JP2004074992A - Air-conditioner of fuel cell vehicle - Google Patents

Air-conditioner of fuel cell vehicle Download PDF

Info

Publication number
JP2004074992A
JP2004074992A JP2002241033A JP2002241033A JP2004074992A JP 2004074992 A JP2004074992 A JP 2004074992A JP 2002241033 A JP2002241033 A JP 2002241033A JP 2002241033 A JP2002241033 A JP 2002241033A JP 2004074992 A JP2004074992 A JP 2004074992A
Authority
JP
Japan
Prior art keywords
fuel cell
temperature
electric heater
power
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002241033A
Other languages
Japanese (ja)
Other versions
JP3898102B2 (en
Inventor
Yoshinobu Hasuka
蓮香 芳信
Shinji Yoshikawa
吉川 慎司
Masahiro Kimijima
君島 正弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002241033A priority Critical patent/JP3898102B2/en
Publication of JP2004074992A publication Critical patent/JP2004074992A/en
Application granted granted Critical
Publication of JP3898102B2 publication Critical patent/JP3898102B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/00392Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for electric vehicles having only electric drive means

Landscapes

  • Engineering & Computer Science (AREA)
  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air-conditioner of a fuel cell vehicle for rapidly raising the temperature of a fuel cell. <P>SOLUTION: The air-conditioner 2 of the fuel cell vehicle 1 performs heating by supplying power to an electric heater 8 by power generated by a fuel cell 3. A control device 9 to control the power to the electric heater 8 according to the outside temperature of the vehicle 1 and the temperature of the fuel cell 3 is provided. The control device 9 controls to reduce the power to the electric heater 8 according to the outside temperature in a regular state that the temperature of the fuel cell 3 is higher than a predetermined value, and the control device, on the other hand, controls to increase the power to the electric heater 3 compared with the regular state irrespective of the outside temperature in a cold state that the temperature of the fuel cell 3 is lower than a predetermined value. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池の発電電力によって電気ヒータに電力を供給して暖房を行う燃料電池車両の空調装置に関する。
【0002】
【従来の技術】
従来、固体高分子膜型の燃料電池が搭載された燃料電池車両(以下適宜「車両」という)として、燃料電池(FC)とキャパシタとを組み合わせたハイブリッド型のものが知られている。
このハイブリッド型の燃料電池車両は、燃料電池の発電電力をキャパシタで補って、駆動用モータやエアコンディショナなどの電動補機に必要電力を供給するものである。
【0003】
燃料電池車両の暖房装置として、燃料電池の発電電力を電気ヒータに供給して車室内を加熱するものがある。
暖房装置の温度制御としては、目標とする車室内温度と外気温度の関係によって、電気ヒータへ供給する電気量を制御しているため、外気温度が高いときは、暖房要求も少ないために、エアコンヒータ電力は低下させるような設定になっている。
【0004】
【発明が解決しようとする課題】
従来の電気ヒータは、車両の暖房性能のみを満たすように制御されていた。
燃料電池の停止後は外気温度によって燃料電池が冷やされるため、早朝の燃料電池車両の始動(発電開始)時には、外気温度と燃料電池の温度がほぼ等しくなっている。しかしながら、その後の外気温度の上昇に対して、燃料電池の温度はただちに上昇しない。
よって、そのような、外気温度が比較的高い状態で燃料電池の温度が低い状態の時においては、従来のような車両の暖房性能のみを満たすように制御されていた電気ヒータでは、燃料電池の早期暖機に寄与させることはできなかった。
【0005】
本発明は、上述した事情に鑑みてなされたものであって、車両の暖房性能と、燃料電池の早期暖機性能の両立を図るための燃料電池車両の空調装置を提供することを目的としている。
【0006】
【課題を解決するための手段】
本発明は、上記目的を達成するためになされたものであって、燃料電池の発電電力によって電気ヒータに電力を供給して暖房を行う燃料電池車両の空調装置において、該車両の外気温度と、燃料電池の温度に応じて、電気ヒータへの供給電力を制御する制御手段(例えば、実施の形態における制御装置9)を備え、該制御手段は、燃料電池の温度が所定値より大きい通常時には、外気温度が高くなるにつれて電気ヒータへの供給電力を低減させるとともに、燃料電池の温度が所定値より小さい冷間時には、外気温度に関わらず電気ヒータへの供給電力を前記通常時よりも増加させるように制御を行うことを特徴とする。
【0007】
この発明によれば、燃料電池の温度が所定値より大きい通常状態にある時には、外気温度が高くなるにつれて電気ヒータへの供給電力を低減させる(エコノミー運転させる)ので、燃料電池の発電電力が抑えられ、これにより、発電用の空気供給コンプレッサの消費電力が少なくなるため、水素燃料の消費や、コンプレッサの駆動に伴う車両の振動および騒音が低減できる。
一方、燃料電池の温度が所定値より低い冷間状態にある時には、外気温度に関わらず電気ヒータの供給電力を通常時よりも増加させるので、電気ヒータへの供給電力を増加することにより、燃料電池の自己発熱量が増加し、燃料電池の暖機性能を向上し早期暖機を促進できる。
【0008】
【発明の実施の形態】
以下、本発明の実施の形態について、添付図面を参照しながら説明する。
図1は本発明の実施の形態に係る燃料電池車両1を示す概略構成図である。また、図2は前記燃料電池車両1の空調装置2のブロック図である。なお、電流制限装置7と制御装置9は図1において図示を省略している。
本実施の形態に係る空調装置2は、例えば燃料電池3と蓄電装置であるキャパシタ4とから構成されたハイブリッド型の電源装置を備えている。
【0009】
燃料電池3は、固体高分子電解質膜をアノード電極とカソード電極とで挟持してなる燃料電池セルを、複数積層させて一体化させた構造となっており、図1に示すように例えば車両1の床下部に配設されている。
【0010】
前記燃料電池3のアノード電極には水素タンク(図示せず)から水素ガスが供給され、カソード電極にはエアコンプレッサ(図示せず)から酸化剤ガス(酸素を含む空気)が供給される。アノード電極の反応面に水素が供給されると、ここで水素がイオン化され、固体高分子電解質膜を介してカソード電極の方に移動する。この間に生じた電子が外部回路に取り出され、直流の電気エネルギーとして利用される。
【0011】
前記燃料電池3には電流制限装置7が接続されている。前記電流制限装置7は、キャパシタ4や駆動用モータ5、エアコンディショナ6に搭載された電気ヒータ8にも接続され、燃料電池3からの出力を必要に応じて制限してこれらの機器4、5、6、8に供給する。
【0012】
また、前記電流制限装置7は、燃料電池3に反応ガス(酸化剤ガス)を供給するためのエアコンプレッサを駆動するエアコンプレッサ用モータ(図示せず)にも接続されている。このため、燃料電池3で発電する電力の一部は、反応ガス(酸化剤ガス)を供給するエアコンプレッサを駆動するために使用される。
なお、前記電流制限装置7は、前記エアコンディショナ6、電気ヒータ8に加えヘッドランプなどの電動補機にも接続され、各電動補機に電力を供給する。
【0013】
キャパシタ4は例えば電気二重層キャパシタとされ、前記燃料電池3の発電電流で充電されるとともに、燃料電池3を補助して駆動用モータ5やエアコンディショナ6などの電動補機に電力を供給する。
【0014】
前記駆動用モータ5は燃料電池3やキャパシタ4から供給される電力により駆動力を発生し、この駆動力は、リダクション或いはトランスミッションT/Mを介して駆動輪(図示せず)に伝達され、これにより、燃料電池車両1が走行するのである。
【0015】
燃料電池車両1の減速時に駆動輪から駆動用モータ5に駆動力が伝達されると、駆動用モータ5は発電機として機能し、いわゆる回生制動力を発生する。これにより、車体の運動エネルギーを電気エネルギーとして回収することができ、キャパシタ4に電気エネルギーが蓄電される。
【0016】
前記エアコンディショナ6は、車両1室内の空気を調整するためのものであり、該エアコンディショナ6に搭載された電気ヒータ8を作動させることにより、車両1室内の空気を加温することができる。したがって、車両1室内の温度は電気ヒータ8に供給する電力に応じて調整可能である。
【0017】
前記燃料電池3や電流制限装置7、駆動用モータ5、電気ヒータ8には制御装置9が接続してある。この制御装置9は、アクセルペダルの踏み込み量Apや車速Vcなどから電動補機の作動に必要な電力を算出して、この算出した電力に基づいて燃料電池3や電流制限装置7、駆動用モータ5、電気ヒータ8を搭載したエアコンディショナ6にそれぞれ制御信号を送信する。
【0018】
具体的には、制御装置9から燃料電池3に対して目標発電量が送信され、該目標発電量に応じて前記燃料電池3に供給される反応ガス量が制御される。また、制御装置9から電流制限装置7に対して電流値が送信され、これにより、電流制限装置7は、燃料電池3で発電した電力を前記電流値となるように制限した状態でキャパシタ4や駆動用モータ5、電気ヒータ8を搭載したエアコンディショナ6に供給する。また、制御装置9から前記駆動用モータ5に対して駆動電力量が送信され、これにより、必要に応じて駆動電力が制限される。そして、前記電気ヒータ8を搭載したエアコンディショナ6に作動信号が送信され、これに応じてエアコンディショナ6や電気ヒータ8が作動する。
【0019】
また、燃料電池3には、その温度を測定する温度センサS1が設けられ、該温度センサS1により測定された燃料電池3の温度が制御装置9に送信される。この温度センサS1の取り付け位置は、燃料電池3から排出される循環水(冷却水)経路上であってもよく、燃料電池3から排出される反応済ガス(オフガス)経路上であってもよい。また、車両1には、外気温度センサS2が設けられ、該外気温度センサS2により測定された外気温度が制御装置9に送信される。制御装置9は、これらの温度センサS1、S2から送信された温度に基づいて、以下に述べるような制御を行う。
【0020】
図3は本実施の形態に係る燃料電池車両1の空調装置2のフローチャートである。まず、ステップS02で、外気温度センサS2で検知した車両1の外気温が所定値(例えば0度)よりも大きいかどうかを判定する。判定結果がYESの場合には、車両1室内を急速に暖機する必要があるため、ステップS04の処理を行う。これについて図4を用いて説明する。
【0021】
図4は外気温とエアコンディショナ6の目標消費電力との関係を示すグラフである。同図において、横軸は車両1の外気温度であり、横軸は電気ヒータ8の目標消費電力である。図4の線Lに示したように、外気温が所定値(この場合は0度)以下の場合には、ステップS04で、電気ヒータ8の消費電力を最大値Pmaxに設定する。これにより、エアコンディショナ6に搭載された電気ヒータ8による発熱量も最大となり、車両1室内を速やかに加温する。
【0022】
ステップS02の判定結果がNOの場合には、ステップS06で、燃料電池温度センサS1で検知した燃料電池3の温度が所定値(例えば0度)以上かどうかを判定する。判定結果がYESの時には、燃料電池3の温度は十分高く、早期暖機の必要がないため、電気ヒータ8による自己発熱の増加の必要がない。この場合には、ステップS12で、電気ヒータ8への供給電力を外気温度の高さに応じて低減する(図4の線N参照)。このように、暖房を行うための電気ヒータ8への供給電力が外気温度の高さに応じて低減されるため、発電に必要な反応ガスの量を低減させることができ、これにより燃費を向上することが可能となる。
【0023】
ステップS06の判定結果がNOの場合には、燃料電池3の温度が所定値(0度)より低い冷間時であり、電気ヒータ8により燃料電池3の自己発熱の増加を行わせる。この場合には、ステップS08で、電気ヒータ8への供給電力を通常時よりも増加させることで、燃料電池3への要求発電量を通常時よりも多くする(図4の線M参照)。燃料電池3は発電に発熱を伴うため、発電量を多くすることにより発熱量を増大させることができる。これにより、燃料電池3自身が速やかに加温され、冷間時から通常時に早期に移行させることができる。本実施の形態においては、ステップS08において、電気ヒータ8の消費電力が最大値Pmaxになるように設定しており、これにより、燃料電池3自身の加温をより迅速に行えるようにしている。
【0024】
このように、燃料電池3の温度が所定値よりも低い冷間時であっても、通常時に速やかに移行でき、冷間時のように余分に反応ガスを供給する必要が無くなる。したがって、燃費を向上させることができるとともに、反応ガスを燃料電池に供給するエアコンプレッサ等の燃料電池用補機の作動量を冷間時よりも低減できるため、燃料電池用補機からの発生音を低減することができる。なお、前記所定値には、燃料電池3の作動温度(反応ガスを有効に発電に利用できる温度)の下限値を用いることが好ましい。
【0025】
上述した処理(ステップS08、ステップS12)により、燃料電池3の温度が所定値以上になった後に、ステップS14で、燃料電池セルの電圧値が低下したかどうかを判定する。前記燃料電池セルの電圧が低下しているときに急激な負荷変動をかけると燃料電池3に大きな負担がかかってしまい、これを防止するために上記判定を行う。判定結果がYESの場合には、ステップS16で電気ヒータ8の作動を停止して、一連の処理を終了する。これにより、燃料電池3に要求される発電電力量が低減され、燃料電池3の負担を低減させることができる。
【0026】
ステップS14における判定結果がNOの場合には、電気ヒータ8に供給可能な電力を設定する。ここで、電動補機や駆動用モータ5に必要な電力全体が、燃料電池3で発電可能な電力より大きい場合に、電気ヒータ8に供給する電力が制限される(図4のP’参照)。これにより、燃料電池3に過度な負担がかかることを防止することができる。なお、この処理を行う場合には、既に車両1室内の温度は一定以上になっているため、電気ヒータ8に供給する電力が制限されても問題はない。
【0027】
以上のように、本発明における燃料電池車両の空調装置を実施の形態において説明したが、本発明はこの内容に限定されない。例えば、キャパシタではなくバッテリを用いてもよい。
【0028】
【発明の効果】
以上説明したように、請求項1記載の発明によれば、暖房を行うための電気ヒータへの供給電力を外気温度の高さに応じて低減して、発電に用いる反応ガスの量を低減させることで燃費を向上することが可能となる。また、前記冷間時においては、電気ヒータへの供給電力を通常時よりも増加させることで燃料電池への要求発電量を通常時よりも多くするで、燃料電池自身が速やかに加温され、冷間時から通常時に移行させることができる。よって、燃費を向上させることができるとともに、燃料電池用補機の作動量を冷間時よりも低減できるため、燃料電池用補機からの発生音を低減することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る燃料電池車両の空調装置の配置形態を示す概略構成図である。
【図2】本実施の形態に係る燃料電池車両の空調装置を示すブロック図である。
【図3】本実施の形態に係る燃料電池車両の空調装置のフローチャートである。
【図4】外気温とエアコンディショナの目標消費電力との関係を示すグラフである。
【符号の説明】
1 燃料電池車両
2 空調装置
3 燃料電池
6 エアコンディショナ
8 電気ヒータ
9 制御装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an air conditioner for a fuel cell vehicle that performs heating by supplying electric power to an electric heater using electric power generated by a fuel cell.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as a fuel cell vehicle equipped with a solid polymer membrane type fuel cell (hereinafter, appropriately referred to as “vehicle”), a hybrid type in which a fuel cell (FC) and a capacitor are combined is known.
In this hybrid fuel cell vehicle, the power generated by the fuel cell is supplemented by a capacitor to supply necessary electric power to an electric auxiliary device such as a drive motor or an air conditioner.
[0003]
2. Description of the Related Art As a heating device for a fuel cell vehicle, there is a heating device that supplies electric power generated by a fuel cell to an electric heater to heat a vehicle interior.
As the temperature control of the heating device, the amount of electricity supplied to the electric heater is controlled based on the target relationship between the cabin temperature and the outside air temperature. The heater power is set to decrease.
[0004]
[Problems to be solved by the invention]
Conventional electric heaters are controlled so as to satisfy only the heating performance of the vehicle.
After the fuel cell is stopped, the fuel cell is cooled by the outside air temperature. Therefore, when the fuel cell vehicle is started (start of power generation) in the early morning, the outside air temperature and the temperature of the fuel cell are almost equal. However, the temperature of the fuel cell does not rise immediately with the subsequent rise in the outside air temperature.
Therefore, in such a state where the outside air temperature is relatively high and the temperature of the fuel cell is low, a conventional electric heater that is controlled to satisfy only the heating performance of the vehicle does not have the fuel cell. It could not contribute to the early warm-up.
[0005]
The present invention has been made in view of the circumstances described above, and has as its object to provide an air conditioner for a fuel cell vehicle for achieving both heating performance of the vehicle and early warm-up performance of the fuel cell. .
[0006]
[Means for Solving the Problems]
The present invention has been made to achieve the above object, and in an air conditioner for a fuel cell vehicle that performs heating by supplying electric power to an electric heater with power generated by a fuel cell, an outside air temperature of the vehicle, A control unit (for example, the control device 9 in the embodiment) for controlling the power supplied to the electric heater according to the temperature of the fuel cell is provided. As the outside air temperature increases, the supply power to the electric heater is reduced, and when the temperature of the fuel cell is lower than a predetermined value in a cold state, the supply power to the electric heater is increased from the normal time regardless of the outside air temperature. Control is performed.
[0007]
According to the present invention, when the temperature of the fuel cell is in a normal state higher than the predetermined value, the power supplied to the electric heater is reduced as the outside air temperature increases (economy operation is performed). As a result, the power consumption of the air supply compressor for power generation is reduced, so that the consumption of hydrogen fuel and the vibration and noise of the vehicle caused by driving the compressor can be reduced.
On the other hand, when the temperature of the fuel cell is in a cold state lower than a predetermined value, the power supplied to the electric heater is increased from the normal state regardless of the outside air temperature. The self-heating value of the battery increases, and the warm-up performance of the fuel cell can be improved, and early warm-up can be promoted.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a schematic configuration diagram showing a fuel cell vehicle 1 according to an embodiment of the present invention. FIG. 2 is a block diagram of the air conditioner 2 of the fuel cell vehicle 1. The illustration of the current limiting device 7 and the control device 9 is omitted in FIG.
The air conditioner 2 according to the present embodiment includes a hybrid power supply device including, for example, a fuel cell 3 and a capacitor 4 that is a power storage device.
[0009]
The fuel cell 3 has a structure in which a plurality of fuel cells in each of which a solid polymer electrolyte membrane is sandwiched between an anode electrode and a cathode electrode are laminated and integrated, and as shown in FIG. It is located below the floor.
[0010]
The anode electrode of the fuel cell 3 is supplied with hydrogen gas from a hydrogen tank (not shown), and the cathode electrode is supplied with oxidant gas (air containing oxygen) from an air compressor (not shown). When hydrogen is supplied to the reaction surface of the anode electrode, the hydrogen is ionized here and moves toward the cathode electrode through the solid polymer electrolyte membrane. The electrons generated during this time are taken out to an external circuit and used as DC electric energy.
[0011]
A current limiting device 7 is connected to the fuel cell 3. The current limiting device 7 is also connected to the capacitor 4, the driving motor 5, and the electric heater 8 mounted on the air conditioner 6, and limits the output from the fuel cell 3 as necessary, and 5, 6, and 8.
[0012]
The current limiting device 7 is also connected to an air compressor motor (not shown) that drives an air compressor for supplying a reaction gas (oxidant gas) to the fuel cell 3. Therefore, a part of the electric power generated by the fuel cell 3 is used to drive an air compressor that supplies a reaction gas (oxidizing gas).
In addition, the current limiting device 7 is connected to an electric accessory such as a headlamp in addition to the air conditioner 6 and the electric heater 8, and supplies electric power to each electric accessory.
[0013]
The capacitor 4 is, for example, an electric double-layer capacitor, is charged with the generated current of the fuel cell 3, and supplies power to electric auxiliary machines such as a driving motor 5 and an air conditioner 6 while assisting the fuel cell 3. .
[0014]
The driving motor 5 generates a driving force by electric power supplied from the fuel cell 3 and the capacitor 4, and the driving force is transmitted to driving wheels (not shown) via a reduction or transmission T / M. As a result, the fuel cell vehicle 1 runs.
[0015]
When the driving force is transmitted from the driving wheels to the driving motor 5 at the time of deceleration of the fuel cell vehicle 1, the driving motor 5 functions as a generator and generates a so-called regenerative braking force. Thereby, the kinetic energy of the vehicle body can be recovered as electric energy, and the electric energy is stored in the capacitor 4.
[0016]
The air conditioner 6 is for adjusting the air inside the vehicle 1. By activating the electric heater 8 mounted on the air conditioner 6, the air inside the vehicle 1 can be heated. it can. Therefore, the temperature inside the vehicle 1 can be adjusted according to the electric power supplied to the electric heater 8.
[0017]
A control device 9 is connected to the fuel cell 3, the current limiting device 7, the driving motor 5, and the electric heater 8. The control device 9 calculates the electric power required for operating the electric accessory from the accelerator pedal depression amount Ap and the vehicle speed Vc, and based on the calculated electric power, the fuel cell 3, the current limiting device 7, the driving motor 5. Send control signals to the air conditioner 6 equipped with the electric heater 8 respectively.
[0018]
Specifically, the target power generation amount is transmitted from the control device 9 to the fuel cell 3, and the amount of reaction gas supplied to the fuel cell 3 is controlled according to the target power generation amount. Further, a current value is transmitted from the control device 9 to the current limiting device 7, whereby the current limiting device 7 restricts the power generated by the fuel cell 3 so as to have the current value. The air is supplied to an air conditioner 6 equipped with a driving motor 5 and an electric heater 8. In addition, the control device 9 transmits a drive power amount to the drive motor 5, whereby the drive power is limited as required. Then, an operation signal is transmitted to the air conditioner 6 on which the electric heater 8 is mounted, and the air conditioner 6 and the electric heater 8 are operated in response thereto.
[0019]
Further, the fuel cell 3 is provided with a temperature sensor S1 for measuring its temperature, and the temperature of the fuel cell 3 measured by the temperature sensor S1 is transmitted to the control device 9. The mounting position of the temperature sensor S1 may be on a circulating water (cooling water) path discharged from the fuel cell 3 or on a reacted gas (off gas) path discharged from the fuel cell 3. . Further, the vehicle 1 is provided with an outside air temperature sensor S2, and the outside air temperature measured by the outside air temperature sensor S2 is transmitted to the control device 9. The control device 9 performs the following control based on the temperatures transmitted from the temperature sensors S1 and S2.
[0020]
FIG. 3 is a flowchart of the air conditioner 2 of the fuel cell vehicle 1 according to the present embodiment. First, in step S02, it is determined whether or not the outside air temperature of the vehicle 1 detected by the outside air temperature sensor S2 is higher than a predetermined value (for example, 0 degree). If the result of the determination is YES, it is necessary to rapidly warm up the interior of the vehicle 1 and therefore the process of step S04 is performed. This will be described with reference to FIG.
[0021]
FIG. 4 is a graph showing the relationship between the outside air temperature and the target power consumption of the air conditioner 6. In the figure, the horizontal axis is the outside air temperature of the vehicle 1, and the horizontal axis is the target power consumption of the electric heater 8. As shown by the line L in FIG. 4, when the outside air temperature is equal to or lower than a predetermined value (in this case, 0 degree), in step S04, the power consumption of the electric heater 8 is set to the maximum value Pmax. As a result, the amount of heat generated by the electric heater 8 mounted on the air conditioner 6 is maximized, and the interior of the vehicle 1 is quickly heated.
[0022]
If the decision result in the step S02 is NO, a step S06 decides whether or not the temperature of the fuel cell 3 detected by the fuel cell temperature sensor S1 is equal to or higher than a predetermined value (for example, 0 degree). When the result of the determination is YES, the temperature of the fuel cell 3 is sufficiently high and there is no need for early warm-up, so there is no need to increase self-heating by the electric heater 8. In this case, in step S12, the power supplied to the electric heater 8 is reduced according to the level of the outside air temperature (see line N in FIG. 4). As described above, since the power supplied to the electric heater 8 for heating is reduced in accordance with the level of the outside air temperature, the amount of reaction gas required for power generation can be reduced, thereby improving fuel efficiency. It is possible to do.
[0023]
If the determination result in step S06 is NO, it means that the temperature of the fuel cell 3 is in a cold state lower than a predetermined value (0 degree), and the electric heater 8 causes the fuel cell 3 to increase its own heat generation. In this case, in step S08, the power supply to the electric heater 8 is increased from the normal time, so that the required power generation amount to the fuel cell 3 is increased from the normal time (see the line M in FIG. 4). Since the fuel cell 3 generates heat with power generation, the amount of heat generation can be increased by increasing the amount of power generation. As a result, the fuel cell 3 itself is quickly heated, and can be shifted from a cold state to a normal state at an early stage. In the present embodiment, in step S08, the power consumption of the electric heater 8 is set to be the maximum value Pmax, so that the fuel cell 3 itself can be heated more quickly.
[0024]
As described above, even when the temperature of the fuel cell 3 is in a cold state lower than the predetermined value, the fuel cell 3 can be quickly shifted to a normal state, and there is no need to supply an extra reactive gas as in the case of a cold state. Therefore, the fuel consumption can be improved, and the operation amount of the auxiliary equipment for the fuel cell, such as the air compressor, which supplies the reaction gas to the fuel cell, can be reduced as compared with when the engine is cold. Can be reduced. In addition, it is preferable to use the lower limit of the operating temperature of the fuel cell 3 (the temperature at which the reaction gas can be effectively used for power generation) as the predetermined value.
[0025]
After the temperature of the fuel cell 3 has become equal to or higher than the predetermined value by the above-described processing (steps S08 and S12), it is determined in step S14 whether or not the voltage value of the fuel cell has decreased. If a sudden load change is applied while the voltage of the fuel cell is decreasing, a heavy load is applied to the fuel cell 3, and the above determination is made to prevent this. If the result of the determination is YES, the operation of the electric heater 8 is stopped in step S16, and a series of processing ends. Thus, the amount of generated power required for the fuel cell 3 is reduced, and the burden on the fuel cell 3 can be reduced.
[0026]
If the determination result in step S14 is NO, the power that can be supplied to the electric heater 8 is set. Here, when the total electric power required for the electric accessories and the driving motor 5 is larger than the electric power that can be generated by the fuel cell 3, the electric power supplied to the electric heater 8 is limited (see P ′ in FIG. 4). . As a result, it is possible to prevent an excessive load from being applied to the fuel cell 3. When this process is performed, since the temperature inside the vehicle 1 is already higher than a certain level, there is no problem even if the power supplied to the electric heater 8 is limited.
[0027]
As described above, the air conditioner for a fuel cell vehicle according to the present invention has been described in the embodiment, but the present invention is not limited to this content. For example, a battery may be used instead of a capacitor.
[0028]
【The invention's effect】
As described above, according to the first aspect of the invention, the amount of the reaction gas used for power generation is reduced by reducing the power supplied to the electric heater for heating according to the level of the outside air temperature. This makes it possible to improve fuel efficiency. Further, in the cold state, the required power generation amount for the fuel cell is increased from the normal state by increasing the power supplied to the electric heater from the normal state, so that the fuel cell itself is quickly heated, The transition can be made from cold to normal. Therefore, the fuel efficiency can be improved, and the operation amount of the fuel cell auxiliary device can be reduced as compared with when the fuel cell is cold, so that the noise generated from the fuel cell auxiliary device can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an arrangement of an air conditioner of a fuel cell vehicle according to an embodiment of the present invention.
FIG. 2 is a block diagram showing an air conditioner of the fuel cell vehicle according to the present embodiment.
FIG. 3 is a flowchart of an air conditioner for a fuel cell vehicle according to the present embodiment.
FIG. 4 is a graph showing a relationship between an outside air temperature and a target power consumption of the air conditioner.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 fuel cell vehicle 2 air conditioner 3 fuel cell 6 air conditioner 8 electric heater 9 controller

Claims (1)

燃料電池の発電電力によって電気ヒータに電力を供給して暖房を行う燃料電池車両の空調装置において、
該車両の外気温度と、燃料電池の温度に応じて、電気ヒータへの供給電力を制御する制御手段を備え、
該制御手段は、
燃料電池の温度が所定値より大きい通常時には、外気温度が高くなるにつれて電気ヒータへの供給電力を低減させるとともに、
燃料電池の温度が所定値より小さい冷間時には、外気温度に関わらず電気ヒータへの供給電力を前記通常時よりも増加させるように制御を行うことを特徴とする燃料電池車両の空調装置。
In an air conditioner of a fuel cell vehicle that performs heating by supplying electric power to an electric heater by power generated by a fuel cell,
Control means for controlling power supplied to the electric heater in accordance with the outside air temperature of the vehicle and the temperature of the fuel cell,
The control means includes:
At normal times when the temperature of the fuel cell is higher than a predetermined value, the power supplied to the electric heater is reduced as the outside air temperature increases,
An air conditioner for a fuel cell vehicle, wherein the control is performed such that the power supplied to the electric heater is increased from the normal time regardless of the outside air temperature when the temperature of the fuel cell is lower than a predetermined value.
JP2002241033A 2002-08-21 2002-08-21 Fuel cell vehicle air conditioner Expired - Fee Related JP3898102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002241033A JP3898102B2 (en) 2002-08-21 2002-08-21 Fuel cell vehicle air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002241033A JP3898102B2 (en) 2002-08-21 2002-08-21 Fuel cell vehicle air conditioner

Publications (2)

Publication Number Publication Date
JP2004074992A true JP2004074992A (en) 2004-03-11
JP3898102B2 JP3898102B2 (en) 2007-03-28

Family

ID=32023644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002241033A Expired - Fee Related JP3898102B2 (en) 2002-08-21 2002-08-21 Fuel cell vehicle air conditioner

Country Status (1)

Country Link
JP (1) JP3898102B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340174A (en) * 2004-04-07 2005-12-08 Yamaha Motor Co Ltd Fuel cell system and its control method
JP2008306784A (en) * 2007-06-05 2008-12-18 Honda Motor Co Ltd Fuel cell vehicle
JP2009113539A (en) * 2007-11-02 2009-05-28 Toyota Motor Corp Air conditioning system for fuel cell powered vehicle
JP2009303359A (en) * 2008-06-12 2009-12-24 Honda Motor Co Ltd Fuel cell vehicle
WO2013183631A1 (en) * 2012-06-04 2013-12-12 日産自動車株式会社 Fuel cell system
CN104241666A (en) * 2013-06-13 2014-12-24 现代自动车株式会社 System and method for operating positive temperature coefficient heater in fuel cell vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340174A (en) * 2004-04-07 2005-12-08 Yamaha Motor Co Ltd Fuel cell system and its control method
JP2008306784A (en) * 2007-06-05 2008-12-18 Honda Motor Co Ltd Fuel cell vehicle
JP2009113539A (en) * 2007-11-02 2009-05-28 Toyota Motor Corp Air conditioning system for fuel cell powered vehicle
JP2009303359A (en) * 2008-06-12 2009-12-24 Honda Motor Co Ltd Fuel cell vehicle
WO2013183631A1 (en) * 2012-06-04 2013-12-12 日産自動車株式会社 Fuel cell system
CN104241666A (en) * 2013-06-13 2014-12-24 现代自动车株式会社 System and method for operating positive temperature coefficient heater in fuel cell vehicle

Also Published As

Publication number Publication date
JP3898102B2 (en) 2007-03-28

Similar Documents

Publication Publication Date Title
US7377345B2 (en) Idle control system for fuel cell vehicle
JP4538418B2 (en) Secondary battery charge / discharge controller
JP4686290B2 (en) In-vehicle fuel cell system and control method thereof
JP5783324B2 (en) Fuel cell system
JP5348549B2 (en) Electric vehicle
JP3702827B2 (en) Fuel cell system
JP3596468B2 (en) Control device for fuel cell vehicle
JP3679070B2 (en) Control device for fuel cell vehicle
JP4386314B2 (en) Electric vehicle power control method
JP3822139B2 (en) Fuel cell power supply
WO2008023245A2 (en) Battery control system and battery control method
JP3730592B2 (en) Control device for fuel cell vehicle
JP2003189409A (en) Motor-mounted vehicle
JP4308479B2 (en) Fuel cell power supply
JP2018133147A (en) Fuel cell system
JP2002044807A (en) Power supply for electric vehicle
JP4816872B2 (en) Fuel cell system
JP3898102B2 (en) Fuel cell vehicle air conditioner
EP1953857B1 (en) Fuel cell system
JP4180998B2 (en) Fuel cell power generation system
JP2008034309A (en) Fuel battery system
KR100836355B1 (en) Idle heating system and method using braking resistor in fuel cell vehicle
JP2005312243A (en) Regeneration power control device of moving body
JP2004312964A (en) Electric vehicle and performance setting method
JP4626161B2 (en) Cooling device for electric equipment mounted on vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3898102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees