JP2004073967A - Equipment and method for dehydrating and drying sludge - Google Patents

Equipment and method for dehydrating and drying sludge Download PDF

Info

Publication number
JP2004073967A
JP2004073967A JP2002235977A JP2002235977A JP2004073967A JP 2004073967 A JP2004073967 A JP 2004073967A JP 2002235977 A JP2002235977 A JP 2002235977A JP 2002235977 A JP2002235977 A JP 2002235977A JP 2004073967 A JP2004073967 A JP 2004073967A
Authority
JP
Japan
Prior art keywords
hot water
sludge
drying
filter
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002235977A
Other languages
Japanese (ja)
Other versions
JP3672544B2 (en
Inventor
Junichi Nomura
野村 淳一
Shoichi Goda
郷田 昭一
Mutsuo Nakajima
中島 睦雄
Akinobu Suyama
須山 晃延
Naoto Kimura
木村 直人
Shigemasa Tanaka
田中 繁正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2002235977A priority Critical patent/JP3672544B2/en
Publication of JP2004073967A publication Critical patent/JP2004073967A/en
Application granted granted Critical
Publication of JP3672544B2 publication Critical patent/JP3672544B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an equipment for dehydrating and drying sludge, which has press membranes having a thermal conductivity sufficient for heating of sludge, has a structure of uniformly distributing the flow rate of the hot water and vacuum degree, is short in the time for drying cake and does not cause drying unevenness. <P>SOLUTION: The equipment for dehydrating and drying sludge is provided with a pair of press membranes 52 and 52 and filter cloths 51 and 51 between a pair of adjacent filter plates 54 and 54, forms a filter chamber consisting of the press membranes 52 and 52 and the filter cloths 51 and 51 by tightening the filter plates 54 and 54 by clamping devices and compresses the sludge in the filter chamber from both sides. Passages 53a for the hot water are formed between the filter plates 54 and 54 and the press membranes 52 and 52 and membranes having a high thermal conductivity of 0.35 to 1.00 Wxm<SP>-1</SP>xK<SP>-1</SP>are used as the press membranes 52 and 52. Mesh-like materials 53 having a thickness ≥1 mm are arranged in the passages 53a for the hot water between the filter plates 54 and 54 and the press membranes 52 and 52 to uniformly disperse the hot water. Also, the hot water generated in a hot water generator 31 is circulated and a back pressure valve 33 is disposed on the outlet side of the filter chamber of the circulating route for the hot water. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は汚泥の脱水乾燥装置に係り、特に上下水道設備、農村集落排水設備、し尿処理設備、産業排水処理設備等から排出される汚泥を加温・加圧して脱水すると共に、減圧乾燥する汚泥の脱水乾燥装置に関する。
【0002】
【従来の技術】
従来、汚泥を脱水乾燥するためには、脱水装置と乾燥装置とをそれぞれに設置する必要があり、イニシャルコストが大きく、維持管理に多大な労力がかかるのが実情であった。
また、加圧圧搾脱水機の圧搾媒体として温水を使用し、ろ布外部を減圧することにより、汚泥を加温および圧搾すると同時に減圧乾燥するものが知られている。しかしながら、この装置においては、圧搾膜の熱伝導率が低く、ろ板と圧搾膜の間の温水流量分布や圧搾膜とろ布の間の減圧度が場所により不均一なため、ケーキの乾燥時間が長く、乾燥むらが生じやすい等の問題点があった。
【0003】
【発明が解決しようとする課題】
本発明は上記問題点を解決し、汚泥の加温に十分な熱伝導率の圧搾膜を有し、温水流量や真空度が均一に分布する構造を有し、ケーキの乾燥時間が短く乾燥むらが生じない汚泥の脱水乾燥装置を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明の汚泥の脱水乾燥装置は、隣接する一対のろ板の間に一対の圧搾膜とろ布とを設け、締付装置で前記ろ板を締付けることで圧搾膜およびろ布からなるろ室を形成し、前記ろ室内の汚泥を両面から圧搾する汚泥の脱水乾燥装置において、前記ろ板と圧搾膜との間に温水の通路を形成すると共に、前記圧搾膜として熱伝導率が0.35W・m−1・K−1以上で1.00W・m−1・K−1以下の高い熱伝導率を有する膜を用いたことを特徴とする。
【0005】
また、前記ろ板と前記圧搾膜との間の温水の通路には、厚さ1mm以上の網目状物を配置し、温水をろ板と圧搾膜との間の温水通路の全面に均一に分散させるようにすることが好ましい。また、前記温水の通路には、温水発生装置で発生した温水を循環させ、その温水の循環経路のろ室の出口側に背圧弁およびバイパス弁を配置することが好ましい。
【0006】
これにより、ろ板と圧搾膜との間のろ室に面した温水の通路には、温水が均一に分散して存在する。そして、汚泥を加温圧搾するに際して、高い熱伝導率を有する圧搾膜により圧搾対象の汚泥に均一に良好な効率で熱を加えることができる。したがって、汚泥の加温圧搾乾燥が促進され、短時間で所要の含水率を有するケーキを作ることが可能となる。ここで、ろ板と圧搾膜との間の温水の通路に配置された1mm以上で5mm以下の網目状物により上記温水の通路に均一に温水を分散させることができる。また、温水の循環経路に背圧弁およびバイパス弁を配置することで、温水の圧力を調整し、これにより汚泥の加温圧搾及び加温乾燥条件をすみやかに調整することができる。
【0007】
また、前記圧搾膜には、前記ろ布との間に、溝深さまたは突起高さが3mm以上で10mm以下であるろ液排出用の溝または突起が設けられている。また、真空発生装置を設け、前記温水による圧搾と同時に真空発生装置が起動するようにし、圧搾膜とろ布との間隙を減圧雰囲気にすることにより、汚泥を加温圧搾脱水すると共に減圧乾燥することができる。
【0008】
【発明の実施の形態】
以下、本発明の実施形態について添付図面を参照しながら説明する。
【0009】
図1は、本発明の汚泥の脱水乾燥装置を含む汚泥処理システムの概略を示す。脱水乾燥機11は、汚泥の脱水乾燥を行う装置である。その内部に、隣接する一対のろ板の間に一対の圧搾膜とろ布とを設け、締付装置でそのろ板を締付けることで圧搾膜及びろ布からなるろ室内の汚泥を両面から圧搾することで、汚泥の脱水乾燥を行う装置である。この脱水乾燥機11には、スラリー供給ポンプ12によりスラリー供給ライン13から供給弁15を介して脱水乾燥対象の汚泥(スラリー)が供給される。そして、汚泥は脱水乾燥機11により脱水圧搾乾燥されて所要の含水率のケーキとなり、脱水乾燥機より取り出される。
【0010】
汚泥乾燥機11には温水が供給され、この温水により汚泥の脱水乾燥が促進される。温水ユニット31にて温水が作られ、温水循環ポンプ32により温水循環ライン35から脱水乾燥機11のヘッダ管17に導入される。脱水乾燥機11で汚泥の脱水乾燥に使用された温水はヘッダ管18から温水循環ライン35により温水ユニット31に戻される。このように、温水ユニット31と脱水乾燥機11との間で温水が循環するようになっていて、脱水乾燥機11の出口側に背圧弁33とバイパス弁34とが配置されている。従って、背圧弁33の調整およびバイパス弁34との切換により、循環する温水の流量及び脱水乾燥機内の温水の圧力をすみやかに調整することが可能である。
【0011】
また、脱水乾燥機11における汚泥の脱水乾燥には真空吸引が用いられる。したがって、真空ポンプ37と凝縮槽38とを備え、ろ布と圧搾膜との間を減圧雰囲気とすることで、ろ布内部の汚泥の脱水乾燥を促進する。また、圧搾工程と同時に真空ポンプ37が起動するようにして、圧搾膜とろ布との間隙を減圧することによりろ布内の汚泥を加温圧搾脱水すると共に減圧乾燥する。
【0012】
センターブロー用空気は、センターブローライン21により脱水乾燥機11に供給され、センターブロー排泥ライン23から脱水されていない汚泥と共に排出される。センターブローライン21には空気弁22が、センターブロー排泥ライン23には排泥弁24がそれぞれ接続されている。
【0013】
温水ユニット31は圧搾媒体及び加温媒体としての温水を供給するものであり、温水の水温を70℃〜95℃に保つ。この温水ユニット31としては、電力や石油等の燃料、または燃焼排ガス等を用いた温水ボイラ、水蒸気ドレン、燃料電池排水などの各種の熱源を用いることができる。温水循環ポンプ32は、脱水乾燥機11内の圧搾膜に0.5MPa以上の圧力を加えられるものであることが好ましい。脱水乾燥機11に接続されるろ液ラインと真空ラインは切替弁1・2により切り替えられ、真空ラインには上述したように凝縮槽38、真空ポンプ37が接続されている。凝縮槽38には冷却水が循環するようになっている。ここで真空ポンプ37の到達真空度は7kPa以下が好ましい。
【0014】
図2は、汚泥の脱水乾燥機における要部の構成例を示す。図2(c)の全体構成例で示すように、隣接する一対のろ板54,54の間に、一対の圧搾膜52,52とろ布51,51とが配置されている。ろ布51,51の内部に脱水乾燥対象の汚泥が導入され、図示しない締付装置によりプレート56,57が両側から締付けられ、一対のろ板54,54が両側から締付けられ、ろ布51,51内にろ室が形成される。図2(a)(b)に示すように、ろ板54と圧搾膜52との間には、厚さ1mm以上の網目状物53が配置され、ろ板54と圧搾膜52との間に温水が均一に流れる通路53aが確保される。
【0015】
網目状物53は、耐熱性、耐腐食性の材質からなる線径0.5mm以上の網などを用いることができ、材質としてはポリエチレン、ポリプロピレン、テフロン、ステンレスなどが好適である。網目状物53の厚さは1mm以上が好ましく、5mm以上である場合には、ろ室容積が減少するという問題がある。
【0016】
ここで、圧搾膜52は、熱伝導率が0.35W・m−1・K−1以上の高い熱伝導率を有する膜が用いられている。このような圧搾膜としては、ポリウレタン樹脂に5v/v%〜15v/v%のカーボングラファイトを混連したものなどを用いることができる。これにより、温水通路に流れる温水の熱を速やかにろ室内の汚泥に供給することができると共にろ室内の汚泥への熱供給を均一に行うことができる。但し、1.00W・m−1・K−1以上は強度が低く、実用的ではない。なお、通常のポリプロピレン樹脂によるものの熱伝導率は0.1W・m−1・k−1程度であり、架橋ポリエチレン樹脂によるものは、0.38W・m−1・K−1程度である。
【0017】
また、圧搾膜52のろ布51側には、ろ液排出用の溝または突起52aが設けられ、この溝の深さまたは突起の高さは3mm以上10mm以下が好ましく、幅2〜6mmの円柱状または角形であり、角形の場合、長さが長くなった場合、凹部が溝となる。ここで、溝の深さまたは突起の高さが10mm以上だと熱伝導量が低下し、熱伝導率の低い樹脂を用いた場合と同じ効果になってしまう。
これにより、圧搾膜52とろ布51との間隙の真空吸引路52bを均一に確保することが可能になる。なお、ろ板、網目状物、ろ布の材質は、70℃〜95℃の温室に耐えられる材料であれば、一般に使用されている材料を用いることができる。
【0018】
次に、この汚泥の脱水乾燥装置による脱水乾燥工程の概要について説明する。基本的な汚泥の脱水乾燥工程は、図3に示すように、ろ過工程、圧搾工程、センターブロー、乾燥工程からなる。
【0019】
ろ過工程は、無加温ろ過及び加温ろ過から構成され、圧搾工程は加温圧搾及び加温圧搾と減圧乾燥とから構成され、乾燥工程は加温乾燥と減圧乾燥とから構成される。脱水乾燥対象の汚泥の性状に応じた構成要素を選択することにより、最適な脱水乾燥を実行することができる。
【0020】
無加温ろ過は、給泥系統のみを稼働させるろ過工程であり、導入された汚泥がろ布54により自然にろ過される工程である。加温ろ過は給泥系統及び温水系統を稼働するろ過工程であり、この場合には温水が温水循環ラインにより圧搾膜52とろ板54との間の温水通路に供給される。この脱水乾燥機11においては、ろ板54と圧搾膜52との間に設置された網目状物53により、温水が均一に流れる通路53aが確保される。そして、圧搾膜52が熱伝導率が高い材料により構成されていて、温水通路が網目状物53により確保されているので、これにより効率的に且つむらがなく、温水の熱がろ布51,51内の乾燥対象の汚泥に伝達される。
【0021】
加温圧搾は、温水系統を動作させつつ、汚泥を加温しつつ圧搾する圧搾工程である。また、減圧乾燥は真空系統を動作させつつ減圧雰囲気下で圧搾を行う圧搾工程である。これらの圧搾工程では、温水は背圧弁33を通り温水循環ライン35を循環し、背圧弁33によりろ室近傍における温水圧力を低圧から所定の圧力に次第に上昇させることが好ましい。これにより、良好な加温圧搾ができる。
【0022】
乾燥工程は、温水による加温と真空装置の動作による減圧乾燥を行う工程であり、温水系統と真空系統とを共に動作させる。この時、温水はバイパス弁34を通して循環させることが好ましい。
【0023】
上述したように本発明の汚泥の脱水乾燥装置は、圧搾膜に熱伝導率が高い材料を用い、温水の通路に網目状物を配置し温水がろ室近傍の通路内を均一に流れるようになっている。そして、温水の循環経路に背圧弁を備え、圧搾膜の裏側に流れる温水の圧力の調整が可能である。これにより、温水の有する熱を効率的に且つ均一にむらなく脱水乾燥対象の汚泥(ケーキ)に伝達することができる。
【0024】
表1は、本発明の汚泥の脱水乾燥装置の効果を説明するためのもので、従来の脱水乾燥工程と本発明の脱水乾燥工程とを比較した実験結果である。
【0025】
【表1】

Figure 2004073967
ろ過工程は無加温ろ過を採用し、圧搾工程は加温圧搾と減圧乾燥とを採用し、乾燥工程は加温しつつ減圧する乾燥工程に統一している。原料の汚泥濃度は20g/Lと、同条件の汚泥を使用している。ここで、圧搾膜の熱伝導率は、従来例1においては0.23W・m−1・K−1であるのに対して、本発明の例1及び例2では圧搾膜の熱伝導率が0.68W・m−1・K−1と高いものを用いている。また、圧搾工程における圧搾圧力は、従来例1及び本発明の例1では、0.5MPaを採用し、本発明の例2では1.5MPaを採用している。
【0026】
そして、最終的なケーキ含水率をいずれも35%として実験した結果、従来例1では乾燥時間が2.17h(時間)であり、ろ過速度が0.25kg・m−2・h−1となるのに対して、本発明の例1では乾燥時間が0.83h(時間)と大幅に短縮され、ろ過速度が0.39kg・m−2・h−1となった。また、本発明の例2では、上述したように圧搾圧力を1.5MPaとした結果、乾燥時間が0.50h(時間)と更に短縮され、ろ過速度が0.45kg・m−2・h−1となった。
【0027】
上記実験結果から、圧搾膜熱伝導率が乾燥時間の長短に大きく影響していることが分かる。図4は、この脱水乾燥装置に熱伝導率の異なる圧搾膜を取り付け、本発明の例2と同様な条件で実験した結果である。横軸には圧搾膜の熱伝導率を示し、縦軸にはケーキ含水率が35%になるろ過速度を示している。この実験結果から、熱伝導率が0.35W・m−1・K−1以上で、大きなろ過速度が得られることが示されている。
【0028】
表2は、従来の加圧圧搾脱水工程(従来例2)と、本発明の脱水乾燥工程(例3)とを比較した実験結果である。
【表2】
Figure 2004073967
【0029】
従来例2では、ろ過工程、圧搾工程共に無加温の状態で行い、本発明の例3では、ろ過工程を加温ろ過、圧搾工程を加温圧搾で実施した。原料としては、濃度20g/Lの同条件の汚泥を使用している。また、従来例2では、ろ過及び圧搾時の温度を20℃として、圧搾時間0.80h(時間)でケーキ含水率60%となり、ろ過速度0.46kg・m−2・h−1となった。これに対して、本発明の例3では、ろ過及び圧搾時の温度を80℃とした結果、圧搾時間0.50h(時間)でケーキ含水率60%が得られ、ろ過速度0.53kg・m−2・h−1となった。この表2に示す実験結果においても、本発明の脱水乾燥装置による工程においては、圧搾時間が大幅に低減し、全体としての全工程時間が低減し、これにより全体としてのろ過速度が向上していることが分かる。
【0030】
また、従来例1と従来例2の脱水乾燥処理後のケーキを観察すると、ろ室周辺部と中心部とでは乾燥度合いに差が見られた。これに対し、本発明の例1〜例3では、得られたケーキの乾燥度合いに差が見られなかった。この効果の差は、ろ板と圧搾膜との間の温水通路に網目状物を配置して、これにより温水通路の均一性を確保すると共に、ろ布と圧搾膜との間に溝または突起を設け、これにより真空通路を確保して減圧処理の均一性を確保したことに基因していると考えられる。
【0031】
尚、上記実施例は、本発明の好ましい実施例の一形態を述べたに過ぎず、本発明の趣旨を逸脱することなく、種々の実施例をとることが可能なことは勿論である。
【0032】
【発明の効果】
上述したように本発明によれば、脱水乾燥対象の汚泥の加温に十分な熱伝導率を有する圧搾膜を用い、ろ室周辺において温水や減圧環境が均一に分布する構造を備えることで、ケーキの乾燥時間が短く且つ乾燥ムラが生じない汚泥の脱水乾燥装置が得られる。
【図面の簡単な説明】
【図1】本発明の実施形態の汚泥の脱水乾燥装置を示すブロック図である。
【図2】図1に示す脱水乾燥装置の要部の(a)断面図であり、(b)平面図であり、(c)全体構成を示す断面図である。
【図3】汚泥の脱水乾燥処理を示すフロー図である。
【図4】圧搾膜の熱伝導率とろ過速度との関係を示す実験結果のグラフである。
【符号の説明】
11  脱水乾燥機
12  汚泥供給ポンプ
13  汚泥供給ライン
21  センターブローライン
23  センターブロー排泥ライン
31  温水ユニット
32  温水循環ポンプ
33  背圧弁
35  温水循環ライン
37  真空ポンプ
38  凝縮槽
51  ろ布
52  圧搾膜
52a  突起または溝
52b  真空吸引路
53  網目状物
53a  温水通路
54  ろ板[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a dewatering and drying apparatus for sludge, and more particularly to sludge which is heated and pressurized to dewater sludge discharged from water and sewage equipment, rural settlement drainage equipment, human waste treatment equipment, industrial wastewater treatment equipment, etc., and dried under reduced pressure. And a dehydration drying apparatus.
[0002]
[Prior art]
Conventionally, in order to dewater and dry sludge, it is necessary to install a dewatering device and a drying device in each case, and the initial cost is large, and a great deal of labor is required for maintenance.
Further, there is known a method in which hot water is used as a pressing medium of a pressing press dehydrator and the outside of the filter cloth is depressurized, thereby heating and pressing the sludge and simultaneously drying under reduced pressure. However, in this apparatus, the thermal conductivity of the pressed membrane is low, and the distribution of hot water flow rate between the filter plate and the pressed membrane and the degree of decompression between the pressed membrane and the filter cloth are not uniform in some places. There are problems such as long drying unevenness.
[0003]
[Problems to be solved by the invention]
The present invention solves the above problems, has a pressed film having a thermal conductivity sufficient for heating the sludge, has a structure in which the flow rate of the hot water and the degree of vacuum are uniformly distributed, the drying time of the cake is short, and the drying is uneven. It is an object of the present invention to provide a sludge dewatering / drying apparatus in which no sludge is generated.
[0004]
[Means for Solving the Problems]
The sludge dewatering and drying apparatus of the present invention provides a pair of compressed membranes and a filter cloth between a pair of adjacent filter plates, and forms a filter chamber made of the compressed membrane and the filter cloth by tightening the filter plates with a tightening device. In a sludge dewatering and drying apparatus for squeezing the sludge in the filter chamber from both sides, a hot water passage is formed between the filter plate and the squeezed membrane, and the squeezed membrane has a thermal conductivity of 0.35 W · m A film having a high thermal conductivity of from 1 · K −1 to 1.00 W · m −1 · K −1 is used.
[0005]
In addition, a mesh material having a thickness of 1 mm or more is arranged in the hot water passage between the filter plate and the compressed membrane, and the hot water is uniformly dispersed on the entire surface of the hot water passage between the filter plate and the compressed membrane. It is preferable to make it. Further, it is preferable that hot water generated by a hot water generator is circulated in the hot water passage, and a back pressure valve and a bypass valve are arranged on the outlet side of the filter chamber of the hot water circulation path.
[0006]
Thereby, the hot water is uniformly dispersed in the hot water passage facing the filter chamber between the filter plate and the compression membrane. Then, when the sludge is heated and pressed, heat can be uniformly and efficiently applied to the sludge to be pressed by the pressed film having high thermal conductivity. Therefore, the heating, pressing and drying of the sludge is promoted, and a cake having a required moisture content can be produced in a short time. Here, the hot water can be uniformly dispersed in the hot water passage by a mesh material of 1 mm or more and 5 mm or less disposed in the hot water passage between the filter plate and the compression membrane. Further, by arranging the back pressure valve and the bypass valve in the circulation path of the hot water, the pressure of the hot water can be adjusted, whereby the heating and squeezing and heating and drying conditions of the sludge can be quickly adjusted.
[0007]
Further, the pressing membrane is provided with a groove or a projection for discharging a filtrate having a groove depth or a projection height of 3 mm or more and 10 mm or less between the filter cloth and the filter cloth. Further, a vacuum generator is provided, and the vacuum generator is started simultaneously with the squeezing by the hot water, and the sludge is heated, squeezed, dewatered and dried under reduced pressure by setting the gap between the squeezed membrane and the filter cloth to a reduced pressure atmosphere. Can be.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0009]
FIG. 1 schematically shows a sludge treatment system including a sludge dewatering and drying apparatus of the present invention. The dehydration dryer 11 is a device that performs dehydration drying of sludge. Inside, a pair of compressed membranes and a filter cloth are provided between a pair of adjacent filter plates, and the sludge in the filter chamber composed of the compressed membrane and the filter cloth is squeezed from both sides by tightening the filter plate with a fastening device. , A device for dehydrating and drying sludge. Sludge (slurry) to be dehydrated and dried is supplied to the dehydration dryer 11 from a slurry supply line 13 via a supply valve 15 by a slurry supply pump 12. Then, the sludge is dewatered and squeezed and dried by the dehydration dryer 11 to form a cake having a required moisture content, and is taken out from the dehydration dryer.
[0010]
Hot water is supplied to the sludge dryer 11, and the hot water promotes dehydration and drying of the sludge. Hot water is produced in the hot water unit 31 and is introduced into the header pipe 17 of the dehydration dryer 11 from the hot water circulation line 35 by the hot water circulation pump 32. The hot water used for dehydration and drying of the sludge in the dehydration dryer 11 is returned from the header pipe 18 to the hot water unit 31 by the hot water circulation line 35. As described above, the hot water circulates between the hot water unit 31 and the dehydration dryer 11, and the back pressure valve 33 and the bypass valve 34 are arranged on the outlet side of the dehydration dryer 11. Therefore, by adjusting the back pressure valve 33 and switching to the bypass valve 34, the flow rate of the circulating hot water and the pressure of the hot water in the dehydrating dryer can be quickly adjusted.
[0011]
In addition, vacuum suction is used for dehydration and drying of sludge in the dehydration dryer 11. Therefore, the vacuum pump 37 and the condensing tank 38 are provided, and the space between the filter cloth and the compressed membrane is set to a reduced pressure atmosphere, thereby promoting the dehydration and drying of the sludge inside the filter cloth. In addition, the vacuum pump 37 is activated simultaneously with the pressing step, and the pressure between the pressed membrane and the filter cloth is reduced to thereby heat, compress and dehydrate the sludge in the filter cloth, and also to dry under reduced pressure.
[0012]
The center blow air is supplied to the dehydration dryer 11 by the center blow line 21 and is discharged from the center blow sludge discharge line 23 together with the sludge that has not been dewatered. An air valve 22 is connected to the center blow line 21, and a mud discharge valve 24 is connected to the center blow mud discharge line 23.
[0013]
The hot water unit 31 supplies hot water as a compression medium and a heating medium, and keeps the temperature of the hot water at 70 ° C to 95 ° C. As the hot water unit 31, various heat sources such as a fuel such as electric power or petroleum, a hot water boiler using combustion exhaust gas, a steam drain, and a fuel cell drainage can be used. The hot water circulation pump 32 is preferably capable of applying a pressure of 0.5 MPa or more to the compressed film in the dehydration dryer 11. The filtrate line and the vacuum line connected to the dehydrator / dryer 11 are switched by the switching valves 1 and 2, and the condensing tank 38 and the vacuum pump 37 are connected to the vacuum line as described above. Cooling water circulates through the condensing tank 38. Here, the ultimate vacuum degree of the vacuum pump 37 is preferably 7 kPa or less.
[0014]
FIG. 2 shows a configuration example of a main part in a sludge dewatering / drying machine. As shown in the overall configuration example of FIG. 2C, a pair of compressed membranes 52, 52 and a filter cloth 51, 51 are arranged between a pair of adjacent filter plates 54, 54. Sludge to be dehydrated and dried is introduced into the filter cloths 51, 51, plates 56, 57 are tightened from both sides by a not-shown tightening device, and a pair of filter plates 54, 54 are tightened from both sides. A filter chamber is formed in 51. As shown in FIGS. 2 (a) and 2 (b), a mesh 53 having a thickness of 1 mm or more is arranged between the filter plate 54 and the pressed film 52, and is provided between the filter plate 54 and the pressed film 52. The passage 53a through which the hot water flows uniformly is secured.
[0015]
As the mesh 53, a mesh made of a heat-resistant and corrosion-resistant material having a wire diameter of 0.5 mm or more can be used. As the material, polyethylene, polypropylene, Teflon, stainless steel, or the like is preferable. The thickness of the mesh 53 is preferably 1 mm or more, and if it is 5 mm or more, there is a problem that the volume of the filter chamber is reduced.
[0016]
Here, a film having a high thermal conductivity of at least 0.35 W · m −1 · K −1 is used as the compressed film 52. As such a compression film, a film obtained by mixing 5 v / v% to 15 v / v% of carbon graphite with a polyurethane resin can be used. Thereby, the heat of the hot water flowing through the hot water passage can be quickly supplied to the sludge in the filter room, and the heat supply to the sludge in the filter room can be uniformly performed. However, 1.00 W · m −1 · K −1 or more has low strength and is not practical. The thermal conductivity of a normal polypropylene resin is about 0.1 W · m −1 · k −1 , and that of a crosslinked polyethylene resin is about 0.38 W · m −1 · K −1 .
[0017]
A groove or projection 52a for discharging filtrate is provided on the filter cloth 51 side of the compressed film 52, and the depth of the groove or the height of the projection is preferably 3 mm or more and 10 mm or less, and a circle having a width of 2 to 6 mm. It has a columnar or rectangular shape, and in the case of a rectangular shape, when the length becomes long, the concave portion becomes a groove. Here, when the depth of the groove or the height of the projection is 10 mm or more, the amount of heat conduction decreases, and the same effect as when a resin having low heat conductivity is used is obtained.
Thereby, it is possible to uniformly secure the vacuum suction path 52b in the gap between the compressed film 52 and the filter cloth 51. In addition, as a material of the filter plate, the mesh-like material, and the filter cloth, a commonly used material can be used as long as the material can withstand a greenhouse at 70 ° C. to 95 ° C.
[0018]
Next, an outline of the dewatering and drying process of the sludge by the dewatering and drying device will be described. As shown in FIG. 3, a basic sludge dewatering and drying step includes a filtration step, a pressing step, a center blow, and a drying step.
[0019]
The filtration step includes non-heated filtration and heated filtration. The compression step includes heated compression, heated compression and reduced-pressure drying, and the drying step includes heated drying and reduced-pressure drying. Optimal dehydration and drying can be performed by selecting components according to the properties of the sludge to be dehydrated and dried.
[0020]
The non-heating filtration is a filtration step for operating only the sludge supply system, and is a step in which the introduced sludge is naturally filtered by the filter cloth 54. The warm filtration is a filtration step that operates a mud supply system and a hot water system. In this case, hot water is supplied to a hot water passage between the compression membrane 52 and the filter plate 54 by a hot water circulation line. In this dehydration drier 11, a passage 53 a through which hot water flows uniformly is secured by the mesh-like material 53 provided between the filter plate 54 and the pressed film 52. Since the compression membrane 52 is made of a material having a high thermal conductivity and the hot water passage is secured by the mesh 53, the heat of the hot water is efficiently and evenly distributed, so that the heat of the hot water can be reduced by the filter cloth 51, It is transmitted to the sludge to be dried in 51.
[0021]
The heating and pressing is a pressing step of pressing the sludge while heating the sludge while operating the hot water system. In addition, the drying under reduced pressure is a pressing step of performing pressing under a reduced pressure atmosphere while operating a vacuum system. In these squeezing steps, it is preferable that the hot water circulates through the hot water circulation line 35 through the back pressure valve 33, and the back pressure valve 33 gradually raises the hot water pressure near the filter chamber from a low pressure to a predetermined pressure. Thereby, favorable heating and pressing can be performed.
[0022]
The drying step is a step of performing heating with hot water and drying under reduced pressure by operation of a vacuum device, and operates both the hot water system and the vacuum system. At this time, the hot water is preferably circulated through the bypass valve 34.
[0023]
As described above, the sludge dewatering and drying apparatus of the present invention uses a material having a high thermal conductivity for the compression membrane, arranges a mesh material in the passage of the warm water, and allows the warm water to flow uniformly in the passage near the filter chamber. Has become. In addition, a back pressure valve is provided in the circulation path of the hot water, so that the pressure of the hot water flowing on the back side of the compression membrane can be adjusted. This makes it possible to efficiently and uniformly transfer the heat of the hot water to the sludge (cake) to be dewatered and dried.
[0024]
Table 1 is for explaining the effect of the sludge dewatering and drying apparatus of the present invention, and is an experimental result comparing a conventional dewatering and drying step with the dewatering and drying step of the present invention.
[0025]
[Table 1]
Figure 2004073967
The filtration step employs unheated filtration, the compression step employs heated compression and reduced-pressure drying, and the drying step is a unified drying step in which heating is performed and the pressure is reduced. The sludge concentration of the raw material is 20 g / L, and the sludge under the same conditions is used. Here, the thermal conductivity of the compressed film is 0.23 W · m −1 · K −1 in Conventional Example 1, whereas the thermal conductivity of the compressed film is 1 in Examples 1 and 2 of the present invention. A material as high as 0.68 W · m −1 · K −1 is used. The compression pressure in the compression step is 0.5 MPa in Conventional Example 1 and Example 1 of the present invention, and 1.5 MPa in Example 2 of the present invention.
[0026]
Then, as a result of an experiment in which the final cake moisture content was 35%, the drying time was 2.17 h (hour) and the filtration rate was 0.25 kg · m −2 · h −1 in Conventional Example 1. On the other hand, in Example 1 of the present invention, the drying time was significantly reduced to 0.83 h (hour), and the filtration rate was 0.39 kg · m −2 · h −1 . In Example 2 of the present invention, as described above, the pressing pressure was set to 1.5 MPa. As a result, the drying time was further reduced to 0.50 h (hour), and the filtration speed was 0.45 kg · m −2 · h −. It became 1 .
[0027]
From the above experimental results, it can be seen that the thermal conductivity of the pressed film greatly affects the length of the drying time. FIG. 4 shows the results of an experiment conducted under the same conditions as in Example 2 of the present invention, in which pressed membranes having different thermal conductivities were attached to the dehydrating and drying apparatus. The horizontal axis shows the thermal conductivity of the pressed membrane, and the vertical axis shows the filtration rate at which the cake moisture content becomes 35%. The experimental results show that a high filtration rate can be obtained when the thermal conductivity is 0.35 W · m −1 · K −1 or more.
[0028]
Table 2 shows the results of an experiment comparing the conventional pressure-squeezing dehydration step (conventional example 2) with the dehydration-drying step (example 3) of the present invention.
[Table 2]
Figure 2004073967
[0029]
In Conventional Example 2, both the filtration step and the pressing step were performed without heating. In Example 3 of the present invention, the filtering step was performed by hot filtration, and the pressing step was performed by hot pressing. As raw material, sludge having a concentration of 20 g / L under the same conditions is used. Further, in Conventional Example 2, the temperature during filtration and pressing was 20 ° C., and the pressing time was 0.80 h (hour), the water content of the cake was 60%, and the filtering speed was 0.46 kg · m −2 · h −1 . . On the other hand, in Example 3 of the present invention, as a result of setting the temperature during filtration and pressing to 80 ° C., a cake moisture content of 60% was obtained in a pressing time of 0.50 h (hour), and a filtration rate of 0.53 kg · m −2 · h −1 . Also in the experimental results shown in Table 2, in the process using the dehydrating and drying apparatus of the present invention, the pressing time is greatly reduced, the entire process time is reduced as a whole, and the overall filtration speed is improved. I understand that there is.
[0030]
In addition, when the cakes after the dehydration and drying treatments of Conventional Example 1 and Conventional Example 2 were observed, a difference was found in the degree of drying between the periphery and the center of the filter chamber. On the other hand, in Examples 1 to 3 of the present invention, no difference was observed in the degree of drying of the obtained cake. The difference in this effect is due to the arrangement of meshes in the hot water passage between the filter plate and the pressed membrane, thereby ensuring the uniformity of the hot water passage and the grooves or projections between the filter cloth and the pressed membrane. It is considered that this is due to the fact that the vacuum passage was secured to ensure the uniformity of the decompression process.
[0031]
It should be noted that the above-described embodiment is merely an example of a preferred embodiment of the present invention, and it is needless to say that various embodiments can be adopted without departing from the spirit of the present invention.
[0032]
【The invention's effect】
As described above, according to the present invention, by using a pressed membrane having a thermal conductivity sufficient for heating the sludge to be dehydrated and dried, by providing a structure in which hot water and a reduced pressure environment are uniformly distributed around the filter chamber, Thus, a sludge dewatering and drying apparatus in which the cake drying time is short and drying unevenness does not occur is obtained.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an apparatus for dehydrating and drying sludge according to an embodiment of the present invention.
FIG. 2 is a sectional view (a) of a main part of the dehydrating and drying apparatus shown in FIG. 1, (b) a plan view, and (c) a sectional view showing the entire configuration.
FIG. 3 is a flowchart showing a dewatering and drying process for sludge.
FIG. 4 is a graph of an experimental result showing a relationship between a thermal conductivity of a compression membrane and a filtration rate.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Dehydration dryer 12 Sludge supply pump 13 Sludge supply line 21 Center blow line 23 Center blow sludge discharge line 31 Hot water unit 32 Hot water circulation pump 33 Back pressure valve 35 Hot water circulation line 37 Vacuum pump 38 Condenser tank 51 Filter cloth 52 Compressed membrane 52a Projection Or groove 52b Vacuum suction path 53 Mesh 53a Hot water path 54 Filter plate

Claims (5)

隣接する一対のろ板の間に一対の圧搾膜とろ布とを設け、締付装置で前記ろ板を締付けることで圧搾膜およびろ布からなるろ室を形成し、前記ろ室内の汚泥を両面から圧搾する汚泥の脱水乾燥装置において、
前記ろ板と圧搾膜との間に温水の通路を形成すると共に、前記圧搾膜として熱伝導率が0.35W・m−1・K−1以上で1.00W・m−1・K−1以下の高い熱伝導率を有する膜を用いたことを特徴とする汚泥の脱水乾燥装置。
A pair of compressed membranes and a filter cloth are provided between a pair of adjacent filter plates, and a filter chamber made of the compressed membrane and the filter cloth is formed by tightening the filter plate with a fastening device, and the sludge in the filter chamber is compressed from both sides. Sludge dewatering and drying equipment,
A hot water passage is formed between the filter plate and the pressed film, and the pressed film has a thermal conductivity of 0.35 W · m −1 · K −1 or more and 1.00 W · m −1 · K −1. An apparatus for dehydrating and drying sludge, using a membrane having the following high thermal conductivity.
前記ろ板と前記圧搾膜との間の温水の通路には、厚さ1mm以上の網目状物を配置し、温水を均一に分散させるようにしたことを特徴とする請求項1記載の汚泥の脱水乾燥装置。The sludge according to claim 1, wherein a mesh having a thickness of 1 mm or more is arranged in the hot water passage between the filter plate and the compression membrane, so that the hot water is uniformly dispersed. Dehydration drying equipment. 前記温水の通路には、温水発生装置で発生した温水を循環させ、その温水の循環経路の前記ろ室の出口側に背圧弁およびバイパス弁を配置したことを特徴とする請求項1記載の汚泥の脱水乾燥装置。The sludge according to claim 1, wherein hot water generated by a hot water generator is circulated in the hot water passage, and a back pressure valve and a bypass valve are disposed on an outlet side of the filter chamber in a circulation path of the hot water. Dehydration drying equipment. 前記圧搾膜には、前記ろ布との間に、溝深さまたは突起高さが3mm以上で10mm以下であるろ液排出用の溝または突起が設けられていることを特徴とする請求項1記載の汚泥の脱水乾燥装置。2. A groove or a projection for discharging a filtrate having a groove depth or a projection height of 3 mm or more and 10 mm or less is provided between the compression membrane and the filter cloth. A sludge dewatering and drying apparatus as described in the above. 真空発生装置を設け、前記温水による圧搾と同時に真空発生装置が起動するようにし、汚泥を加温圧搾脱水すると共に減圧乾燥することを特徴とする請求項1記載の汚泥の脱水乾燥装置。The sludge dehydration / drying apparatus according to claim 1, further comprising a vacuum generator, wherein the vacuum generator is activated simultaneously with the pressing by the hot water, and the sludge is heated, pressed and dehydrated and dried under reduced pressure.
JP2002235977A 2002-08-13 2002-08-13 Sludge dehydration drying equipment Expired - Fee Related JP3672544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002235977A JP3672544B2 (en) 2002-08-13 2002-08-13 Sludge dehydration drying equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002235977A JP3672544B2 (en) 2002-08-13 2002-08-13 Sludge dehydration drying equipment

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2005090121A Division JP4118280B2 (en) 2005-03-25 2005-03-25 Sludge dehydration drying apparatus and method
JP2005090124A Division JP4079956B2 (en) 2005-03-25 2005-03-25 Sludge dehydration drying equipment

Publications (2)

Publication Number Publication Date
JP2004073967A true JP2004073967A (en) 2004-03-11
JP3672544B2 JP3672544B2 (en) 2005-07-20

Family

ID=32020306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002235977A Expired - Fee Related JP3672544B2 (en) 2002-08-13 2002-08-13 Sludge dehydration drying equipment

Country Status (1)

Country Link
JP (1) JP3672544B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012075734A1 (en) * 2010-12-07 2012-06-14 Xu Jikai Pressurization pumped sludge dehydrator and method of pressurization pumped dehydrating for sludge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012075734A1 (en) * 2010-12-07 2012-06-14 Xu Jikai Pressurization pumped sludge dehydrator and method of pressurization pumped dehydrating for sludge

Also Published As

Publication number Publication date
JP3672544B2 (en) 2005-07-20

Similar Documents

Publication Publication Date Title
JP5478019B2 (en) Slurry dehydration drying method and dehydration drying apparatus
JP4079956B2 (en) Sludge dehydration drying equipment
JP4118280B2 (en) Sludge dehydration drying apparatus and method
JP3672544B2 (en) Sludge dehydration drying equipment
JP3815944B2 (en) Sludge dehydration drying method
JP4097030B2 (en) Dehydration drying apparatus and method
JP4127221B2 (en) Heated filter press
KR102517572B1 (en) Pressure variable type Filterpress Sludge Vacuum Heating Dehydrate Drying System
JP4179928B2 (en) Dehydration drying apparatus and method
JP3773164B2 (en) Filter press device, filter plate for filter press device, and sludge dewatering method
JP3773192B2 (en) Sludge dewatering method
TWM562296U (en) Press-filtering drying equipment with hot water and steam heat energy recycling function
KR102245839B1 (en) Tube Type Thermal Filter Plate, Thermal Filter Press Dewatering Device with Tube type Thermal Filter Plate and Dewatering Method thereof
JP2001232109A5 (en)
JP4751739B2 (en) Dehydration drying apparatus and dehydration drying method
JP3956370B2 (en) Slurry dewatering method and filter press apparatus
JP4878079B2 (en) Water treatment sludge treatment method and treatment apparatus
KR100368682B1 (en) Dehydration and drying system
KR102021731B1 (en) Sludge Dehydration and Drying Equipment
JP4117706B2 (en) Dehydration dryer
JP2002210499A5 (en)
JP2002037685A (en) Method and apparatus for sludge treatment
JP3812908B2 (en) Cryptosporidium inactivation method and water treatment equipment in water treatment
CN220098840U (en) Sludge heating and squeezing assembly and filter pressing equipment
JP2000153103A (en) Filter press apparatus and sludge dewatering

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050419

R150 Certificate of patent or registration of utility model

Ref document number: 3672544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees