JP2004074087A - Treatment method for cyanogen compound-containing waste liquid - Google Patents

Treatment method for cyanogen compound-containing waste liquid Download PDF

Info

Publication number
JP2004074087A
JP2004074087A JP2002240953A JP2002240953A JP2004074087A JP 2004074087 A JP2004074087 A JP 2004074087A JP 2002240953 A JP2002240953 A JP 2002240953A JP 2002240953 A JP2002240953 A JP 2002240953A JP 2004074087 A JP2004074087 A JP 2004074087A
Authority
JP
Japan
Prior art keywords
waste liquid
activated carbon
hydrogen peroxide
containing waste
cyanide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002240953A
Other languages
Japanese (ja)
Inventor
Hisaoki Abe
阿部 久起
Satoru Nanba
南場 哲
Minoru Takagawa
高川 實
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2002240953A priority Critical patent/JP2004074087A/en
Publication of JP2004074087A publication Critical patent/JP2004074087A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of effectively decomposing and removing a cyanogen compound from a wastewater containing the cyanogen compound such as cyanongen or prussiates. <P>SOLUTION: Activated carbon, an iron salt and hydrogen peroxide are added to a waste liquid treatment system and reaction is performed under a condition of pH 5 or less to effectively decompose and remove the cyanogen compound contained in wastewater. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は、シアン化合物を含有した廃液の処理方法に関する。
【0002】
【従来の技術】
シアンや青酸塩類などのシアン化合物を含む廃水は、金属精錬工場、メッキ工場、クロメート処理などを行う表面処理工場などから排出されている。さらに、コークスガス工業では石炭乾留時のガス液としてシアン化合物を含む廃液が排出される場合がある。また、コークス炉ガスにもシアン化合物が含まれる場合があり、該ガス洗浄水にも多少のシアン化合物が含まれる場合がある。これらの廃水中のシアン化合物は分離回収、又は無害化して廃水を排出する必要がある。
【0003】
従来、これらのシアン化合物の処理方法としては、加熱分解法、沈殿法、生物化学的方法、アルカリ塩素法、オゾン酸化法、イオン交換樹脂による吸着法などが使用されて来た。しかしながら、加熱分解法(特開平5−309375、特開平9−38632、特開平9−38633)は処理装置として圧力容器が必要であり、大掛かりな設備が必要となる、また、連続処理をする場合は、バッチ処理に比べてさらに設備が大掛かりとなり、設備費、ランニングコストが高額になるという問題がある。鉄塩などを使用した沈殿法(特開平9−75952)は、原理的にシアン化合物そのものを分解する方法ではなく、しかも大量のスラッジを発生するといった問題がある。活性汚泥処理などに代表される生物化学的方法は、設備が大掛かりであり、加えて活性汚泥槽の保持管理、汚泥の処理などに多大な労力や経費を要するといった問題がある。次亜塩素酸ナトリウムなどを使用するアルカリ塩素法(特開2001−269674)では、残存する塩素による有機塩素化合物の発生が考えられ、新たな二次公害が発生しかねないといった問題がある。オゾン酸化法(特開平8−141582)では設備が大掛かりになると共に、オゾン発生に大量の電力が必要で、ランニングコストが高いといった問題がある。イオン交換樹脂による吸着法では、イオン交換樹脂の再生が必要であり、これに伴って大量の廃液が発生し、さらにイオン交換樹脂の劣化に伴う交換作業などが必要となる。
【0004】
【発明が解決しようとする課題】
本発明は、従来技術における上記したような課題を解決し、シアン化合物を含む廃水からシアン化合物を効果的に分解除去する処理方法を提供するものである。
【0005】
【課題を解決するための手段】
本発明者等は、上記の問題を解決すべく、鋭意検討を重ねた結果、廃液処理系に活性炭、鉄塩と過酸化水素を加え、pH5以下の条件下で反応させることによって、廃水中に含まれるシアン化合物を効率良く分解除去できることを見出した。
【0006】
即ち、本発明は、シアン化合物含有廃液に、活性炭、鉄塩及び過酸化水素を加え、pH5以下の条件下で反応させることを特徴とする、(1)から(4)に示すシアン化合物含有廃液の処理方法である。
(1)シアン化合物含有廃液に、活性炭、鉄塩及び過酸化水素を加え、pH5以下の条件下で反応させることを特徴とする、シアン化合物含有廃液の処理方法。
(2)活性炭が、温度27℃、過酸化水素濃度0.5%の水溶液において、当該活性炭を0.5%添加したときの60分後の過酸化水素の分解率が5%以上となる活性炭を使用する、(1)記載のシアン化合物含有廃液の処理方法。
(3)活性炭が、1000μm以下の平均粒子径を有する微粉末である、(1)又は(2)記載のシアン化合物含有廃液の処理方法。
(4)活性炭が、1000μm以下の平均粒子径を有する微粉末の懸濁液である、(3)記載のシアン化合物含有廃液の処理方法。
【0007】
【発明の実施の形態】
本発明で示す活性炭の過酸化水素分解率は、温度27℃、過酸化水素濃度0.5%の水溶液において、活性炭を0.5%添加し、60分間放置後、残存過酸化水素濃度を測定し、下式で算出される。
(0.5−残存過酸化水素濃度(%))/0.5 × 100
【0008】
本発明においては、上記過酸化水素分解率が5%以上、好ましくは20%以上の活性炭を用いることが望ましい。活性炭の過酸化水素分解活性が高いほど、廃液中のシアン化合物の分解が効率的に進み、活性炭使用量を少なく、処理時間を短くでき有利である。またこのとき、活性炭の平均粒子径が1000μm以下のもの、好ましくは100μmから50μmの微粉末化された活性炭を用いることが望ましい。この場合、活性炭の平均粒子径が小さいほど、廃液中のシアン化合物の分解が効率的に進み、活性炭使用量を少なく、処理時間を短くでき有利である。なお、平均粒子径の下限は特にないが、微粉末化する際に要する動力コスト、使用後した活性炭の回収性等の問題より、平均粒子径が1μm以上のものを用いることが好ましい。
【0009】
本発明で使用する活性炭の由来は特に限定されないが、通常、木材、セルロース、のこくず、木炭、ヤシガラ炭、パーム核炭、素灰などの植物質を原料としたもの、泥炭、亜炭、褐炭、瀝青炭、無煙炭などの石炭系鉱物質を原料としたもの、石油残渣、硫酸スラッジ、オイルカーボンなどの石油系鉱物質を原料としたもの、蛋白質を原料としたもの、蛋白質を含有する汚泥もしくは廃棄物を出発原料としたもの、発酵生産の廃菌体を原料としたもの、ポリアクリロニトリル(PAN)を原料としたものなどが使用され、特に発酵生産の廃菌体を原料とした活性炭が好適に用いられる。また、これら活性炭に処理を加えることにより、過酸化水素分解能力を向上させて使用することもできる。
【0010】
活性炭は通常水分吸着などによりその吸着能力を減ずるが、本発明においては、活性炭を水などの分散媒中に懸濁して使用することができる。廃液への活性炭の供給方法には特に制限は無く、粉末状の活性炭をそのまま供給してもよいが、あらかじめ懸濁液となしポンプなどで供給しても良い。工業的には、粉塵発生抑制、操作性の点で懸濁液として供給する方が有利であり、懸濁液の流動性、操作性の点からは、1000μm以下、好ましくは300μm以下の粉末懸濁液として供給する方法が望ましい。
【0011】
本発明では活性炭と同時に、鉄塩と過酸化水素を合わせて用いることにより、廃水中のシアンや青酸塩類などのシアン化合物を効率的に分解除去できる。鉄塩は、通常の廃液処理に用いられているものであれば良く、特に制限はない。例えば硫酸第一鉄、塩化第一鉄などが挙げられるが、価格、汎用性の点から硫酸第一鉄が好ましい。一方、過酸化水素に、酸化剤として、過酢酸、過酢酸塩、過炭酸、過炭酸塩、過硫酸、過硫酸塩、次亜塩素酸、次亜塩素酸塩、過ホウ酸、過ホウ酸塩、オゾン、酸素、塩素、空気などを併用することも可能であるが、使用後の環境負荷が少ない点で過酸化水素の単独使用が最も好ましい。
【0012】
鉄塩、過酸化水素の使用量には特に制限はなく、必要とされる廃液の処理レベルにより適宜選択されるが、一般的には、鉄塩として硫酸第一鉄を用いた場合、処理廃液に対して0.01%から10%、過酸化水素は0.1%から10%が適当である。本発明による廃液処理においてはpH5以下の条件下で反応を行う。処理廃液のpHがこれより高い場合は本発明の効果が著しく損なわれるので、その際は、硫酸、塩酸などの酸を別途滴下しpH調整を行えば良い。
【0013】
【実施例】
以下実施例にて本発明を詳細に説明する。なお、本発明は下記実施例に限定されるものではない。また、実施例中の「活性炭の過酸化水素分解力」とは、温度27℃、過酸化水素濃度0.5%の水溶液において、活性炭を0.5%添加し、60分間放置後、残存過酸化水素濃度を測定し、式「(0.5−残存過酸化水素濃度(%))/0.5 × 100」により算出した過酸化水素分解率である。
【0014】
実施例1
全シアンとして4ppmを含む試験廃液1Lに対して、撹拌下、水酸化ナトリウムを加えpHを2.7に調整した後、表1に示した量の活性炭と硫酸第一鉄7水塩を加え、35%過酸化水素溶液60gを24時間かけて滴下した。処理温度は20℃とした。反応終了後、過マンガン酸カリウム溶液滴定法により残存過酸化水素濃度測定を行い、さらに水酸化カルシウムでpHを中性とした後、一部を濾別し、ろ過液について全シアン測定(JIS  K 0102 38.1 及び 38.3)を行った。結果を表1に示す。なお、表中に示した各成分の濃度及び分解率のうち、過酸化水素の分解率については添加した35%過酸化水素溶液60g中含まれる過酸化水素量21gに対する値、その他については分解処理前の初発の試験廃液に対する値である
【表1】

Figure 2004074087
【0015】
実施例2
全シアンとして1ppmを含む蒸留水を使用した他は、実施例1と同様に実験を行った。結果を表2に示す。
【表2】
Figure 2004074087
【0016】
比較例1
活性炭を用いなかった以外は、実施例1と同様に実験を行った。結果を表3に示す。
【表3】
Figure 2004074087
【0017】
実施例3
活性炭として廃菌体系活性炭の20%水スラリー液を3000ppmを用いた以外は、実施例1と同様に実験を行った。結果を表4に示す。
【表4】
Figure 2004074087
【0018】
【発明の効果】
本発明の方法によれば、従来処理の難しかったシアンや青酸塩類などのシアン化合物を含む廃液からシアン化合物を簡便に分解除去処理できるので、産業上極めて有用な方法である。[0001]
[Industrial applications]
The present invention relates to a method for treating a waste liquid containing a cyanide compound.
[0002]
[Prior art]
Wastewater containing cyanide such as cyanide and cyanide is discharged from a metal smelting plant, a plating plant, a surface treatment plant that performs chromate treatment, and the like. Furthermore, in the coke gas industry, a waste liquid containing a cyanide may be discharged as a gas liquid during coal dry distillation. The coke oven gas may also contain a cyanide, and the gas cleaning water may also contain some cyanide. Cyanide compounds in these wastewaters need to be separated and recovered, or detoxified and discharged.
[0003]
Conventionally, as a method for treating these cyanide compounds, a thermal decomposition method, a precipitation method, a biochemical method, an alkali chlorine method, an ozone oxidation method, an adsorption method using an ion exchange resin, and the like have been used. However, the thermal decomposition method (JP-A-5-309375, JP-A-9-38632, and JP-A-9-38633) requires a pressure vessel as a processing apparatus, and requires large-scale equipment. However, there is a problem that the equipment becomes larger and the equipment cost and the running cost are higher than in the batch processing. The precipitation method using an iron salt or the like (Japanese Patent Application Laid-Open No. 9-75952) is not a method of decomposing the cyanide itself in principle, and has a problem that a large amount of sludge is generated. The biochemical method represented by activated sludge treatment has a problem that the equipment is large-scale, and in addition, a large amount of labor and cost are required for maintaining and managing the activated sludge tank and treating sludge. The alkali chlorine method using sodium hypochlorite or the like (Japanese Patent Application Laid-Open No. 2001-269675) has a problem in that an organic chlorine compound may be generated due to remaining chlorine, and new secondary pollution may occur. The ozone oxidation method (Japanese Patent Application Laid-Open No. H08-141592) has a problem that the equipment becomes large-scale, a large amount of electric power is required for ozone generation, and the running cost is high. In the adsorption method using the ion exchange resin, regeneration of the ion exchange resin is required, and a large amount of waste liquid is generated along with the regeneration, and further, an exchange operation due to deterioration of the ion exchange resin is required.
[0004]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems in the prior art, and provides a treatment method for effectively decomposing and removing cyanide from wastewater containing cyanide.
[0005]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above problems, and as a result, added activated carbon, iron salt and hydrogen peroxide to a waste liquid treatment system, and reacted under a condition of pH 5 or less, so that the waste water was treated. It has been found that the contained cyanide can be efficiently decomposed and removed.
[0006]
That is, the present invention is characterized in that activated carbon, an iron salt and hydrogen peroxide are added to a cyan compound-containing waste liquid and reacted under conditions of pH 5 or less, wherein the cyan compound-containing waste liquid described in (1) to (4) is provided. Processing method.
(1) A method for treating a cyan compound-containing waste liquid, wherein activated carbon, an iron salt, and hydrogen peroxide are added to the cyan compound-containing waste liquid and reacted under a condition of pH 5 or less.
(2) Activated carbon whose decomposition rate of hydrogen peroxide is 5% or more 60 minutes after adding 0.5% of the activated carbon in an aqueous solution having a temperature of 27 ° C. and a hydrogen peroxide concentration of 0.5%. The method for treating a cyan compound-containing waste liquid according to (1), wherein
(3) The method for treating a cyan compound-containing waste liquid according to (1) or (2), wherein the activated carbon is a fine powder having an average particle diameter of 1000 μm or less.
(4) The method for treating a cyan compound-containing waste liquid according to (3), wherein the activated carbon is a suspension of fine powder having an average particle diameter of 1000 µm or less.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The hydrogen peroxide decomposition rate of the activated carbon shown in the present invention is determined by measuring the residual hydrogen peroxide concentration after adding 0.5% of activated carbon to an aqueous solution having a temperature of 27 ° C. and a hydrogen peroxide concentration of 0.5%, allowing the mixture to stand for 60 minutes. And is calculated by the following equation.
(0.5-concentration of residual hydrogen peroxide (%)) / 0.5 × 100
[0008]
In the present invention, it is desirable to use activated carbon having the hydrogen peroxide decomposition rate of 5% or more, preferably 20% or more. The higher the activated carbon decomposition activity of hydrogen activated carbon, the more efficiently the cyanide in the waste liquid is decomposed, and the smaller the amount of activated carbon used, the shorter the processing time. Also, at this time, it is desirable to use activated carbon having an average particle diameter of 1000 μm or less, preferably 100 μm to 50 μm. In this case, as the average particle size of the activated carbon is smaller, the decomposition of the cyanide compound in the waste liquid proceeds more efficiently, the amount of activated carbon used is reduced, and the treatment time can be shortened, which is advantageous. Although there is no particular lower limit on the average particle diameter, it is preferable to use those having an average particle diameter of 1 μm or more in view of the power cost required for pulverizing the powder, the recoverability of the used activated carbon, and the like.
[0009]
The origin of the activated carbon used in the present invention is not particularly limited. , Coal-based minerals such as bituminous coal and anthracite, petroleum-based minerals such as petroleum residue, sulfuric acid sludge, oil carbon, protein-based materials, sludge or waste containing protein A starting material, a product obtained from waste cells of fermentation production, a product obtained from polyacrylonitrile (PAN), and the like are used. In particular, activated carbon obtained from waste cells of fermentation production is suitably used. Used. Further, by treating these activated carbons, the hydrogen peroxide decomposing ability can be improved and used.
[0010]
Activated carbon usually reduces its adsorption capacity by adsorbing moisture or the like, but in the present invention, activated carbon can be used by suspending it in a dispersion medium such as water. The method of supplying the activated carbon to the waste liquid is not particularly limited, and powdered activated carbon may be supplied as it is, or may be supplied in advance by a suspension and a non-pump. Industrially, it is more advantageous to supply the suspension as a suspension in terms of suppression of dust generation and operability. From the viewpoint of fluidity and operability of the suspension, a powder suspension of 1000 μm or less, preferably 300 μm or less is preferred. A method of supplying as a suspension is desirable.
[0011]
In the present invention, by using an iron salt and hydrogen peroxide together with activated carbon, cyanide such as cyanide and cyanide in wastewater can be efficiently decomposed and removed. The iron salt is not particularly limited, as long as it is used for ordinary waste liquid treatment. For example, ferrous sulfate, ferrous chloride and the like can be mentioned, but ferrous sulfate is preferred from the viewpoint of price and versatility. On the other hand, hydrogen peroxide has oxidizing agents such as peracetic acid, peracetate, percarbonate, percarbonate, persulfate, persulfate, hypochlorous acid, hypochlorite, perboric acid, perboric acid. Although salt, ozone, oxygen, chlorine, air and the like can be used in combination, it is most preferable to use hydrogen peroxide alone because it has a low environmental load after use.
[0012]
The amount of iron salt and hydrogen peroxide used is not particularly limited, and is appropriately selected depending on the required waste liquid treatment level. Generally, when ferrous sulfate is used as the iron salt, the treated waste liquid is used. 0.01% to 10%, and 0.1% to 10% of hydrogen peroxide. In the waste liquid treatment according to the present invention, the reaction is performed under the condition of pH 5 or less. If the pH of the treatment waste liquid is higher than this, the effect of the present invention is significantly impaired. In that case, the pH may be adjusted by separately dropping an acid such as sulfuric acid or hydrochloric acid.
[0013]
【Example】
Hereinafter, the present invention will be described in detail with reference to Examples. In addition, this invention is not limited to a following example. In the examples, “hydrogen peroxide decomposing ability of activated carbon” refers to an aqueous solution having a temperature of 27 ° C. and a hydrogen peroxide concentration of 0.5%, to which 0.5% of activated carbon was added. The hydrogen peroxide concentration is measured, and is a hydrogen peroxide decomposition rate calculated by the formula “(0.5−concentration of residual hydrogen peroxide (%)) / 0.5 × 100”.
[0014]
Example 1
To 1 L of the test waste liquid containing 4 ppm as total cyanide, sodium hydroxide was added to the mixture to adjust the pH to 2.7 with stirring, and then activated carbon and ferrous sulfate heptahydrate in the amounts shown in Table 1 were added. 60 g of a 35% hydrogen peroxide solution was added dropwise over 24 hours. The processing temperature was 20 ° C. After completion of the reaction, the residual hydrogen peroxide concentration was measured by potassium permanganate solution titration, and the pH was neutralized with calcium hydroxide. Then, a part of the solution was filtered off, and the filtrate was subjected to a total cyan measurement (JIS K 0102 38.1 and 38.3). Table 1 shows the results. Among the concentrations and decomposition rates of each component shown in the table, the decomposition rate of hydrogen peroxide is a value based on the amount of 21 g of hydrogen peroxide contained in 60 g of the added 35% hydrogen peroxide solution. Table 1 shows the values for the first test waste liquid before.
Figure 2004074087
[0015]
Example 2
An experiment was performed in the same manner as in Example 1 except that distilled water containing 1 ppm as total cyan was used. Table 2 shows the results.
[Table 2]
Figure 2004074087
[0016]
Comparative Example 1
The experiment was performed in the same manner as in Example 1 except that no activated carbon was used. Table 3 shows the results.
[Table 3]
Figure 2004074087
[0017]
Example 3
The experiment was performed in the same manner as in Example 1 except that 3000 ppm of a 20% aqueous slurry of waste bacteria-based activated carbon was used as the activated carbon. Table 4 shows the results.
[Table 4]
Figure 2004074087
[0018]
【The invention's effect】
According to the method of the present invention, a cyan compound can be easily decomposed and removed from a waste liquid containing a cyan compound such as cyan or cyanide, which has been conventionally difficult to treat, and thus is an industrially useful method.

Claims (4)

シアン化合物含有廃液に、活性炭、鉄塩及び過酸化水素を加え、pH5以下の条件下で反応させることを特徴とする、シアン化合物含有廃液の処理方法。A method for treating a cyan compound-containing waste liquid, comprising adding activated carbon, an iron salt, and hydrogen peroxide to the cyan compound-containing waste liquid and reacting the mixture under a condition of pH 5 or less. 活性炭が、温度27℃、過酸化水素濃度0.5%の水溶液において、当該活性炭を0.5%添加したときの60分後の過酸化水素の分解率が5%以上となる活性炭を使用する、請求項1記載のシアン化合物含有廃液の処理方法。In an aqueous solution having a temperature of 27 ° C. and a hydrogen peroxide concentration of 0.5%, activated carbon having a decomposition rate of hydrogen peroxide of 5% or more after 60 minutes when 0.5% of the activated carbon is added is used. A method for treating a cyan compound-containing waste liquid according to claim 1. 活性炭が、1000μm以下の平均粒子径を有する微粉末である、請求項1又は請求項2記載のシアン化合物含有廃液の処理方法。The method for treating a cyan compound-containing waste liquid according to claim 1 or 2, wherein the activated carbon is a fine powder having an average particle diameter of 1000 µm or less. 活性炭が、1000μm以下の平均粒子径を有する微粉末の懸濁液である、請求項3記載のシアン化合物含有廃液の処理方法。The method for treating a cyan compound-containing waste liquid according to claim 3, wherein the activated carbon is a suspension of fine powder having an average particle diameter of 1000 µm or less.
JP2002240953A 2002-08-21 2002-08-21 Treatment method for cyanogen compound-containing waste liquid Pending JP2004074087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002240953A JP2004074087A (en) 2002-08-21 2002-08-21 Treatment method for cyanogen compound-containing waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002240953A JP2004074087A (en) 2002-08-21 2002-08-21 Treatment method for cyanogen compound-containing waste liquid

Publications (1)

Publication Number Publication Date
JP2004074087A true JP2004074087A (en) 2004-03-11

Family

ID=32023589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002240953A Pending JP2004074087A (en) 2002-08-21 2002-08-21 Treatment method for cyanogen compound-containing waste liquid

Country Status (1)

Country Link
JP (1) JP2004074087A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102267771A (en) * 2010-06-07 2011-12-07 鞍钢股份有限公司 Pretreatment method of coking wastewater
CN102531273A (en) * 2010-12-31 2012-07-04 上海轻工业研究所有限公司 Treatment equipment for ammonia nitrogen and COD (Chemical Oxygen Demand) in surface treatment waste water
CN102627367A (en) * 2012-04-24 2012-08-08 东北石油大学 Method for advanced treatment of coking wastewater
CN104891721A (en) * 2015-06-12 2015-09-09 东北石油大学 Method for advanced treatment of coking wastewater
WO2016190108A1 (en) * 2015-05-22 2016-12-01 株式会社片山化学工業研究所 Method for treating cyanogen-containing wastewater
JP2017148728A (en) * 2016-02-24 2017-08-31 三菱重工メカトロシステムズ株式会社 Wastewater treatment method, wastewater treatment apparatus and coal gasification power generation facility comprising same
KR101907485B1 (en) * 2017-05-30 2018-10-12 서울대학교산학협력단 Method of wastewater treatment contaning free cyanide and heavymetals-cyanide complex

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102267771A (en) * 2010-06-07 2011-12-07 鞍钢股份有限公司 Pretreatment method of coking wastewater
CN102267771B (en) * 2010-06-07 2013-09-04 鞍钢股份有限公司 Pretreatment method of coking wastewater
CN102531273A (en) * 2010-12-31 2012-07-04 上海轻工业研究所有限公司 Treatment equipment for ammonia nitrogen and COD (Chemical Oxygen Demand) in surface treatment waste water
CN102627367A (en) * 2012-04-24 2012-08-08 东北石油大学 Method for advanced treatment of coking wastewater
WO2016190108A1 (en) * 2015-05-22 2016-12-01 株式会社片山化学工業研究所 Method for treating cyanogen-containing wastewater
CN107614444A (en) * 2015-05-22 2018-01-19 株式会社片山化学工业研究所 Method for Treatment of Cyanide-containing Wastewater
JPWO2016190108A1 (en) * 2015-05-22 2018-03-08 株式会社片山化学工業研究所 Treatment method of wastewater containing cyanide
JP2020104115A (en) * 2015-05-22 2020-07-09 株式会社片山化学工業研究所 Method for treating cyanogen-containing waste water
JP7204140B2 (en) 2015-05-22 2023-01-16 株式会社片山化学工業研究所 Method for treating wastewater containing cyanide
CN104891721A (en) * 2015-06-12 2015-09-09 东北石油大学 Method for advanced treatment of coking wastewater
JP2017148728A (en) * 2016-02-24 2017-08-31 三菱重工メカトロシステムズ株式会社 Wastewater treatment method, wastewater treatment apparatus and coal gasification power generation facility comprising same
KR101907485B1 (en) * 2017-05-30 2018-10-12 서울대학교산학협력단 Method of wastewater treatment contaning free cyanide and heavymetals-cyanide complex

Similar Documents

Publication Publication Date Title
JP3829917B2 (en) Acetylene production apparatus and production method thereof
EP2927197A1 (en) System for treating coal gasification wastewater, and method for treating coal gasification wastewater
JP5579414B2 (en) Treatment method for wastewater containing reducing selenium
JP5792664B2 (en) Method for regenerating used activated carbon, activated activated carbon and method for producing the same
CN1653003A (en) Process for the removal of organic sulfur in wastewater including an oxidative pretreatment
JP7398021B2 (en) Treatment method and treatment equipment for cyanide-containing water
JPH10174976A (en) Method for treating water containing nitrogen compound
JP2004074087A (en) Treatment method for cyanogen compound-containing waste liquid
JP4382556B2 (en) Treatment method of wastewater containing cyanide
JP2004074088A (en) Treatment method for waste liquid containing chemical polishing liquid
CN1146493A (en) Treating method and device for deposited anode mud in electroplate solution cantaining halogen ions
JP2013056328A (en) Treatment method and treatment apparatus of cyanide-containing water
JP3603701B2 (en) Method and apparatus for treating peracetic acid-containing wastewater
JP2003245678A (en) Waste liquid treatment method by catalyst
JP5122074B2 (en) Water treatment method and system
JP7065184B2 (en) Wastewater treatment method
RU2057080C1 (en) Method for treatment of sewage and device for its embodiment
JP2020025955A (en) Treatment method of cyan-containing water
JP5791981B2 (en) Wastewater treatment method
JP2010069413A (en) Organic waste water treatment method
US6024860A (en) System for electrochemical decomposition of sodium azide
JP2008200599A (en) Method for cleaning waste water containing ammonia nitrogen
JP4399854B2 (en) Treatment method of waste water containing hydrazine
JPS6190799A (en) Method for controlling rancidity of sludge
JP4142994B2 (en) Fluorine-containing water treatment method and treatment apparatus therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080206