JP2004074834A - Bumper reinforcing material - Google Patents

Bumper reinforcing material Download PDF

Info

Publication number
JP2004074834A
JP2004074834A JP2002234146A JP2002234146A JP2004074834A JP 2004074834 A JP2004074834 A JP 2004074834A JP 2002234146 A JP2002234146 A JP 2002234146A JP 2002234146 A JP2002234146 A JP 2002234146A JP 2004074834 A JP2004074834 A JP 2004074834A
Authority
JP
Japan
Prior art keywords
reinforcing material
groove
auxiliary
mountain
bumper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002234146A
Other languages
Japanese (ja)
Inventor
Koji Shimozu
下津 晃治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OM Industry Co Ltd
Original Assignee
OM Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OM Industry Co Ltd filed Critical OM Industry Co Ltd
Priority to JP2002234146A priority Critical patent/JP2004074834A/en
Publication of JP2004074834A publication Critical patent/JP2004074834A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide structure a which demonstrates structure strength and shock absorbing performance not inferior to a bumper reinforcing material of closed section structure by preventing the top and bottom surfaces from opening in the bumper reinforcing material of the opened section structure. <P>SOLUTION: The bumper reinforcing material consists of a main reinforcing material 3 of the opened section structure consisting of a front surface 9 and top and bottom surfaces 10, 11, and an auxiliary reinforcing material 1 suspended from the front surface 9 of the main reinforcing material 3 to the top and bottom surfaces 10, 11 respectively. The auxiliary reinforcing material 1 forms a section having projecting ridge-folding part 14 toward the front surface 9. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、前面及び上下側面からなる開放断面構造(背面開放)のバンパ補強材に関する。
【0002】
【従来の技術】
自動車の保安部品の一つであるバンパは、近年、強度メンバであるバンパ補強材と化粧メンバであるバンパカバーとから構成されるのが一般的である。前記バンパ補強材は、断面形状の違いから、閉鎖断面構造のバンパ補強材と開放断面構造のバンパ補強材とに分けることができる。あくまで高い構造強度を求める場合には閉鎖断面構造のバンパ補強材が優れているが、加工が容易で低コストに製造可能な開放断面構造のバンパ補強材も多用されており、構造強度や衝撃吸収性能を閉鎖断面構造のバンパ補強材に近づけるべく、種々提案がされている(実用新案登録第2554459号、US2002/0047281、DE199 12 272 A1、特開平09−095189号、USP4492398及びUSP4998761等)。
【0003】
【発明が解決しようとする課題】
開放断面構造のバンパ補強材が、閉鎖断面構造のバンパ補強材に構造強度で劣る理由は、後縁が自由状態にある上下側面が前面によって拘束される前縁を軸に上下方向に開こうとすることで断面係数を下げてしまうことに起因する。加えて、前記断面係数の低下は、当然に前面に対して前方から衝撃が加わった際に生じることから、上下側面が開くと同時に吸収できる衝撃エネルギーも少なくなり、バンパ補強材としての衝撃吸収性能が発揮できなくなる問題をもたらしていた。
【0004】
これから、開放断面構造のバンパ補強材が、閉鎖断面構造のバンパ補強材相当の構造強度を発揮し、かつ衝撃印加時における衝撃吸収性能の低下を招かないようにするには、上下側面が開かないようにすればよい。そこで、主として上下側面が開くことを防止する構造とし、閉鎖断面構造のバンパ補強材に劣らない構造強度及び衝撃吸収性能を発揮する開放断面構造のバンパ補強材を開発するため、検討した。
【0005】
【課題を解決するための手段】
検討の結果開発したものが、前面及び上下側面からなる開放断面構造の主補強材と、この主補強材の前面から上下側面それぞれに架設した補助補強材とからなり、この補助補強材は前面に向けて断面凸な山折れ部を形成したバンパ補強材である。本発明のバンパ補強材は、外形を構成する主補強材と、この主補強材における上下側面の開きを防止する補助補強材との組合せからなる。主補強材は、通常ロール成形等により1枚の板材から形成される。補助補強材は、山折れ部を挟む内外山裾面からなり、前記主補強材の前面及び上下側面に囲まれた内側で、(1)前面内側から上下側面内側それぞれへ個別に架設する2部材構成(別体型)と、(2)下側面内側、前面内側及び上側面内側へと連続して架設する1部材構成(一体型)とがある。
【0006】
本発明のバンパ補強材における補助補強材は、端に前面及び上下側面それぞれに架設しただけではなく、内外山裾面に挟まれた山折れ部を前面へ向けて断面凸に形成している点に特徴がある。これにより、例えばバンパ補強材が前面から衝撃を受けると、前面に端部を接合する内山裾面と、上下側面に端部を接合する外山裾面とが、山折れ部に対して相対的に後退し、山折れ部を軸として内外山裾面が折り畳まれる、すなわち外山裾面は内向きに傾倒しようとする。この外山裾面の内向きの傾倒が、上下側面の開きを防止し、開放断面構造のバンパ補強材の構造強度及び衝撃吸収性能の低下を防止する。
【0007】
補助補強材は、前面に向けて凸な山折れ部を形成するため、前記山折れ部の突出する空間を確保する必要がある。この場合、主補強材の前面が平坦であれば、内山裾面の端部から折り返した内接合面を前面に接合する。しかし、内山裾面と内接合面との折り返しが、前面に対する内山裾面の追従を阻害する虞がある。そこで、主補強材は、前面に溝底面及び溝側面からなる断面凹な前面溝部を設け、この前面溝部から上下側面それぞれに補助補強材を架設するとよい。溝底面が前面に対して山折れ部の突出分だけ後方に下がった位置にあれば、内山裾面の端部をそのまま溝底面に対して接合できる。加えて、前面溝部は前面の剛性を高めて部分的な変形を抑制する。これは、例えばポール衝突等、部分的な衝撃を受けた場合に、延在方向(通常車両の幅方向)で前面が広く変形させて、部分的な変形=座屈による衝撃吸収性能の低下を防止する効果もある。
【0008】
ここで、主補強材に前面溝部を設けた場合、内外山裾面の折り畳みを円滑に導くには、補助補強材は前面溝部の溝側面に山折れ部を近接させるとよい。内外山裾面の折り畳みは、上述したように、山折れ部に対して内外山裾面の端部が相対的な後退することにより促される。ここで、山折れ部が溝側面から遠ざかる、すなわち上下側面に近接すると、補助補強材は前面溝部の後退の影響を受けにくくなる。また、上下側面に対して内向きに傾倒する外山裾面のモーメントが小さくなるので、上下側面の開きを抑制する作用が小さくなる。これから、山折れ部はできるだけ内側、前面溝部の溝側面に近接させる構成がよい。
【0009】
より具体的には、内山裾面は溝側面に近接するものの密着せず、溝底面に接合した端部から溝側面に対して開いた関係にあるとよい。山折れ部を軸として内外山裾面が折り畳まれるとき、内山裾面は相対的に前面溝部に向けて傾倒するため、前記傾倒を許容する構造であることが望まれる。開いた関係にある内山裾面及び溝側面の隙間は、内山裾面の傾倒代として、内山裾面の傾倒を許容する構造の一つであり、比較的容易に実現できる構造として好ましい。
【0010】
補助補強材は、上述の通り、別体型として構成してもよいが、部材数が増加したり、接合時の位置決めが難しかったり、前面又は前面溝部の後退を上下不均等に受ける問題がある。そこで、部材数の増加を抑え、また前面又は前面溝部の後退を上下均等に受ける目的から、補助補強材は、対となる内山裾面の端部に補助底面を架設して補助溝部を形成した上下一体の部材とし、前面溝部の溝底面と前記補助溝部の補助底面とを接面状態で結合する構成にするとよい。
【0011】
ここで、上下均等に受ける前面溝部の後退により、上下の内外山裾面が同様に折り畳まれるように、各山折れ部は上下対称位置に設けることが望ましい。また、前面溝部の後退による作用を十分に発揮させるには、この一体型の補助補強材でも、前面溝部の溝側面に各山折れ部を近接させる構成が好ましい。このとき、内山裾面が溝側面に密着せず、溝底面に接合した端部から溝側面に対して開いた関係にあることが望ましいことも同様である。
【0012】
【発明の実施の形態】
以下、本発明の実施形態について図を参照しながら説明する。図1は上下一体型補助補強材1を前面溝部2のある主補強材3に用いた例を表す断面図、図2は上下別体型補助補強材4,4を前面溝部2のある主補強材3に用いた例を表す断面図、図3は上下一体型補助補強材5を前面溝部のない主補強材6に用いた例を表す断面図、図4は上下別体型補助補強材7,7を前面溝部のない主補強材6に用いた例を表す断面図、図5は主補強材3と同長の補助補強材1を用いた例の部分斜視図、図6は主補強材3に対して短尺な補助補強材8を複数用いた例の部分斜視図で、図7は前面方向から衝撃Fが印加された場合に変形したバンパ補強材(主補強材3及び補助補強材1)を表した図1相当断面図である。
【0013】
本発明のバンパ補強材は、補助補強材が一体型か、別体型か、バンパ補強材に前面溝部があるか、否かの組み合わせにより、種々の構成がある(後継図2〜図4参照)が、最も好適な構成が図1に示す上下一体型補助補強材1を前面溝部2のある主補強材3に用いた例である。本例の主補強材3は、前面溝部2を設けた前面9と上下側面10,11とからなる。前面溝部2は、前面9から連続した折り曲げ加工により形成しており、一対の溝側面12,12及び溝底面13からなる凹溝として、主補強材3の延在方向(図1中紙面直交方向)に延設している。本例では、この前面溝部2を設けたことにより、補助補強材1に形成している一対の山折れ部14,14が突出する空間を確保している。上下側面10,11には、補強目的及び後述する外山裾面15の位置決め目的の段差部16を形成している。前記段差部16は、上下側面10,11の剛性を高めるリブの働きも有する。また、背面は開放しているが、上下側面10,11の後端縁を延設して内向きに折り曲げ、リブ背面17,17を形成している。
【0014】
補助補強材1は、断面形状において、前面溝部2に接合する補助溝部18を中心に、上下対称に内山裾面19,19、山折れ部14,14及び外山裾面15,15を折り曲げ加工により一体形成している。補助溝部18は、補助底面20を前面溝部2の溝底面13に接面状態で接合している。また、外山裾面15は、端部として上下側面10,11と平行に折り曲げて延びる外接面部21の前記外折り曲げ縁22を上下側面10,11に形成した段差部16に宛い、外接面部21を上下側面10,11に内接状態で接合している。ここで、内山裾面19は、前面溝部2の溝側面12に向けての傾倒代を形成するため、溝底面13に対する溝側面12の開度(溝底面13及び溝側面12の各接線が交差する角度)よりも大きな開度で開いている。
【0015】
内外山裾面19,15が形成する角度、すなわち山折れ部14の角度は、内外山裾面19,15が折り畳める必要から180度以下、好ましくは90度以下とする。この山折れ部14の角度の下限は特に限定しないが、前記角度が小さくなるにつれて山折れ部14が前面9に接近するため、この山折れ部14が前面に当接しない範囲で前記角度を決定する。この場合、前面溝部2を設けたことにより形成される空間の存在は、山折れ部14の角度を小さくできるようにする利点がある。
【0016】
上下一体の補助補強材10,11における補助溝部18の補助底面20を前面溝部2の溝底面13に接面状態で接合する構造は、補助底面20のみを溝底面13に接合しても、内山裾面19の端部を溝底面13に接合しても同じである。このため、例えば図2に見られるように、上下別体の補助補強材4,4を用い、各補助補強材4の内山裾面19の端部として折り曲げて延びる内接面部23を前面溝部2の溝底面13に接面状態で接合しても、上記例示と同じ作用、効果を得ることができる。
【0017】
また、主補強材6に前面溝部を設けない場合、図3に見られるように、一体型の補助補強材5では、前面9に向けて突出した接面凸部24を対となる内山裾面19,19の端部に掛け渡して形成し、この接面凸部24を前面9内側に接面状態で接合するとよい。補助補強材7,7が別体型であれば、図4に見られるように、各補助補強材7の内山裾面19の端部から個別に形成した接面凸部25,25をそれぞれ前面内側に接面して接合するとよい。
【0018】
本発明は、(1)主補強材内で前面又は前面溝部から上下側面に架設した補助補強材が内外山裾面に挟まれた山折れ部からなり、(2)主補強材の前面に衝撃を受けた場合、前記山折れ部を軸に内外山裾面が折り畳まれることで、上下側面が開くことを防止する。裏返せば、前記2点を充足した断面構造(図1〜図4参照)を有している限り、主補強材の構造や、補助補強材の一体型又は別体型は自由でよいことになる。
【0019】
また、本発明の主補強材3は、断面構造において、前面9又は前面溝部2と上下側面10,11とに補助補強材1を架設すればよく、補助補強材1が主補強材3の延在方向(例えば図1中紙面直交方向)に長尺であるか、短尺であるかは問わない。これから、通常は図5に見られるように主補強材3と同長の補助補強材1を用いるが、例えば図6に見られるように、主補強材3の延在方向に短尺な補助補強材8を断続的に設けてもよい。主補強材3と同長の補助補強材1(図5)は、前面9のいずれに衝撃が加わっても補助補強材1による上下側面10,11の開き防止の効果を等しく受けることができる。しかし、短尺な補助補強材8(図6)でも、各補助補強材8,8の間隔を適当に決定することで隣り合う補助補強材8,8が上下側面10,11の開きを抑制するため、必要十分な構造強度及び衝撃吸収性能の向上を図ることができる。更に、短尺な補助補強材8を用いた場合、材料を節減できるという効果もある。
【0020】
図1に示した主補強材3の変形を説明する。衝撃Fが前面9から印加されると、図7に見られるように、前面溝部2を中心に前面9が後方に向かって凹むように後退する(図7中右方向へ変位する)。同じく上下側面10,11も後退しようとするが、圧縮変形となる上下側面10,11の後退は前記前面9に比べて小さく、むしろ上下方向へ開こうとする(図7中上下方向、波線矢印参照)。ここで、補助補強材1の内外山裾面19,15は、それぞれ接合した前面溝部2又は上下側面10,11に追随して後退しようとするため、山折れ部14が相対的に前進する格好となる。
【0021】
この結果、補助補強材1は、山折れ部14を軸として内外山裾面19,15を折り畳むことになる。ここで、内山裾面19が前面溝部2の溝側面12に対して離隔して傾倒代を形成していると、内山裾面19の相対的な溝側面12に向けての傾倒(溝側面12から見れば山折れ部14が接近する変形)が許され、相対的に山折れ部14が内外山裾面19,15に対して相対的に前進(位置変位)できるようになる。裏返せば、前記傾倒代がないと、山折れ部14は前進しにくくなり、外山裾面15は山折れ部14を軸として外向き(図7中上下方向)に傾倒しかねない。傾倒代がなくても内外山裾面19,15が折り畳まれることもあるが、前記折り畳みを確実に導くには、内山裾面19の傾倒代を確保することが重要である。こうして、上下側面10,11は、内向きに折り畳まれる(傾倒する)外山裾面15,15に引っ張られることで、開きが防止されることになる。
【0022】
【実施例】
本発明に基づく開放断面構造のバンパ補強材(図1参照、実施例)と、衝撃吸収性能の面から閉断面構造のバンパ補強材(図8及び図9参照、比較例1及び2)とを比較するため、それぞれについてコンピュータシミュレーションによるポール衝突試験及び平面衝突試験を実施した。
【0023】
実施例は、前面溝部2のある開放断面構造の主補強材3に上下一体型補助補強材1を取り付けた開放断面構造のバンパ補強材(図1)で、補助補強材1及び主補強材3の板厚t=1.6mm、断面外形=120mm(上下側面幅)×68mm(前面〜背面リブ)、延在方向長さ(バンパとしての幅)=780mm、前面溝部2は開口=30mm、溝底面幅=20mm、深さ=18mmで、総重量7.52kgである。
【0024】
比較例1は、背面溝部28を設け、この背面溝部28から前面9に架設する補強リブ29を形成した閉鎖断面構造のバンパ補強材(図8)で、板厚t=1.7mm、断面外形=120mm(上下側面幅)×68mm(前面〜背面)、延在方向長さ(バンパとしての幅)=780mm、背面溝部28は開口=30mm、溝底面幅=20mm、深さ=15mmで、総重量7.54kgである。
【0025】
比較例2は、背面30から前面9に向けて突出する接面凸部31を形成した閉鎖断面構造のバンパ補強材(図9)で、板厚t=1.6mm、断面外形=120mm(上下側面幅)×68mm(前面〜背面)、延在方向長さ(バンパとしての幅)=780mm、接面凸部31は開口=30mm、接面凸部底=24mmで、総重量7.57kgである。
【0026】
まず、実施例、比較例1及び2にポール衝突試験を実施した。具体的には、各バンパ補強材の前面から、車両重量=1,300kg、速度=約8.0km/hとした衝撃(荷重)Fを部分的に加え、この衝撃Fにより前面が後方に向けて変位する際の変位量(mm)と各変位量毎に吸収できる荷重(kN)を計算した。ポール衝突であるため、バンパ補強材の部分的な変形に留まり、衝撃吸収性能の違いは主に断面構造の違いとして現れることが想像できる。
【0027】
試験結果を、図10の荷重−変位曲線を表したグラフに示す。このグラフから明らかなように、閉鎖断面構造の比較例1及び2は、変位量40mm以下で実施例に比べて高い荷重を示しているが、この変位量40mmに至った時点で座屈を生じて衝撃吸収できなくなっている。これに対し、実施例は変位量20mmから略一定の衝撃吸収を示し、変位量50mmまで安定した衝撃吸収性能を示した。バンパ補強材が吸収し得る総荷重吸収量は、グラフの面積に比例することから、実施例、比較例1及び2は、総荷重吸収量で大差ない衝撃吸収性能を示すことが分かる。
【0028】
次に、実施例、比較例1及び2に平面衝突試験を実施した。具体的には、各バンパ補強材の前面から、車両重量=1,300kg、速度=約8.0km/hとした衝撃(荷重)Fを全体的に加え、この衝撃Fにより前面が後方に向けて変位する際の変位量(mm)と各変位量毎に吸収できる荷重(kN)を計算した。平面衝突であるため、バンパ補強材の延在方向で広い範囲の変形を伴い、断面構造だけでなく、バンパ補強材の全体的な衝撃吸収性能を測ることができる。
【0029】
試験結果を、図11の荷重−変位曲線を表したグラフに示す。このグラフから明らかなように、閉鎖断面構造の比較例1及び2は、背面溝部(比較例1)又は接面凸部(比較例2)のおかげで、ポール衝突の場合に比べて変位量50mmまでは高い衝撃吸収性能を示すが、やはり変位量50mm以降では、座屈を生じて急激に衝撃吸収性能を低下させている。これに対して、実施例は変位量60mmまで衝撃吸収性能を発揮し、変位量60mm以降も比較的緩やかに吸収できる荷重を低下させている。
【0030】
このように、本発明を適用した開放断面構造のバンパ補強材は、閉鎖断面構造のバンパ補強材と必ずしも衝撃吸収性能で一致する特性を示すものではない(例えば吸収できる荷重の最高値は異なる)が、従来一般的に閉鎖断面構造のバンパ補強材に劣るとされていた開放断面構造のバンパ補強材の衝撃吸収性能を、ほとんど同レベルにまで引き上げる効果があることが確認された。
【0031】
また、上記各試験では、変位量に比例した実施例の変形態様をグラフィックスで表し、上下側面の開き具合を確認したところ、従来の開放断面構造のバンパ補強材と異なり、上下側面が開くことはなかった。これは、明らかに補助補強材による開き防止の作用が働いていることを示している。これから、上述の通り衝撃吸収性能が近似し、特に荷重−変位曲線が接近していることから、本発明の開放断面構造のバンパ補強材は、構造強度の面においても閉鎖断面構造のバンパ補強材に近づいていることが分かる。
【0032】
【発明の効果】
本発明により、構造強度及び衝撃吸収性能において、閉鎖断面構造のバンパ補強材に劣らない開放断面構造のバンパ補強材を提供できるようになる。これは、山折れ部を挟んだ内外山裾面からなる補助補強材に負うところが大きい。バンパ補強材(主補強材)の前面に変形がなければ、前面から上下側面に直線部材を掛け渡すだけでも上下側面を前面に対して位置拘束でき、開きを防止できる。しかし、実際のバンパ補強材(主補強材)の前面は一様でなく変形するから、場合によっては前記直線部材が上下側面を押し開く可能性がある。本発明の補助部材は、直接衝撃の影響を受けない山折れ部を設け、相対的に傾倒する内外山裾面が前記山折れ部を軸に折り畳むことで、バンパ補強材(主補強材)の前面の変形を許しながら、外山裾面の傾倒による上下側面の開きを防止できる効果がある。
【0033】
上記のように、補助補強材は内外山裾面の各端部を前面及び上下側面に接合するが、この場合端部を延ばして形成した接面部を内接して接合すれば、前面又は上下側面の剛性を高めることができる。とりわけ、前面に前面溝部を設けたバンパ補強材では、上下一体型の補助補強材の補助溝部を相似に形成し、この補助溝部の補助底面を前面溝部の溝底面に接面状態で接合することで、通常衝撃を受ける前面の剛性をより高めることができる。このほか、前記溝部相互を接合するバンパ補強材及び補助補強材の組合せでは、バンパ補強材に対する補助補強材の取付に際する位置決めが容易になる利点もある。
【0034】
このほか、開放断面構造のバンパ補強材は、閉鎖断面構造のバンパ補強材に比較して材料を節約して軽量化しやすく、背面側が開放していることから車体側への取付自由度が高いという実際的な利点があった。しかし、構造強度又は衝撃吸収性能が閉鎖断面構造のバンパ補強材に比べて劣っていたため、従来の開放断面構造のバンパ補強材では前記高い取付自由度という利点を活かして用いる場面が多くなかった。本発明は、従来の開放断面構造のバンパ補強材の欠点を克服し、軽量化及び取付自由度の利点をより広く利用できるようにする点に大きな効果がある。
【図面の簡単な説明】
【図1】上下一体型補助補強材を前面溝部のあるバンパ補強材に用いた例を表す断面図である。
【図2】上下別体型補助補強材を前面溝部のあるバンパ補強材に用いた例を表す断面図である。
【図3】上下一体型補助補強材を前面溝部のないバンパ補強材に用いた例を表す断面図である。
【図4】上下別体型補助補強材を前面溝部のないバンパ補強材に用いた例を表す断面図である。
【図5】バンパ補強材と同長の補助補強材を用いた例の部分斜視図である。
【図6】バンパ補強材に対して短尺な補助補強材を複数用いた例の部分斜視図である。
【図7】前面方向から衝撃Fが印加された場合に変形したバンパ補強材を表した図1相当断面図である。
【図8】背面溝部を設け、この背面溝部から前面に架設する補強リブを形成した閉鎖断面構造のバンパ補強材の断面図である。
【図9】背面から前面に向けて突出する接面凸部を形成した閉鎖断面構造のバンパ補強材の断面図である。
【図10】ポール衝突試験結果の荷重−変位曲線を表したグラフである。
【図11】平面衝突試験結果の荷重−変位曲線を表したグラフである。
【符号の説明】
1 上下一体型補助補強材
2 前面溝部
3 主補強材
9 前面
10 上側面
11 下側面
12 溝側面
13 溝底面
14 山折れ部
15 外山裾面
18 補助溝部
19 内山裾面
20 補助底面
21 外接面部
22 外折り曲げ縁
23 内接面部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a bumper reinforcing material having an open cross-sectional structure (open rear surface) including a front surface and upper and lower side surfaces.
[0002]
[Prior art]
2. Description of the Related Art In recent years, a bumper, which is one of security parts of an automobile, is generally composed of a bumper reinforcing material as a strength member and a bumper cover as a decorative member. The bumper reinforcing material can be divided into a bumper reinforcing material having a closed cross-sectional structure and a bumper reinforcing material having an open cross-sectional structure due to a difference in cross-sectional shape. When high structural strength is required, a bumper reinforcement with a closed cross section is superior, but a bumper reinforcement with an open cross section that is easy to process and can be manufactured at low cost is often used, and the structural strength and shock absorption are high. Various proposals have been made to bring the performance closer to that of a bumper reinforcing material having a closed sectional structure (U.S. Patent No. 2,554,459, US 2002/0047281, DE 199 12 272 A1, JP-A-09-095189, US Pat. No. 4,492,398, and US Pat.
[0003]
[Problems to be solved by the invention]
The reason why the bumper reinforcement with the open cross-section structure is inferior in structural strength to the bumper reinforcement with the closed cross-section structure is that the rear edge is free and the upper and lower sides are restrained by the front surface. This lowers the section modulus. In addition, the lowering of the section modulus naturally occurs when an impact is applied to the front surface from the front, so that the impact energy that can be absorbed at the same time when the upper and lower side surfaces are opened is reduced, and the impact absorption performance as a bumper reinforcing material is reduced. Had the problem of not being able to demonstrate.
[0004]
From now on, the upper and lower side surfaces must not be opened so that the bumper reinforcing material having the open cross-sectional structure exhibits structural strength equivalent to that of the bumper reinforcing material having the closed cross-sectional structure and does not cause a reduction in shock absorbing performance when a shock is applied. What should I do? Therefore, a study was conducted to develop a bumper reinforcement having an open cross-sectional structure that has a structure that mainly prevents the upper and lower side surfaces from being opened, and exhibits structural strength and shock absorption performance that are not inferior to those of a bumper reinforcement having a closed cross-section.
[0005]
[Means for Solving the Problems]
As a result of the study, what was developed consists of a main reinforcing material with an open cross-sectional structure consisting of the front and upper and lower side surfaces, and auxiliary reinforcing materials erected from the front of this main reinforcing material to the upper and lower sides, respectively. It is a bumper reinforcing material formed with a mountain-folded portion having a convex cross section toward it. The bumper reinforcement of the present invention is composed of a combination of a main reinforcement constituting the outer shape and an auxiliary reinforcement for preventing the upper and lower side surfaces of the main reinforcement from opening. The main reinforcing material is usually formed from one sheet material by roll forming or the like. The auxiliary reinforcing member is formed of inner and outer mountain skirts sandwiching the mountain-folded portion. Inside the front reinforcing member and the inner side surrounded by the upper and lower side surfaces, (1) a two-member structure that is separately erected from the front side inner side to the upper and lower side inner sides. (Separate body type) and (2) a one-member configuration (integral type) that is continuously installed on the lower side inner side, the front side inner side, and the upper side inner side.
[0006]
The auxiliary reinforcing material in the bumper reinforcing material of the present invention is not only erected on the front surface and the upper and lower side surfaces at the ends, but also has a mountain bent portion sandwiched between the inner and outer mountain skirt surfaces formed to have a convex cross section toward the front surface. There are features. Thereby, for example, when the bumper reinforcing material receives an impact from the front surface, the inner mountain hem surface joining the end portion to the front surface and the outer mountain hem surface joining the end portion to the upper and lower side surfaces are relatively positioned with respect to the crease portion. It retreats, and the inner and outer mountain skirts are folded around the mountain fold, that is, the outer mountain skirt attempts to tilt inward. The inward tilt of the outer skirt prevents the upper and lower side surfaces from opening, and prevents the structural strength and shock absorbing performance of the bumper reinforcement having the open cross-sectional structure from deteriorating.
[0007]
Since the auxiliary reinforcing material forms a mountain fold that is convex toward the front surface, it is necessary to secure a space in which the mountain fold protrudes. In this case, if the front surface of the main reinforcement is flat, the inner joint surface turned back from the end of the inner mountain skirt surface is joined to the front surface. However, there is a possibility that the turning back of the inner mountain skirt surface and the inner joint surface may obstruct the following of the inner mountain skirt surface with respect to the front surface. In view of this, the main reinforcing member is preferably provided with a front groove having a concave cross section composed of a groove bottom surface and a groove side surface on the front surface, and auxiliary reinforcing members provided on the upper and lower side surfaces from the front groove portion. If the bottom of the groove is located at a position lower than the front by the protrusion of the crest, the end of the inner skirt can be directly joined to the bottom of the groove. In addition, the front groove increases the rigidity of the front surface and suppresses partial deformation. This is because, when a partial impact such as a pole collision is received, the front surface is widely deformed in the extending direction (usually in the width direction of the vehicle), and the partial deformation = buckling reduces the impact absorbing performance. It also has the effect of preventing.
[0008]
Here, when the main reinforcing member is provided with the front groove portion, the auxiliary reinforcing member may be provided with the mountain bent portion close to the groove side surface of the front groove portion in order to smoothly guide the folding of the inner and outer mountain bottom surfaces. The folding of the inner and outer mountain skirts is promoted by the relative retreat of the inner and outer mountain skirts with respect to the mountain fold as described above. Here, when the mountain-folded portion moves away from the groove side surface, that is, approaches the upper and lower side surfaces, the auxiliary reinforcing member is less susceptible to the retreat of the front groove portion. In addition, since the moment of the outer mountain skirt surface inclining inward with respect to the upper and lower side surfaces is reduced, the effect of suppressing the opening of the upper and lower side surfaces is reduced. For this reason, it is preferable that the mountain fold is made as close as possible to the inside and to the groove side surface of the front groove.
[0009]
More specifically, it is preferable that the inner mountain skirt surface is close to the groove side surface but does not adhere to the groove side surface, and has an open relation to the groove side surface from the end joined to the groove bottom surface. When the inner and outer mountain skirts are folded around the mountain fold, the inner mountain skirt is relatively tilted toward the front groove, so that it is desirable that the structure be configured to allow the tilt. The gap between the inner mountain skirt surface and the groove side surface in an open relationship is one of structures that allow the inner mountain skirt surface to tilt as a tilt allowance of the inner mountain skirt surface, and is preferable as a structure that can be realized relatively easily.
[0010]
As described above, the auxiliary reinforcing member may be configured as a separate body, but there are problems that the number of members is increased, positioning at the time of joining is difficult, and retreat of the front surface or the front groove is uneven. Therefore, in order to suppress an increase in the number of members and to receive the retreat of the front surface or the front groove portion vertically evenly, the auxiliary reinforcing material has an auxiliary bottom portion formed at the end of the pair of inner mountain skirt surfaces by forming an auxiliary bottom surface. It is preferable that the upper and lower members are integrally formed, and the groove bottom surface of the front groove portion and the auxiliary bottom surface of the auxiliary groove portion are joined in a contact state.
[0011]
Here, it is desirable that each mountain bend is provided in a vertically symmetrical position so that the upper and lower inner and outer mountain skirt surfaces are similarly folded by the retreat of the front groove received uniformly in the vertical direction. Further, in order to sufficiently exert the effect of the retreat of the front groove portion, it is preferable that even with the integrated auxiliary reinforcing member, each mountain bent portion is brought close to the groove side surface of the front groove portion. At this time, it is also desirable that the inner mountain skirt surface does not adhere to the groove side surface, and the end portion joined to the groove bottom surface preferably has an open relation to the groove side surface.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing an example in which an upper and lower integrated auxiliary reinforcing member 1 is used as a main reinforcing member 3 having a front groove 2. FIG. 2 is an upper and lower separate auxiliary reinforcing member 4 and a main reinforcing member having a front groove 2. 3 is a cross-sectional view illustrating an example in which the upper and lower integrated auxiliary reinforcing members 5 are used as a main reinforcing member 6 without a front groove, and FIG. 4 is a cross-sectional view illustrating upper and lower separate auxiliary reinforcing members 7. 5 is a cross-sectional view showing an example in which the main reinforcing member 6 having no front groove is used, FIG. 5 is a partial perspective view of an example in which the auxiliary reinforcing member 1 having the same length as the main reinforcing member 3 is used, and FIG. FIG. 7 is a partial perspective view of an example in which a plurality of short auxiliary reinforcing members 8 are used. FIG. 7 shows a bumper reinforcing member (main reinforcing member 3 and auxiliary reinforcing member 1) deformed when an impact F is applied from the front. FIG. 2 is a sectional view corresponding to FIG.
[0013]
The bumper reinforcing material of the present invention has various configurations depending on the combination of whether the auxiliary reinforcing material is an integral type, a separate type, and whether or not the bumper reinforcing material has a front groove portion (see succeeding FIGS. 2 to 4). However, the most preferable configuration is an example in which the vertically integrated auxiliary reinforcing member 1 shown in FIG. 1 is used as the main reinforcing member 3 having the front groove 2. The main reinforcing member 3 of this embodiment includes a front surface 9 provided with a front groove 2 and upper and lower side surfaces 10 and 11. The front groove 2 is formed by a continuous bending process from the front 9, and is formed as a concave groove formed by a pair of groove side surfaces 12, 12 and a groove bottom surface 13 in the extending direction of the main reinforcing member 3 (in the direction orthogonal to the paper surface in FIG. 1). ). In the present embodiment, the provision of the front groove 2 secures a space in which the pair of crests 14 formed in the auxiliary reinforcing member 1 project. The upper and lower side surfaces 10 and 11 are formed with stepped portions 16 for the purpose of reinforcement and for positioning the outer mountain skirt surface 15 described later. The step portion 16 also has a function of a rib for increasing the rigidity of the upper and lower side surfaces 10 and 11. Although the back surface is open, the rear ends of the upper and lower side surfaces 10 and 11 are extended and bent inward to form rib back surfaces 17 and 17.
[0014]
The auxiliary reinforcing member 1 is formed by bending the inner mountain skirt surfaces 19, 19, the mountain bent portions 14, 14 and the outer mountain skirt surfaces 15, 15 symmetrically about the auxiliary groove portion 18 joined to the front groove portion 2 in the cross-sectional shape. It is integrally formed. The auxiliary groove portion 18 joins the auxiliary bottom surface 20 to the groove bottom surface 13 of the front groove portion 2 in a contact state. Further, the outer mountain skirt surface 15 is directed to the stepped portion 16 in which the outer bent edge 22 of the outer contact surface portion 21 extending in parallel with the upper and lower side surfaces 10, 11 is formed on the upper and lower side surfaces 10, 11. Are joined to the upper and lower side surfaces 10 and 11 in an inscribed state. Here, since the inner mountain skirt surface 19 forms a tilt allowance toward the groove side surface 12 of the front groove portion 2, the opening degree of the groove side surface 12 with respect to the groove bottom surface 13 (each tangent of the groove bottom surface 13 and the groove side surface 12 intersects). The angle is larger than the opening angle.
[0015]
The angle formed by the inner and outer mountain skirt surfaces 19 and 15, that is, the angle of the mountain-folded portion 14 is 180 degrees or less, preferably 90 degrees or less because the inner and outer mountain hem surfaces 19 and 15 need to be folded. Although the lower limit of the angle of the fold portion 14 is not particularly limited, the fold portion 14 approaches the front surface 9 as the angle decreases, so that the angle is determined within a range where the fold portion 14 does not abut the front surface. I do. In this case, the presence of the space formed by providing the front groove 2 has an advantage that the angle of the mountain fold 14 can be reduced.
[0016]
In the structure in which the auxiliary bottom surface 20 of the auxiliary groove portion 18 in the vertically integrated auxiliary reinforcing members 10 and 11 is joined to the groove bottom surface 13 of the front groove portion 2 in a contact state, even if only the auxiliary bottom surface 20 is bonded to the groove bottom surface 13, The same applies to the case where the end of the mountain skirt surface 19 is joined to the groove bottom surface 13. For this reason, as shown in FIG. 2, for example, upper and lower auxiliary reinforcing members 4 and 4 are used, and an inscribed surface portion 23 which is bent and extended as an end of the inner skirt surface 19 of each auxiliary reinforcing member 4 is formed into a front groove portion 2. The same operation and effect as those described above can be obtained even when they are joined to the groove bottom surface 13 in a contact state.
[0017]
When the main reinforcing member 6 is not provided with a front groove, as shown in FIG. 3, the integral auxiliary reinforcing member 5 has a pair of contacting convex portions 24 protruding toward the front surface 9 and a pair of inner skirt surfaces. It is preferable that the contact surface protruding portion 24 is joined to the inside of the front surface 9 in a contact surface state. If the auxiliary reinforcing members 7, 7 are separate types, as shown in FIG. 4, the contact surface convex portions 25, 25 formed individually from the ends of the inner mountain skirt surface 19 of each auxiliary reinforcing member 7, respectively, are inward on the front side. It is good to join in contact.
[0018]
According to the present invention, (1) an auxiliary reinforcing member erected on the upper and lower side surfaces from the front surface or the front groove in the main reinforcing member is composed of a mountain bent portion sandwiched between inner and outer mountain skirt surfaces, and (2) an impact is applied to the front surface of the main reinforcing member. When it is received, the inner and outer mountain bottom surfaces are folded around the mountain bent portion to prevent the upper and lower side surfaces from being opened. In other words, as long as it has a cross-sectional structure that satisfies the above two points (see FIGS. 1 to 4), the structure of the main reinforcing member and the integral or separate type of the auxiliary reinforcing member may be freely set.
[0019]
In the cross-sectional structure, the main reinforcing member 3 of the present invention may have the auxiliary reinforcing member 1 provided on the front surface 9 or the front groove portion 2 and the upper and lower side surfaces 10 and 11, and the auxiliary reinforcing member 1 extends from the main reinforcing member 3. It does not matter whether it is long or short in the existing direction (for example, the direction perpendicular to the plane of FIG. 1). From now on, usually the auxiliary reinforcing material 1 having the same length as the main reinforcing material 3 is used as shown in FIG. 5, but as shown in FIG. 6, for example, the auxiliary reinforcing material which is short in the extending direction of the main reinforcing material 3 is used. 8 may be provided intermittently. The auxiliary reinforcing member 1 (FIG. 5) having the same length as the main reinforcing member 3 can equally receive the effect of preventing the upper and lower side surfaces 10 and 11 from being opened by the auxiliary reinforcing member 1 regardless of which impact is applied to the front surface 9. However, even in the case of the short auxiliary reinforcing members 8 (FIG. 6), the adjacent auxiliary reinforcing members 8, 8 suppress the opening of the upper and lower side surfaces 10, 11 by appropriately determining the interval between the auxiliary reinforcing members 8, 8. In addition, the necessary and sufficient structural strength and shock absorbing performance can be improved. Furthermore, when the short auxiliary reinforcing material 8 is used, there is also an effect that the material can be saved.
[0020]
The deformation of the main reinforcing member 3 shown in FIG. 1 will be described. When the impact F is applied from the front surface 9, as shown in FIG. 7, the front surface 9 retreats so as to be recessed rearward about the front groove 2 (displaces rightward in FIG. 7). Similarly, the upper and lower side surfaces 10 and 11 also try to retreat, but the retraction of the upper and lower side surfaces 10 and 11 that is compressively deformed is smaller than the front surface 9 and tends to open in the vertical direction (vertical direction in FIG. reference). Here, the inner and outer skirt surfaces 19 and 15 of the auxiliary reinforcing material 1 try to retreat following the front groove portion 2 or the upper and lower side surfaces 10 and 11 respectively joined, so that the mountain bent portion 14 relatively advances. Become.
[0021]
As a result, the auxiliary reinforcing member 1 folds the inner and outer mountain bottom surfaces 19 and 15 around the mountain bent portion 14 as an axis. Here, if the inner mountain skirt surface 19 is separated from the groove side surface 12 of the front groove portion 2 to form a tilting margin, the inclination of the inner mountain skirt surface 19 toward the relative groove side surface 12 (the groove side surface 12). As a result, the bent portion 14 is allowed to approach (deformation approaching), and the broken portion 14 can relatively advance (positionally displace) relative to the inner and outer mountain bottom surfaces 19 and 15. In other words, if there is no tilting allowance, the mountain bent portion 14 becomes difficult to move forward, and the outer mountain bottom surface 15 may tilt outward (up and down in FIG. 7) about the mountain bent portion 14 as an axis. Even if there is no tilting allowance, the inner and outer mountain skirt surfaces 19 and 15 may be folded, but it is important to secure the tilting allowance of the inner mountain skirt surface 19 to surely guide the folding. In this way, the upper and lower side surfaces 10, 11 are prevented from being opened by being pulled inward by the outer mountain skirt surfaces 15, 15 which are folded (tilted) inward.
[0022]
【Example】
A bumper reinforcing material having an open cross-sectional structure (see FIG. 1, Example) and a bumper reinforcing material having a closed cross-sectional structure (see FIGS. 8 and 9, Comparative Examples 1 and 2) in terms of shock absorbing performance are provided. For comparison, a pole collision test and a plane collision test by computer simulation were performed for each.
[0023]
The embodiment is a bumper reinforcing member having an open sectional structure in which an auxiliary reinforcing member 1 integrated vertically and vertically is attached to a main reinforcing member 3 having an open sectional structure having a front groove 2 (FIG. 1). Thickness t = 1.6 mm, cross-sectional outline = 120 mm (upper and lower side widths) × 68 mm (front to back ribs), length in the extending direction (width as a bumper) = 780 mm, opening in front groove 2 = 30 mm, groove The bottom width is 20 mm, the depth is 18 mm, and the total weight is 7.52 kg.
[0024]
Comparative Example 1 is a bumper reinforcing member (FIG. 8) having a closed cross-sectional structure in which a back groove 28 is provided, and a reinforcing rib 29 extending from the back groove 28 to the front surface 9 is formed. = 120 mm (upper and lower side widths) x 68 mm (front to back), length in the extending direction (width as a bumper) = 780 mm, opening of the back groove 28 = 30 mm, groove bottom width = 20 mm, depth = 15 mm, It weighs 7.54 kg.
[0025]
Comparative Example 2 is a bumper reinforcement (FIG. 9) having a closed cross-sectional structure in which a contact surface protruding portion 31 protruding from the back surface 30 toward the front surface 9 (FIG. 9). The side width) × 68 mm (front to back), the length in the extending direction (width as a bumper) = 780 mm, the opening of the protruding surface 31 is 30 mm, the bottom of the protruding surface = 24 mm, and the total weight is 7.57 kg. is there.
[0026]
First, a pole collision test was performed on the example and comparative examples 1 and 2. Specifically, an impact (load) F with a vehicle weight of 1,300 kg and a speed of about 8.0 km / h is partially applied from the front of each bumper reinforcement, and the impact F causes the front to face rearward. (Mm) and the load (kN) that can be absorbed for each displacement amount were calculated. Since it is a pole collision, it can be imagined that only a partial deformation of the bumper reinforcing material occurs, and a difference in shock absorbing performance mainly appears as a difference in cross-sectional structure.
[0027]
The test results are shown in the graph showing the load-displacement curve in FIG. As is clear from this graph, Comparative Examples 1 and 2 having a closed cross-sectional structure show a higher load than the example at a displacement of 40 mm or less, but buckling occurs when the displacement reaches 40 mm. And cannot absorb shock. On the other hand, the example exhibited substantially constant shock absorption from a displacement of 20 mm, and exhibited stable shock absorption performance up to a displacement of 50 mm. Since the total load absorption that can be absorbed by the bumper reinforcing material is proportional to the area of the graph, it can be seen that the Examples and Comparative Examples 1 and 2 exhibit impact absorption performance that is not much different from the total load absorption.
[0028]
Next, the examples and the comparative examples 1 and 2 were subjected to a plane collision test. Specifically, an impact (load) F with a vehicle weight of 1,300 kg and a speed of about 8.0 km / h is applied from the front of each bumper reinforcement, and the front faces rearward by the impact F. (Mm) and the load (kN) that can be absorbed for each displacement amount were calculated. Since this is a plane collision, a wide range of deformation is caused in the extending direction of the bumper reinforcing member, so that not only the sectional structure but also the overall shock absorbing performance of the bumper reinforcing member can be measured.
[0029]
The test results are shown in a graph showing a load-displacement curve in FIG. As is clear from this graph, the comparative examples 1 and 2 of the closed cross-sectional structure have a displacement amount of 50 mm compared to the case of the pole collision due to the back groove (Comparative Example 1) or the convex portion on the contact surface (Comparative Example 2). Up to the displacement amount of 50 mm, buckling occurs and the shock absorption performance is rapidly reduced. On the other hand, in the embodiment, the shock absorbing performance is exhibited up to the displacement amount of 60 mm, and the load that can be absorbed relatively slowly even after the displacement amount of 60 mm is reduced.
[0030]
As described above, the bumper reinforcing material having an open cross-sectional structure to which the present invention is applied does not necessarily exhibit characteristics that match the shock absorbing performance with the bumper reinforcing material having a closed cross-sectional structure (for example, the maximum value of the load that can be absorbed is different). However, it was confirmed that the bumper reinforcing material having the open cross-sectional structure, which was generally regarded as inferior to the bumper reinforcing material having the closed cross-sectional structure, had an effect of raising the shock absorbing performance to almost the same level.
[0031]
In each of the above tests, the deformation of the embodiment in proportion to the amount of displacement was represented by graphics, and the degree of opening of the upper and lower sides was confirmed. There was no. This clearly indicates that the effect of opening prevention by the auxiliary reinforcing material is working. From this, as described above, since the shock absorbing performance is similar, and particularly the load-displacement curves are close to each other, the bumper reinforcing material having the open cross-sectional structure of the present invention can be improved in terms of structural strength. You can see that it is approaching.
[0032]
【The invention's effect】
Advantageous Effects of Invention According to the present invention, it is possible to provide a bumper reinforcing material having an open cross-sectional structure that is not inferior to a bumper reinforcing material having a closed cross-sectional structure in structural strength and shock absorbing performance. This largely depends on the auxiliary reinforcing material consisting of the inner and outer mountain bottom surfaces sandwiching the mountain bend. If the front surface of the bumper reinforcing material (main reinforcing material) is not deformed, the upper and lower side surfaces can be restrained with respect to the front surface only by bridging the straight members from the front surface to the upper and lower side surfaces, and the opening can be prevented. However, since the front surface of the actual bumper reinforcing material (main reinforcing material) is not uniform and deformed, there is a possibility that the linear member pushes the upper and lower side surfaces in some cases. The auxiliary member according to the present invention is provided with a mountain-folded portion that is not directly affected by an impact, and the inner and outer mountain skirts that are relatively inclined are folded around the mountain-folded portion, so that the front surface of the bumper reinforcing material (main reinforcing material) is formed. This has the effect of preventing the upper and lower side surfaces from opening due to the inclination of the outer skirt surface while allowing the deformation of the outer mountain.
[0033]
As described above, the auxiliary reinforcing member joins each end of the inner and outer crests to the front surface and upper and lower side surfaces.In this case, if the contact surface portion formed by extending the end portion is inscribed and joined, the front or upper and lower side surfaces are The rigidity can be increased. In particular, in a bumper reinforcing material having a front groove portion on the front surface, the auxiliary groove portion of the vertically integrated auxiliary reinforcing member is formed similarly, and the auxiliary bottom surface of the auxiliary groove portion is joined to the groove bottom surface of the front groove portion in a contact state. Thus, the rigidity of the front surface that normally receives an impact can be further increased. In addition, the combination of the bumper reinforcing material and the auxiliary reinforcing material for joining the grooves has an advantage that the positioning of the auxiliary reinforcing material with respect to the bumper reinforcing material is facilitated.
[0034]
In addition, the bumper reinforcement with the open cross-section structure saves material and is easy to reduce weight compared to the bumper reinforcement with the closed cross-section structure, and has a high degree of freedom in mounting on the vehicle body because the back side is open. There were practical benefits. However, since the structural strength or the shock absorbing performance is inferior to that of the bumper reinforcing material having a closed cross-sectional structure, the conventional bumper reinforcing material having an open cross-sectional structure has not been used in many cases by taking advantage of the high degree of freedom of mounting. The present invention has a significant effect in overcoming the drawbacks of the conventional open-section bumper reinforcement and making the advantages of weight reduction and mounting flexibility more widely available.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating an example in which a vertically integrated auxiliary reinforcing material is used as a bumper reinforcing material having a front groove.
FIG. 2 is a cross-sectional view illustrating an example in which upper and lower separate auxiliary reinforcing members are used for a bumper reinforcing member having a front groove.
FIG. 3 is a cross-sectional view illustrating an example in which a vertically integrated auxiliary reinforcing material is used as a bumper reinforcing material without a front groove.
FIG. 4 is a sectional view showing an example in which upper and lower separate auxiliary reinforcing members are used for a bumper reinforcing member without a front groove.
FIG. 5 is a partial perspective view of an example using an auxiliary reinforcing material having the same length as a bumper reinforcing material.
FIG. 6 is a partial perspective view of an example in which a plurality of short auxiliary reinforcing members are used for a bumper reinforcing member.
FIG. 7 is a cross-sectional view corresponding to FIG. 1, illustrating a bumper reinforcing material deformed when an impact F is applied from the front side.
FIG. 8 is a cross-sectional view of a bumper reinforcing member having a closed cross-sectional structure in which a back groove is provided, and a reinforcing rib extending from the back groove to the front is formed.
FIG. 9 is a cross-sectional view of a bumper reinforcing member having a closed cross-sectional structure in which a contact surface protruding from the rear surface toward the front surface is formed.
FIG. 10 is a graph showing a load-displacement curve as a result of a pole collision test.
FIG. 11 is a graph showing a load-displacement curve as a result of a plane collision test.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Upper and lower integrated auxiliary reinforcing material 2 Front groove 3 Main reinforcing material 9 Front 10 Upper side 11 Lower side 12 Groove side 13 Groove bottom 14 Crest portion 15 Outer mountain bottom surface 18 Auxiliary groove portion 19 Inner mountain bottom surface 20 Auxiliary bottom surface 21 Contact surface 22 Outer bent edge 23 Inscribed surface

Claims (5)

前面及び上下側面からなる開放断面構造の主補強材と、該主補強材の前面から上下側面それぞれに架設した補助補強材とからなり、該補助補強材は前面に向けて断面凸な山折れ部を形成してなるバンパ補強材。A main reinforcing member having an open cross-sectional structure consisting of a front surface and upper and lower side surfaces, and auxiliary reinforcing members erected from the front surface of the main reinforcing member to the upper and lower side surfaces, respectively, and the auxiliary reinforcing material is a mountain bent portion having a convex cross section toward the front surface. Bumper reinforcement formed by forming. 主補強材は、前面に溝底面及び溝側面からなる断面凹な前面溝部を設け、該前面溝部から上下側面それぞれに補助補強材を架設した請求項1記載のバンパ補強材。2. The bumper reinforcing material according to claim 1, wherein the main reinforcing material has a front groove having a concave section formed of a groove bottom surface and a groove side surface on a front surface, and auxiliary reinforcing members are provided on the upper and lower side surfaces from the front groove portion. 補助補強材は、山折れ部を挟む内外山裾面の該内山裾面の端部を溝底面に、該外山裾面の端部を上下側面それぞれに接合する請求項2記載のバンパ補強材。3. The bumper reinforcing material according to claim 2, wherein the auxiliary reinforcing material joins an end of the inner mountain skirt surface of the inner and outer mountain skirt surfaces sandwiching the mountain bent portion to a groove bottom surface, and joins an end of the outer mountain skirt surface to upper and lower side surfaces. 補助補強材は、前面溝部の溝側面に山折れ部を近接させた請求項2記載のバンパ補強材。3. The bumper reinforcing material according to claim 2, wherein the auxiliary reinforcing material has a mountain-folded portion close to a groove side surface of the front groove portion. 補助補強材は、対となる内山裾面の端部に補助底面を架設して補助溝部を形成した上下一体の部材であり、前面溝部の溝底面と前記補助溝部の補助底面とを接面状態で結合した請求項2記載のバンパ補強材。The auxiliary reinforcing member is a vertically integrated member in which an auxiliary bottom is provided at the end of the pair of inner mountain skirts to form an auxiliary groove, and the groove bottom of the front groove and the auxiliary bottom of the auxiliary groove are in contact with each other. The bumper reinforcing material according to claim 2, wherein
JP2002234146A 2002-08-09 2002-08-09 Bumper reinforcing material Pending JP2004074834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002234146A JP2004074834A (en) 2002-08-09 2002-08-09 Bumper reinforcing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002234146A JP2004074834A (en) 2002-08-09 2002-08-09 Bumper reinforcing material

Publications (1)

Publication Number Publication Date
JP2004074834A true JP2004074834A (en) 2004-03-11

Family

ID=32019040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002234146A Pending JP2004074834A (en) 2002-08-09 2002-08-09 Bumper reinforcing material

Country Status (1)

Country Link
JP (1) JP2004074834A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246021A (en) * 2006-03-17 2007-09-27 Jfe Steel Kk Bumper
JP2010120581A (en) * 2008-11-21 2010-06-03 Asteer Co Ltd Bumper reinforcement material
DE102010051628A1 (en) 2009-11-27 2011-06-09 ASTEER Co., Ltd., Soja Bumper reinforcement member
JP2015523269A (en) * 2012-06-27 2015-08-13 ダイムラー・アクチェンゲゼルシャフトDaimler AG Beam elements and energy absorbing elements in hybrid structures for automobiles
US20160009236A1 (en) * 2013-03-13 2016-01-14 Gestamp Hardtech Ab Bumper Beam
JP2016536190A (en) * 2013-10-04 2016-11-24 マルチマティック インコーポレーテッドMultimatic Inc. Vehicle bumper
JP2018202897A (en) * 2017-05-30 2018-12-27 株式会社Subaru Bumper beam structure

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246021A (en) * 2006-03-17 2007-09-27 Jfe Steel Kk Bumper
JP2010120581A (en) * 2008-11-21 2010-06-03 Asteer Co Ltd Bumper reinforcement material
DE102009053085A1 (en) 2008-11-21 2010-07-15 Asteer Co.Ltd. Bumper reinforcement member
US8061743B2 (en) 2008-11-21 2011-11-22 Asteer Co., Ltd. Bumper reinforcement member
DE102010051628A1 (en) 2009-11-27 2011-06-09 ASTEER Co., Ltd., Soja Bumper reinforcement member
US8408632B2 (en) 2009-11-27 2013-04-02 Asteer Co., Ltd. Bumper reinforcement member
JP2015523269A (en) * 2012-06-27 2015-08-13 ダイムラー・アクチェンゲゼルシャフトDaimler AG Beam elements and energy absorbing elements in hybrid structures for automobiles
US20160009236A1 (en) * 2013-03-13 2016-01-14 Gestamp Hardtech Ab Bumper Beam
US9452724B2 (en) * 2013-03-13 2016-09-27 Gestamp Hardtech Ab Bumper beam
JP2016536190A (en) * 2013-10-04 2016-11-24 マルチマティック インコーポレーテッドMultimatic Inc. Vehicle bumper
JP2018202897A (en) * 2017-05-30 2018-12-27 株式会社Subaru Bumper beam structure
US10604092B2 (en) 2017-05-30 2020-03-31 Subaru Corporation Bumper beam structure

Similar Documents

Publication Publication Date Title
US6814380B2 (en) Bumper reinforcement
EP1676752B1 (en) Bumper beam structure having support walls for center gusset
JP4057815B2 (en) Bumper reinforcement
EP2529998B1 (en) Hood structure of vehicle
JP7056180B2 (en) Skeletal structure at the front of the vehicle
JP2003237507A (en) Bumper reinforcement
JP5375086B2 (en) Closed section frame with inward ribs
KR100417942B1 (en) Fender assembly for a vehicle
KR950031766A (en) Car rear structure of car
JP2000203362A (en) Shock energy absorbing device for body upper part of automobile
JP2004074834A (en) Bumper reinforcing material
JP3623916B2 (en) Bumper reinforcement
JP5459054B2 (en) Body parts for vehicles
JP4905898B2 (en) Inner panel for vehicle
KR100312373B1 (en) Frame and car body structure
JPH05246287A (en) Bumper for vehicle
JP4407476B2 (en) Vehicle cowl structure
JP2921183B2 (en) Car front body structure
US11318997B2 (en) Hood structure
JPH11321718A (en) Fender structure
US10919470B2 (en) Vehicle front structure
JP3723289B2 (en) Guard beam for automobile door
JP2944935B2 (en) Apron member of vehicle
JP7338170B2 (en) vehicle hood
WO2022210127A1 (en) Hood structure for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050727

A131 Notification of reasons for refusal

Effective date: 20071218

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080124

A02 Decision of refusal

Effective date: 20080624

Free format text: JAPANESE INTERMEDIATE CODE: A02