JP2004074128A - Method of removing mercury - Google Patents

Method of removing mercury Download PDF

Info

Publication number
JP2004074128A
JP2004074128A JP2002272264A JP2002272264A JP2004074128A JP 2004074128 A JP2004074128 A JP 2004074128A JP 2002272264 A JP2002272264 A JP 2002272264A JP 2002272264 A JP2002272264 A JP 2002272264A JP 2004074128 A JP2004074128 A JP 2004074128A
Authority
JP
Japan
Prior art keywords
mercury
hydrochloric acid
chitosan
collected
collecting agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002272264A
Other languages
Japanese (ja)
Inventor
Koji Oshita
大下 浩司
Shoji Motomizu
本水 昌二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002272264A priority Critical patent/JP2004074128A/en
Publication of JP2004074128A publication Critical patent/JP2004074128A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To develop a new reusable mercury collecting agent for collecting mercury in a high efficiency and a method of removing mercury by using the collecting agent, by which a very small amount of the mercury to be mixed in reagents and disturb a high sensitive analysis can be removed. <P>SOLUTION: A cross-linked chitosan having a characteristic imposing no load on an ecological system and the environment is used as a base material of the collecting agent for increasing the mercury adsorbing/collecting efficiency. The mercury collected on the collecting agent can be recovered almost quantitatively by using an eluting solution consisting of a mixed solution of hydrochloric acid with thiourea and the mercury-removed collecting agent is made usable repeatedly. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は微量水銀の除去方法に関するものであり、分析科学はもちろんのこと環境科学、材料科学、生命科学、品質管理、工程管理に属する分野及び他の分野において高効率で簡便、低コストな方法を提供するものである。
【0002】
【従来の技術】
水銀の微量分析を行う祭、水銀標準溶液は塩酸溶液として用いる必要がある。これは沸点の低い水銀が安定なクロロ錯陰イオンを形成する性質を利用するもので、標準溶液は長期間、安定に保存することが可能となる。このように水銀の分析には塩酸を用いるが、この塩酸中に不純物として含まれる水銀が常に超微量分析の大きな問題となっている。もちろん他の金属の微量分析を行う際も同様に、分析に用いる酸類の高純度化は必要不可欠であることは言うまでもない。また、水銀は有害金属の代表的なひとつであり、微量でも生態系への影響が懸念されている。従って自然環境水中、水道水中及び排水中の水銀の簡便な除去、浄化も環境科学、生命科学上重要である。
【0003】
種々の分析に用いられる酸、特に塩酸中の水銀の一般的な分離除去方法としては、水銀が安定なクロロ錯陰イオンを生成することを利用し、陰イオン交換樹脂を用いて吸着除去する方法が一般的である。陰イオン交換樹脂を用いると水銀は非常に強く樹脂に吸着される。それゆえに捕集した水銀の樹脂からの溶離が困難となり、樹脂を繰り返し使用することができないという欠点を持っている。このことはコストの増大を招き、廃棄物は出さないというゼロエミッション構想にも逆行するものである。さらに使用済み樹脂の処理は灰化法にて行うことから、処理中、水銀の大気への拡散の恐れがあり、特殊な回収装置が必要で、作業性、コスト、環境負荷など問題が多い。一方、環境科学の分野で水銀汚染水の浄化では、活性炭が一般的に用いられているが、吸着効率が極めて悪く、かつ使用済み活性炭の再利用もできないという現実があり、実用に供するには多くの課題を抱えている。
【0004】
【発明が解決しようとする課題】
そこで本発明は水銀を除去する際、一度吸着捕集した水銀の溶離の困難さから発生するコスト増や環境負荷の問題点を解決すべく、高い吸着効率を維持しつつ、吸着捕集した水銀が容易に溶離できる捕集基材を開発し、効果的な水銀の除去方法を提供することにある。
【0005】
【問題を解決するための手段】
本発明は化学反応により架橋処理して得られたキトサンを基材とする吸着捕集剤を新規に開発し水銀を高い効率で捕集除去する方法に関するものである。従来の水銀の捕集除去に用いられてきた陰イオン交換樹脂は、ポリスチレン・ジビニルベンゼンのような非常に疎水性の高い基材が多く利用されてきた。この樹脂を用いて捕集した場合、吸着された水銀は、いかなる溶媒を用いても溶離するのは非常に困難であり、その結果として樹脂の再利用は不可能であった。本発明では捕集剤の基材としてキトサンを利用することを特徴としている。キトサンは生態系や環境に対して負荷を与えない、優れた素材である。さらに分子内にアミノ基や一級水酸基を持っているため、化学的な誘導体化が容易であり、さまざまな機能の修飾が可能となる。キトサンの高い親水性に起因して錯形成反応速度やイオン交換速度が格段に速くなる。この点は従来から樹脂基材としてよく利用されている疎水性の高いポリスチレン・ジビニルベンゼン基材を用いる場合では達成することのできない、優れた機能である。
【0006】
しかし、キトサン自身は酸性溶液に溶けやすいため、このままの形での利用は困難である。そこで、本発明では親水性の高い架橋試薬であるエチレングリコールジグリシジルエーテルを用いてキトサンの6位の水酸基を架橋させることにより、有効な機能を失うことなく水に不溶な分子に化学変化させて利用した。濃厚な酸溶液中でも溶けない架橋型キトサンは、本発明において初めて合成に成功したものである。
【0007】
本発明で合成した架橋型キトサンをプラスチック製ミニカラム(例えば容量1ml、内径5.0〜5.5mm、長さ50mm)に詰め、酸溶液についで超純水で洗浄した後、金属試料溶液を通し金属の吸着捕集を行った。超純水でカラムの洗浄を行い、最後に硝酸及び塩酸、チオ尿素混合溶液などを用いて捕集されている金属成分を溶出させる一連の操作で、回収されたそれぞれの溶液についてICP−MSを用いて金属イオン濃度を測定して吸着捕集、溶離挙動をまず明らかにした。本発明の架橋型キトサン捕集剤により吸着捕集された金属のうち水銀、パラジウム、白金及び金を除くほとんどの金属は、1M硝酸で溶離することにより回収されることがわかった。バナジウム、モリブデン、タングステン、ビスマスのような金属もよく捕集される。架橋型キトサン捕集材のアミノ基はプロトン化しており、陽イオンとして挙動をする。一方、前述の金属は水溶液中でオキソ酸陰イオンとして存在しており、両者の間での陰イオン交換反応により吸着捕集されると考えられる。また、銅や銀のように水溶液中ではオキソ酸として存在しない金属も捕集される。この場合の捕集機構は金属イオンとキトサンのアミノ基との配位結合によると考えることが妥当である。以上の実験結果から架橋型キトサンは陰イオンに対しては陰イオン交換樹脂として、アミノ基との配位能を有する金属に対してはキレート樹脂として機能することが判明した。
【0008】
吸着捕集された水銀、パラジウム、白金及び金は1M硝酸では溶離回収することができないが、1M塩酸及び0.05Mチオ尿素混合溶液で溶離回収することが可能であることが実験により明らかになった。これは水銀及び数種の貴金属がチオ尿素と安定な錯体を形成する性質による。図1に本発明による架橋型キトサンに吸着捕集された水銀、パラジウム、白金及び金の吸着捕集及び1M塩酸と0.05Mチオ尿素混合溶液による溶離の際の回収率を示す。まず、カラム通過後の試料溶液中の金属回収率の比較で、水銀及び白金はほとんど回収されていないことから架橋型キトサンにほぼ定量的に吸着捕集されていることを示している。一方、パラジウム及び金は捕集が完全でないことが明らかである。1M塩酸と0.05Mチオ尿素混合溶液による溶離液中の金属回収率から、パラジウム及び白金では吸着した成分の溶離の困難さがわかる。一方、水銀及び金では1回の溶離操作でほぼ100%回収できていることがわかる。以上の架橋型キトサンによる吸着捕集及び溶離挙動の結果から本発明による架橋型キトサン捕集剤は、水銀の吸着捕集に最も有効であることが証明され、しかも捕集剤からはほぼ100%水銀が溶離できることから、捕集剤としての再使用は充分可能である。
【0009】
次に水銀の架橋型キトサンへの吸着における塩化物イオンの影響について検討を加えた結果を表1にまとめた。水銀試料溶液を塩酸を用いて調製すると、安定なクロロ錯陰イオンを形成する。それゆえ水銀クロロ錯陰イオンは陰イオン交換反応により架橋型キトサンに吸着捕集される。その卓越した能力は、最終的に溶離液中にのみ100%水銀が回収されることで証明することができる。一方、硝酸で調製した場合は、試料溶液中に少量含まれる塩化物イオンと錯陰イオンを形成するのみであり、強固な吸着挙動を示さないことが実験から明らかとなった。本発明の水銀除去方法は安定なクロロ錯陰イオンを形成する系に極めて有効で、濃塩酸中の微量水銀の除去、及び水銀汚染水の浄化にその効果を発揮するものである。
【0010】
【実施例1】
架橋型キトサンの合成:キトサンフレークを粉砕した後、ふるいを用いて100〜300μmのものを分取した。分取したキトサン20gをエタノール200mlに懸濁させ、この懸濁液にベンズアルデヒド80gを加え室温で12時間撹拌する。反応終了後未反応のベンズアルデヒドを取り除くためにエタノールと水で十分に洗浄して、目的とする物質の中間体であるアミノ基がベンズアルデヒドで保護されたキトサンを得た。続いてこの中間体をジオキサン300mlに懸濁させ、これにエチレングリコールジグリシジルエーテル30gと1M水酸化ナトリウム40mlを加え、3時間還流する。反応終了後、未反応物を取り除くためにエタノールと水で十分に洗浄して架橋型キトサンを得た。最後にベンズアルデヒドによる保護基を除去するために、0.5M塩酸1000mlに生成物を懸濁させ、室温で12時間撹拌し、反応終了後、エタノールと水で十分に洗浄した。この操作を2回繰り返し脱保護基の反応を完結させ、純品を集めた。この操作で架橋型キトサンを得ることができた。
【0011】
【実施例2】
濃塩酸中からの微量水銀の除去:架橋型キトサン1mlあるいは5mlをプラスチック製ミニカラムに詰めたものを使用する。まず、カラムに20mlの1M塩酸と0.05Mチオ尿素混合溶液、20ml硝酸及び20ml超純水を通して洗浄した。試料として40mlの濃塩酸を前述のカラムに通して水銀の除去効率を調べた結果を表2に示して説明する。架橋型キトサン1mlを用いて生成した場合、水銀の除去率は約75%で十分とはいえないが、5mlを用いることで除去率は96%以上に大幅に改善されていることがわかる。以上のように架橋型キトサンを用いて濃塩酸をカラム精製処理することで濃塩酸中に含まれる微量水銀を簡単に除去することが可能となった。本発明の水銀の除去方法によれば市販の特級試薬のような比較的安価な濃塩酸中の水銀濃度の低減化に非常に有用であり、除去後の水銀濃度は超高純度試薬として市場で高価格で販売されているものより低い値を示した。
【表1】

Figure 2004074128
【表2】
Figure 2004074128
【0012】
【発明の効果】
以上説明したように本発明では、キトサンを基材として化学反応により架橋処理を施して得られる捕集剤を新規に合成し、これを用いる水銀の除去方法を開発した。本発明を用いることにより生じる特有の効果としては次のようなことを挙げることができる。▲1▼試料溶液をカラムに通過させるだけの操作で、試料中の水銀をほぼ定量的に吸着捕集することができ、簡便で高効率な水銀の除去が可能である。▲2▼吸着捕集した水銀は1M塩酸と0.05Mチオ尿素混合溶液をカラムに通すだけでほぼ定量的に回収でき、従来の技術では不可能であった捕集剤の再利用を可能にした。▲3▼本発明は濃塩酸からの微量水銀の除去に極めて有効で、市販の特級試薬を処理することで、市販の超高純度塩酸をも上回る水銀の低減化を可能にする。▲4▼塩酸の高純度化により水銀の超高感度分析を可能にする。▲5▼塩酸のみならず水銀汚染水の浄化にも本発明の水銀除去方法は有効に利用することができる。
【図面の簡単な説明】
【図1】
架橋型キトサンに吸着捕集された水銀、パラジウム、白金及び金の回収率[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for removing trace amounts of mercury, and is a highly efficient, simple, and low-cost method in the fields of analytical science, environmental science, material science, life science, quality control, process control, and other fields. Is provided.
[0002]
[Prior art]
At festivals where microanalysis of mercury is performed, the mercury standard solution must be used as a hydrochloric acid solution. This utilizes the property that mercury having a low boiling point forms a stable chloro complex anion, and the standard solution can be stably stored for a long period of time. As described above, hydrochloric acid is used for mercury analysis, but mercury contained as an impurity in hydrochloric acid has always been a major problem in ultra-trace analysis. Needless to say, similarly, when performing trace analysis of other metals, it is essential to highly purify the acids used in the analysis. In addition, mercury is one of the representative harmful metals, and there is a concern that even trace amounts may affect the ecosystem. Therefore, simple removal and purification of mercury in natural environment water, tap water and wastewater is also important in environmental science and life science.
[0003]
A common method of separating and removing mercury in acids used for various analyses, especially in hydrochloric acid, is to use a method in which mercury forms stable chloro complex anions and remove them by adsorption using an anion exchange resin. Is common. When an anion exchange resin is used, mercury is very strongly adsorbed on the resin. Therefore, it is difficult to elute the collected mercury from the resin, and there is a disadvantage that the resin cannot be used repeatedly. This raises costs and goes against the zero emission concept of producing no waste. Further, since the used resin is treated by the incineration method, there is a possibility that mercury may diffuse into the atmosphere during the treatment, and a special recovery device is required, and there are many problems such as workability, cost, and environmental load. On the other hand, activated carbon is generally used for purifying mercury-contaminated water in the field of environmental science.However, there is a reality that the adsorption efficiency is extremely poor and the used activated carbon cannot be reused. Has many challenges.
[0004]
[Problems to be solved by the invention]
Therefore, in order to solve the problems of cost increase and environmental load caused by the difficulty of elution of mercury once adsorbed and collected when removing mercury, the present invention maintains high adsorption efficiency while maintaining high adsorption efficiency. The purpose of the present invention is to develop a collecting base material that can be easily eluted, and to provide an effective method for removing mercury.
[0005]
[Means to solve the problem]
The present invention relates to a novel method for adsorbing and collecting a chitosan-based adsorbent obtained by a crosslinking treatment by a chemical reaction, and to a method for collecting and removing mercury with high efficiency. As an anion exchange resin that has been used for trapping and removing mercury in the related art, a highly hydrophobic substrate such as polystyrene and divinylbenzene has been often used. When collected with this resin, the adsorbed mercury is very difficult to elute with any solvent, and as a result, the resin cannot be recycled. The present invention is characterized in that chitosan is used as a base material of a collecting agent. Chitosan is an excellent material that does not burden ecosystems and the environment. Furthermore, since the molecule has an amino group or a primary hydroxyl group, chemical derivatization is easy, and various functions can be modified. Due to the high hydrophilicity of chitosan, the complex formation reaction rate and ion exchange rate are significantly increased. This point is an excellent function that cannot be achieved by using a highly hydrophobic polystyrene / divinylbenzene base material that has been conventionally often used as a resin base material.
[0006]
However, it is difficult to use chitosan as it is because it is easily dissolved in an acidic solution. Therefore, in the present invention, the 6-hydroxyl group of chitosan is cross-linked by using ethylene glycol diglycidyl ether, which is a highly hydrophilic cross-linking reagent, to chemically change it into a water-insoluble molecule without losing its effective function. used. Crosslinked chitosan which does not dissolve even in a concentrated acid solution has been successfully synthesized for the first time in the present invention.
[0007]
The crosslinked chitosan synthesized in the present invention is packed in a plastic mini-column (for example, 1 ml in capacity, 5.0 to 5.5 mm in inside diameter, 50 mm in length), washed with an acid solution and then with ultrapure water, and then passed through a metal sample solution. The metal was adsorbed and collected. The column was washed with ultrapure water, and finally, a series of operations for eluting the collected metal components using a mixed solution of nitric acid, hydrochloric acid, and thiourea was performed. The adsorption and collection and elution behavior were first clarified by measuring the metal ion concentration using the method. It was found that among the metals adsorbed and collected by the crosslinked chitosan collector of the present invention, most of the metals except for mercury, palladium, platinum and gold were recovered by elution with 1M nitric acid. Metals such as vanadium, molybdenum, tungsten and bismuth are also trapped. The amino group of the crosslinked chitosan collector is protonated and behaves as a cation. On the other hand, the above-mentioned metal exists as an oxoacid anion in an aqueous solution, and is considered to be adsorbed and collected by an anion exchange reaction between the two. In addition, metals that do not exist as oxoacids in an aqueous solution, such as copper and silver, are also collected. It is appropriate to consider that the trapping mechanism in this case is based on the coordination bond between the metal ion and the amino group of chitosan. From the above experimental results, it was found that crosslinked chitosan functions as an anion exchange resin for anions and as a chelate resin for metals having a coordinating ability with an amino group.
[0008]
Experiments have shown that mercury, palladium, platinum and gold adsorbed and collected cannot be eluted and recovered with 1M nitric acid, but can be eluted and recovered with a mixed solution of 1M hydrochloric acid and 0.05M thiourea. Was. This is due to the property that mercury and some noble metals form stable complexes with thiourea. FIG. 1 shows the recovery rate of mercury, palladium, platinum and gold adsorbed and collected on crosslinked chitosan according to the present invention, and the elution with a mixed solution of 1M hydrochloric acid and 0.05M thiourea. First, a comparison of the metal recovery rates in the sample solution after passing through the column indicates that almost no mercury and platinum were recovered, and that the mercury and platinum were almost quantitatively adsorbed and collected on the crosslinked chitosan. On the other hand, it is clear that palladium and gold are not completely collected. The recovery rate of the metal in the eluent by a mixed solution of 1M hydrochloric acid and 0.05M thiourea indicates that elution of the adsorbed component is difficult with palladium and platinum. On the other hand, it can be seen that almost 100% of mercury and gold can be recovered by one elution operation. From the results of the adsorption-trapping and elution behavior of the crosslinked chitosan described above, the crosslinked chitosan-collecting agent according to the present invention was proved to be the most effective for mercury adsorption-trapping, and almost 100% from the trapping agent. Since mercury can be eluted, reuse as a collector is sufficiently possible.
[0009]
Next, the results obtained by examining the effect of chloride ions on the adsorption of mercury to crosslinked chitosan are summarized in Table 1. When a mercury sample solution is prepared using hydrochloric acid, a stable chloro complex anion is formed. Therefore, the mercury-chloro complex anion is adsorbed and collected on the crosslinked chitosan by anion exchange reaction. Its remarkable capacity can be demonstrated by the fact that 100% mercury is finally recovered only in the eluent. On the other hand, when prepared with nitric acid, the experiment revealed that only a small amount of chloride ion and complex anion contained in the sample solution were formed, and no strong adsorption behavior was exhibited. The method for removing mercury of the present invention is extremely effective for a system that forms a stable chloro complex anion, and exerts its effects on removing trace mercury in concentrated hydrochloric acid and purifying mercury-contaminated water.
[0010]
Embodiment 1
Synthesis of cross-linked chitosan: After pulverizing chitosan flakes, those having a size of 100 to 300 μm were collected using a sieve. 20 g of the collected chitosan is suspended in 200 ml of ethanol, and 80 g of benzaldehyde is added to the suspension, followed by stirring at room temperature for 12 hours. After the completion of the reaction, the resultant was sufficiently washed with ethanol and water to remove unreacted benzaldehyde, to obtain chitosan in which an amino group of a target substance was protected with a benzaldehyde as an amino group. Subsequently, this intermediate is suspended in 300 ml of dioxane, 30 g of ethylene glycol diglycidyl ether and 40 ml of 1M sodium hydroxide are added thereto, and the mixture is refluxed for 3 hours. After the completion of the reaction, the product was sufficiently washed with ethanol and water to remove unreacted substances, thereby obtaining crosslinked chitosan. Finally, in order to remove the protecting group by benzaldehyde, the product was suspended in 1000 ml of 0.5 M hydrochloric acid, stirred at room temperature for 12 hours, and after the completion of the reaction, thoroughly washed with ethanol and water. This operation was repeated twice to complete the reaction of the deprotecting group, and a pure product was collected. By this operation, crosslinked chitosan was obtained.
[0011]
Embodiment 2
Removal of trace amounts of mercury from concentrated hydrochloric acid: 1 ml or 5 ml of crosslinked chitosan packed in a plastic mini column is used. First, the column was washed by passing 20 ml of a 1 M hydrochloric acid / 0.05 M thiourea mixed solution, 20 ml nitric acid and 20 ml ultrapure water. The results of examining the efficiency of removing mercury by passing 40 ml of concentrated hydrochloric acid as a sample through the column described above are shown in Table 2 and explained. When 1 ml of the crosslinked chitosan is used, the removal rate of mercury is about 75%, which is not sufficient. However, it can be seen that the removal rate is significantly improved to 96% or more by using 5 ml. As described above, trace mercury contained in concentrated hydrochloric acid can be easily removed by subjecting concentrated hydrochloric acid to column purification treatment using cross-linked chitosan. The method for removing mercury according to the present invention is very useful for reducing the concentration of mercury in relatively inexpensive concentrated hydrochloric acid, such as a commercially available special-grade reagent, and the mercury concentration after removal is commercially available as an ultra-high purity reagent. It showed lower values than those sold at higher prices.
[Table 1]
Figure 2004074128
[Table 2]
Figure 2004074128
[0012]
【The invention's effect】
As described above, in the present invention, a collector obtained by subjecting chitosan to a base material and performing a crosslinking treatment by a chemical reaction is newly synthesized, and a method for removing mercury using the collector is developed. The following are specific effects produced by using the present invention. {Circle around (1)} Mercury in a sample can be almost quantitatively adsorbed and collected by an operation merely passing a sample solution through a column, and simple and highly efficient removal of mercury is possible. (2) Mercury adsorbed and collected can be recovered almost quantitatively simply by passing a mixed solution of 1 M hydrochloric acid and 0.05 M thiourea through a column, making it possible to reuse the collecting agent, which was impossible with conventional technology. did. {Circle around (3)} The present invention is extremely effective in removing trace amounts of mercury from concentrated hydrochloric acid. By treating a commercially available special-grade reagent, it is possible to reduce mercury more than commercially available ultrahigh-purity hydrochloric acid. (4) Ultra-high-sensitivity analysis of mercury is enabled by purifying hydrochloric acid. (5) The mercury removal method of the present invention can be effectively used not only for hydrochloric acid but also for purification of mercury-contaminated water.
[Brief description of the drawings]
FIG.
Recovery of mercury, palladium, platinum and gold adsorbed and collected on cross-linked chitosan

Claims (1)

キトサンを基材として化学反応により架橋処理して得られる吸着捕集剤を利用する水銀の除去方法。A method for removing mercury using an adsorbent-collecting agent obtained by subjecting chitosan as a base material to a crosslinking treatment by a chemical reaction.
JP2002272264A 2002-08-15 2002-08-15 Method of removing mercury Pending JP2004074128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002272264A JP2004074128A (en) 2002-08-15 2002-08-15 Method of removing mercury

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002272264A JP2004074128A (en) 2002-08-15 2002-08-15 Method of removing mercury

Publications (1)

Publication Number Publication Date
JP2004074128A true JP2004074128A (en) 2004-03-11

Family

ID=32024903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002272264A Pending JP2004074128A (en) 2002-08-15 2002-08-15 Method of removing mercury

Country Status (1)

Country Link
JP (1) JP2004074128A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008095072A (en) * 2006-09-15 2008-04-24 Miyazaki Tlo:Kk Polymer useful as scavenger for noble metal ion
JP2010260028A (en) * 2009-05-11 2010-11-18 Univ Of Miyazaki Method for recovering oxoanion of molybdenum, tungsten and vanadium by crosslinking chitosan making chitin as starting source

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008095072A (en) * 2006-09-15 2008-04-24 Miyazaki Tlo:Kk Polymer useful as scavenger for noble metal ion
JP2010260028A (en) * 2009-05-11 2010-11-18 Univ Of Miyazaki Method for recovering oxoanion of molybdenum, tungsten and vanadium by crosslinking chitosan making chitin as starting source

Similar Documents

Publication Publication Date Title
Sabarudin et al. Functionalization of chitosan with 3, 4-dihydroxybenzoic acid for the adsorption/collection of uranium in water samples and its determination by inductively coupled plasma-mass spectrometry
Hubicki et al. Application of ion exchange methods in recovery of Pd (II) ions—a review
Xie et al. Adsorption recovery of Pd (II) from aqueous solutions by persimmon residual based bio-sorbent
US5817239A (en) Method of removing heavy metal ions from a liquid with chemically active ceramic compositions with an hydroxyquinoline moiety
JP2012025995A (en) Selective recovery method for rare metal
JPS62238337A (en) Method for recovering noble metal
Hubicki et al. Ion exchange method for removal and separation of noble metal ions
JP2003201527A (en) Method for isolating rhenium
Vernon et al. Chelating ion-exchangers containing N-substituted hydroxylamine functional groups: Part 6. Sorption and separation of gold and silver by a polyhydroxamic acid
JP2014181393A (en) Method for separating and recovering platinum group elements
JP2004074128A (en) Method of removing mercury
JP2945960B2 (en) Selenium separation material and method for selective separation and recovery of selenium using the same
US6375852B1 (en) Calix [4] arene polymer, method of manufacturing the same and method of separating divalent lead ion by use of the same
JP2015158004A (en) Method of recovering precious metal
JP2015089947A (en) Method for recovering noble metal
KR20100030250A (en) Removal method of iodine mixtures from aqueous solution
EP1504129B1 (en) Separation of platinum group metals
JP2005002414A (en) Method of recovering noble metal in solution
JP3053102B2 (en) Adsorbed substance of platinum and palladium excellent in elution characteristics and method for recovering platinum and / or palladium using the same
JPS6153117A (en) Recovery of noble metal element
RU2227170C1 (en) Method of extraction of rhenium
EP0106327A2 (en) Selective separation of noble metals
Tong et al. Preconcentration of trace metals with 1-phenyl-3-methyl-4-stearoyl-5-pyrazolone loaded on silica gel
JPH0446622B2 (en)
JP6051845B2 (en) Method for recovering Au element