JP2004074172A - Casting mold for continuously casting and continuous casting method - Google Patents

Casting mold for continuously casting and continuous casting method Download PDF

Info

Publication number
JP2004074172A
JP2004074172A JP2002234171A JP2002234171A JP2004074172A JP 2004074172 A JP2004074172 A JP 2004074172A JP 2002234171 A JP2002234171 A JP 2002234171A JP 2002234171 A JP2002234171 A JP 2002234171A JP 2004074172 A JP2004074172 A JP 2004074172A
Authority
JP
Japan
Prior art keywords
continuous casting
casting mold
pair
side walls
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002234171A
Other languages
Japanese (ja)
Inventor
Noriyuki Nomoto
野本 詞之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2002234171A priority Critical patent/JP2004074172A/en
Publication of JP2004074172A publication Critical patent/JP2004074172A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a casting mold for continuously casting which can prevent a surface of an ingot from cracking due to occurrence of an air gap, a structure from being coarsely grown or heterogenized or grain boundary cracked or the like due to them and to provide a continuous casting method. <P>SOLUTION: In the casting mold 1A for continuously casting, its long side 5 is projected to an inside so that an element 20 of a solidified shell 16 on a surface of the ingot 10 corresponding to a central part a of the side 5 becomes a stress of a direction for pressing a composite vector 22a of a stress vector 21a to be applied by a contraction to an inner surface 13 of the mold. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、矩形断面を有する鋳塊の連続鋳造用鋳型および連続鋳造方法に関し、特に、エア・ギャップの発生に伴う鋳塊表面の割れ、組織の粗大化や不均一化、これらによる粒界割れ等を防止することができる連続鋳造用鋳型および連続鋳造方法に関する。
【0002】
【従来の技術】
図7は、従来の縦型連続鋳造装置の概略を示す。この連続鋳造装置は、銅あるいは所定比率の銅合金となるように配合された所定の金属の溶湯15を流し込み、溶湯15を固化する連続鋳造用鋳型1Cと、連続鋳造用鋳型1Cの下方に配置され水をシャワー状またはスプレー状に放水して連続鋳造用鋳型1Cから取り出される銅あるいは所定の金属が凝固した鋳塊10を冷却する二次冷却器2と、連続鋳造用鋳型1Cから取り出された鋳塊10をさらに冷却する水槽3とを備える。連続鋳造用鋳型1Cは、開口11を有する中空部12を、側壁である長辺5,5および側壁である短辺6,6により形成されている。
【0003】
図8は、縦型連続鋳造装置に用いられる従来の連続鋳造用鋳型についての鋳造方向と直角方向の断面(以下「横断面」という)を示す。連続鋳造用鋳型1Cは、断面形状が中空の矩形であって、側壁である短辺6,6と側壁である長辺5,5とから構成される。
【0004】
図9は、連続鋳造装置の動作中における連続鋳造用鋳型の横断面を示す。
【0005】
この連続鋳造装置は、以下のように動作する。銅あるいは所定比率の銅合金となるように配合された所定の金属を溶解した溶湯15を連続鋳造用鋳型1Cの上方の開口11から中空部12に流し込み、充分な厚みの凝固シェルを形成させ、これを下方へ引き抜き、鋳型1Cの直下に配した二次冷却器で冷却し、更に水槽3を通して冷却し、凝固した鋳塊10を形成する。
【0006】
このとき、鋳型内表面13と鋳塊表面10aの間に、鋳塊10の冷却に伴う収縮によってエア・ギャップ7が生じる。断面が矩形である鋳塊10においては、図9に示すように長辺5の中央部付近の収縮が大きく、この部分にエア・ギャップ7が発生し易い。
【0007】
エア・ギャップ7の生じた部分の熱伝達は放射熱伝達となり、接触している他の部位の熱伝達に比べ熱流束は大幅に低下する。溶湯から供給される熱の流入量に対し熱の流出量が少なくなると、凝固シェルの温度は上昇し復熱する。そして、激しい場合には、凝固したシェルが再び溶解して鋳型内表面13と接触し、再び凝固を始める。このようなことから、エア・ギャップ7が発生する部分では、表面の割れ、組織の粗大化や不均一化、これらによる粒界割れ等が発生する。
【0008】
この問題に対して、従来、鋳型内の鋳造方向に鋳塊の収縮量を見込んだ角度のテーパを付けたり、冷却水量の適正化を図ったり、図10から図12に示すように、冷却後の鋳塊10の断面形状が長方形に近似するように、あらかじめ収縮分を見込んで長辺5の中央部を外側に凸状とした鋳型を用いて凝固させる等の対策がとられてきた。
【0009】
【発明が解決しようとする課題】
しかしながら、鋳造する合金、例えば銅合金の種類によっては、エア・ギャップが顕著に発生するものもあるため、テーパといった対策のみでは対応できず、冷却水量の適正化によっても、充分な対策とはならない。また、収縮することを見込んで中央部を外側に膨らませる方策も、かえって鋳型内表面13と鋳塊10との間のエア・ギャップ7が助長され、鋳塊表面の割れ、組織の粗大化や不均一化、これらによる粒界割れ等が発生し易いという問題がある。
【0010】
従って、本発明の目的は、エア・ギャップの発生に伴う鋳塊表面の割れ、組織の粗大化や不均一化、これらによる粒界割れ等を防止することができる連続鋳造用鋳型および連続鋳造方法を提供することにある。
【0011】
【課題を解決するための手段】
本発明は、上記目的を達成するため、第1の辺の長さを有する一対の側壁と、第2の辺の長さを有する一対の側壁によって形成される中空部を有し、前記中空部に溶解した金属が供給され、前記中空部内を前記金属が流動する間に前記金属を冷却・固化し、固化した前記金属が連続的に取り出される連続鋳造用鋳型において、前記第1および前記第2の辺の長さのうち辺の長い方の一対の側壁は、前記中空部の内側に突出した形状を有することを特徴とする連続鋳造用鋳型を提供する。
【0012】
この構成によれば、連続鋳造用鋳型の中空部内で溶湯が凝固する際に、連続鋳造用鋳型の表面に形成した凝固シェルの収縮に伴う応力ベクトルの合成ベクトルが側壁を押圧する方向に向かう応力となり、溶湯は、連続鋳造用鋳型の表面に向かって凝固する。
【0013】
【発明の実施の形態】
図1は、本発明の第1の実施の形態に係る連続鋳造用鋳型が適用される縦型連続鋳造装置の概略を示す。この連続鋳造装置は、銅あるいは所定比率の銅合金となるように配合された所定の金属の溶湯15を流し込み固化する連続鋳造用鋳型1Aと、連続鋳造用鋳型1Aの下方に配置され水をシャワー状またはスプレー状に放水して連続鋳造用鋳型1Aから取り出される銅あるいは所定の金属が凝固した鋳塊10を冷却する二次冷却器2と、連続鋳造用鋳型1Aから取り出された鋳塊10をさらに冷却する水槽3とを備える。連続鋳造用鋳型1Aは、銅、銅合金またはカーボンで形成し、開口11を有する中空部12を側壁である長辺5,5および側壁である短辺6,6により形成する。
【0014】
図2は、この第1の実施の形態に係る連続鋳造用鋳型であって、横断面を示す。本発明の連続鋳造用鋳型1Aは、互いに向かい合う側壁となる短辺6,6と、互いに向かい合う側壁となる長辺5,5とから構成される。横断面の形状は、横長の矩形であって、そのアスペクト比(縦横の比率)が1.5以上を基調とし、互いに向かい合う長辺5全体にわたって鋳型内表面13が中空部12に突出する曲面形状を呈している。
【0015】
この連続鋳造装置は、以下のように動作する。銅あるいは所定比率の銅合金となるように配合された所定の金属を溶解した溶湯15を連続鋳造用鋳型1Aの上方の開口11から中空部12に流し込む。流し込まれた溶湯15は、鋳型内表面13により冷却され、適宜の厚みに凝固した凝固シェル16を形成する。
【0016】
図3は、連続鋳造用鋳型の横断面における鋳塊の引張応力成分を示す。これは鋳型内表面13と溶湯15が接触することにより凝固を開始した断面において、鋳型内表面13に形成される凝固シェル16の収縮によって加わる力について簡略化して説明したものである。まず、中空部12に供給された溶湯15は、鋳型内表面13から熱を奪われて冷却され、鋳型内表面13との接触部において凝固を開始し、凝固シェル16を形成する。この際の大きな収縮により、凝固シェル16には鋳型内表面13と平行に応力ベクトル21aが生じる。
【0017】
ここで、収縮形状を考える場合、鋳塊10の横断面においては、中央部5aとコーナー部5b,5bに接する部位が固定点と考えられる。コーナー部5bに接する部位を固定点と考えるのは、コーナー部5b付近は同一断面において最も冷却が強く鋳塊10が厚くなっているため、変形しにくいためであり、鋳塊の厚い下方から固定されていると考えられるからである。本発明の実施の形態による断面形状では、連続鋳造用鋳型の長辺5の中央部5aに対応する鋳塊10の表面の要素20aには、収縮により応力ベクトル21aが加わるため、その合成ベクトル22aは鋳型内表面13を押し付ける応力となる。
【0018】
図4は、図8に示す従来の連続鋳造用鋳型1Cの横断面における鋳塊の引張応力成分を示す。長辺5の中央部5eに対応する凝固シェル16の要素20bには、鋳型内表面13により溶湯15が冷却されて凝固を開始すると、凝固シェル16に鋳型内表面13と平行に応力ベクトル21bが生じる。その合成ベクトルは、「0」である。しかし、実際は、鋳型内表面13による冷却条件(鋳型内表面13の温度、溶湯の温度など)により、長辺5の中央部においてエア・ギャップ7が生じる。
【0019】
また、図5は、図10に示す従来の連続鋳造用鋳型1Dの横断面における凝固シェルの引張応力成分を示す。長辺5の中央部5fに対応する鋳塊10の表面の要素20cには、鋳型内表面13により溶湯15が冷却されて凝固を開始すると、凝固シェル16に鋳型内表面13と平行に応力ベクトル21cが生じる。凝固シェル16の収縮による応力ベクトル21c、21cの合成ベクトル22cは、鋳型内表面13から離れる方向の応力となる。そのため鋳型内表面13と鋳塊10との間のエア・ギャップ7が助長され、鋳塊表面の割れ、組織の粗大化や不均一化による粒界割れ等が発生する。
【0020】
次いで、鋳塊10を連続鋳造用鋳型1Aの下方から連続的に取り出しながら、鋳塊10に二次冷却器2により水をシャワー状またはスプレー状等に放水し、鋳塊10を冷却する。二次冷却器2により冷却された鋳塊10は、冷却水(図示せず)を入れた水槽3に送られて冷却される。
【0021】
以上説明したように、この実施に形態に係る連続鋳造用鋳型1Aによれば、溶湯15が凝固する際に長辺5の中央部5aに加わる凝固シェル16の応力21aの合成ベクトル22aが鋳型内表面13を押し付ける方向の応力となる曲面形状を形成し、エア・ギャップの発生を防止することとしたため、鋳塊10の表面の割れ、鋳塊10の組織の粗大化や不均一化、これらによる粒界割れ等の発生を防止することができる。なお、曲面形状は、多平面近似形であっても同様の効果を奏することができる。
【0022】
図6は、本発明の第2の実施の形態に係る連続鋳造用鋳型であって、横断面を示す。連続鋳造用鋳型1Bは、長辺5の中央部5cが中空部12に突出するものである。この連続鋳造用鋳型1Bにあっても、溶湯15が凝固する際に長辺5の中央部5cに加わる凝固シェル16の応力の合成ベクトルが鋳型内表面13を押し付ける方向の応力となるため、エア・ギャップが生じにくくなる。
【0023】
【実施例】
<実施例1>
Cu‐Fe‐P系銅合金の溶湯15を下降管から図1に示す連続鋳造装置の連続鋳造用鋳型1Aの中空部12に供給し、鋳造速度100mm/minで縦型連続鋳造を行った。鋳塊はCrおよびZrを添加した銅合金で、横断面サイズ180mm×480mm、長さ300mmである。鋳造方向に長辺側で10′、短辺側で15′のテーパ加工を施してある。湯面は鋳型上端から50mmとし、湯面には溶湯酸化防止のための被覆を施した。
【0024】
この実施例1では、鋳塊10の表面に割れや深い窪みは一切見られず、また湯ジワも浅く、外観は良好であった。内部にも割れは見られず、断面の組織は微細かつ均一で良好であった。
【0025】
<比較例1>
実施例1と同様の条件で、図7に示す従来の連続鋳造装置の連続鋳造用鋳型1Cを用いて、Cu−Fe‐P系銅合金の縦型連続鋳造を行った。
【0026】
この比較例1では、鋳塊10の表面には鋳造方向に約300mm周期の深い窪みや割れが見られた。一方、内部には割れは見られず、横断面の組織は微細かつ均一で良好であった。
【0027】
<実施例2>
Cu‐Zr系銅合金の溶湯を下降管から図1に示す連続鋳造装置の連続鋳造用鋳型1Aの中空部12に供給し、鋳造速度200mm/minで縦型連続鋳造を行った。鋳塊はCrおよびZrを添加した銅合金で、断面サイズ180mm×480mm、長さ350mmである。鋳造方向に長辺側で10′、短辺側で30′のテーパ加工を施してある。湯面は鋳型上端から50mmとし、湯面には溶湯酸化防止のための被覆を施した。
【0028】
この実施例2では、鋳塊10の表面に割れや窪みは一切見られず、また湯ジワも浅く、外観は良好であった。内部にも割れは見られず、横断面の組織は微細かつ均一で良好であった。
【0029】
<比較例2>
実施例と同様の条件で、図7に示す従来の横断面を有する連続鋳造装置の連続鋳造用鋳型1Cを用いて、Cu‐Zr系銅合金の縦型連続鋳造を行った。
【0030】
この実施例2では、鋳塊10の表面には窪みや割れが見られず、外観は良好であったが、横断面の組織は長辺の中央部付近で粗く、この部分の粒界に割れが見られた。
【0031】
以上のように、本発明の実施の形態に係る連続鋳造用鋳型を使用した各実施例は鋳塊表面に割れや窪みは一切見られず、また湯ジワも浅く、外観は良好であった。さらに、内部にも割れは見られず、横断面の組織は微細かつ均一で良好であった。したがって、中空部の長辺に沿ってエア・ギャップが生じなかったものと考えられる。
【0032】
しかし、各比較例は、鋳塊表面に深い窪みや割れがみられたり、長辺の中央部付近の横断面の組織は粗く、この部分の粒界に割れが見られた。これは、連続鋳造用鋳型の長辺の中央部付近にエア・ギャップが生じ、そのために、鋳塊表面の窪み、割れ、粒界の割れが生じたものと思われる。
【0033】
連続鋳造用鋳型は、上記の実施の形態や実施例に限定されることなく変形実施が可能である。鋳造方向に鋳塊の収縮を見込んで、適切な量のテーパを施すことができる。すなわち、鋳造方向に向かって中空部をやや窄める。これにより、エア・ギャップの発生を防止する効果は一層大きくなる。
【0034】
連続鋳造用鋳型は、長辺が曲面で形成されている場合について説明したが、曲面だけでなく、直線により中空部の内側に突出していてもよい。また、長辺が直線と曲線により形成されていてもよい。
【0035】
鋳型内表面13に金属めっきを施したものであっても、溶湯15が凝固する際に長辺5の中央部5aに加わる凝固シェル16の応力の合成ベクトルが鋳型内表面13を押し付ける方向の応力となるため、エア・ギャップの発生が防止できる。側壁である短辺6,6および長辺5,5を銅、銅合金あるいはカーボンにより形成したものにあっても同様の効果が期待できる。
【0036】
本発明は、中空部が、アスペクト比で1.5以上のものについて記載したが、長辺の長さが、一定以上であれば辺の中央部に形成する凝固シェルが収縮するため、側壁を中空部の内側に突出させておくことが望ましい。
【0037】
なお、以上の説明は、縦型連続鋳造装置の使用される連続鋳造用鋳型について行ったが、横型連続鋳造装置について使用される連続鋳造用鋳型であっても、同様に適用することができる。
【0038】
【発明の効果】
以上説明したとおり、本発明によれば、連続鋳造用鋳型の中空部内で溶湯が凝固する際に、連続鋳造用鋳型の表面に形成した凝固シェルの収縮に伴う応力ベクトルの合成ベクトルが側壁を押圧する方向に向かう応力となるため、エア・ギャップの発生に伴う鋳塊表面の割れ、組織の粗大化や不均一化、これらによる粒界割れ等を防止することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る連続鋳造用鋳型を適用した連続鋳造装置を示す。
【図2】本発明の第1の実施の形態に係る連続鋳造用鋳型の横断面を示す。
【図3】連続鋳造用鋳型の横断面における鋳塊の引張応力成分を示す。
【図4】従来の連続鋳造用鋳型の横断面における鋳塊の引張応力成分を示す。
【図5】従来の別の連続鋳造用鋳型の横断面における鋳塊の引張応力成分を示す。
【図6】本発明の連続鋳造用鋳型の変形例の横断面を示す。
【図7】従来の連続鋳造用鋳型を適用した連続鋳造装置を示す。
【図8】従来の連続鋳造用鋳型の例を示す。
【図9】従来の連続鋳造装置の動作中における連続鋳造用鋳型の横断面を示す。
【図10】従来の連続鋳造用鋳型の別の例を示す。
【図11】従来の連続鋳造用鋳型のさらに別の例を示す。
【図12】従来の連続鋳造用鋳型のさらに別の例を示す。
【符号の説明】
1A  連続鋳造用鋳型
1B  連続鋳造用鋳型
1C  連続鋳造用鋳型
1D  連続鋳造用鋳型
2   二次冷却器
3   水槽
5   長辺
5a  中央部
5b  コーナー部
6   短辺
7   エア・ギャップ
10  鋳塊
10a 鋳塊表面
11  開口
12  中空部
13  鋳型内表面
15  溶湯
16  凝固シェル
20a 要素
21a 応力ベクトル
21b 応力ベクトル
21c 応力ベクトル
22a 合成ベクトル
22b 合成ベクトル
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a continuous casting mold and a continuous casting method for an ingot having a rectangular cross section, and in particular, cracks on the surface of the ingot due to the generation of an air gap, coarsening and unevenness of the structure, and grain boundary cracking due to these. TECHNICAL FIELD The present invention relates to a continuous casting mold and a continuous casting method capable of preventing such problems.
[0002]
[Prior art]
FIG. 7 schematically shows a conventional vertical continuous casting apparatus. This continuous casting apparatus is provided with a continuous casting mold 1C for pouring a molten metal 15 of a predetermined metal compounded to be copper or a copper alloy in a predetermined ratio and solidifying the molten metal 15, and disposed below the continuous casting mold 1C. And a secondary cooler 2 for cooling the ingot 10 solidified with copper or a predetermined metal taken out from the continuous casting mold 1C by discharging water in a shower or spray form, and taken out from the continuous casting mold 1C. A water tank 3 for further cooling the ingot 10 is provided. In the continuous casting mold 1C, a hollow portion 12 having an opening 11 is formed by long sides 5 and 5 as side walls and short sides 6 and 6 as side walls.
[0003]
FIG. 8 shows a cross section (hereinafter, referred to as “cross section”) in a direction perpendicular to the casting direction of a conventional continuous casting mold used in a vertical continuous casting apparatus. The continuous casting mold 1C has a hollow rectangular cross section, and includes short sides 6 and 6 as side walls and long sides 5 and 5 as side walls.
[0004]
FIG. 9 shows a cross section of the continuous casting mold during operation of the continuous casting apparatus.
[0005]
This continuous casting apparatus operates as follows. A molten metal 15 in which copper or a predetermined metal compounded to be a copper alloy in a predetermined ratio is melted is poured into the hollow portion 12 from the opening 11 above the continuous casting mold 1C to form a solidified shell having a sufficient thickness. This is pulled out downward, cooled by a secondary cooler disposed immediately below the mold 1C, further cooled through the water tank 3, and a solidified ingot 10 is formed.
[0006]
At this time, an air gap 7 is generated between the inner surface 13 of the mold and the surface 10a of the ingot due to shrinkage accompanying cooling of the ingot 10. In the ingot 10 having a rectangular cross section, as shown in FIG. 9, the shrinkage near the center of the long side 5 is large, and the air gap 7 is easily generated in this portion.
[0007]
The heat transfer at the portion where the air gap 7 occurs becomes radiant heat transfer, and the heat flux is greatly reduced as compared with the heat transfer at other contacting portions. When the outflow of heat is smaller than the inflow of heat supplied from the molten metal, the temperature of the solidified shell rises and reheats. Then, in a severe case, the solidified shell dissolves again, comes into contact with the inner surface 13 of the mold, and starts solidifying again. For this reason, in the portion where the air gap 7 occurs, surface cracking, coarsening and non-uniformity of the structure, and grain boundary cracking due to these cracks occur.
[0008]
In order to solve this problem, conventionally, a taper of an angle in consideration of the shrinkage amount of the ingot in the casting direction in the mold, optimization of the amount of cooling water, and cooling after cooling as shown in FIGS. In order to approximate the cross-sectional shape of the ingot 10 to a rectangle, measures such as solidification using a mold having a central portion of the long side 5 projecting outward in anticipation of shrinkage in advance have been taken.
[0009]
[Problems to be solved by the invention]
However, depending on the type of the alloy to be cast, for example, a copper alloy, an air gap is remarkably generated, so that it is not possible to cope with only measures such as taper, and even if the cooling water amount is optimized, it is not a sufficient measure. . In addition, the measure for expanding the center portion outward in anticipation of shrinkage also promotes the air gap 7 between the inner surface 13 of the mold and the ingot 10, causing cracks on the surface of the ingot and coarsening of the structure. There is a problem that unevenness and grain boundary cracking due to these are likely to occur.
[0010]
Accordingly, an object of the present invention is to provide a continuous casting mold and a continuous casting method capable of preventing cracks on the surface of an ingot, coarsening and non-uniform structure of the ingot due to generation of an air gap, and grain boundary cracking due to the cracks. Is to provide.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has a hollow portion formed by a pair of side walls having a length of a first side and a pair of side walls having a length of a second side. Wherein the metal is cooled and solidified while the metal flows in the hollow portion, and the solidified metal is continuously taken out. A pair of side walls having a longer side of the length of the side has a shape protruding inside the hollow portion.
[0012]
According to this configuration, when the molten metal is solidified in the hollow portion of the continuous casting mold, the combined vector of the stress vectors due to the shrinkage of the solidified shell formed on the surface of the continuous casting mold has a stress in the direction of pressing the side wall. Thus, the molten metal solidifies toward the surface of the continuous casting mold.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 schematically shows a vertical continuous casting apparatus to which a continuous casting mold according to a first embodiment of the present invention is applied. This continuous casting apparatus includes a continuous casting mold 1A for pouring and solidifying a molten metal 15 of a predetermined metal compounded to be copper or a copper alloy of a predetermined ratio, and a water disperser disposed below the continuous casting mold 1A to shower water. A secondary cooler 2 for cooling an ingot 10 in which copper or a predetermined metal has been solidified by discharging water or a spray from the continuous casting mold 1A, and an ingot 10 removed from the continuous casting mold 1A. Further, a water tank 3 for cooling is provided. The continuous casting mold 1A is made of copper, a copper alloy or carbon, and has a hollow portion 12 having an opening 11 formed by long sides 5 and 5 as side walls and short sides 6 and 6 as side walls.
[0014]
FIG. 2 shows a continuous casting mold according to the first embodiment, and shows a cross section. The continuous casting mold 1A of the present invention includes short sides 6 and 6 serving as side walls facing each other and long sides 5 and 5 serving as side walls facing each other. The cross-sectional shape is a horizontally long rectangle whose aspect ratio (length-to-width ratio) is based on 1.5 or more, and a curved surface shape in which the mold inner surface 13 projects into the hollow portion 12 over the entire long sides 5 facing each other. Is presented.
[0015]
This continuous casting apparatus operates as follows. A molten metal 15 in which copper or a predetermined metal compounded to have a predetermined ratio of copper alloy is melted is poured into the hollow portion 12 from the opening 11 above the continuous casting mold 1A. The poured molten metal 15 is cooled by the mold inner surface 13 to form a solidified shell 16 solidified to an appropriate thickness.
[0016]
FIG. 3 shows the tensile stress component of the ingot in the cross section of the continuous casting mold. This is a simplified explanation of the force applied by the shrinkage of the solidified shell 16 formed on the mold inner surface 13 in the cross section where solidification has started by the contact between the inner surface 13 of the mold and the melt 15. First, the molten metal 15 supplied to the hollow portion 12 is cooled by being deprived of heat from the inner surface 13 of the mold, starts solidifying at a contact portion with the inner surface 13 of the mold, and forms a solidified shell 16. Due to the large shrinkage at this time, a stress vector 21 a is generated in the solidified shell 16 in parallel with the mold inner surface 13.
[0017]
Here, when considering the contracted shape, in the cross section of the ingot 10, a portion in contact with the central portion 5a and the corner portions 5b, 5b is considered to be a fixed point. The part in contact with the corner 5b is considered as a fixing point because the vicinity of the corner 5b has the highest cooling in the same cross section and the ingot 10 is thicker, and is hardly deformed. It is because it is considered that it is done. In the cross-sectional shape according to the embodiment of the present invention, since the stress vector 21a is applied to the element 20a on the surface of the ingot 10 corresponding to the central portion 5a of the long side 5 of the continuous casting mold by shrinkage, the resultant vector 22a Is a stress that presses the mold inner surface 13.
[0018]
FIG. 4 shows the tensile stress component of the ingot in the cross section of the conventional continuous casting mold 1C shown in FIG. In the element 20b of the solidified shell 16 corresponding to the central portion 5e of the long side 5, when the molten metal 15 is cooled by the mold inner surface 13 and solidification is started, a stress vector 21b is formed in the solidified shell 16 in parallel with the mold inner surface 13. Occurs. The composite vector is “0”. However, in actuality, an air gap 7 is generated at the center of the long side 5 due to the cooling conditions (the temperature of the mold inner surface 13, the temperature of the molten metal, etc.) by the mold inner surface 13.
[0019]
FIG. 5 shows a tensile stress component of a solidified shell in a cross section of the conventional continuous casting mold 1D shown in FIG. When the molten metal 15 is cooled by the mold inner surface 13 and solidification is started, a stress vector is formed in the solidified shell 16 in parallel with the mold inner surface 13 in the element 20 c on the surface of the ingot 10 corresponding to the central portion 5 f of the long side 5. 21c results. The resultant vector 22c of the stress vectors 21c, 21c due to the contraction of the solidified shell 16 becomes a stress in a direction away from the inner surface 13 of the mold. Therefore, the air gap 7 between the inner surface 13 of the mold and the ingot 10 is promoted, and cracks on the surface of the ingot, grain boundary cracks due to coarsening and uneven structure of the ingot, and the like occur.
[0020]
Next, while the ingot 10 is continuously taken out from below the continuous casting mold 1A, water is discharged to the ingot 10 by the secondary cooler 2 in a shower shape or a spray shape, and the ingot 10 is cooled. The ingot 10 cooled by the secondary cooler 2 is sent to a water tank 3 containing cooling water (not shown) and cooled.
[0021]
As described above, according to the casting mold 1A for continuous casting according to this embodiment, when the molten metal 15 solidifies, the combined vector 22a of the stress 21a of the solidified shell 16 applied to the central portion 5a of the long side 5 is formed in the mold. Since a curved surface shape which becomes a stress in the direction of pressing the surface 13 is formed to prevent the generation of an air gap, the surface of the ingot 10 is cracked, and the structure of the ingot 10 is coarsened or uneven. Generation of grain boundary cracks and the like can be prevented. The same effect can be obtained even if the curved shape is a multi-plane approximation.
[0022]
FIG. 6 is a cross-sectional view of a continuous casting mold according to a second embodiment of the present invention. In the continuous casting mold 1B, the central portion 5c of the long side 5 projects into the hollow portion 12. Even in the continuous casting mold 1B, the combined vector of the stress of the solidified shell 16 applied to the central portion 5c of the long side 5 when the molten metal 15 solidifies becomes the stress in the direction of pressing the inner surface 13 of the mold. -Gap is less likely to occur.
[0023]
【Example】
<Example 1>
A molten metal 15 of a Cu-Fe-P-based copper alloy was supplied from a downcomer to the hollow portion 12 of the continuous casting mold 1A of the continuous casting apparatus shown in FIG. 1, and vertical continuous casting was performed at a casting speed of 100 mm / min. The ingot is a copper alloy to which Cr and Zr are added, and has a cross-sectional size of 180 mm × 480 mm and a length of 300 mm. In the casting direction, 10 'is tapered on the long side and 15' on the short side. The molten metal surface was 50 mm from the upper end of the mold, and the molten metal surface was coated to prevent oxidation of the molten metal.
[0024]
In Example 1, no cracks or deep dents were found on the surface of the ingot 10, and the wrinkles were shallow, and the appearance was good. No cracks were seen inside, and the microstructure of the cross section was fine, uniform and good.
[0025]
<Comparative Example 1>
Under the same conditions as in Example 1, vertical continuous casting of a Cu-Fe-P-based copper alloy was performed using the continuous casting mold 1C of the conventional continuous casting apparatus shown in FIG.
[0026]
In Comparative Example 1, deep dents and cracks having a period of about 300 mm were found in the surface of the ingot 10 in the casting direction. On the other hand, no cracks were found inside, and the microstructure of the cross section was fine, uniform and good.
[0027]
<Example 2>
A molten metal of a Cu-Zr-based copper alloy was supplied from the downcomer to the hollow portion 12 of the continuous casting mold 1A of the continuous casting apparatus shown in FIG. 1, and vertical continuous casting was performed at a casting speed of 200 mm / min. The ingot is a copper alloy to which Cr and Zr are added, and has a sectional size of 180 mm × 480 mm and a length of 350 mm. In the casting direction, a taper processing of 10 'on the long side and 30' on the short side is performed. The molten metal surface was 50 mm from the upper end of the mold, and the molten metal surface was coated to prevent oxidation of the molten metal.
[0028]
In Example 2, no cracks or dents were found on the surface of the ingot 10, and the wrinkles were shallow, and the appearance was good. No cracks were seen inside, and the microstructure of the cross section was fine, uniform and good.
[0029]
<Comparative Example 2>
Under the same conditions as in the example, a vertical continuous casting of a Cu-Zr-based copper alloy was performed using a continuous casting mold 1C of a conventional continuous casting apparatus having a cross section shown in FIG.
[0030]
In Example 2, no dents or cracks were found on the surface of the ingot 10 and the appearance was good, but the structure of the cross section was coarse near the center of the long side, and cracks were generated at the grain boundaries in this part. It was observed.
[0031]
As described above, in each of the examples using the continuous casting mold according to the embodiment of the present invention, no cracks or dents were found on the surface of the ingot, and the wrinkles were shallow, and the appearance was good. Furthermore, no cracks were seen inside, and the structure of the cross section was fine, uniform and favorable. Therefore, it is considered that no air gap occurred along the long side of the hollow portion.
[0032]
However, in each of the comparative examples, deep dents and cracks were found on the surface of the ingot, and the structure of the cross section near the center of the long side was coarse, and cracks were seen at the grain boundaries in this portion. This seems to be due to the formation of an air gap near the center of the long side of the continuous casting mold, which caused pits, cracks, and grain boundary cracks on the surface of the ingot.
[0033]
The continuous casting mold can be modified without being limited to the above embodiments and examples. An appropriate amount of taper can be provided in anticipation of shrinkage of the ingot in the casting direction. That is, the hollow portion is slightly narrowed in the casting direction. Thereby, the effect of preventing the generation of the air gap is further increased.
[0034]
In the continuous casting mold, the case where the long side is formed with a curved surface has been described. However, not only the curved surface but also a straight line may protrude inside the hollow portion. Further, the long side may be formed by a straight line and a curve.
[0035]
Even when the inner surface 13 of the mold is plated with metal, the combined vector of the stress of the solidified shell 16 applied to the central portion 5a of the long side 5 when the molten metal 15 solidifies is the stress in the direction of pressing the inner surface 13 of the mold. Therefore, generation of an air gap can be prevented. Similar effects can be expected even when the short sides 6, 6 and the long sides 5, 5 as the side walls are formed of copper, a copper alloy or carbon.
[0036]
In the present invention, the hollow portion is described as having an aspect ratio of 1.5 or more, but if the length of the long side is equal to or more than a certain value, the solidified shell formed at the center of the side shrinks. It is desirable to protrude inside the hollow portion.
[0037]
Although the above description has been made on the continuous casting mold used in the vertical continuous casting apparatus, the present invention can be similarly applied to a continuous casting mold used in the horizontal continuous casting apparatus.
[0038]
【The invention's effect】
As described above, according to the present invention, when the molten metal is solidified in the hollow portion of the continuous casting mold, the resultant vector of the stress vector accompanying the shrinkage of the solidified shell formed on the surface of the continuous casting mold presses the side wall. Therefore, it is possible to prevent cracks on the surface of the ingot due to the generation of the air gap, coarsening and unevenness of the structure, and grain boundary cracks due to these.
[Brief description of the drawings]
FIG. 1 shows a continuous casting apparatus to which a continuous casting mold according to a first embodiment of the present invention is applied.
FIG. 2 shows a cross section of the continuous casting mold according to the first embodiment of the present invention.
FIG. 3 shows a tensile stress component of an ingot in a cross section of a continuous casting mold.
FIG. 4 shows a tensile stress component of an ingot in a cross section of a conventional continuous casting mold.
FIG. 5 shows a tensile stress component of an ingot in a cross section of another conventional continuous casting mold.
FIG. 6 shows a cross section of a modified example of the continuous casting mold of the present invention.
FIG. 7 shows a continuous casting apparatus to which a conventional continuous casting mold is applied.
FIG. 8 shows an example of a conventional continuous casting mold.
FIG. 9 shows a cross section of a continuous casting mold during operation of a conventional continuous casting apparatus.
FIG. 10 shows another example of a conventional continuous casting mold.
FIG. 11 shows still another example of a conventional continuous casting mold.
FIG. 12 shows still another example of a conventional continuous casting mold.
[Explanation of symbols]
1A Continuous casting mold 1B Continuous casting mold 1C Continuous casting mold 1D Continuous casting mold 2 Secondary cooler 3 Water tank 5 Long side 5a Central part 5b Corner part 6 Short side 7 Air gap 10 Ingot 10a Ingot surface 11 Opening 12 Hollow part 13 Mold inner surface 15 Melt 16 Solidified shell 20a Element 21a Stress vector 21b Stress vector 21c Stress vector 22a Synthetic vector 22b Synthetic vector

Claims (8)

第1の辺の長さを有する一対の側壁と、第2の辺の長さを有する一対の側壁によって形成される中空部を有し、前記中空部に溶解した金属が供給され、前記中空部内を前記金属が流動する間に前記金属を冷却・固化し、固化した前記金属が連続的に取り出される連続鋳造用鋳型において、
前記第1および前記第2の辺の長さのうち辺の長い方の一対の側壁は、前記中空部の内側に突出した形状を有することを特徴とする連続鋳造用鋳型。
A hollow portion formed by a pair of side walls having a length of a first side and a pair of side walls having a length of a second side, wherein a metal melted in the hollow portion is supplied; Cooling and solidifying the metal while the metal flows, in a continuous casting mold from which the solidified metal is continuously taken out,
A continuous casting mold, wherein a pair of longer side walls of the first and second sides have a shape protruding inside the hollow portion.
前記辺の長い方の一対の側壁は、前記辺の全体が曲面で形成されていることを特徴とする請求項1記載の連続鋳造用鋳型。The continuous casting mold according to claim 1, wherein the pair of longer side walls of the side has a whole curved surface. 前記辺の長い方の一対の側壁は、前記辺の中央部のみが曲面で形成されていることを特徴とする請求項1記載の連続鋳造用鋳型。The mold for continuous casting according to claim 1, wherein the pair of longer side walls of the side has a curved surface only at the center of the side. 前記中空部は、前記第1の辺の長さを有する一対の側壁と、前記第2の辺の長さを有する一対の側壁のアスペクト比が1.5以上であることを特徴とする請求項1記載の連続鋳造用鋳型。The aspect ratio of the pair of side walls having a length of the first side and the pair of side walls having a length of the second side of the hollow portion is 1.5 or more. 2. The continuous casting mold according to 1. 前記第1の辺の長さを有する一対の側壁と、前記第2の辺の長さを有する一対の側壁は、前記中空部を形成する面に金属めっきが施されていることを特徴とする請求項1記載の連続鋳造用鋳型。A pair of side walls having a length of the first side and a pair of side walls having a length of the second side are provided with metal plating on a surface forming the hollow portion. The continuous casting mold according to claim 1. 前記辺の長い方の一対の側壁は、前記金属の流動する方向にテーパが形成されていることされていることを特徴とする請求項1記載の連続鋳造用鋳型。2. The continuous casting mold according to claim 1, wherein the pair of longer side walls has a taper in a direction in which the metal flows. 前記辺の長い方の一対の側壁は、銅、銅合金およびカーボンのいずれか1種により形成されていることを特徴とする請求項1記載の連続鋳造用鋳型。The continuous casting mold according to claim 1, wherein the pair of longer side walls is formed of one of copper, a copper alloy, and carbon. 中空部を有する連続鋳造用鋳型に溶解した金属を供給し、前記中空部内を前記金属が流動する間に前記金属を冷却・固化する第1のステップと、
固化した前記金属を連続的に取り出す第2のステップを含む連続鋳造溶方法において、
前記第1のステップに用いられる前記連続鋳造用鋳型は、前記中空部が第1の辺の長さを有する一対の側壁と、第2の辺の長さを有する一対の側壁によって形成され、前記第1および前記第2の辺の長さのうち辺の長い方の一対の前記側壁は、内側に突出し、溶解した前記金属が冷却・固化する際の収縮に伴う合力が前記辺の長い方の一対尾の側壁に向かうように構成されていることを特徴とする連続鋳造溶方法。
Supplying a molten metal to a continuous casting mold having a hollow portion, a first step of cooling and solidifying the metal while the metal flows in the hollow portion,
In a continuous casting and melting method including a second step of continuously taking out the solidified metal,
In the continuous casting mold used in the first step, the hollow portion is formed by a pair of side walls having a length of a first side and a pair of side walls having a length of a second side, The pair of side walls having a longer side of the lengths of the first and second sides protrude inward, and a resultant force accompanying shrinkage when the molten metal is cooled and solidified has a resultant force of the longer side. A continuous casting and melting method, wherein the method is configured so as to face a pair of tail side walls.
JP2002234171A 2002-08-09 2002-08-09 Casting mold for continuously casting and continuous casting method Pending JP2004074172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002234171A JP2004074172A (en) 2002-08-09 2002-08-09 Casting mold for continuously casting and continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002234171A JP2004074172A (en) 2002-08-09 2002-08-09 Casting mold for continuously casting and continuous casting method

Publications (1)

Publication Number Publication Date
JP2004074172A true JP2004074172A (en) 2004-03-11

Family

ID=32019061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002234171A Pending JP2004074172A (en) 2002-08-09 2002-08-09 Casting mold for continuously casting and continuous casting method

Country Status (1)

Country Link
JP (1) JP2004074172A (en)

Similar Documents

Publication Publication Date Title
JP4303809B2 (en) Continuous casting mold
US5431214A (en) Apparatus for continuous casting
JP2000042690A (en) Mold for continuous casting of metal
US5452756A (en) Cooling method of continous casting
JP2008525197A (en) Magnesium billet or slab continuous casting apparatus using electromagnetic field and manufacturing method
JP2004074172A (en) Casting mold for continuously casting and continuous casting method
JP2000033461A (en) Continuous casting mold
JPH10193067A (en) Method for continuously casting steel
JP3687535B2 (en) Continuous casting method of steel
JP2004074173A (en) Casting mold for continuously casting and continuous casting method
JP2003311376A (en) Apparatus and method for casting metallic ingot
JP3085498B2 (en) Method and apparatus for spraying release agent onto mold
JPS5850167A (en) Prevention for clogging of sprue
JPS6027558Y2 (en) Continuous casting mold
JPH07227653A (en) Method and device for reducing shrinkage hole in continuous casting
JP2820365B2 (en) Dummy sheet for twin-drum continuous casting machine
JP2002126854A (en) Mold for continuous casting
JPS61245949A (en) Continuous casting method
JPH06170496A (en) Method for continuously casting steel
JP2006130553A (en) Mold for continuous casting
JPH1147887A (en) Mold for continuous casting
KR20120074598A (en) Continuous casting apparatus and method thereof
JPS62203660A (en) Production of casting having fine crystal structure
JPH01299744A (en) Method for preventing longitudinal crack on surface of continuous cast slab
JPH1119756A (en) Continuous casting apparatus