JP2004075683A - Method for producing optically active halogenohydroxypropyl compound and glycidyl compound - Google Patents

Method for producing optically active halogenohydroxypropyl compound and glycidyl compound Download PDF

Info

Publication number
JP2004075683A
JP2004075683A JP2003281980A JP2003281980A JP2004075683A JP 2004075683 A JP2004075683 A JP 2004075683A JP 2003281980 A JP2003281980 A JP 2003281980A JP 2003281980 A JP2003281980 A JP 2003281980A JP 2004075683 A JP2004075683 A JP 2004075683A
Authority
JP
Japan
Prior art keywords
formula
substituted
ion
group
optically active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003281980A
Other languages
Japanese (ja)
Other versions
JP4407191B2 (en
Inventor
Keisuke Yaegashi
八重樫 啓介
Yoshiro Furukawa
古川 喜朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP2003281980A priority Critical patent/JP4407191B2/en
Publication of JP2004075683A publication Critical patent/JP2004075683A/en
Application granted granted Critical
Publication of JP4407191B2 publication Critical patent/JP4407191B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Epoxy Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an optically active 1-halogeno-2-hydroxypropyl compound or an optically active glycidyl compound with high optical purity in high yield. <P>SOLUTION: The method comprises a position-selective production of the optically active 1-halogeno-2-hydroxypropyl compound by reacting a nucleophilic reagent such as water, phenol or the like in the presence of a metal complex catalyst expressed by formula (6), (in the formula n is 0, 1 or 2, Z<SP>1</SP>, Z<SP>2</SP>, Z<SP>3</SP>or Z<SP>4</SP>are each H, a halogen atom, nitro group or a (substituted) alkyl group or the like, A is a ion pair, and M is a metal ion), to an optically active epihalohydrin and then reacting a basic reagent to obtain the optically active glycidyl compound. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は医薬、農薬等の合成中間体として有用な光学活性1−ハロゲノ−2−ヒドロキシプロピル化合物および光学活性グリシジル化合物の製造法に関する。 The present invention relates to a method for producing an optically active 1-halogeno-2-hydroxypropyl compound and an optically active glycidyl compound, which are useful as intermediates for synthesis of pharmaceuticals, agricultural chemicals and the like.

 エピハロヒドリンから1−ハロゲノ−2−ヒドロキシプロピル化合物を経てグリシジル化合物へ導くことを基盤とする製造法は、古くから様々に報告されている。
 しかしながら、その殆どは、ラセミ体のエピハロヒドリンをラセミ体のグリシジル化合物に導く方法に関するものであり、光学活性体のエピハロヒドリンを光学活性体のグリシジル化合物に導く方法に関する報告例は数少ない。その理由の一つとしては、エピハロヒドリン上の活性位である1位のハロゲノメチレン位と3位のエポキシ環末端位に顕著な活性の差がなく、扱いにくいことが挙げられる。
Various production methods based on leading epihalohydrin to a glycidyl compound via a 1-halogeno-2-hydroxypropyl compound have been reported for a long time.
However, most of them relate to a method of converting racemic epihalohydrin into a racemic glycidyl compound, and there are few reports on a method of converting optically active epihalohydrin to an optically active glycidyl compound. One of the reasons is that there is no remarkable difference in activity between the 1-position halogenomethylene position, which is the active position on epihalohydrin, and the 3-position epoxy ring terminal position, and it is difficult to handle.

 つまり、下記反応式に示すように、求核種との反応において理論上ではa経路による求核反応が優先し、[I]または[II]を選択的に与えるとされているが、実際、この選択性は完全でなく、b経路による反応を経て[III]を副生し、結果として目的生成物[II]の光学純度が低下する。 That is, as shown in the following reaction formula, in the reaction with a nucleophilic species, the nucleophilic reaction by the a-path has a higher priority in theory and selectively gives [I] or [II]. The selectivity is not perfect, and [III] is produced as a by-product through the reaction by the route b. As a result, the optical purity of the target product [II] decreases.

           反応式

Figure 2004075683
(上記式において、X'はハロゲン原子、Nu’は求核種の残基である。)
 上記の問題を克服するための手法も幾つか検討されており、例えば、(i)光学活性エピハロヒドリンと4−カルバモイルメチルフェノールとを含水溶媒中、水酸化アルカリおよび第4級アンモニウム塩存在下で反応させる方法(特許文献1参照)、(ii)光学活性エピハロヒドリンとベンジルアルコールとを三フッ化ホウ素ジエチルエーテル錯体存在下で反応させる方法(特許文献1参照)などが挙げられるが、いずれも原料であるエピハロヒドリンに比べて生成物であるグリシジル化合物の光学純度が1〜2%程度低下しており、依然、改良の余地が残されている。
 また、光学活性エピクロロヒドリンと水とを光学活性コバルト(III)錯体存在下で反応させた後、炭酸カリウムで処理する方法(特許文献2参照)によれば、光学活性グリシドールを高光学純度で得ることができるが、この方法により反応を行なうには、原料であるエピクロロヒドリンの立体異性体ごとに特定の立体配置をもつ高価な光学活性コバルト(III)錯体触媒を調製して使用しなければならず、煩雑であるのみならず、非経済的である。 Reaction formula
Figure 2004075683
(In the above formula, X ′ is a halogen atom, and Nu ′ is a residue of a nucleophilic species.)
Several methods for overcoming the above-mentioned problems have been studied. For example, (i) reaction of optically active epihalohydrin with 4-carbamoylmethylphenol in a water-containing solvent in the presence of an alkali hydroxide and a quaternary ammonium salt. (See Patent Document 1), (ii) a method of reacting optically active epihalohydrin with benzyl alcohol in the presence of a boron trifluoride diethyl ether complex (see Patent Document 1), and the like. The optical purity of the product glycidyl compound is lower by about 1 to 2% than that of epihalohydrin, and there is still room for improvement.
According to a method of reacting optically active epichlorohydrin with water in the presence of an optically active cobalt (III) complex and then treating with potassium carbonate (see Patent Document 2), the optically active glycidol has high optical purity. In order to carry out the reaction by this method, an expensive optically active cobalt (III) complex catalyst having a specific configuration for each stereoisomer of epichlorohydrin as a raw material is prepared and used. Not only is it cumbersome, but also uneconomical.

特公平6−37482号公報Japanese Patent Publication No. 6-37482 Heterocycles,31, 1715 (1990)Heterocycles, 31, 1715 (1990) J. Am. Chem. Soc. 124, 1307 (2002)J. Am. Chem. Soc. 124, 1307 (2002)

 本発明は、従来技術の上記問題点に鑑み、光学活性エピハロヒドリンから、その光学純度を損なうことがなく、かつ高収率で光学活性1−ハロゲノ−2−ヒドロキシプロピル化合物および光学活性グリシジル化合物を製造する方法を提供することにある。 In view of the above problems of the prior art, the present invention produces optically active 1-halogeno-2-hydroxypropyl compounds and optically active glycidyl compounds from optically active epihalohydrins without impairing their optical purity and in high yield. It is to provide a way to do it.

 本発明者らは上記の問題点を解決すべく種々検討を重ねた結果、後記式で示されるノンキラルな金属錯体触媒(2)を用いることによって、高収率かつ高光学純度で光学活性1−ハロゲノ−2−ヒドロキシプロピル化合物および光学活性グリシジル化合物を製造する新たな方法を見出し本発明を完成するに至った。
 本発明はすなわち、下記式(1)

Figure 2004075683
(式中、Xはハロゲン原子を意味する。)
で表される光学活性エピハロヒドリンに、下記式(2)
Figure 2004075683
(式中、nは0、1または2の整数を意味し、Y1、Y2およびY3は、同一または異なって、水素原子、ハロゲン原子、ニトロ基、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、アシル基、またはアルコキシカルボニル基を意味し、また、Y1とY2、あるいはY2とY3は、互いに一緒になり、それらが結合する炭素原子と共に環を形成してもよく、Aは対イオンを意味し、そしてMは金属イオンを意味する。)
で表される金属錯体触媒存在下、下記式(3)
Figure 2004075683
(式中、Nuは置換基を有するヘテロ原子を意味し、そしてQは水素原子または置換基を有するケイ素原子を意味する。)
で表される求核剤を反応させて、下記式(4)
Figure 2004075683
(式中、XおよびNuは前掲と同じものを意味する。)
で表される光学活性1−ハロゲノ−2−ヒドロキシプロピル化合物を位置選択的に製造する方法、並びに、続いて該化合物に塩基性試剤を作用させて下記式(5)
Figure 2004075683
(式中、Nuは前掲と同じものを意味する。)
で表される光学活性グリシジル化合物を製造する方法を含む、光学活性1−ハロゲノ−2−ヒドロキシプロピル化合物および光学活性グリシジル化合物の製造法に関する。 The present inventors have conducted various studies in order to solve the above-mentioned problems, and as a result, by using a non-chiral metal complex catalyst (2) represented by the following formula, the optical activity 1- with high yield and high optical purity was obtained. The present inventors have found a new method for producing a halogeno-2-hydroxypropyl compound and an optically active glycidyl compound, and have completed the present invention.
The present invention provides the following formula (1)
Figure 2004075683
(In the formula, X means a halogen atom.)
The optically active epihalohydrin represented by the following formula (2)
Figure 2004075683
(Wherein, n represents an integer of 0, 1 or 2; Y 1 , Y 2 and Y 3 are the same or different and each represents a hydrogen atom, a halogen atom, a nitro group, a substituted or unsubstituted alkyl group, Or an unsubstituted aryl group, acyl group or alkoxycarbonyl group, and Y 1 and Y 2 or Y 2 and Y 3 together form a ring together with the carbon atom to which they are attached. Where A represents a counter ion and M represents a metal ion.)
In the presence of a metal complex catalyst represented by the following formula (3)
Figure 2004075683
(In the formula, Nu means a substituted heteroatom, and Q means a hydrogen atom or a substituted silicon atom.)
By reacting a nucleophile represented by the following formula (4)
Figure 2004075683
(In the formula, X and Nu mean the same as those described above.)
A method for regioselectively producing an optically active 1-halogeno-2-hydroxypropyl compound represented by the following formula, and then reacting the compound with a basic reagent to obtain the following formula (5)
Figure 2004075683
(In the formula, Nu means the same as above.)
And a method for producing an optically active 1-halogeno-2-hydroxypropyl compound and an optically active glycidyl compound, including a method for producing an optically active glycidyl compound represented by the formula:

 本発明を実施することにより、原料である光学活性エピハロヒドリンの光学純度を保持しつつ高収率で、光学活性1−ハロゲノ−2−ヒドロキシプロピル化合物または光学活性グリシジル化合物を製造することができる。 に よ り By carrying out the present invention, an optically active 1-halogeno-2-hydroxypropyl compound or an optically active glycidyl compound can be produced in high yield while maintaining the optical purity of the optically active epihalohydrin as a raw material.

発明を実施するための好ましい形態BEST MODE FOR CARRYING OUT THE INVENTION

 以下、本発明を更に詳細に説明する。
 まず、光学活性エピハロヒドリン(1)に、金属錯体触媒(2)存在下、求核剤(3)を反応させて、光学活性1−ハロゲノ−2−ヒドロキシプロピル化合物(4)を得る工程について以下に説明する。
Hereinafter, the present invention will be described in more detail.
First, a step of reacting an optically active epihalohydrin (1) with a nucleophile (3) in the presence of a metal complex catalyst (2) to obtain an optically active 1-halogeno-2-hydroxypropyl compound (4) will be described below. explain.

 式(1)において、Xが、塩素原子または臭素原子である光学活性エピハロヒドリンが好ましく用いられる。
 式(2)の金属錯体触媒において、Yが水素原子であり、YおよびYが、互いに一緒になり、それらが結合する炭素原子と共に、例えば置換基を有していてもよいベンゼン環、シクロヘキセン環などの環を形成する該金属錯体触媒が好ましく、そして特に好ましい金属錯体触媒は、下記式(6)で示される。
In the formula (1), an optically active epihalohydrin in which X is a chlorine atom or a bromine atom is preferably used.
In the metal complex catalyst of the formula (2), Y 1 is a hydrogen atom, Y 2 and Y 3 are taken together, and together with the carbon atom to which they are bonded, for example, a benzene ring which may have a substituent. And a metal complex catalyst forming a ring such as a cyclohexene ring is preferable, and a particularly preferable metal complex catalyst is represented by the following formula (6).

Figure 2004075683
(式中、nは0、1または2の整数を意味し、Z1、Z2、Z3およびZ4は、同一または異なって、水素原子、ハロゲン原子、ニトロ基、直鎖、置換もしくは無置換のアルキル基、置換もしくは無置換のアラルキル基、置換もしくは無置換のアリール基、置換もしくは無置換のアルキルオキシ基、置換もしくは無置換のアラルキルオキシ基、または置換もしくは無置換のアリールオキシ基を意味し、また、Z1とZ2、Z2とZ3、あるいはZ3とZ4は、互いに一緒になり、それらが結合する炭素原子と共に環を形成してもよく、Aは対イオンを意味し、そしてMは金属イオンを意味する。)
Figure 2004075683
(In the formula, n represents an integer of 0, 1 or 2, and Z 1 , Z 2 , Z 3 and Z 4 are the same or different and are each a hydrogen atom, a halogen atom, a nitro group, a straight chain, substituted or unsubstituted. Means a substituted alkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted alkyloxy group, a substituted or unsubstituted aralkyloxy group, or a substituted or unsubstituted aryloxy group And Z 1 and Z 2 , Z 2 and Z 3 , or Z 3 and Z 4 may be taken together to form a ring together with the carbon atom to which they are attached, and A represents a counter ion And M represents a metal ion.)

 上記式(6)において、Z1、Z2、Z3およびZ4は、例えば、水素原子、フッ素原子、塩素、臭素、ヨウ素などのハロゲン原子、ニトロ基、メチル、エチル、n−プロピル、イソプロピル、2,2−ジメチルプロピル、n−ブチル、sec−ブチル、tert−ブチル、n−へプチル、n−ヘキシルなどの炭素数1〜6の直鎖もしくは分岐アルキル基、シクロペンチル、シクロヘキシルなどの炭素数3〜7の環状アルキル基、トリフルオロメチル、パーフルオロ−tert−ブチルなどの置換アルキル基、ベンジル、4−メチルベンジル、クメニルなどの置換もしくは無置換のアラルキル基、フェニル、4−メチルフェニル、1−ナフチル、2−ナフチルなどの置換もしくは無置換のアリール基、メトキシ、エトキシ、tert−ブトキシ、トリフルオロメトキシ、パーフルオロ−tert−ブトキシなどの置換もしくは無置換のアルキルオキシ基、ベンジルオキシ、4−メチルベンジルオキシなどの置換もしくは無置換のアラルキルオキシ基、フェノキシ、4−メチルフェノキシなどの置換もしくは無置換のアリールオキシ基が挙げられる。また、Z1とZ2、Z2とZ3、あるいはZ3とZ4は、互いに一緒になり、それらが結合する炭素原子と共に、例えば、ベンゼン環、シクロヘキセン環などの環を形成してもよい。また、該環は置換基を有していてもよい。
 Z〜Zにおける好ましい基は、Z1、Z2、Z3、Z4がいずれも水素原子、Z1、Z2、Z3が水素原子であり、そしてZ4がtert−ブチル基、あるいはZ1およびZ3が水素原子であり、そしてZ2およびZ4がtert−ブチル基である。
 また、該金属錯体触媒を、ポリマー、シリカゲル、アルミナ、ゼオライトなどの不溶性担体に、エーテル結合やメチレン鎖を介して固定化して用いることも好ましい例の1つである。
In the above formula (6), Z 1 , Z 2 , Z 3 and Z 4 are, for example, a halogen atom such as a hydrogen atom, a fluorine atom, chlorine, bromine or iodine, a nitro group, methyl, ethyl, n-propyl, isopropyl C1-C6 linear or branched alkyl groups such as 2,2-dimethylpropyl, n-butyl, sec-butyl, tert-butyl, n-heptyl and n-hexyl, and carbon numbers such as cyclopentyl and cyclohexyl 3 to 7 cyclic alkyl groups, substituted alkyl groups such as trifluoromethyl and perfluoro-tert-butyl, substituted or unsubstituted aralkyl groups such as benzyl, 4-methylbenzyl and cumenyl, phenyl, 4-methylphenyl, Substituted or unsubstituted aryl groups such as -naphthyl and 2-naphthyl, methoxy, ethoxy, tert-butoxy, trifluoromethoxy; Substituted or unsubstituted alkyloxy groups such as cis, perfluoro-tert-butoxy, substituted or unsubstituted aralkyloxy groups such as benzyloxy and 4-methylbenzyloxy, and substituted or unsubstituted phenoxy and 4-methylphenoxy; Aryloxy group. Z 1 and Z 2 , Z 2 and Z 3 , or Z 3 and Z 4 may be taken together to form a ring such as a benzene ring and a cyclohexene ring together with the carbon atom to which they are bonded. Good. Further, the ring may have a substituent.
A preferred group in Z 1 to Z 4 is that Z 1 , Z 2 , Z 3 and Z 4 are all hydrogen atoms, Z 1 , Z 2 and Z 3 are hydrogen atoms, and Z 4 is a tert-butyl group. alternatively at Z 1 and Z 3 is a hydrogen atom, and Z 2 and Z 4 are tert- butyl group.
It is also a preferable example that the metal complex catalyst is immobilized on an insoluble carrier such as a polymer, silica gel, alumina, or zeolite via an ether bond or a methylene chain.

 式(2)または式(6)の金属錯体触媒においてAで示される対イオンとしては、例えば、ナイトレート、フルオリド、クロライド、ブロマイドなどのハロゲン原子、ペンタフルオロ−tert−ブトキシドなどの置換アルコキシド、ペンタフルオロフェノキシド、2,4,6−トリニトロフェノキシドなどの置換アリールオキシド、アセテート、n−ブチレート、トリフルオロアセテート、トリクロロアセテートなどの置換もしくは無置換のアルキルカルボネート、フェニルアセテート、4−ニトロフェニルアセテート、3,5−ジフルオロフェニルアセテートなどの置換もしくは無置換のアラルキルカルボネート、ベンゾエート、ペンタフルオロベンゾエート、2,4−ジニトロベンゾエートなどの置換もしくは無置換のアリールカルボネート、メタンスルホネート、トリフルオロメタンスルホネート、(±)−カンファースルホネートなどの置換もしくは無置換のアルキルスルホネート、ベンゼンスルホネート、p−トルエンスルホネート、3−ニトロベンゼンスルホネートなどの置換もしくは無置換のアリールスルホネートが挙げられる。好ましい対イオンは、アセテート、n−ブチレート、(±)−カンファースルホネート、メタンスルホネート、p−トルエンスルホネート、およびトリフルオロメタンスルホネートである。 Examples of the counter ion represented by A in the metal complex catalyst of the formula (2) or the formula (6) include halogen atoms such as nitrate, fluoride, chloride and bromide, substituted alkoxides such as pentafluoro-tert-butoxide, and pentane. Substituted or unsubstituted alkyl carbonates such as fluorophenoxide, 2,4,6-trinitrophenoxide, etc., acetate, n-butylate, trifluoroacetate, trichloroacetate, phenylacetate, 4-nitrophenylacetate; Substituted or unsubstituted arylcarbonate such as substituted or unsubstituted aralkyl carbonate, benzoate, pentafluorobenzoate, 2,4-dinitrobenzoate such as 3,5-difluorophenyl acetate And substituted or unsubstituted arylsulfonates such as methanesulfonate, trifluoromethanesulfonate, (±) -camphorsulfonate and the like, and benzenesulfonate, p-toluenesulfonate and 3-nitrobenzenesulfonate. Preferred counterions are acetate, n-butyrate, (±) -camphorsulfonate, methanesulfonate, p-toluenesulfonate, and trifluoromethanesulfonate.

 式(2)または式(6)の金属錯体触媒において、Mで示される金属イオンは、特に限定されるものではなく、例えば、アルミニウムイオン、チタンイオン、バナジウムイオン、クロムイオン、マンガンイオン、鉄イオン、コバルトイオン、ニッケルイオン、銅イオン、亜鉛イオン、モリブデンイオン、ルテニウムイオン、ロジウムイオン、タングステンイオンなどが挙げられ、好ましくはバナジウムイオン、クロムイオン、マンガンイオン、鉄イオン、コバルトイオン、ニッケルイオン、モリブデンイオン、ルテニウムイオン、またはタングステンイオンである。また、各々の金属イオンは、(II)〜(IV)のいずれかの酸化状態に相当する。特に好ましくはクロムイオン(III)、コバルトイオン(III)である。 In the metal complex catalyst of the formula (2) or the formula (6), the metal ion represented by M is not particularly limited. For example, an aluminum ion, a titanium ion, a vanadium ion, a chromium ion, a manganese ion, and an iron ion , Cobalt ion, nickel ion, copper ion, zinc ion, molybdenum ion, ruthenium ion, rhodium ion, tungsten ion, etc., preferably vanadium ion, chromium ion, manganese ion, iron ion, cobalt ion, nickel ion, molybdenum Ions, ruthenium ions, or tungsten ions. Each metal ion corresponds to any one of the oxidation states (II) to (IV). Particularly preferred are chromium ion (III) and cobalt ion (III).

 なお、例えば、コバルト(III)錯体は、下記式(8)

Figure 2004075683
(式中、n、Z1、Z2、Z3およびZ4は、式(6)と同じものを意味する。)
で表されるコバルト(II)錯体を、前掲のAで示される電子吸引性置換基に水素原子が結合したものに相当する酸試剤の存在下、適当な溶媒中、室温で空気酸化することにより容易に調製することができる。
 この際、酸試剤の使用量はコバルト(II)錯体に対して1〜10当量、好ましくは1〜2当量である。また、コバルト(II)錯体は、公知の反応、すなわち、アルキルジアミン類1当量とサリチルアルデヒド類2当量とをカップリングして得られるサレン配位子と酢酸コバルト(II)四水和物とを混合する錯体形成反応から容易に調製することができる。
 その他の本発明に用いられる金属錯体は、公知の方法で容易に調製することができる。
 本発明における金属錯体触媒の使用量は、光学活性エピハロヒドリンに対して0.1〜10モル%、好ましくは1〜5モル%である。また、コバルト(III)錯体については、前掲した方法にてコバルト(II)錯体から空気酸化した後、その溶液を精製せずにそのまま反応に用いることもできる。さらに、金属錯体触媒の単独使用で本反応を進行させることが充分に可能であるが、N,N−ジイソプロピルエチルアミン、トリイソブチルアミン等の嵩高い3級アミンを0.1〜100モル%量添加すると反応が促進される。 For example, the cobalt (III) complex is represented by the following formula (8)
Figure 2004075683
(In the formula, n, Z 1 , Z 2 , Z 3 and Z 4 mean the same as in formula (6).)
By air oxidation at room temperature in a suitable solvent in the presence of an acid reagent corresponding to a hydrogen atom bonded to the electron-withdrawing substituent represented by A described above. It can be easily prepared.
At this time, the amount of the acid reagent to be used is 1 to 10 equivalents, preferably 1 to 2 equivalents, relative to the cobalt (II) complex. Further, the cobalt (II) complex is formed by a known reaction, that is, a salen ligand obtained by coupling one equivalent of an alkyldiamine and two equivalents of salicylaldehyde with a cobalt (II) acetate tetrahydrate. It can be easily prepared from mixed complexation reactions.
Other metal complexes used in the present invention can be easily prepared by a known method.
The amount of the metal complex catalyst used in the present invention is 0.1 to 10 mol%, preferably 1 to 5 mol%, based on the optically active epihalohydrin. In addition, the cobalt (III) complex can be used in the reaction without purification after the air is oxidized from the cobalt (II) complex by the method described above. Further, it is sufficiently possible to advance this reaction by using a metal complex catalyst alone, but a bulky tertiary amine such as N, N-diisopropylethylamine or triisobutylamine is added in an amount of 0.1 to 100 mol%. Then, the reaction is accelerated.

 式(3)の求核剤においてNuで示される置換基は、置換基を有するヘテロ原子ならば、特に限定されることはなく、例えば、酸素原子、硫黄原子、セレン原子、窒素原子、リン原子、または砒素原子などのヘテロ原子に、置換もしくは無置換のアルキル基、置換もしくは無置換のアラルキル基、置換もしくは無置換のアリール基、置換もしくは無置換のアルキルカルボニル基、置換もしくは無置換のアラルキルカルボニル基、置換もしくは無置換のアリールカルボニル基などが置換したものが挙げられる。また、Qで示される置換基としては、水素原子、トリメチルシリル、トリエチルシリル、トリイソプロピルシリルなどの直鎖もしくは分岐のアルキルシリル基が挙げられる。 The substituent represented by Nu in the nucleophile of the formula (3) is not particularly limited as long as it is a hetero atom having a substituent, and examples thereof include an oxygen atom, a sulfur atom, a selenium atom, a nitrogen atom, and a phosphorus atom. Or a hetero atom such as an arsenic atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted alkylcarbonyl group, a substituted or unsubstituted aralkylcarbonyl And those substituted by a substituted or unsubstituted arylcarbonyl group. Examples of the substituent represented by Q include a hydrogen atom, and a linear or branched alkylsilyl group such as trimethylsilyl, triethylsilyl, and triisopropylsilyl.

 好ましい求核剤は、下記式(7)で示される。

Figure 2004075683
(式中、Rは、水素原子、直鎖、分岐もしくは環状のアルキル基、直鎖、分岐もしくは環状のアルキルカルボニル基、置換もしくは無置換のアラルキル基、置換もしくは無置換のアラルキルカルボニル基、置換もしくは無置換のアリール基、または置換もしくは無置換のアリールカルボニル基を意味する。)
 Rで示される基の具体例としては、例えば、水素原子、メチル、エチル、イソプロピル、シクロペンチル、シクロヘキシルなどの直鎖、分岐もしくは環状のアルキル基、ベンジル、3−ブロモベンジル、4−メトキシベンジルなどの置換もしくは無置換のアラルキル基、フェニル、トリル、4−フルオロフェニル、2−アリルオキシフェニルなどの置換もしくは無置換のアリール基、アセチル、プロピオニル、ブチリル、ピバロイルなどの直鎖もしくは分岐のアルキルカルボニル基、フェニルアセチル、2−ブロモフェニルアセチルなどの置換もしくは無置換のアラルキルカルボニル基、ベンゾイル、2,4,6−トリメチルベンゾイル、4−フェニルベンゾイルなどの置換もしくは無置換のアリールカルボニル基が挙げられる。
 求核剤の使用量は、光学活性エピハロヒドリン(1)に対して0.5〜2.0当量、好ましくは0.8〜1.2当量である。 Preferred nucleophiles are represented by the following formula (7).
Figure 2004075683
(Wherein R is a hydrogen atom, a linear, branched or cyclic alkyl group, a linear, branched or cyclic alkylcarbonyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aralkylcarbonyl group, It means an unsubstituted aryl group or a substituted or unsubstituted arylcarbonyl group.)
Specific examples of the group represented by R include, for example, a hydrogen atom, a linear, branched or cyclic alkyl group such as methyl, ethyl, isopropyl, cyclopentyl and cyclohexyl, and benzyl, 3-bromobenzyl and 4-methoxybenzyl. Substituted or unsubstituted aralkyl groups, phenyl, tolyl, 4-fluorophenyl, substituted or unsubstituted aryl groups such as 2-allyloxyphenyl, acetyl, propionyl, butyryl, linear or branched alkylcarbonyl groups such as pivaloyl, Examples include a substituted or unsubstituted aralkylcarbonyl group such as phenylacetyl and 2-bromophenylacetyl, and a substituted or unsubstituted arylcarbonyl group such as benzoyl, 2,4,6-trimethylbenzoyl and 4-phenylbenzoyl.
The nucleophile is used in an amount of 0.5 to 2.0 equivalents, preferably 0.8 to 1.2 equivalents, based on the optically active epihalohydrin (1).

 本反応を行う際に使用される溶媒としては、ジエチルエーテル、1,2−ジメトキシエタン、テトラヒドロフラン、tert−ブチルメチルエーテル、シクロペンチルメチルエーテルなどのエーテル系溶媒、クロロホルム、ジクロロメタン、1,2−ジクロロエタンなどの塩素系溶媒、ヘキサン、ヘプタン、ベンゼン、トルエンなどの炭化水素系溶剤、酢酸エチル、酢酸ブチルなどのエステル系溶媒、アセトン、2−ブタノンなどのケトン系溶媒、ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリルなどの非プロトン性極性溶媒、またはこれらの混合溶媒などが挙げられ、好ましくはテトラヒドロフラン、tert−ブチルメチルエーテルなどのエーテル系溶媒である。これらの溶媒の使用量は特に制限はない。また、本反応は無溶媒でも行うことが可能である。 Solvents used in performing this reaction include diethyl ether, 1,2-dimethoxyethane, tetrahydrofuran, tert-butyl methyl ether, ether solvents such as cyclopentyl methyl ether, chloroform, dichloromethane, 1,2-dichloroethane and the like. Chlorinated solvents, hydrocarbon solvents such as hexane, heptane, benzene, and toluene, ester solvents such as ethyl acetate and butyl acetate, ketone solvents such as acetone and 2-butanone, dimethylformamide, dimethyl sulfoxide, and acetonitrile. An aprotic polar solvent or a mixed solvent thereof may be mentioned, and an ether solvent such as tetrahydrofuran or tert-butyl methyl ether is preferable. The amount of these solvents used is not particularly limited. This reaction can be carried out without a solvent.

 本反応は、−80℃〜溶媒の還流温度の範囲で行なわれ、好ましくは−50〜50℃、さらに好ましくは0〜30℃で行なわれる。また、常圧でも加圧下でもよい。
 反応終了後、反応液は特に処理を施さないで次の工程に使用できる。また、抽出、水洗操作後、過剰の溶媒を減圧下留去し、残渣を蒸留、再結晶、シリカゲルカラムクロマトグラフィーなどの精製処理を施すことにより、目的物である光学活性1−ハロゲノ−2−ヒドロキシプロピル化合物(4)を得ることもできる。
This reaction is carried out at a temperature in the range of -80 ° C to the reflux temperature of the solvent, preferably at -50 to 50 ° C, more preferably at 0 to 30 ° C. Further, it may be under normal pressure or under pressure.
After completion of the reaction, the reaction solution can be used in the next step without any particular treatment. After extraction and washing with water, the excess solvent is distilled off under reduced pressure, and the residue is subjected to purification treatment such as distillation, recrystallization, silica gel column chromatography, etc., so that the optically active 1-halogeno-2-object as the target substance is obtained. Hydroxypropyl compound (4) can also be obtained.

 次に、前工程で得られた光学活性1−ハロゲノ−2−ヒドロキシプロピル化合物(4)を、塩基試剤存在下、閉環反応に付し、光学活性グリシジル化合物(5)を得る工程について説明する。
 使用できる塩基試剤としては、水酸化ナトリウム、水酸化カリウム、水酸化カルシウムなどのアルカリ金属またはアルカリ土類金属の水酸化物、炭酸ナトリウム、炭酸カリウム、炭酸カルシウム、炭酸セシウムなどのアルカリ金属またはアルカリ土類金属の炭酸塩、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムベンジルオキシド、ナトリウムフェノキシド、カリウムtert−ブトキシドなどのアルカリ金属アルコキシド、ナトリウム、カリウムなどのアルカリ金属、水素化ナトリウム、水素化カリウムなどの水素化アルカリ金属、ナトリウムアミド、マグネシウムアミドなどのアルカリ金属もしくはアルカリ土類金属アミド、1,1,3,3−テトラメチルグアニジン、1,5−ジアザビシクロ[4.3.0]ノン−5−エン、1,8−ジアザビシクロ[5.4.0]−7−ウンデセンなどのアミン類が挙げられる。ただし、置換基Nu中にカルボニル基を含む式(4)で示される化合物については、加水分解されるため前掲のアルカリ金属またはアルカリ土類金属の水酸化物は使用できない。
 塩基試剤の使用量は、光学活性1−ハロゲノ−2−ヒドロキシプロピル化合物(4)に対して1当量以上であり、好ましくは1.1〜2.0当量である。
 なお、塩基試剤の単独使用で本反応を進行させることが充分に可能であるが、4−ジメチルアミノピリジン、15−クラウン−5、18−クラウン−6などのクラウンエーテル、ヨウ化ナトリウム、ヨウ化カリウムなどのヨウ化アルカリ金属塩、臭化ナトリウム、臭化カリウムなどの臭化アルカリ金属塩などの試薬を0.1〜10モル%量添加すると反応が促進される。
Next, the step of subjecting the optically active 1-halogeno-2-hydroxypropyl compound (4) obtained in the preceding step to a ring closure reaction in the presence of a base reagent to obtain an optically active glycidyl compound (5) will be described.
Examples of usable base reagents include alkali metal or alkaline earth metal hydroxides such as sodium hydroxide, potassium hydroxide, and calcium hydroxide, and alkali metals or alkaline earth metals such as sodium carbonate, potassium carbonate, calcium carbonate, and cesium carbonate. Alkali metal alkoxides such as sodium carbonate, sodium methoxide, sodium ethoxide, sodium benzyl oxide, sodium phenoxide and potassium tert-butoxide; alkali metals such as sodium and potassium; hydrogenation such as sodium hydride and potassium hydride Alkali metal, alkali metal or alkaline earth metal amides such as sodium amide and magnesium amide, 1,1,3,3-tetramethylguanidine, 1,5-diazabicyclo [4.3.0] non-5-ene, 1 , 8-diazabicyclo [5.4.0] -7-undecene and the like. However, for the compound represented by the formula (4) containing a carbonyl group in the substituent Nu, the above-mentioned hydroxide of an alkali metal or alkaline earth metal cannot be used because it is hydrolyzed.
The amount of the base reagent to be used is 1 equivalent or more, preferably 1.1 to 2.0 equivalents, relative to the optically active 1-halogeno-2-hydroxypropyl compound (4).
The reaction can be sufficiently advanced by using a single base reagent alone, but crown ethers such as 4-dimethylaminopyridine, 15-crown-5 and 18-crown-6, sodium iodide, iodide The reaction is promoted by adding a reagent such as an alkali metal iodide salt such as potassium or an alkali metal bromide salt such as sodium bromide or potassium bromide in an amount of 0.1 to 10 mol%.

 本反応に使用できる溶媒は水溶性溶媒と非水溶性溶媒とに分けられ、水溶性溶媒としては、1,2−ジメトキシエタン、テトラヒドロフラン、1,4−ジオキサンなどのエーテル系溶剤、ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリルなどの非プロトン性極性溶媒、またはこれらの混合溶媒が挙げられ、非水溶性溶媒としては、ジエチルエーテル、ジイソプロピルエーテル、tert−ブチルメチルエーテルなどのエーテル系溶媒、クロロホルム、ジクロロメタン、1,2−ジクロロエタンなどの塩素系溶媒、ヘキサン、ヘプタン、ベンゼン、トルエンなどの炭化水素系溶剤、またはこれらの混合溶媒が挙げられる。なお、これらの溶媒の使用量は特に制限はない。 Solvents that can be used in this reaction are divided into water-soluble solvents and water-insoluble solvents. Examples of the water-soluble solvents include ether solvents such as 1,2-dimethoxyethane, tetrahydrofuran, and 1,4-dioxane, dimethylformamide, and dimethylformamide. Sulfoxide, aprotic polar solvent such as acetonitrile, or a mixed solvent thereof, and examples of the water-insoluble solvent include diethyl ether, diisopropyl ether, ether solvents such as tert-butyl methyl ether, chloroform, dichloromethane, 1, Examples include a chlorine-based solvent such as 2-dichloroethane, a hydrocarbon-based solvent such as hexane, heptane, benzene, and toluene, or a mixed solvent thereof. The amount of these solvents used is not particularly limited.

 非水溶性溶媒は、塩基性試剤を含む水溶液との二相系溶媒としても反応に使用することもできる。ただし、置換基Nu中にカルボニル基を含む式(4)で示される化合物については、加水分解されるため使用できない。水溶液として調製できる塩基性試剤としては、前掲したものの中で、水酸化ナトリウム、水酸化カリウム、水酸化カルシウムなどのアルカリ金属またはアルカリ土類金属の水酸化物、炭酸ナトリウム、炭酸カリウム、炭酸カルシウムなどのアルカリ金属またはアルカリ土類金属の炭酸塩が挙げられ、好ましくは水酸化ナトリウム、水酸化カリウムである。また、二相系溶媒中での反応の場合、相関移動触媒を使用すると反応が著しく促進される。使用できる相関移動触媒としては、テトラブチルアンモニウムクロリド、テトラブチルアンモニウムブロミド、ベンジルトリメチルアンモニウムブロミド、ベンジルトリエチルアンモニウムクロリド、ベンジルトリブチルアンモニウムクロリド、メチルトリオクチルアンモニウムクロリド、テトラオクチルアンモニウムブロミド、N−ベンジルキニウムクロリドなどの4級アンモニウム塩、テトラブチルホスホニウムクロリド、テトラブチルホスホニウムブロミド、テトラフェニルホスホニウムクロリド、テトラフェニルホスホニウムブロミド、ベンジルトリフェニルホスホニウムクロリド、ベンジルトリフェニルホスホニウムブロミドなどの4級ホスホニウム塩、12−クラウン−4、15−クラウン−5、18−クラウン−6などのクラウンエーテルが挙げられる。添加量は基質に対して0.1〜10モル%量が好ましい。 The water-insoluble solvent can also be used in the reaction as a two-phase solvent with an aqueous solution containing a basic reagent. However, the compound represented by the formula (4) containing a carbonyl group in the substituent Nu cannot be used because it is hydrolyzed. Examples of the basic reagents that can be prepared as an aqueous solution include, among those mentioned above, hydroxides of alkali metals or alkaline earth metals such as sodium hydroxide, potassium hydroxide, and calcium hydroxide, sodium carbonate, potassium carbonate, and calcium carbonate. And a carbonate of an alkali metal or an alkaline earth metal, and preferred are sodium hydroxide and potassium hydroxide. In the case of a reaction in a two-phase solvent, the use of a phase transfer catalyst significantly accelerates the reaction. Examples of usable phase transfer catalysts include tetrabutylammonium chloride, tetrabutylammonium bromide, benzyltrimethylammonium bromide, benzyltriethylammonium chloride, benzyltributylammonium chloride, methyltrioctylammonium chloride, tetraoctylammonium bromide, and N-benzylquinium chloride. Quaternary ammonium salts such as quaternary ammonium salts, quaternary phosphonium salts such as tetrabutylphosphonium chloride, tetrabutylphosphonium bromide, tetraphenylphosphonium chloride, tetraphenylphosphonium bromide, benzyltriphenylphosphonium chloride and benzyltriphenylphosphonium bromide, 12-crown-4 , 15-crown-5, 18-crown-6, etc. N'eteru and the like. The amount of addition is preferably 0.1 to 10 mol% based on the substrate.

 本反応は、−80〜50℃の範囲で行なわれる。ただし、非水溶性溶媒と塩基性試剤を含む水溶液との二相系溶媒を使用する場合は、凍結のおそれがあるため、0〜50℃の範囲で好ましく行なわれる。また、本反応は常圧でも加圧下でもよい。
 反応終了後、抽出、水洗による分液操作、過剰の溶媒の減圧下留去、そして、残渣の蒸留、再結晶、シリカゲルカラムクロマトグラフィーなどの精製処理を施すことにより、目的物である光学活性グリシジル化合物(5)を得ることができる。
This reaction is carried out at a temperature in the range of -80 to 50C. However, when a two-phase solvent of a water-insoluble solvent and an aqueous solution containing a basic reagent is used, it is preferably carried out at a temperature in the range of 0 to 50 ° C. because of the possibility of freezing. This reaction may be carried out under normal pressure or under pressure.
After completion of the reaction, the desired optically active glycidyl is obtained by performing extraction, liquid separation by washing with water, distillation of the excess solvent under reduced pressure, and purification of the residue by distillation, recrystallization and silica gel column chromatography. Compound (5) can be obtained.

 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例において、ガスクロマトグラフィーによる定量分析とは内部標準法(内部標準物質:m−ジメトキシベンゼン)によるガスクロマトグラフィーを用いた生成物量の定量、ガスクロマトグラフィーによる光学純度分析とは光学活性キャピラリーカラム(G−TA/ジーエルサイエンス社製)を用いた光学純度の測定、高速液体クロマトグラフィーによる光学純度分析とは光学活性カラム(CHIRALCEL OD−H/ダイセル社製)を用いた光学純度の測定を意味する。 Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples. In the examples, quantitative analysis by gas chromatography refers to quantification of the amount of products using gas chromatography by an internal standard method (internal standard substance: m-dimethoxybenzene), and optical purity analysis by gas chromatography refers to optical activity. Optical purity measurement using a capillary column (G-TA / GL Sciences Inc.) and optical purity analysis by high-performance liquid chromatography are optical purity measurements using an optically active column (CHIRALCEL @ OD-H / Daicel Inc.) means.

実施例1
 (S)-3−クロロ−1,2−プロパンジオールの製造
 N,N’−ビス(3,5−ジ−tert−ブチルサリチリデン)エチレンジアミナトコバルト(II)119mg(0.216mmol)とテトラヒドロフラン(以下THFと略記する。)2.0mLの混合液に、(±)−カンファースルホン酸60.3mg(0.260mmol)を加え、系内を空気で満たしつつ室温で1時間撹拌した。続いて、この溶液、すなわちコバルト(III)錯体のTHF溶液に、(S)-エピクロロヒドリン1.00g(10.8mmol,光学純度99%e.e.)、H2O 234μL(13.0mmol)を順次加え、室温で20時間撹拌した。反応終了後、反応液をガスクロマトグラフィーにて定量分析および光学純度分析した結果、標題の(S)-3−クロロ−1,2−プロパンジオールの生成量は1.14g(収率95.4%)であり、そして光学純度は99%e.e.であった。
Example 1
Production of (S) -3-chloro-1,2-propanediol 119 mg (0.216 mmol) of N, N'-bis (3,5-di-tert-butylsalicylidene) ethylenediaminatocobalt (II) To a mixture of 2.0 mL of tetrahydrofuran (hereinafter abbreviated as THF) was added 60.3 mg (0.260 mmol) of (±) -camphorsulfonic acid, and the mixture was stirred at room temperature for 1 hour while filling the inside with air. Subsequently, 1.00 g (10.8 mmol, optical purity 99% ee) of (S) -epichlorohydrin and 234 μL (13.0 mmol) of H 2 O were added to this solution, that is, a THF solution of the cobalt (III) complex. It was added sequentially and stirred at room temperature for 20 hours. After completion of the reaction, the reaction solution was subjected to quantitative analysis and optical purity analysis by gas chromatography. As a result, the amount of the title (S) -3-chloro-1,2-propanediol produced was 1.14 g (yield 95.4). %) And the optical purity was 99% ee.

実施例2
 (R)-3−クロロ−1,2−プロパンジオールの製造
 N,N’−ビス(3,5−ジ−tert−ブチルサリチリデン)エチレンジアミナトコバルト(II)119mg(0.216mmol)とテトラヒドロフラン2.0mLの混合液に、(±)−カンファースルホン酸60.3mg(0.260mmol)を加え、系内を空気で満たしつつ室温で1時間撹拌した。続いて、この溶液(コバルト(III)錯体のTHF溶液)に、(R)-エピクロロヒドリン1.00g(10.8mmol,光学純度99%e.e.)およびH2O 234μL(13.0mmol)を順次加え、室温で20時間撹拌した。反応終了後、反応液をガスクロマトグラフィーにて定量分析および光学純度分析した結果、標題の(R)-3−クロロ−1,2−プロパンジオールの生成量は1.12g(収率93.7%)であり、そして光学純度は99%e.e.であった。
Example 2
Production of (R) -3-chloro-1,2-propanediol 119 mg (0.216 mmol) of N, N'-bis (3,5-di-tert-butylsalicylidene) ethylenediaminatocobalt (II) To a mixture of 2.0 mL of tetrahydrofuran, 60.3 mg (0.260 mmol) of (±) -camphorsulfonic acid was added, and the mixture was stirred at room temperature for 1 hour while filling the inside with air. Subsequently, 1.00 g (10.8 mmol, optical purity 99% ee) of (R) -epichlorohydrin and 234 μL (13.0 mmol) of H 2 O were added to this solution (a THF solution of a cobalt (III) complex). It was added sequentially and stirred at room temperature for 20 hours. After completion of the reaction, the reaction solution was subjected to quantitative analysis and optical purity analysis by gas chromatography, and as a result, the amount of the title (R) -3-chloro-1,2-propanediol produced was 1.12 g (yield 93.7). %) And the optical purity was 99% ee.

実施例3
 (R)-グリシジルフェニルエーテルの製造
 N,N’−ジサリチリデンエチレンジアミナトコバルト(II)173mg(0.532mmol)とジクロロメタン13mLの混合液に、(±)−カンファースルホン酸148mg(0.638mmol)を加えて系内を空気で満たしつつ室温で1時間撹拌した後、反応液を減圧下濃縮乾固して黒褐色の粗コバルト(III)錯体を得た。続いて、tert−ブチルメチルエーテル5.0mLを加えて粗コバルト(III)錯体を分散させた後、(S)-エピクロロヒドリン2.50mL(31.9mmol,光学純度99%e.e.)およびフェノール2.50g(26.6mmol)を順次加え、窒素ガス雰囲気下、室温で24時間撹拌した。反応終了後、反応液にtert−ブチルメチルエーテル20mLを加えて希釈し、6%水酸化ナトリウム水10mL、飽和食塩水10mLにて順次洗浄し、有機層を減圧下濃縮して粗(S)-1−クロロ−3−フェノキシ−2−プロパノール5.75gを得た。
 上記の粗(S)-1−クロロ−3−フェノキシ−2−プロパノール5.75gをイソプロパノール10mLに溶解し、氷冷下24%水酸化ナトリウム水6.64g(39.8mmol)を加え、室温で1時間撹拌した。反応終了後、反応液にtert−ブチルメチルエーテル50mLを加えて希釈し、水20mL、飽和塩化アンモニウム水20mL、飽和食塩水20mLにて順次洗浄し、有機層を減圧下濃縮して粗(R)-グリシジルフェニルエーテル3.96gを得た。ガスクロマトグラフィーにて定量分析した結果、標題の(R)-グリシジルフェニルエーテルの生成量は3.80g(収率95.4%)であり、そして高速液体クロマトグラフィーにて光学純度分析した結果、光学純度は99%e.e.であった。
Example 3
Preparation of (R) -glycidylphenyl ether A mixture of 173 mg (0.532 mmol) of N, N'-disalicylideneethylenediaminatocobalt (II) and 13 mL of dichloromethane was added with 148 mg of (±) -camphorsulfonic acid (0.1 mg). 638 mmol), and the mixture was stirred at room temperature for 1 hour while filling the inside with air, and the reaction solution was concentrated to dryness under reduced pressure to obtain a black-brown crude cobalt (III) complex. Subsequently, 5.0 mL of tert-butyl methyl ether was added to disperse the crude cobalt (III) complex, and then 2.50 mL of (S) -epichlorohydrin (31.9 mmol, optical purity 99% ee) and phenol 2.50 g (26.6 mmol) were sequentially added, and the mixture was stirred at room temperature for 24 hours under a nitrogen gas atmosphere. After completion of the reaction, the reaction solution was diluted by adding 20 mL of tert-butyl methyl ether, washed sequentially with 10 mL of 6% aqueous sodium hydroxide and 10 mL of saturated saline, and the organic layer was concentrated under reduced pressure to obtain crude (S)-. 5.75 g of 1-chloro-3-phenoxy-2-propanol was obtained.
5.75 g of the above crude (S) -1-chloro-3-phenoxy-2-propanol was dissolved in 10 mL of isopropanol, and 6.64 g (39.8 mmol) of 24% aqueous sodium hydroxide was added under ice-cooling, and the mixture was stirred at room temperature. Stir for 1 hour. After completion of the reaction, the reaction solution was diluted by adding 50 mL of tert-butyl methyl ether, washed successively with 20 mL of water, 20 mL of saturated aqueous ammonium chloride, and 20 mL of saturated saline, and the organic layer was concentrated under reduced pressure to obtain crude (R). 3.96 g of -glycidyl phenyl ether was obtained. As a result of quantitative analysis by gas chromatography, the production amount of the title (R) -glycidylphenyl ether was 3.80 g (yield 95.4%), and as a result of optical purity analysis by high performance liquid chromatography, The optical purity was 99% ee.

実施例4
 (S)-グリシジルフェニルエーテルの製造
 N,N’−ジサリチリデンエチレンジアミナトコバルト(II)173mg(0.532mmol)とジクロロメタン13mLの混合液に、(±)−カンファースルホン酸148mg(0.638mmol)を加えて系内を空気で満たしつつ室温で1時間撹拌した後、反応液を減圧下濃縮乾固して黒褐色の粗コバルト(III)錯体を得た。続いて、tert−ブチルメチルエーテル5.0mLを加えて粗コバルト(III)錯体を分散させた後、(R)-エピクロロヒドリン2.50mL(31.9mmol,光学純度99%e.e.)およびフェノール2.50g(26.6mmol)を順次加え、窒素ガス雰囲気下、室温で24時間撹拌した。反応終了後、反応液にtert−ブチルメチルエーテル20mLを加えて希釈し、6%水酸化ナトリウム水10mL、飽和食塩水10mLにて順次洗浄し、有機層を減圧下濃縮して粗(R)-1−クロロ−3−フェノキシ−2−プロパノール5.44gを得た。
 上記の粗(R)-1−クロロ−3−フェノキシ−2−プロパノール5.44gをイソプロパノール10mLに溶解し、氷冷下24%水酸化ナトリウム水6.64g(39.8mmol)を加え、室温で1時間撹拌した。反応終了後、反応液にtert−ブチルメチルエーテル50mLを加えて希釈し、水20mL、飽和塩化アンモニウム水20mL、飽和食塩水20mLにて順次洗浄し、有機層を減圧下濃縮して粗(S)-グリシジルフェニルエーテル3.80gを得た。ガスクロマトグラフィーにて定量分析した結果、標題の(S)-グリシジルフェニルエーテルの生成量は3.71g(収率93.0%)であり、そして高速液体クロマトグラフィーにて光学純度分析した結果、光学純度は99%e.e.であった。
Example 4
Preparation of (S) -glycidylphenyl ether To a mixture of 173 mg (0.532 mmol) of N, N'-disalicylideneethylenediaminatocobalt (II) and 13 mL of dichloromethane was added 148 mg of (±) -camphorsulfonic acid (0. 638 mmol), and the mixture was stirred at room temperature for 1 hour while filling the inside with air, and the reaction solution was concentrated to dryness under reduced pressure to obtain a black-brown crude cobalt (III) complex. Subsequently, after adding 5.0 mL of tert-butyl methyl ether to disperse the crude cobalt (III) complex, 2.50 mL of (R) -epichlorohydrin (31.9 mmol, optical purity 99% ee) and phenol 2.50 g (26.6 mmol) were sequentially added, and the mixture was stirred at room temperature for 24 hours under a nitrogen gas atmosphere. After completion of the reaction, the reaction solution was diluted by adding 20 mL of tert-butyl methyl ether, washed sequentially with 10 mL of 6% aqueous sodium hydroxide and 10 mL of saturated saline, and the organic layer was concentrated under reduced pressure to obtain crude (R)-. 5.44 g of 1-chloro-3-phenoxy-2-propanol were obtained.
5.44 g of the above crude (R) -1-chloro-3-phenoxy-2-propanol was dissolved in 10 mL of isopropanol, and 6.64 g (39.8 mmol) of a 24% aqueous sodium hydroxide solution was added under ice-cooling. Stir for 1 hour. After completion of the reaction, the reaction solution was diluted by adding 50 mL of tert-butyl methyl ether, washed sequentially with 20 mL of water, 20 mL of saturated ammonium chloride solution, and 20 mL of saturated saline, and the organic layer was concentrated under reduced pressure to obtain crude (S). 3.80 g of glycidyl phenyl ether were obtained. As a result of quantitative analysis by gas chromatography, the amount of the title (S) -glycidylphenyl ether produced was 3.71 g (yield 93.0%), and as a result of optical purity analysis by high performance liquid chromatography, The optical purity was 99% ee.

実施例5
 (R)-グリシジルフェニルエーテルの製造
 N,N’−ジサリチリデンエチレンジアミナトコバルト(II)138mg(0.425mmol)とジクロロメタン10mLの混合液に、メタンスルホン酸33μL(0.510mmol)を加えて系内を空気で満たしつつ室温で1時間攪拌した後、反応液を減圧下濃縮乾固して黒褐色の粗コバルト(III)錯体を得た。続いて、tert−ブチルメチルエーテル4.0mLを加えて粗コバルト(III)錯体を分散させた後、(S)-エピクロロヒドリン2.00mL(25.5mmol,光学純度99%e.e.)そしてフェノール2.00g(21.3mmol)を順次加え、窒素ガス雰囲気下、室温で24時間攪拌した。反応終了後、反応液にtert−ブチルメチルエーテル20mLを加えて希釈し、6%水酸化ナトリウム水10mL、飽和食塩水10mLにて順次洗浄し、有機層を減圧下濃縮して粗(S)-1−クロロ−3−フェノキシ−2−プロパノール4.85gを得た。
 上記の粗(S)-1−クロロ−3−フェノキシ−2−プロパノール4.85gをイソプロパノール10mLに溶解し、氷冷下24%水酸化ナトリウム水4.50g(25.5mmol)を加え、室温で1時間撹拌した。反応終了後、反応液にtert−ブチルメチルエーテル50mLを加えて希釈し、水20mL、飽和塩化アンモニウム水20mL、飽和食塩水20mLにて順次洗浄し、有機層を減圧下濃縮して粗(R)-グリシジルフェニルエーテル3.24gを得た。ガスクロマトグラフィーにて定量分析した結果、標題の(R)-グリシジルフェニルエーテルの生成量は3.07g(収率96.1%)であり、そして高速液体クロマトグラフィーにて光学純度分析した結果、光学純度は99%e.e.であった。
Example 5
Production of (R) -glycidylphenyl ether To a mixture of 138 mg (0.425 mmol) of N, N'-disalicylideneethylenediaminatocobalt (II) and 10 mL of dichloromethane, 33 μL (0.510 mmol) of methanesulfonic acid was added. After stirring at room temperature for 1 hour while filling the system with air, the reaction solution was concentrated to dryness under reduced pressure to obtain a black-brown crude cobalt (III) complex. Subsequently, after adding 4.0 mL of tert-butyl methyl ether to disperse the crude cobalt (III) complex, 2.00 mL of (S) -epichlorohydrin (25.5 mmol, optical purity 99% ee) and phenol were added. 2.00 g (21.3 mmol) were sequentially added, and the mixture was stirred at room temperature under a nitrogen gas atmosphere for 24 hours. After completion of the reaction, the reaction solution was diluted by adding 20 mL of tert-butyl methyl ether, washed sequentially with 10 mL of 6% aqueous sodium hydroxide and 10 mL of saturated saline, and the organic layer was concentrated under reduced pressure to obtain crude (S)-. 4.85 g of 1-chloro-3-phenoxy-2-propanol was obtained.
4.85 g of the above crude (S) -1-chloro-3-phenoxy-2-propanol was dissolved in 10 mL of isopropanol, and 4.50 g (25.5 mmol) of 24% aqueous sodium hydroxide was added under ice-cooling, and the mixture was added at room temperature. Stir for 1 hour. After completion of the reaction, the reaction solution was diluted by adding 50 mL of tert-butyl methyl ether, washed successively with 20 mL of water, 20 mL of saturated aqueous ammonium chloride, and 20 mL of saturated saline, and the organic layer was concentrated under reduced pressure to obtain crude (R). 3.24 g of -glycidyl phenyl ether was obtained. As a result of quantitative analysis by gas chromatography, the production amount of the title (R) -glycidylphenyl ether was 3.07 g (yield 96.1%), and as a result of optical purity analysis by high performance liquid chromatography, The optical purity was 99% ee.

実施例6
 (R)-グリシジルメチルエーテルの製造
 N,N’−ジサリチリデンエチレンジアミナトコバルト(II)70.2mg(0.216mmol)とジクロロメタン5.0mLの混合液に、(±)−カンファースルホン酸60.3mg(0.260mmol)を加えて系内を空気で満たしつつ室温で1時間撹拌した後、反応液を減圧下濃縮乾固して黒褐色の粗コバルト(III)錯体を得た。続いて、tert−ブチルメチルエーテル2.0mLを加えて粗コバルト(III)錯体を分散させた後、(S)-エピクロロヒドリン1.0g(10.8mmol,光学純度99%e.e.)およびメタノール527μL(13.0mmol)を順次加え、窒素ガス雰囲気下、室温で72時間撹拌した。反応終了後、反応液にtert−ブチルメチルエーテル20mLを加えて希釈し、6%水酸化ナトリウム水10mL、飽和食塩水10mLにて順次洗浄し、有機層を減圧下濃縮して粗(S)-1−クロロ−3−メトキシ−2−プロパノール1.54gを得た。
 上記の粗(S)-1−クロロ−3−メトキシ−2−プロパノール1.54gをイソプロパノール5.0mLに溶解し、氷冷下24%水酸化ナトリウム水2.70g(16.2mmol)を加え、室温で1時間撹拌した。反応終了後、反応液にtert−ブチルメチルエーテル20mLを加えて希釈し、水10mL、飽和塩化アンモニウム水10mL、飽和食塩水10mLにて順次洗浄し、有機層を減圧下濃縮して粗(R)-グリシジルメチルエーテル2.90gを得た。ガスクロマトグラフィーにて定量分析した結果、標題の(R)-グリシジルメチルエーテルの生成量は0.763g(収率80.2%)であり、そして高速液体クロマトグラフィーにて光学純度分析した結果、光学純度は99%e.e.であった。
Example 6
Preparation of (R) -glycidyl methyl ether A mixture of 70.2 mg (0.216 mmol) of N, N'-disalicylideneethylenediaminatocobalt (II) and 5.0 mL of dichloromethane was mixed with (±) -camphorsulfonic acid. After 60.3 mg (0.260 mmol) was added and the system was stirred at room temperature for 1 hour while filling the inside with air, the reaction solution was concentrated to dryness under reduced pressure to obtain a black-brown crude cobalt (III) complex. Subsequently, 2.0 mL of tert-butyl methyl ether was added to disperse the crude cobalt (III) complex, and then 1.0 g (10.8 mmol, optical purity 99% ee) of (S) -epichlorohydrin and methanol 527 μL (13.0 mmol) were sequentially added, and the mixture was stirred at room temperature under a nitrogen gas atmosphere for 72 hours. After completion of the reaction, the reaction solution was diluted by adding 20 mL of tert-butyl methyl ether, washed sequentially with 10 mL of 6% aqueous sodium hydroxide and 10 mL of saturated saline, and the organic layer was concentrated under reduced pressure to obtain crude (S)-. 1.54 g of 1-chloro-3-methoxy-2-propanol was obtained.
1.54 g of the above crude (S) -1-chloro-3-methoxy-2-propanol was dissolved in 5.0 mL of isopropanol, and 2.70 g (16.2 mmol) of 24% aqueous sodium hydroxide was added under ice-cooling. Stirred at room temperature for 1 hour. After completion of the reaction, the reaction solution was diluted by adding 20 mL of tert-butyl methyl ether, washed sequentially with 10 mL of water, 10 mL of saturated ammonium chloride solution and 10 mL of saturated saline, and the organic layer was concentrated under reduced pressure to obtain crude (R). 2.90 g of glycidyl methyl ether were obtained. As a result of quantitative analysis by gas chromatography, the production amount of the title (R) -glycidyl methyl ether was 0.763 g (yield: 80.2%), and as a result of optical purity analysis by high performance liquid chromatography, The optical purity was 99% ee.

実施例7
 (R)-グリシジルアセテートの製造
 N,N’−ジサリチリデンエチレンジアミナトコバルト(II)70.2mg(0.216mmol)とジクロロメタン5.0mLの混合液に、トリフルオロメタンスルホン酸23μL(0.260mmol)を加えて系内を空気で満たしつつ室温で1時間撹拌した後、反応液を減圧下濃縮乾固して黒褐色の粗コバルト(III)錯体を得た。続いて、tert−ブチルメチルエーテル2.0mLを加えて粗コバルト(III)錯体を分散させた後、(S)-エピクロロヒドリン1.0g(10.8mmol,光学純度99%e.e.)および酢酸742μL(13.0mmol)を順次加え、窒素ガス雰囲気下、室温で48時間撹拌した。反応終了後、反応液にtert−ブチルメチルエーテル8.0mLを加えて希釈し、氷冷下カリウムtert−ブトキシド1.46g(13.0mmol)を加え、1時間撹拌した。反応終了後、塩化アンモニウム116mg(2.16mmol)を加えて30分間撹拌し、沈殿物をろ過、ろ液を減圧下濃縮して粗(R)−グリシジルアセテート1.38gを得た。ガスクロマトグラフィーにて定量分析した結果、標題の(R)-グリシジルアセテートの生成量は0.795g(収率63.4%)であり、そしてガスクロマトグラフィーにて光学純度分析した結果、光学純度は99%e.e.であった。
Example 7
Production of (R) -glycidyl acetate A mixture of 70.2 mg (0.216 mmol) of N, N'-disalicylideneethylenediaminatocobalt (II) and 5.0 mL of dichloromethane was added to 23 μL of trifluoromethanesulfonic acid (0. After adding 260 mmol) and stirring the mixture at room temperature for 1 hour while filling the inside with air, the reaction solution was concentrated to dryness under reduced pressure to obtain a crude black-brown cobalt (III) complex. Subsequently, 2.0 mL of tert-butyl methyl ether was added to disperse the crude cobalt (III) complex, and then 1.0 g (10.8 mmol, optical purity 99% ee) of (S) -epichlorohydrin and acetic acid were added. 742 μL (13.0 mmol) were sequentially added, and the mixture was stirred at room temperature under a nitrogen gas atmosphere for 48 hours. After completion of the reaction, 8.0 mL of tert-butyl methyl ether was added to the reaction solution for dilution, and 1.46 g (13.0 mmol) of potassium tert-butoxide was added under ice-cooling, followed by stirring for 1 hour. After completion of the reaction, 116 mg (2.16 mmol) of ammonium chloride was added and the mixture was stirred for 30 minutes, the precipitate was filtered, and the filtrate was concentrated under reduced pressure to obtain 1.38 g of crude (R) -glycidyl acetate. As a result of quantitative analysis by gas chromatography, the amount of the title (R) -glycidyl acetate produced was 0.795 g (yield 63.4%). Was 99% ee.

実施例8
 (R)-グリシジルアセテートの製造
 N,N’−ビス(3,5−ジ−tert−ブチルサリチリデン)エチレンジアミナトコバルト(II)119mg(0.216mmol)とジクロロメタン5.0mLの混合液に、トリフルオロメタンスルホン酸23μL(0.260mmol)を加えて系内を空気で満たしつつ室温で1時間撹拌した後、反応液を減圧下濃縮乾固して黒緑色の粗コバルト(III)錯体を得た。続いて、tert−ブチルメチルエーテル2.0mLを加えて粗コバルト(III)錯体を分散させた後、(S)−エピクロロヒドリン1.0g(10.8mmol,光学純度99%e.e.)および酢酸742μL(13.0mmol)を順次加え、窒素ガス雰囲気下、室温で24時間撹拌した。反応終了後、反応液にtert−ブチルメチルエーテル8.0mLを加えて希釈し、氷冷下カリウムtert−ブトキシド1.46g(13.0mmol)を加え、1時間撹拌した。反応終了後、塩化アンモニウム116mg(2.16mmol)を加えて30分間撹拌し、沈殿物をろ過、ろ液を減圧下濃縮して粗(R)-グリシジルアセテート1.36gを得た。ガスクロマトグラフィーにて定量分析した結果、標題の(R)−グリシジルアセテートの生成量は0.802g(収率63.9%)、ガスクロマトグラフィーにて光学純度分析した結果、光学純度は99%e.e.であった。
Example 8
Preparation of (R) -glycidyl acetate A mixture of 119 mg (0.216 mmol) of N, N'-bis (3,5-di-tert-butylsalicylidene) ethylenediaminatocobalt (II) and 5.0 mL of dichloromethane was prepared. Then, 23 μL (0.260 mmol) of trifluoromethanesulfonic acid was added, the mixture was stirred at room temperature for 1 hour while filling the inside with air, and the reaction solution was concentrated to dryness under reduced pressure to obtain a crude black-green cobalt (III) complex. Was. Subsequently, after adding 2.0 mL of tert-butyl methyl ether to disperse the crude cobalt (III) complex, 1.0 g (10.8 mmol, optical purity 99% ee) of (S) -epichlorohydrin and acetic acid were added. 742 μL (13.0 mmol) were sequentially added, and the mixture was stirred at room temperature under a nitrogen gas atmosphere for 24 hours. After completion of the reaction, 8.0 mL of tert-butyl methyl ether was added to the reaction solution for dilution, and 1.46 g (13.0 mmol) of potassium tert-butoxide was added under ice-cooling, followed by stirring for 1 hour. After completion of the reaction, 116 mg (2.16 mmol) of ammonium chloride was added, and the mixture was stirred for 30 minutes. The precipitate was filtered, and the filtrate was concentrated under reduced pressure to obtain 1.36 g of crude (R) -glycidyl acetate. As a result of quantitative analysis by gas chromatography, the production amount of the title (R) -glycidyl acetate was 0.802 g (yield 63.9%), and the result of optical purity analysis by gas chromatography was 99%. ee.

実施例9
 (S)-3−クロロ−1,2−プロパンジオール 1−(n−ブチレート)の製造
 N,N’−ビス(3,5−ジ−tert−ブチルサリチリデン)エチレンジアミナトコバルト(II)1.49g(2.70mmol)とn−酪酸52.4g(0.594mol)の混合液を、系内を空気で満たしつつ、50℃に加熱下、1時間撹拌した。続いて、この溶液、すなわちコバルト(III)錯体のn−酪酸溶液に、N,N−ジイソプロピルエチルアミン6.89g(54.0mmol)およびS−エピクロロヒドリン50.0g(0.540mol,光学純度99%e.e.)を順次加え、室温で24時間撹拌した。反応終了後、反応液を減圧下蒸留して標題の(S)−3−クロロ−1,2−プロパンジオール 1−(n−ブチレート)80.0g(収率82.0%)を得た。高速液体クロマトグラフィーにて光学純度分析した結果、光学純度は99%e.e.であった。
Example 9
Preparation of (S) -3-chloro-1,2-propanediol 1- (n-butylate) N, N'-bis (3,5-di-tert-butylsalicylidene) ethylenediaminatocobalt (II) A mixture of 1.49 g (2.70 mmol) and 52.4 g (0.594 mol) of n-butyric acid was stirred for 1 hour while heating at 50 ° C. while the inside of the system was filled with air. Subsequently, 6.89 g (54.0 mmol) of N, N-diisopropylethylamine and 50.0 g (0.540 mol, optical purity) of S-epichlorohydrin were added to this solution, that is, a solution of the cobalt (III) complex in n-butyric acid. 99% ee) was added in sequence, and the mixture was stirred at room temperature for 24 hours. After completion of the reaction, the reaction solution was distilled under reduced pressure to obtain 80.0 g (yield: 82.0%) of the title (S) -3-chloro-1,2-propanediol 1- (n-butyrate). As a result of optical purity analysis by high performance liquid chromatography, the optical purity was 99% ee.

実施例10
 (R)-グリシジル n−ブチレートの製造
 実施例9で得られた(S)−3−クロロ−1,2−プロパンジオール 1−(n−ブチレート)50.0g(0.277mol,光学純度99%e.e.)を、1,2−ジクロロエタン200mLに溶解し、氷冷下カリウムtert−ブトキシド32.6g(0.291mol)を加え、1時間撹拌した。反応終了後、反応液を分液ロートに移して水200mLにて2回洗浄し、有機層を減圧下濃縮した。得られた粗油を減圧下蒸留して標題の(R)−グリシジル n−ブチレート28.7g(収率72.0%)を得た。高速液体クロマトグラフィーにて光学純度分析した結果、光学純度は99%e.e.であった。
Example 10
Production of (R) -glycidyl n-butyrate 50.0 g of (S) -3-chloro-1,2-propanediol 1- (n-butyrate) obtained in Example 9 (0.277 mol, optical purity 99%) ee) was dissolved in 1,2-dichloroethane (200 mL), and potassium tert-butoxide (32.6 g, 0.291 mol) was added under ice cooling, followed by stirring for 1 hour. After completion of the reaction, the reaction solution was transferred to a separating funnel and washed twice with 200 mL of water, and the organic layer was concentrated under reduced pressure. The obtained crude oil was distilled under reduced pressure to obtain 28.7 g (yield: 72.0%) of the title (R) -glycidyl n-butyrate. As a result of optical purity analysis by high performance liquid chromatography, the optical purity was 99% ee.

Claims (8)

 下記式(1)
Figure 2004075683
(式中、Xはハロゲン原子を意味する。)
で表される光学活性エピハロヒドリンに、下記式(2)
Figure 2004075683
(式中、nは0、1または2の整数を意味し、Y1、Y2およびY3は、同一または異なって、水素原子、ハロゲン原子、ニトロ基、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、アシル基、またはアルコキシカルボニル基を意味し、また、Y1とY2、あるいはY2とY3は、互いに一緒になり、それらが結合する炭素原子と共に環を形成してもよく、Aは対イオンを意味し、そしてMは金属イオンを意味する。)
で表される金属錯体触媒存在下、下記式(3)
Figure 2004075683
(式中、Nuは置換基を有するヘテロ原子を意味し、そしてQは水素原子または置換基を有するケイ素原子を意味する。)
で表される求核剤を反応させて、下記式(4)
Figure 2004075683
(式中、XおよびNuは前掲と同じものを意味する。)
で表される光学活性1−ハロゲノ−2−ヒドロキシプロピル化合物を位置選択的に製造する方法。
The following equation (1)
Figure 2004075683
(In the formula, X means a halogen atom.)
The optically active epihalohydrin represented by the following formula (2)
Figure 2004075683
(Wherein, n represents an integer of 0, 1 or 2; Y 1 , Y 2 and Y 3 are the same or different and each represents a hydrogen atom, a halogen atom, a nitro group, a substituted or unsubstituted alkyl group, Or an unsubstituted aryl group, acyl group or alkoxycarbonyl group, and Y 1 and Y 2 or Y 2 and Y 3 together form a ring together with the carbon atom to which they are attached. Where A represents a counter ion and M represents a metal ion.)
In the presence of a metal complex catalyst represented by the following formula (3)
Figure 2004075683
(In the formula, Nu means a substituted heteroatom, and Q means a hydrogen atom or a substituted silicon atom.)
By reacting a nucleophile represented by the following formula (4)
Figure 2004075683
(In the formula, X and Nu mean the same as those described above.)
A method for regioselectively producing an optically active 1-halogeno-2-hydroxypropyl compound represented by the formula:
 下記式(1)
Figure 2004075683
(式中、Xは、前掲と同じものを意味する。)
で表される光学活性エピハロヒドリンに、下記式(2)
Figure 2004075683
(式中、n、Y1、Y2、Y3、AおよびMは、前掲と同じものを意味する。)
で表される金属錯体触媒下、下記式(3)
Figure 2004075683
(式中、NuおよびQは前掲と同じものを意味する。)
で表される求核剤を反応させ、下記式(4)
Figure 2004075683
(式中、XおよびNuは前掲と同じものを意味する。)
で表される光学活性1−ハロゲノ−2−ヒドロキシプロピル化合物を位置選択的に製造し、続いで塩基性試剤を作用させ、下記式(5)
Figure 2004075683
(式中、Nuは、前掲と同じものを意味する。)
で表される光学活性グリシジル化合物を製造する方法。
The following equation (1)
Figure 2004075683
(In the formula, X means the same as above.)
The optically active epihalohydrin represented by the following formula (2)
Figure 2004075683
(In the formula, n, Y 1 , Y 2 , Y 3 , A and M mean the same as those described above.)
Under the metal complex catalyst represented by the following formula (3)
Figure 2004075683
(In the formula, Nu and Q mean the same as above.)
Is reacted with a nucleophile represented by the following formula (4)
Figure 2004075683
(In the formula, X and Nu mean the same as those described above.)
An optically active 1-halogeno-2-hydroxypropyl compound represented by the following formula is produced regioselectively, and then a basic reagent is allowed to act thereon to obtain the following formula (5)
Figure 2004075683
(In the formula, Nu means the same as above.)
A method for producing an optically active glycidyl compound represented by the formula:
 Xで示されるハロゲン原子が、塩素原子または臭素原子である請求項1または2に記載の製造法。 The method according to claim 1, wherein the halogen atom represented by ΔX is a chlorine atom or a bromine atom.  式(2)で示される金属錯体触媒が、下記式(6)で示されるものである請求項1〜3のいずれかに記載の製造法。
Figure 2004075683
(式中、nは0、1または2の整数を意味し、Z1、Z2、Z3およびZ4は、同一または異なって、水素原子、ハロゲン原子、ニトロ基、置換もしくは無置換の直鎖アルキル基、置換もしくは無置換のアラルキル基、置換もしくは無置換のアリール基、置換もしくは無置換のアルキルオキシ基、置換もしくは無置換のアラルキルオキシ基、または置換もしくは無置換のアリールオキシ基を意味し、また、Z1とZ2、Z2とZ3、あるいはZ3とZ4は、互いに一緒になり、それらが結合する炭素原子と共に環を形成してもよく、Aは対イオンを意味し、そしてMは金属イオンを意味する。)
The method according to any one of claims 1 to 3, wherein the metal complex catalyst represented by the formula (2) is a catalyst represented by the following formula (6).
Figure 2004075683
(Wherein, n represents an integer of 0, 1 or 2; Z 1 , Z 2 , Z 3 and Z 4 are the same or different and are each independently a hydrogen atom, a halogen atom, a nitro group, a substituted or unsubstituted Chain alkyl group, substituted or unsubstituted aralkyl group, substituted or unsubstituted aryl group, substituted or unsubstituted alkyloxy group, substituted or unsubstituted aralkyloxy group, or substituted or unsubstituted aryloxy group And Z 1 and Z 2 , Z 2 and Z 3 , or Z 3 and Z 4 may be taken together to form a ring together with the carbon atom to which they are attached, and A represents a counter ion. , And M represents a metal ion.)
 式(3)で示される求核剤が、下記式(7)で示されるものである請求項1〜4のいずれかに記載の製造法。
Figure 2004075683
(式中、Rは、水素原子、直鎖、分岐もしくは環状のアルキル基、直鎖、分岐もしくは環状のアルキルカルボニル基、置換もしくは無置換のアラルキル基、置換もしくは無置換のアラルキルカルボニル基、置換もしくは無置換のアリール基、または置換もしくは無置換のアリールカルボニル基を意味する。)
The method according to any one of claims 1 to 4, wherein the nucleophile represented by the formula (3) is represented by the following formula (7).
Figure 2004075683
(Wherein R is a hydrogen atom, a linear, branched or cyclic alkyl group, a linear, branched or cyclic alkylcarbonyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aralkylcarbonyl group, It means an unsubstituted aryl group or a substituted or unsubstituted arylcarbonyl group.)
 式(2)または(6)で示される金属錯体触媒において、金属イオンMがバナジウムイオン、クロムイオン、マンガンイオン、鉄イオン、コバルトイオン、ニッケルイオン、モリブデンイオン、ルテニウムイオンまたはタングステンイオンである請求項1〜5のいずれかに記載の製造法。 The metal complex catalyst represented by the formula (2) or (6), wherein the metal ion M is a vanadium ion, a chromium ion, a manganese ion, an iron ion, a cobalt ion, a nickel ion, a molybdenum ion, a ruthenium ion or a tungsten ion. The method according to any one of claims 1 to 5.  式(2)または(6)で示される金属錯体触媒において、対イオンAがアセテート、n−ブチレート、(±)−カンファースルホネート、メタンスルホネート、p−トルエンスルホネートまたはトリフルオロメタンスルホネートである請求項1〜6のいずれかに記載の製造法。 The metal complex catalyst represented by the formula (2) or (6), wherein the counter ion A is acetate, n-butyrate, (±) -camphorsulfonate, methanesulfonate, p-toluenesulfonate or trifluoromethanesulfonate. 6. The production method according to any one of 6.  光学活性エピハロヒドリン(1)を光学活性1−ハロゲノ−2−ヒドロキシプロピル化合物(4)へ誘導する反応において、エーテル系溶媒中で反応させることを特徴とする請求項1〜7のいずれかに記載の製造法。 The reaction for deriving an optically active epihalohydrin (1) to an optically active 1-halogeno-2-hydroxypropyl compound (4) is carried out in an ether-based solvent, according to any one of claims 1 to 7, wherein Manufacturing method.
JP2003281980A 2002-07-31 2003-07-29 Process for producing optically active halogenohydroxypropyl compound and glycidyl compound Expired - Fee Related JP4407191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003281980A JP4407191B2 (en) 2002-07-31 2003-07-29 Process for producing optically active halogenohydroxypropyl compound and glycidyl compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002223293 2002-07-31
JP2003281980A JP4407191B2 (en) 2002-07-31 2003-07-29 Process for producing optically active halogenohydroxypropyl compound and glycidyl compound

Publications (2)

Publication Number Publication Date
JP2004075683A true JP2004075683A (en) 2004-03-11
JP4407191B2 JP4407191B2 (en) 2010-02-03

Family

ID=32032792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003281980A Expired - Fee Related JP4407191B2 (en) 2002-07-31 2003-07-29 Process for producing optically active halogenohydroxypropyl compound and glycidyl compound

Country Status (1)

Country Link
JP (1) JP4407191B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114805248A (en) * 2022-06-05 2022-07-29 黄山学院 Comprehensive utilization method of industrial low-concentration acetic acid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114805248A (en) * 2022-06-05 2022-07-29 黄山学院 Comprehensive utilization method of industrial low-concentration acetic acid
CN114805248B (en) * 2022-06-05 2023-10-17 黄山学院 Comprehensive utilization method of industrial low-concentration acetic acid

Also Published As

Publication number Publication date
JP4407191B2 (en) 2010-02-03

Similar Documents

Publication Publication Date Title
US6946566B2 (en) Process for preparation of optically active halogeno hydroxypropyl compound and glycidyl compound
US5929232A (en) Stereoselective ring opening reactions
Zhong et al. New β-amino alcohols with a bicyclo [3.3. 0] octane scaffold in an asymmetric Henry reaction
JP5849710B2 (en) Process for producing β-fluoroalcohols
US20100267988A1 (en) Processes for preparing intermediate compounds useful for the preparation of cinacalcet
JP6011867B2 (en) Dendrimer-immobilized nitrogen-containing heterocyclic carbene-gold complex
US6448449B2 (en) Process for preparation of (R)-1- (aryloxy)propan-2-ol
CN109651115B (en) Method for preparing L-menthone
JP2002533430A (en) Preparation method of aryl ether
EP2687521B1 (en) &#34;Process for the enantioselective synthesis of landiolol&#34;
JP4649645B2 (en) Process for producing optically active alcohol compounds
JP4407191B2 (en) Process for producing optically active halogenohydroxypropyl compound and glycidyl compound
US9725392B2 (en) Efficient scalable syntheses of abscisic acid, 8′-acetylene abscisic acid and 8′-cyclopropyl abscisic acid
US7479574B2 (en) Method of producing macrocyclic ketone, and intermediate thereof
US7456325B2 (en) Process for the production of a hydroxyalkyne by coupling reaction between acetaldehyde and a terminal alkyne
KR20120100823A (en) Process for the enantioselective synthesis of landiolol
UA113850C2 (en) CHIRAL SYNTHESIS N- {3,4-DIFLUTOR-2 - $ (2-FLUORO-4-IODPHENYL) AMINO] -6-METHOXYPHENYL} -1- $ 2,3-DYHYDROXYPROPYL] CYCLOPROPANSPANE
JP7223445B2 (en) Method for producing coupling product of organic compound having leaving group and organosilicon compound
JP4104863B2 (en) Method for producing tetrahydropyranyloxyamine
JP4568002B2 (en) Optically active 2-fluoro-1,3-diol derivative and method for producing the same
EP1179520A1 (en) Process for the preparation of phytone and novel intermediates thereof
US20230001399A1 (en) New transition metal catalyst
JP2000063321A (en) Production of long-chain beta-hydroxycarboxylic acid of high optical purity
CN110041243A (en) It is a kind of to contain the disubstituted Oxoindole compound of δ-hydroxy-beta -one acrylate structure 3,3- and its method of asymmetric synthesis
JPH09208566A (en) Optically active oxazoline compound and asymmetric allyl oxidization reaction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090821

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091102

R150 Certificate of patent or registration of utility model

Ref document number: 4407191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141120

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees