B2 (en) Unsaturated polyester, method for producing the same, and unsaturated polyester resin composition
JP2006321947A (en) Epoxy(meth)acrylate compound and photocurable and/or thermosetting resin composition containing the compound and its cured product
JPH1087764A (en) Vinyl ester resin composition and concrete lining material produced by using the composition
JP2000309613A (en) Resin composition for molding material, and molding material
WO2023017854A1 (en) Resin composition and method for producing same, and composite material
JP2004035703A (en) Vinyl ester resin composition for artificial marble, excellent in storage stability

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20041008

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20041130

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Effective date: 20050228

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees