JP2004071385A - Highly electro-conductive material and highly thermal-conductive material - Google Patents
Highly electro-conductive material and highly thermal-conductive material Download PDFInfo
- Publication number
- JP2004071385A JP2004071385A JP2002230021A JP2002230021A JP2004071385A JP 2004071385 A JP2004071385 A JP 2004071385A JP 2002230021 A JP2002230021 A JP 2002230021A JP 2002230021 A JP2002230021 A JP 2002230021A JP 2004071385 A JP2004071385 A JP 2004071385A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- conductive material
- powder
- highly
- block copolymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Conductive Materials (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、高電気伝導性材料及び高熱伝導性材料に関し、特に、カーボンブラック、金属粉等の電気伝導性粉体の少量をポリマに分散させることによりローコストで高い電気伝導性を得ることのできる電気伝導性材料、及び、グラファイト、窒化ホウ素、窒化アルミニウム等の高熱伝導性粉体をポリマに混合させてローコストで高い熱伝導性を得ることのできる高熱伝導性材料に関する。
【0002】
【従来の技術】
図2は、従来の電気伝導性材料の構造を示す。
図2に示すように、電気伝導性材料20は、カーボンブラック、金属粉、金属短繊維等の粉体21(電気伝導性粉体)を単純にポリマ材料22中に高濃度に分散及び成形して作られている。また、従来の熱伝導性材料の構造も、図2に示す如くであり、熱伝導性粉体としての粉体21にグラファイト、窒化ホウ素、窒化アルミニウム等を用い、この粉体21をポリマ材料22中に分散及び成形して作られている。
【0003】
【発明が解決しようとする課題】
しかし、従来の熱伝導材料及び電気伝導性材料によると、高い電気伝導性や高い熱伝導性を得るには、電気伝導性粉体や熱伝導性粉体を高い濃度で混合する必要がある。ところが、材料自体の粘度及び硬度が上昇し、成形作業が極めて困難になるほか、高価な電気伝導性粉体や熱伝導性粉体を多量に使用することになる。このため、電気伝導性材料及び熱伝導材料の価格低減が図れない。
【0004】
本発明の目的は、電気伝導性粉体をポリマ中の特定の領域に選択的に分散させることにより、少ない混合量で良好な電気伝導性及び成型加工性を得ることのできる高電気伝導性材料を提供することにある。
【0005】
本発明の他の目的は、熱伝導性粉体をポリマ中の特定の領域に選択的に分散させることにより、少ない混合量で良好な熱伝導性及び成型加工性をを得ることのできる高熱伝導性材料を提供することにある。
【0006】
【課題を解決するための手段】
本発明は、上記の目的を達成するため、第1の特徴として、末端相に剛直なポリマ相を有し、中間ブロック相に柔軟なゴム相を有するブロック共重合ポリマと、良好な電気伝導性を持ち、前記ブロック共重合ポリマの前記中間ブロック相に選択的に分散される電気伝導性粉体とを備える高電気伝導性材料を提供する。
【0007】
この構成によれば、ブロック共重合ポリマの中間ブロック相に電気伝導性粉体が選択的に分散される。この結果、高価な電気伝導性粉体の使用量を少なくしながら、良好な電気伝導性を有する高電気伝導性材料を得ることができる。電気伝導性粉体の使用量を低減できることにより材料コストが低く抑えられ、電気伝導性粉体の混合を低濃度にできるために材料の成型加工性を維持でき、しかも複雑な形状の成形が可能な高電気伝導性材料を得ることができる。
【0008】
本発明は、上記の目的を達成するため、第2の特徴として、末端相に剛直なポリマ相を有し、中間ブロック相に柔軟なゴム相を有するブロック共重合ポリマと、良好な熱伝導性を持ち、前記ブロック共重合ポリマの前記中間ブロック相に選択的に分散される熱伝導性粉体とを備える高熱伝導性材料を提供する。
【0009】
この構成によれば、ブロック共重合ポリマの中間ブロック相に熱伝導性粉体が選択的に分散されることにより、高価な熱伝導性粉体の使用量を少なくしながら良好な熱伝導性を有する高熱伝導性材料を得ることができる。熱伝導性粉体の使用量を低減できることにより材料コストが低く抑えられ、熱伝導性粉体の混合を低濃度にできることで材料の成型加工性を維持でき、しかも複雑な形状の成形が可能な高熱伝導性材料を得ることができる。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明の高電気伝導性材料及び高熱伝導性材料の構造を示す。
高電気伝導性材料の場合、図1において、ポリマーによる末端相1と柔軟な中間ブロック相2(ポリマーのエラストマー)によりベースポリマを形成し、その中間ブロック相2に選択的に良好な電気伝導性を有する粉体3を高密度に分散させている。粉体3は中間ブロック相2のみに分散するため、比較的少ない量の粉体3で高電気伝導性材料10を得ることができる。そして、材料全体では、末端相1に粉体3が侵入していないため、全体に占める粉体3の割合は小さく、成型加工性を損なうことも無い。
【0011】
同様に、高熱伝導性材料は、上記ベースポリマの中間ブロック相2に選択的に良好な熱伝導性を有する粉体3を高密度に分散させることにより作ることができる。粉体3は中間ブロック相2のみに分散するため、比較的少ない量の粉体3で高熱伝導材料(10)を得ることができる。そして、材料全体では、末端相1に粉体3が侵入していないため、全体に占める粉体3の割合は小さく、成型加工性を損なうことも無い。
【0012】
上記ベースポリマとして、末端相1に剛直なポリマ相と中間ブロック相2に柔軟なゴム相を有するブロック共重合ポリマ、例えば、両末端部にポリスチレン(S)相を持つブロックコポリマで、中間ブロック相2にポリブタジエン(B)を用いたSBS、ポリイソプレン(I)を用いたSIS、ポリエチレン/ブチレン(EB)を用いたSEBS、ポリエチレン/プロピレンを用いたSEPSを選定する。高電気伝導性材料の場合、上記ベースポリマにカーボンブラックや金属粉等の電気伝導性を有する粉体3を混合して導電性を付与する。この場合、電気伝導性を有する粉体3は、選択したポリマの柔軟な中間ブロック相に選択的に分散されるため、少ない混合量で良好な電気伝導性を得ることができる。電気伝導性の粉体3として、金、銀、銅、アルミニウム、鉄、マグネシウム、ニッケル等の金属、これら金属の合金、更には、カーボン、グラファイトから選ばれる1種或いは2種以上の材料を用いることができる。
【0013】
一方、高熱伝導性材料を得る場合においても、上記したベースポリマを選択することにより、少ない熱伝導性の粉体3(窒化ホウ素、窒化アルミニウム、窒化ケイ素等の窒化金属から選ばれる1種或いは2種以上の材料のほか、金、銀、銅、アルミニウム、鉄、マグネシウム、ニッケル等の金属、これら金属の合金、カーボン、グラファイト等の材料)の混合により、良好な熱伝導性を得ることができる。
【0014】
【実施例】
〔実施例1〕
次に、本発明の実施例について説明する。以下においては、スチレンが末端相、エチレン/プロピレンゴムを有するブロック共重合SEPS(スチレン含有量50vol%、比重0.93g/cm3 )が中間ブロック相のベースポリマを用い、更に、熱伝導性を有する粉体3として窒化ホウ素粒子(平均粒径20nm)を用いた場合について説明する。
【0015】
2軸押出し機を用いて、熱伝導性を有する粉体3としての窒化ホウ素粒子が体積比で45vol%になるまでベースポリマに混合すると、これら粒子はスチレン端末相ではなく中間ブロック相のEP相に選択的に分散するため、このEP相での粒子濃度は60vol%以上と非常に高くなる。この結果、この相においては、これら粒子が相互に接触し、10W/mK以上(熱線法を用いた測定法、JIS R2618による)の非常に高い熱伝導率が得られる。一方、末端相を持たない単に均一なエチレン/プロピレンゴムに45vol%混合した場合は、粒子間の距離が開いてしまい、熱伝導性は5W/mK(熱線法を用いた測定JIS
R2618)に満たない。
【0016】
また、熱伝導粒子混合量はポリマ全体として45vol%であるので、材料の成形加工性を損なうことも無く、製品の生産性を低下させることがない。
【0017】
〔実施例2〕
電気伝導性材料において、ベースポリマとして、末端相がスチレン、中間ブロック相がエチレン/プロピレンゴムを有するブロック共重合SEPS(スチレン含有量50%、比重0.92g/cm3 )を用い、導電性カーボン粒子(平均粒径30nm、DBP吸油量495cm3 /100g〔15g法〕、BET比表面積1270m2 )を用いた場合を説明する。
【0018】
上記ベースポリマの100重量部に対し、2軸押出し機を用いてカーボン粒子を20重量部混合した。その際、カーボン粒子はスチレン端末相ではなく中間ブロック相のEP相に選択的に分散され、このEP相での粒子濃度は25wt%以上と非常に高くなった。この結果、中間ブロック相においてはカーボン粒子が相互に接触し、体積抵抗率が102 Ωm以下(JIS K6911による)の高い電気伝導性が得られた。また、カーボン粒子の混合量がポリマ全体として17wt%であるので、材料の成形加工性を損なうことも無く、製品の生産性を低下させることもない。
【0019】
一方、末端相を持たない単に均一なエチレン/プロピレンゴムにカーボン粒子を20重量部混合して比較例を作成した。この比較例では、粒子間の距離が開いてしまい、体積抵抗率は104 Ωm以上(JIS K6911による)になった。
【0020】
【発明の効果】
以上より明らかなように、本発明の高電気伝導性材料によれば、電気伝導性粉体はブロック共重合ポリマの中間ブロック相に選択的に分散される。これにより、高価な電気伝導性粉体の使用量を少なくしながら良好な熱伝導性を有する電気伝導性粉体を得ることができる。電気伝導性粉体の使用量を低減できることにより材料コストが低く抑えられ、電気伝導性粉体の混合を低濃度にできることで材料の成型加工性を維持でき、しかも複雑な形状の成形が可能な高電気伝導性材料を得ることができる。
【0021】
また、本発明の高熱伝導性材料によれば、熱伝導性粉体はブロック共重合ポリマの中間ブロック相に選択的に分散される。これにより、高価な熱伝導性粉体の使用量を少なくしながら良好な熱伝導性を有する高熱伝導性材料を得ることができる。熱伝導性粉体の使用量を低減できることにより材料コストが低く抑えられ、熱伝導性粉体の混合を低濃度にできることで材料の成型加工性を維持でき、しかも複雑な形状の成形が可能な高熱伝導性材料を得ることができる。
【図面の簡単な説明】
【図1】本発明の高電気伝導性材料及び高熱伝導性材料の構造を示す断面図である。
【図2】従来の電気伝導性材料の構造を示す断面図である。
【符号の説明】
1 末端相
2 中間ブロック相
3 粉体
10 高電気伝導性材料(高熱伝導材料)
11 粉体
12 ポリマ材料
20 電気伝導性材料[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high electrical conductivity material and a high thermal conductivity material, and in particular, can obtain high electrical conductivity at low cost by dispersing a small amount of an electrical conductive powder such as carbon black and metal powder in a polymer. The present invention relates to an electrically conductive material and a highly thermally conductive material which can obtain high thermal conductivity at low cost by mixing a polymer with a high thermal conductive powder such as graphite, boron nitride, and aluminum nitride.
[0002]
[Prior art]
FIG. 2 shows the structure of a conventional electrically conductive material.
As shown in FIG. 2, the electrically
[0003]
[Problems to be solved by the invention]
However, according to the conventional heat conductive material and electric conductive material, it is necessary to mix the electric conductive powder and the heat conductive powder at a high concentration in order to obtain high electric conductivity and high heat conductivity. However, the viscosity and hardness of the material itself increase, making the molding operation extremely difficult. In addition, a large amount of expensive electric conductive powder or heat conductive powder is used. For this reason, the price of the electrically conductive material and the heat conductive material cannot be reduced.
[0004]
An object of the present invention is to selectively disperse an electric conductive powder in a specific region in a polymer, thereby obtaining a high electric conductive material capable of obtaining good electric conductivity and molding workability with a small mixing amount. Is to provide.
[0005]
Another object of the present invention is to selectively disperse a heat conductive powder in a specific region in a polymer, thereby obtaining high heat conductivity and molding workability with a small mixing amount. To provide a conductive material.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has, as a first feature, a block copolymer having a rigid polymer phase in a terminal phase and a flexible rubber phase in an intermediate block phase, and a good electric conductivity. And a conductive powder selectively dispersed in the intermediate block phase of the block copolymer.
[0007]
According to this configuration, the electrically conductive powder is selectively dispersed in the intermediate block phase of the block copolymer. As a result, it is possible to obtain a highly electrically conductive material having good electrical conductivity while reducing the amount of expensive electrically conductive powder used. The material cost can be kept low by reducing the amount of electric conductive powder used, and the mixing of the electric conductive powder can be made low concentration, so that the material can be processed and processed, and molding of complicated shapes is possible. A highly electric conductive material can be obtained.
[0008]
In order to achieve the above object, the present invention has, as a second feature, a block copolymer having a rigid polymer phase in a terminal phase and a soft rubber phase in an intermediate block phase, and a good thermal conductivity. And a thermally conductive powder selectively dispersed in the intermediate block phase of the block copolymer.
[0009]
According to this configuration, since the heat conductive powder is selectively dispersed in the intermediate block phase of the block copolymer, good heat conductivity can be obtained while reducing the amount of expensive heat conductive powder used. A highly heat conductive material having the same can be obtained. The material cost can be kept low by reducing the amount of the heat conductive powder used, and the molding process of the material can be maintained by mixing the heat conductive powder at a low concentration, and the molding of complicated shapes is possible. A high heat conductive material can be obtained.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows the structure of the highly electrically conductive material and the highly thermally conductive material of the present invention.
In the case of a highly conductive material, in FIG. 1, a base polymer is formed by a
[0011]
Similarly, the high thermal conductive material can be produced by selectively dispersing the powder 3 having good thermal conductivity in the intermediate block phase 2 of the base polymer at a high density. Since the powder 3 is dispersed only in the intermediate block phase 2, the high heat conductive material (10) can be obtained with a relatively small amount of the powder 3. Since the powder 3 does not penetrate into the
[0012]
As the base polymer, a block copolymer having a rigid polymer phase in the
[0013]
On the other hand, even in the case of obtaining a high heat conductive material, by selecting the above-mentioned base polymer, a powder 3 having a low heat conductivity (one or more selected from metal nitrides selected from metal nitrides such as boron nitride, aluminum nitride and silicon nitride) can be used. Good thermal conductivity can be obtained by mixing various materials such as gold, silver, copper, aluminum, iron, magnesium, nickel and other metals, alloys of these metals, carbon, graphite, etc.). .
[0014]
【Example】
[Example 1]
Next, examples of the present invention will be described. In the following, block copolymer SEPS (styrene content: 50 vol%, specific gravity: 0.93 g / cm 3 ) having a terminal phase of styrene and an ethylene / propylene rubber uses a base polymer of an intermediate block phase, and further has a thermal conductivity. The case where boron nitride particles (average particle diameter: 20 nm) are used as the powder 3 will be described.
[0015]
Using a twin-screw extruder, when boron nitride particles as the thermally conductive powder 3 are mixed with the base polymer until the volume ratio becomes 45 vol%, these particles are not in the styrene terminal phase but in the EP phase of the intermediate block phase. In the EP phase, the particle concentration is as high as 60 vol% or more. As a result, in this phase, the particles come into contact with each other, and a very high thermal conductivity of 10 W / mK or more (according to JIS R2618, a measurement method using a hot wire method) is obtained. On the other hand, if 45 vol% is mixed with simply homogeneous ethylene / propylene rubber having no terminal phase, the distance between the particles is widened, and the thermal conductivity is 5 W / mK (measured according to JIS
R2618).
[0016]
Further, since the mixed amount of the heat conductive particles is 45 vol% as a whole polymer, the molding processability of the material is not impaired, and the productivity of the product is not reduced.
[0017]
[Example 2]
In the electrically conductive material, a block copolymer SEPS (styrene content: 50%, specific gravity: 0.92 g / cm 3 ) having a terminal phase of styrene and an intermediate block phase of ethylene / propylene rubber is used as a base polymer. particles (average particle diameter 30 nm, DBP oil absorption 495cm 3 / 100g [15g method], BET specific surface area 1270 m 2) for explaining the case of using.
[0018]
20 parts by weight of carbon particles were mixed with 100 parts by weight of the base polymer using a twin screw extruder. At that time, the carbon particles were selectively dispersed not in the styrene terminal phase but in the EP phase of the intermediate block phase, and the particle concentration in the EP phase was as high as 25 wt% or more. As a result, in the intermediate block phase, the carbon particles were in contact with each other, and a high electrical conductivity with a volume resistivity of 10 2 Ωm or less (according to JIS K6911) was obtained. Further, since the mixing amount of the carbon particles is 17% by weight as a whole polymer, there is no loss in the processability of the material and no decrease in the productivity of the product.
[0019]
On the other hand, a comparative example was prepared by mixing 20 parts by weight of carbon particles with simply uniform ethylene / propylene rubber having no terminal phase. In this comparative example, the distance between the particles was widened, and the volume resistivity was 10 4 Ωm or more (according to JIS K6911).
[0020]
【The invention's effect】
As is clear from the above, according to the highly electrically conductive material of the present invention, the electrically conductive powder is selectively dispersed in the intermediate block phase of the block copolymer. This makes it possible to obtain an electrically conductive powder having good thermal conductivity while reducing the amount of the expensive electrically conductive powder used. By reducing the amount of electric conductive powder used, material costs can be kept low, and by mixing electric conductive powder at a low concentration, material moldability can be maintained, and molding of complex shapes is possible. A highly electrically conductive material can be obtained.
[0021]
Further, according to the high heat conductive material of the present invention, the heat conductive powder is selectively dispersed in the intermediate block phase of the block copolymer. This makes it possible to obtain a high heat conductive material having good heat conductivity while reducing the amount of expensive heat conductive powder used. The material cost can be kept low by reducing the amount of the heat conductive powder used, and the molding process of the material can be maintained by mixing the heat conductive powder at a low concentration, and the molding of complicated shapes is possible. A high heat conductive material can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing the structure of a highly electrically conductive material and a highly thermally conductive material of the present invention.
FIG. 2 is a cross-sectional view showing a structure of a conventional electrically conductive material.
[Explanation of symbols]
DESCRIPTION OF
11 Powder 12
Claims (4)
良好な電気伝導性を持ち、前記ブロック共重合ポリマの前記中間ブロック相に選択的に分散される電気伝導性粉体とを備える高電気伝導性材料。A block copolymer having a rigid polymer phase in the terminal phase and a flexible rubber phase in the intermediate block phase;
A highly electrically conductive material having good electrical conductivity and comprising an electrically conductive powder selectively dispersed in the intermediate block phase of the block copolymer.
前記電気伝導性粉体は、金、銀、銅、アルミニウム、鉄、マグネシウム、ニッケル、これら金属の合金、カーボン、又は、グラファイトの少なくとも1種を含むことを特徴とする請求項1記載の高電気伝導性材料。The block copolymer is a block copolymer having a polystyrene (S) phase at both ends, and SBS using polybutadiene (B) as an intermediate block phase, SIS using polyisoprene (I), polyethylene / butylene ( SEBS using EB) or SEPS using polyethylene / propylene,
2. The high electric power according to claim 1, wherein the electrically conductive powder contains at least one of gold, silver, copper, aluminum, iron, magnesium, nickel, an alloy of these metals, carbon, and graphite. Conductive material.
良好な熱伝導性を持ち、前記ブロック共重合ポリマの前記中間ブロック相に選択的に分散される熱伝導性粉体とを備える高熱伝導性材料。A block copolymer having a rigid polymer phase in the terminal phase and a flexible rubber phase in the intermediate block phase;
A thermally conductive powder having good thermal conductivity and being selectively dispersed in the intermediate block phase of the block copolymer.
前記熱伝導性粉体は、金、銀、銅、アルミニウム、鉄、マグネシウム、ニッケル、これら金属の合金、カーボン、グラファイト、窒化ホウ素、窒化アルミニウム、又は、窒化ケイ素の少なくとも1種を含むことを特徴とする請求項3記載の高熱伝導性材料。The block copolymer is a block copolymer having a polystyrene (S) phase at both ends, and SBS using polybutadiene (B) as an intermediate block phase, SIS using polyisoprene (I), polyethylene / butylene ( SEBS using EB) or SEPS using polyethylene / propylene,
The heat conductive powder contains at least one of gold, silver, copper, aluminum, iron, magnesium, nickel, alloys of these metals, carbon, graphite, boron nitride, aluminum nitride, and silicon nitride. The high thermal conductive material according to claim 3, wherein
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002230021A JP2004071385A (en) | 2002-08-07 | 2002-08-07 | Highly electro-conductive material and highly thermal-conductive material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002230021A JP2004071385A (en) | 2002-08-07 | 2002-08-07 | Highly electro-conductive material and highly thermal-conductive material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004071385A true JP2004071385A (en) | 2004-03-04 |
Family
ID=32016223
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002230021A Pending JP2004071385A (en) | 2002-08-07 | 2002-08-07 | Highly electro-conductive material and highly thermal-conductive material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004071385A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007314667A (en) * | 2006-05-25 | 2007-12-06 | Kaneka Corp | Inorganic fine particle-containing resin composition |
CN103366859A (en) * | 2012-03-29 | 2013-10-23 | 比亚迪股份有限公司 | Conductive slurry for solar cell and preparation method thereof |
US10648750B2 (en) | 2014-10-29 | 2020-05-12 | Dow Global Technologies Llc | Olefin block composite thermally conductive materials |
-
2002
- 2002-08-07 JP JP2002230021A patent/JP2004071385A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007314667A (en) * | 2006-05-25 | 2007-12-06 | Kaneka Corp | Inorganic fine particle-containing resin composition |
CN103366859A (en) * | 2012-03-29 | 2013-10-23 | 比亚迪股份有限公司 | Conductive slurry for solar cell and preparation method thereof |
US10648750B2 (en) | 2014-10-29 | 2020-05-12 | Dow Global Technologies Llc | Olefin block composite thermally conductive materials |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ravindren et al. | Prediction of electrical conductivity, double percolation limit and electromagnetic interference shielding effectiveness of copper nanowire filled flexible polymer blend nanocomposites | |
JP6515030B2 (en) | Composition comprising exfoliated boron nitride and method of forming the composition | |
KR20100075861A (en) | Thermoplastic composition and method for making thereof | |
JPWO2005040066A1 (en) | Carbon nanotube-dispersed composite material, production method thereof, and application thereof | |
CN104629187A (en) | Multifunctional polypropylene composite material and preparation method thereof | |
JP2008528768A (en) | Conductive composition and method for producing the same | |
TW201107393A (en) | Highly thermally-conductive moldable thermoplastic composites and compositions | |
EP1237217A2 (en) | Fuel cell separator composition, fuel cell separator and method of manufacture, and solid polymer fuel cell | |
JP3761029B2 (en) | Particulate acetylene black and uses thereof | |
CN109093108A (en) | High starch breeding alkene-carbon nanotube mixing Cu-base composites and preparation method thereof | |
Kwon et al. | Thermally conducting yet electrically insulating epoxy nanocomposites containing aluminum@ electrochemically exfoliated graphene hybrid | |
JPH08188407A (en) | Filler material | |
JP2000053864A (en) | Heat conductive/electrical insulating silicone rubber composition and silicone gel composition | |
JP2004071385A (en) | Highly electro-conductive material and highly thermal-conductive material | |
JP2006342192A (en) | Molding resin having electrical insulating property and excellent thermal conductivity | |
JP2003105108A (en) | Heat conductive sheet | |
KR20060093794A (en) | Resin-basd caron nanotube hybrid materials with high thermal conductivity | |
WO2010053225A1 (en) | Electrically insulated high thermal conductive polymer composition | |
JP3313837B2 (en) | Conductive plastic composition | |
JP2016017086A (en) | Electrically insulating thermally conductive resin composition and method for producing the same | |
JP4107575B2 (en) | Method for producing conductive resin composition and method for producing resin molded body | |
CN108485074A (en) | A kind of preparation method of heat dissipation plastic shell of television material | |
US8039547B2 (en) | Compositions for coating electrical interfaces including a nano-particle material and process for preparing | |
JPH0277442A (en) | Electrically conductive thermoplastic resin composition | |
CN115322556A (en) | High thermal/electrical conductivity polymer-based composite material with three-dimensional low-melting-point metal-based filler network and preparation thereof |