JP2004071163A - Manufacturing method of spacer, and spacer - Google Patents

Manufacturing method of spacer, and spacer Download PDF

Info

Publication number
JP2004071163A
JP2004071163A JP2002224348A JP2002224348A JP2004071163A JP 2004071163 A JP2004071163 A JP 2004071163A JP 2002224348 A JP2002224348 A JP 2002224348A JP 2002224348 A JP2002224348 A JP 2002224348A JP 2004071163 A JP2004071163 A JP 2004071163A
Authority
JP
Japan
Prior art keywords
glass material
viscosity
viscosity glass
low
spacer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002224348A
Other languages
Japanese (ja)
Inventor
Kohei Nakada
中田 耕平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002224348A priority Critical patent/JP2004071163A/en
Priority to US10/630,679 priority patent/US7052354B2/en
Priority to CN03160262.2A priority patent/CN1290139C/en
Publication of JP2004071163A publication Critical patent/JP2004071163A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels
    • H01J2329/86Vessels
    • H01J2329/8625Spacing members
    • H01J2329/863Spacing members characterised by the form or structure
    • H01J2329/8635Spacing members characterised by the form or structure having a corrugated lateral surface

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spacer having irregularities for restraining the surface from electrification capable of being easily manufactured with a good precision of the shape. <P>SOLUTION: For the manufacturing method of the spacer formed by cutting a glass mother material having a plurality of grooves on the outer surface into intended length by heating it at a drawing temperature and drawing thereof, the glass mother material is formed into a complex structure composed of a glass material with low viscosity (2) arranged in an inner layer of the glass mother material, and a glass material with high viscosity (3) arranged in an area including at least an outer surface extending along the elongated direction of the cross section. The glass material with high viscosity includes at least a member having the plurality of grooves on the outer surface side, and the viscosity of both of the glass material with low viscosity and the glass material with high viscosity ranges between 10<SP>5</SP>to 10<SP>10</SP>dPa×s, and the glass material is drawn at such a drawing temperature that makes the viscosity of the glass material with high viscosity becomes higher than that of the glass material with low viscosity. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電子・電気機器における一対の基板間に介在されて、該基板間を支持するスペーサーの製造方法およびスペーサーに関する。更に詳しくは、例えばパネル状ディスプレイの表裏一対の基板間に配置され、表面に帯電抑制等のための凹凸が形成されたスペーサーの製造方法およびスペーサーに関する。
【0002】
【従来の技術】
近年、表面伝導型の電子放出素子を基板上にマトリクス状に配置し、電子放出素子を気密に封入するように対向配置された基板上に設けられた蛍光体に放出電子を照射して画像を形成するパネル状ディスプレイの開発が進んでいる。
【0003】
このような、電子源が一対の基板間に気密に封入された電子線装置の基板間を支持するスペーサーの製造方法としては、断面長方形のガラス母材を、該ガラス母材を挟み込んだ送り出しローラーの回転により送り出す一方、送り出されたガラス母材を引き取りローラー間に挟んで、上記送り出しローラーの送り出し速度より速い引き取り速度で引き取ると共に、上記送り出しローラーと引き取りローラー間でガラス母材を加熱軟化させ、送り出しローラーの送り出し速度と引き取りローラーによる引き取り速度の速度差によって延伸し、ガラス母材と断面形状が相似形の延伸ガラス母材とし、これを切断して、所望の細さの細板状スペーサーとする加熱延伸法が知られている(特開2000−164129等)。
【0004】
一方、このような電子線装置に用いられるスペーサーについては、電子源から放出された電子の一部がスペーサーに当たったり、放出電子の作用でイオン化したイオンがスペーサーに付着したりすることで帯電を引き起こす可能性が指摘されている。スペーサーが帯電すると、電子源から放出された電子の軌道が正確に制御できなくなり、例えば表示画像が歪むといった問題につながる。
【0005】
このような課題を解決するために、スペーサーの表面に凹凸構造を設けて、スペーサーの帯電を抑制する技術が特開2000−311608に開示されている。この特開2000−311608では、上記加熱延伸法を応用し、加熱延伸を行いながら表面に凹凸を形成していく方法や、ガラス母材に予め凹凸を形成しておいてから該ガラス母材を加熱延伸する方法等が挙げられている。
【0006】
【発明が解決しようとする課題】
ところで、一般にガラス材の延伸加工は、ガラス材の粘性が10〜1010dPa・sの範囲になるように加熱して行われる。
【0007】
上記従来の製造方法においても、ガラス母材の粘性が10〜1010dPa・sの範囲になるように加熱して延伸が行われるが、粘性を低めに設定して延伸、つまり加熱温度を高めにして延伸すると、図10に示されるように、得られる細板状スペーサーの断面長寸方向の両端部が丸味を帯びて膨らみやすくなる。このような膨れを生じると、得られた細板状スペーサーを、基板上に横長に立てて設置する場合に、基板との接触面が湾曲しているので、安定性が悪く、組み立て性が悪いと共に、支持強度も得にくくなる問題がある。
【0008】
また、粘性を高めに設定して延伸、つまり加熱温度を低めにして延伸すると、図11に示されるように、得られる細板状スペーサーの断面長寸方向の中間部がくびれやすくなる。このようなくびれを生じた場合、所期の強度が得られず、例えばパネル状ディスプレイの表裏一対の基板間に配置されるスペーサーとして用いた場合、一対の基板間は減圧状態となるため、必要な耐大気圧性が得られなくなる場合も生じる。
【0009】
そして、このようにスペーサーの製造時に断面形状の制御性が悪いと、上記のような帯電抑制等のための凹凸の形状についても設計通りの形状が得られないことになり、所望の帯電抑制効果が得られなくなるといった問題にもつながる。
【0010】
本発明は上記課題に鑑みなされたものであり、表面に帯電抑制等のための凹凸が形成されたスペーサーが、より形状精度良く、且つより容易に製造可能となるようにすることを目的とする。
【0011】
【課題を解決するための手段】
ところで、上記膨れやくびれの発生原因は、縦横の寸法が異なる断面形状のガラス母材を加熱するときに、断面長手方向の両端部が中間部に比して加熱されやすいことにあると考えられる。例えば断面長方形のガラス母材で、その長手方向に沿った面を長手面、短手方向に沿った面を短手面とすると、断面長手方向の中間部は長手面からの熱で加熱されるのに対し、断面長手方向両端部は、長手面からと短手面からとの両方からの熱を受けて加熱されることになり、上記中間部に比して加熱されやすい。このため、ガラス母材の断面長手方向全体を所定の延伸しやすい粘性を有する状態にまで加熱しようとすると、上記両端部の加熱が過剰となり、粘性が低下して膨れの原因になると考えられる。また、この膨れを押さえるために加熱温度を下げると、上記中間部の加熱が不足し、中間部の粘性が高くなって、延伸時に応力が集中することでくびれの原因になると考えられる。
【0012】
本発明は、上記膨れとくびれの発生原因に鑑みてなされたもので、本発明の第1は、
表面に凹凸が形成されたスペーサーを、縦横の寸法が異なる断面形状を有し、断面長手方向に沿った外面に複数の溝を有するガラス母材を延伸温度に加熱し延伸して所要の長さに切断することにより製造するスペーサーの製造方法において、
ガラス母材を、ガラス母材の内層に配された低粘性ガラス材と、ガラス母材の表層部分のうち少なくとも前記断面長手方向に沿った外面を含む領域に配された高粘性ガラス材とからなる複合構造とし、
高粘性ガラス材は、外面側に複数の溝を有する部材を少なくとも含み、
低粘性ガラス材と高粘性ガラス材の粘性が共に10〜1010dPa・sの範囲内でかつ低粘性ガラス材の粘性より高粘性ガラス材の粘性が高くなる延伸温度に加熱して延伸することを特徴とするスペーサーの製造方法である。
【0013】
本発明は、上記第1の発明において、
「低粘性ガラス材は、断面形状が長方形であり、高粘性ガラス材は、少なくとも低粘性ガラス材の断面長辺側の2面に宛われていること」、
「低粘性ガラス材の断面長辺側の2面に宛われた高粘性ガラス材が、複数の細板部材を含み、該細板部材は、前記複数の溝のピッチと同じ幅を持ち、該溝の山部と谷部に対応する2つの異なる厚さの部分を有すること」、
「低粘性ガラス材の断面長辺側の2面に宛われた高粘性ガラス材の抵抗率が、10〜1010Ω・cmであること」、
「高粘性ガラス材が、更に低粘性ガラス材の断面短辺側の2面に宛われていること」、
「低粘性ガラス材の断面短辺側の2面に宛われた高粘性ガラス材の抵抗率が、10〜10Ω・cmであること」、
「高粘性ガラス材として、複数種類のガラス材を用いること」、
をその好ましい態様として含むものである。
【0014】
また、本発明の第2は、
表面に凹凸が形成されたスペーサーにおいて、
スペーサーの内層に配された低粘性ガラス材と、スペーサーの表層部分のうち少なくとも前記凹凸が形成された領域に配された高粘性ガラス材とが一体化された複合構造を有し、
低粘性ガラス材と高粘性ガラス材とが、低粘性ガラス材と高粘性ガラス材の粘性が共に10〜1010dPa・sの範囲内となる温度に加熱した時に、低粘性ガラス材の粘性より高粘性ガラス材の粘性が高くなるガラス材であることを特徴とするスペーサーである。
【0015】
本発明は、上記第2の発明において、
「低粘性ガラス材は、断面形状が長方形であり、高粘性ガラス材は、少なくとも低粘性ガラス材の断面長辺側の2面に一体化されていること」、
「低粘性ガラス材の断面長辺側の2面に一体化された高粘性ガラス材の抵抗率が、10〜1010Ω・cmであること」、
「高粘性ガラス材が、更に低粘性ガラス材の断面短辺側の2面に一体化されていること」、
「低粘性ガラス材の断面短辺側の2面に一体化された高粘性ガラス材の抵抗率が、10〜10Ω・cmであること」、
「高粘性ガラス材として、複数種類のガラス材が用いられていること」、
をその好ましい態様として含むものである。
【0016】
【発明の実施の形態】
図1は本発明に係るスペーサーの製造方法の一例を示す説明図、図2は図1に示されるガラス母材の部分拡大図、図3は図1の方法によって得られる本発明に係るスペーサーの拡大斜視図である。
【0017】
図1において、1はガラス母材で、このガラス母材1は、図2に拡大して示されるように、断面(ガラス母材1の延伸方向に対する直角方向の断面)長方形の低粘性ガラス材2と、その断面長辺側の2面(断面長手方向に沿った面)に宛われて低粘性ガラス材2を挟み込んだ板状の高粘性ガラス材3を、全体として断面が略長方形となるように組み合わせたものとなっている。
【0018】
なお、図1においては図面の簡略化のため複数の溝の記載は省略しているが、ガラス母材1を構成する高粘性ガラス材3には、図2、図3に示すように、外面側、即ち低粘性ガラス材2に宛われる面と反対側の面に、延伸方向に沿って複数の溝が設けられている。
【0019】
本例におけるガラス母材1の断面形状は略長方形であるが、本発明はこのような断面形状のガラス母材1に限らず、縦横の寸法が異なる断面形状のガラス母材1、例えば断面形状が略楕円形、略台形などのガラス母材1に対しても有益で、特に長手方向中間部と両端部の加熱状態に差を生じやすいことから、長手方向の寸法が短手方向の寸法の5倍以上となった断面形状のガラス母材1に対して有効である。また、本明細書における略長方形とは、4つのコーナーが直角に交わった形状の他、コーナーに面取り加工や丸味付(R加工)が施された形状をも含み、略としているのは溝の部分を考慮してのことである。しかしながら、基板間を安定に支えるスペーサーを得るため、また、溝の形状を含めた断面形状を所望の設計に併せて制御性良く形成するためにも、好ましい形態は断面が略長方形のものである。
【0020】
上記低粘性ガラス材2と高粘性ガラス材3の組み合わせは、押し付け合わせた状態、嵌め合わせた状態、接着した状態のいずれでも良い。本例においては、図1に示されるように、ガラス母材1の周囲をメカチャック4で締め付けることで、低粘性ガラス材2と高粘性ガラス材3が相互に押し付け合わされた状態で組み合わされている。
【0021】
上記低粘性ガラス材2と高粘性ガラス材3を構成するガラスとしては、例えば元素ガラス、酸化物ガラス、フッ化物ガラス、塩化物ガラス、硫化物ガラスなどから用途に応じて選択することができる。これらのうち、加工性の点からは、酸化物ガラス(例えばケイ酸塩ガラス、リン酸塩ガラス、ホウ酸塩ガラス、ホウケイ酸塩ガラスなど)が好ましい。
【0022】
図1に示される例においては、前記低粘性ガラス材2と高粘性ガラス材3を組み合わせたガラス母材1を用い、このガラス母材1をメカチャック4で締め付け保持し、下部をヒーター6で加熱して延伸し、延伸した延伸ガラス母材1’の下部を引き取りローラー5間に挟み込む。この状態で、メカチャック4を徐々に下降させながら、引き取りローラー5を回転させ、メカチャック4の下降速度より速い引き取り速度で延伸ガラス母材1’を引き取ると共に、上記メカチャック4と引き取りローラー5間で、ヒーター6によりガラス母材1を延伸温度に加熱し軟化させる。すると、メカチャック4の下降速度と引き取りローラー5による引き取り速度の速度差によって、延伸温度に加熱されて軟化したガラス母材1が延伸されると共に、低粘性ガラス材2と高粘性ガラス材3が一体化され、ガラス母材1と断面形状がほぼ相似形の延伸ガラス母材1’が連続して形成される。そして、冷却固化した状態で引き取りローラー5を通過した延伸ガラス母材1’をカッター7で切断することで、所望の細さの板状または柱状のスペーサー8(図3参照)とすることができる。
【0023】
ガラス母材1を構成する高粘性ガラス材2に設けておく溝の形状は、断面が矩形状、台形状、半円形状等、特開2000−311608に示されているように、延伸後完成したスペーサー8が基板間に配置された状態で該スペーサー8表面に入射する電子の入射角度をなるべく小さくすることが可能となるような設計に合わせて適宜決定すればよい。図2は溝の断面が矩形状の場合を示しているが、図6には溝の断面が台形状の場合が示してある。図6のように、溝の断面が台形状であると、スペーサー表面へ入射する電子の入射角をより小さくすることができるため好ましい。
【0024】
また、この溝の幅、深さ、ピッチ等の寸法は、どの程度の延伸を行うかにより異なり、これも完成状態の設計に合わせて適宜決定される。なお、本発明における溝は、必ずしもガラス母材の延伸方向に連続して設けられている必要はなく、途中で途切れていても構わないが、加工の容易性を考えると延伸方向に連続した溝を設けることが好ましい。
【0025】
上記ガラス母材1の延伸は、低粘性ガラス材2と高粘性ガラス材3の粘性が共に10〜1010dPa・sの範囲内でかつ低粘性ガラス材2の粘性より高粘性ガラス材3の粘性が高くなる延伸温度に加熱して行われる。延伸温度における低粘性ガラス材2と高粘性ガラス材3の粘性が10〜1010dPa・sの範囲外である場合、ガラス母材1の延伸加工が困難となる。具体的な延伸温度は、低粘性ガラス材2および高粘性ガラス材3の材質などによっても相違するが、一般的には500〜1000℃程度である。
【0026】
低粘性ガラス材2と高粘性ガラス材3の粘性が共に10〜1010dPa・sの範囲内でかつ低粘性ガラス材2の粘性より高粘性ガラス材3の粘性が高くなる延伸温度に加熱しての延伸は、本発明における低粘性ガラス材と高粘性ガラス材として、低粘性ガラス材と高粘性ガラス材の粘性が共に10〜1010dPa・sの範囲内となる温度に加熱した時に、低粘性ガラス材の粘性より高粘性ガラス材の粘性が高くなるガラス材をそれぞれ用いることで行うことができる。低粘性ガラス材2と高粘性ガラス材3の粘性の調整は、低粘性ガラス材2と高粘性ガラス材3の成分やその配合量の調整によって行うことができる。例えば、酸化物ガラスにおいては、含有されるアルカリ酸化物、酸化ホウ素、酸化鉛などの含有量を多くすること(少なくすること)で高温領域での粘性を下げる(上げる)ことができ、含有される酸化ケイ素、酸化アルミニウム、酸化チタン、酸化ジルコニウムなどの含有量を多く(少なく)することで、高温領域の粘性を上げる(下げる)ことができる。また、上記成分やその配合量の調整と、低粘性ガラス材2と高粘性ガラス材3の加熱温度の調整を併用することもできる。加熱温度の調整は、例えば低粘性ガラス材2の中心部に焦点を合わせたレンズや凹面鏡を介して赤外線を照射することにより加熱を行い、低粘性ガラス材2を高粘性ガラス材3に比して高温に加熱することによって行うことができる。
【0027】
上記方法によると、図3に示すような、膨れ及びくびれのないスペーサー8を得ることができる。これは、上記延伸温度において、低粘性ガラス材2の粘性より、この低粘性ガラス材2の両長手面を覆っている高粘性ガラス材3の粘性が高いため、ガラス母材1の断面長手方向両端部の低粘性ガラス材2の粘性が低くなりすぎても、これを覆う高粘性ガラス材3で膨れを抑制することができるためと考えられる。従って、低粘性ガラス材2のみでガラス母材1を構成した場合には断面長手方向両端部に膨れを生じてしまう延伸温度に加熱しても、この膨れを生じることがなく、膨れもくびれもないスペーサー8を得ることができる。
【0028】
また、高粘性ガラス材には片面のみに溝を形成すれば良いため、製造機械の単純構成化、工程の簡素化、短時間化が可能となる。さらには、低粘性ガラス材と高粘性ガラス材とにより材料の組合せの選択の幅が広がり、低粘性ガラス材の材料選択基準には強度や、熱膨張率(基板との熱応力の関係を考慮)等を主とし、高粘性ガラス材の材料選択基準には帯電抑制の効果を重視するといったことも可能となる。
【0029】
通常、スペーサー8の厚みは0.05〜0.5mm程度で、この程度の厚みのスペーサー8としたときの高粘性ガラス材3の厚みは、0.5〜5μmであることが好ましい。つまり、前記ガラス母材1の厚み、ガラス母材1における低粘性ガラス材2及び高粘性ガラス材3の厚みは、延伸後の厚みが上記範囲内となるものであることが好ましい。ガラス母材1における高粘性ガラス材3の厚みが大きすぎると、延伸加工が行いにくく、高粘性ガラス材3の厚みが小さすぎると、上記膨れの抑制効果が得にくくなる。また、延伸温度における低粘性ガラス材2と高粘性ガラス材3の粘性の差は、膨れの抑制効果を得やすくする上で、0.1dPa・s以上であることが好ましい。尚、本明細書中において溝を有する高粘性ガラス材の厚さとは、溝の山部に対応する最大の厚みを指すものとする。
【0030】
ところで、外面側に延伸方法に沿って複数の溝を有する部材を高粘性ガラス材として用いる方法には、上記のように高粘性ガラス材を単体の板状部材に溝を形成する形態もあるが、高粘性ガラス材を複数の細板部材を含む複数の部材から構成する形態も好ましい形態として挙げられる。このための細板部材には、前記複数の溝のピッチと同じ幅を持ち、前記溝の山部と谷部に対応する2つの異なる厚さの部分を有する部材を用いる。図7は、このような複数の細板部材を含む複数の部材により高粘性ガラス材を構成する形態を説明するための概念図である。図7において、3”は細板部材を表している。このように本形態では、同一形状の複数の細板部材3”を用意し、これにより図7に示すように低粘性ガラス材2の周側面の断面長辺側の面を覆うことで、高粘性ガラス材を構成する。
【0031】
なお、細板部材の形状は、高粘性ガラス材に形成する上記の様な断面が矩形状や台形状等の様々な形状の溝に合わせて1ピッチ分の形態で作製すれば良い。
【0032】
このような複数の細板部材により高粘性ガラス材を構成する形態によれば、単一形状の部材の製造は、板材に加工により溝を設けるよりも製造の簡素化が可能であるため、さらなる低コスト化が可能となる。
【0033】
なお、断面長方形の低粘性ガラス材の断面長辺側の2面に宛われた高粘性ガラス材の抵抗率は、基板間において過剰に電流が流れない程度に高抵抗であり、且つ帯電電荷を適切に放電するのに十分な程度に低抵抗であるために、10〜1010Ω・cmであることが好ましい。
【0034】
また、スペーサーの形状安定性が良いことにより、さらなる別の効果も奏することとなる。この効果を、図8、図9を用いて説明する。図8はスペーサーが基板間を支持するように配置された状態を説明するための断面概念図、図9はスペーサーの基板との接合面に低抵抗膜を成膜する工程を説明するための概念図である。図8において、9は低抵抗膜、1000は基板、1001は基板上に配置された配線を表している。
【0035】
スペーサーの帯電を抑制するためには、スペーサー8に凹凸を設けて帯電の原因となる電荷の露出面からの流入或いは流出を防ぐだけでなく、図8に示すように、電荷を外部に効率的に逃がすために、スペーサー8と基板1000や基板上に配置された配線1001との接合面に低抵抗膜9を設けておくことが好ましい。
【0036】
この低抵抗膜9を形成する方法はいろいろ考えられるが、多数のスペーサーに良質な低抵抗膜9を形成する方法として、図9に示すような方法が考えられている。即ち、スペーサー8を基板との接合面が露出する状態で多数束ね、この露出部分にスパッタ法等により金属等の低抵抗物質を成膜するというものである。
【0037】
ところが、形状安定性が悪く、例えば図10、図11のように歪んだ形状のスペーサーを束ねた場合、スペーサー間に隙間が生じ、これに成膜を施すと成膜物質が接合面以外の部分にまで回り込み、所定の低抵抗膜9を形成することができなくなってしまう。
【0038】
本発明のような方法で、形状安定性良くスペーサー8を形成しておけば、このような低抵抗膜9の成膜時の問題を回避することができ、良好な低抵抗膜9が得られることになる。
【0039】
図4はガラス母材の他の例を示す部分拡大図、図5は図4のガラス母材から得られる本発明に係るスペーサーを示す斜視図で、図1〜図3と同じ符号は同じ部材を示すものである。3’は断面長方形の低粘性ガラス材2の断面短辺側に宛われた高粘性ガラス材を示している。
【0040】
本例におけるガラス母材1は、断面形状が長方形の低粘性ガラス材2の断面短辺側にも高粘性ガラス材3’が宛われたものとなっている。このようにすると、得られるスペーサー8は短手面をも高粘性ガラス材で覆われたものとなり、短手面の平滑性が一層得やすくなる。また、本例においては、低粘性ガラス材2の断面長辺側の高粘性ガラス材3と、断面短辺側の高粘性ガラス材3’を、含有成分の種類及び/又は配合量が異なる異種のガラス材で構成し、膨れ防止制御を緻密に行うこともできる。
【0041】
また、この図4に示したような形態においては、低粘性ガラス材の断面短辺側の2面に宛われた高粘性ガラス材3’の抵抗率が10〜10Ω・cmであるようにすれば、上記図8を用いて説明した低抵抗膜9として利用することもできる。
【0042】
【実施例】
(実施例1)
スペーサー8を、図1に示されるようなメカチャック4と引き取りローラー5を用い、加熱したガラス母材1を延伸することで作成した。
【0043】
ガラス母材1としては、図2に示すような形態で、断面形状が4mm×48mmの長方形をなす低粘性ガラス材2の断面長辺側の面にそれぞれ最大厚さ1mmで幅48mmの高粘性ガラス材3を宛ったもので、全体の断面に外接する長方形の断面積Sが約288mm(外接長方形の寸法が6mm×48mm)のものを用いた。高粘性ガラス材3の溝は図2に示すように断面が矩形状の形態で形成し、溝の深さは0.3mm、幅は0.3mm、ピッチは0.9mmとした。材料としては、低粘性ガラス材2には延伸時の加熱温度800℃における粘性106.0dPa・sを、高粘性ガラス材3には抵抗率10Ω・cm、延伸時の加熱温度800℃における粘性107.6dPa・sをそれぞれ用いた。
【0044】
上記ガラス母材1を、V=5mm/minの速度でメカチャック4を降下させることにより送り出し、ヒーター6で約800℃に加熱し、ヒーター6付近に配置された引き取りローラー5にてV=4500mm/minの速度で引き取ることで加熱延伸し、最後にカッター7にて長さが1000mmになるように切断した。得られたスペーサー8の断面積Sは約0.32mm(0.2mm×1.6mm)で、前述した部分的なくびれおよび膨出は見受けられなかった。溝は断面が矩形状で、深さは10μm、幅は10μm、ピッチは30μmの整った形状のものが得られた。
【0045】
また、高粘性ガラス材3の部分のシート抵抗は、1012Ω/□であった。
(実施例2)
本例においては、低粘性ガラス材2には延伸時の加熱温度800℃における粘性106.5dPa・sを用い、高粘性ガラス材3には抵抗率10Ω・cm、延伸時の加熱温度800℃における粘性107.0dPa・sを用いた以外は実施例1と同様にしてスペーサーを作成した。
【0046】
本例においても、実施例1と同様の良質なスペーサーが得られた。
【0047】
(比較例)
本例においては、ガラス母材全体に延伸時の加熱温度800℃における粘性10dPa・sを用いた以外は実施例1と同様にしてスペーサーを作成した。
【0048】
得られたスペーサーは、全体的に膨出していて、丸みを帯びたものとなっており、溝についても設計通りの形状は得られなかった。
【0049】
(実施例3)
本実施例のスペーサは、実施例1における高粘性ガラス材3の周期的な帯状の溝を、図7に示すように、複数の細板部材3”を配列することにより形成した点を除いては実施例1と同様に作成した。
【0050】
1つの細板部材3”の寸法は、全体の幅は0.9mmであり、このうち最大厚さの部分の幅は0.6mm、最小厚さの部分の幅は0.3mmとし、最大厚さは1mm、最小厚さは0.7mmとした。
【0051】
本例においても、実施例1と同様の良質なスペーサーが得られた。
【0052】
(実施例4)
スペーサー8を、図1に示されるようなメカチャック4と引き取りローラー5を用い、加熱したガラス母材1を延伸することで作成した。
【0053】
ガラス母材1としては、図4に示すような形態で、断面形状が4mm×46mmの長方形をなす低粘性ガラス材2の断面長辺側の面にそれぞれ最大厚さ1mmで幅46mmの高粘性ガラス材3、低粘性ガラス材2の断面短辺側の面にそれぞれ厚さ1mmで幅6mmの高粘性ガラス材3’を宛ったもので、全体の断面積S1が約288mm(外接長方形の寸法が6mm×48mm)のものを用いた。なお、高粘性ガラス材3の溝は断面が矩形状の形態で形成し、溝の深さは0.3mm、幅は0.3mm、ピッチは0.9mmとした。低粘性ガラス材2には延伸時の加熱温度800℃における粘性106.0dPa・sを、高粘性ガラス材3、3’には抵抗率10Ω・cm、延伸時の加熱温度800℃における粘性107.6dPa・sをそれぞれ用いた。
【0054】
上記ガラス母材1を、V=5mm/minの速度でメカチャック4を降下させることにより送り出し、ヒーター6で約800℃に加熱し、ヒーター6付近に配置された引き取りローラー5にてV=4500mm/minの速度で引き取ることで加熱延伸し、最後にカッター7にて長さが1000mmになるように切断した。得られたスペーサー8の断面積Sは約0.32mm(0.2mm×1.6mm)で、前述した部分的なくびれおよび膨出は見受けられず、特に断面短辺側の平坦性は実施例1のスペーサーよりも優れていた。また、溝は断面が矩形状で、深さは10μm、幅は10μm、ピッチは30μmの整った形状のものが得られた。
【0055】
また、高粘性ガラス材3、3’の部分のシート抵抗は、1012Ω/□であった。
【0056】
(実施例5)
本例は、実施例1〜4において作製したスペーサーに上記図9を用いて説明したような方法により、10nm厚のTi膜、200nm厚のPt膜をこの順でどちらもスパッタにより成膜し、低抵抗膜を形成した。
【0057】
その結果、スペーサー8の断面長辺側の側面への成膜材料の回り込みは見られず、シート抵抗が10Ω/□の所望の低抵抗膜が得られた。
【0058】
(実施例6)
本例は、低粘性ガラス材2の断面短辺側の面に宛った高粘性ガラス材3’の材料を、抵抗率10Ω・cm、延伸時の加熱温度800℃における粘性107.6dPa・sとした点以外は実施例4と同様にしてスペーサーを作成した。
【0059】
本例において得られたスペーサーにおいては、高粘性ガラス材3’の部分がシート抵抗10Ω/□となっており、低抵抗膜として十分機能するようになっていた。
【0060】
【発明の効果】
本発明は、以上説明したとおりのものであり、表面に帯電抑制等のための凹凸が形成されたスペーサーが、より形状精度良く、且つより容易に製造可能となるようになる。
【0061】
更には、良質な低抵抗膜を、不要な部分への回り込み無く、所望の状態で形成することもできるものである。
【図面の簡単な説明】
【図1】本発明に係るスペーサーの製造方法の一例を示す説明図である。
【図2】図1に示されるガラス母材の部分拡大図である。
【図3】図1の方法によって得られる本発明に係るスペーサーの拡大斜視図である。
【図4】ガラス母材の他の例を示す部分拡大図である。
【図5】図4のガラス母材から得られる本発明に係るスペーサーを示す斜視図である。
【図6】高粘性ガラス材に設けられた溝の断面が台形状の形態の断面図である。
【図7】複数の細板部材により高粘性ガラス材を構成する形態を説明するための概念図である。
【図8】スペーサーが基板間を支持するように配置された状態を説明するための断面概念図である。
【図9】スペーサーの基板との接合面に低抵抗膜を成膜する工程を説明するための概念図である。
【図10】膨れの発生状態の説明図である。
【図11】くびれの発生状態の説明図である。
【符号の説明】
1 ガラス母材
1’ 延伸ガラス母材
2 低粘性ガラス材
3,3’ 高粘性ガラス材
3” 細板部材
4 メカチャック
5 引き取りローラー
6 ヒーター
7 カッター
8 スペーサー
9 低抵抗膜
1000 基板
1001 配線
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a spacer manufacturing method and a spacer interposed between a pair of substrates in an electronic / electric device and supporting the substrates. More specifically, the present invention relates to a method of manufacturing a spacer, for example, which is disposed between a pair of front and back substrates of a panel-shaped display, and has a surface formed with irregularities for suppressing charge and the like, and a spacer.
[0002]
[Prior art]
In recent years, surface-conduction type electron-emitting devices are arranged in a matrix on a substrate, and emitted electrons are radiated to phosphors provided on a substrate facing each other so as to hermetically seal the electron-emitting devices to form an image. The development of a panel-shaped display to be formed is in progress.
[0003]
Such a method of manufacturing a spacer for supporting a space between substrates of an electron beam apparatus in which an electron source is hermetically sealed between a pair of substrates includes a glass base material having a rectangular cross section, and a delivery roller sandwiching the glass base material. On the other hand, the glass base material that has been sent out is sandwiched between the take-up rollers, and the glass base material is heated and softened between the feed-out roller and the take-up roller. Stretched by the difference in speed between the feed speed of the feed roller and the take-up speed of the take-off roller to form a stretched glass base material having a similar cross-sectional shape to the glass base material. There is known a heat stretching method (Japanese Patent Application Laid-Open No. 2000-164129).
[0004]
On the other hand, the spacer used in such an electron beam device is charged by a part of the electrons emitted from the electron source hitting the spacer, or the ions ionized by the action of the emitted electrons adhere to the spacer. It is pointed out that it may cause it. When the spacer is charged, the trajectory of the electrons emitted from the electron source cannot be accurately controlled, which leads to a problem that a displayed image is distorted, for example.
[0005]
In order to solve such a problem, Japanese Patent Application Laid-Open No. 2000-311608 discloses a technique in which a concavo-convex structure is provided on the surface of a spacer to suppress charging of the spacer. In Japanese Patent Application Laid-Open No. 2000-31608, the above-described heating and stretching method is applied, and a method of forming unevenness on the surface while performing heating and stretching, or forming unevenness on a glass base material in advance and then applying the glass base material A method of stretching by heating is mentioned.
[0006]
[Problems to be solved by the invention]
By the way, in general, the glass material is stretched by heating so that the viscosity of the glass material is in the range of 10 5 to 10 10 dPa · s.
[0007]
In the above-mentioned conventional manufacturing method as well, stretching is performed by heating so that the viscosity of the glass base material is in the range of 10 5 to 10 10 dPa · s. However, the stretching is performed by setting the viscosity to be relatively low, that is, the heating temperature is increased. When the film is stretched at a higher height, as shown in FIG. 10, both ends of the obtained thin plate-shaped spacer in the longitudinal direction of the cross section become round and easily swell. When such a swelling occurs, when the obtained thin plate-shaped spacer is installed vertically on the substrate, the contact surface with the substrate is curved, so that the stability is poor and the assembling property is poor. In addition, there is a problem that it is difficult to obtain the supporting strength.
[0008]
In addition, when stretching is performed with a higher viscosity set, that is, when stretching is performed with a lower heating temperature, as shown in FIG. 11, the intermediate portion of the obtained thin plate-shaped spacer in the cross-sectional length direction is easily constricted. When such constriction occurs, the desired strength cannot be obtained.For example, when used as a spacer disposed between a pair of front and back substrates of a panel-shaped display, the pressure between the pair of substrates is reduced. In some cases, high atmospheric pressure resistance cannot be obtained.
[0009]
If the controllability of the cross-sectional shape at the time of manufacturing the spacer is poor, the shape of the unevenness for suppressing charge as described above cannot be obtained as designed, and the desired charge suppression effect can be obtained. Also leads to the problem that it cannot be obtained.
[0010]
The present invention has been made in view of the above problems, and has as its object to provide a spacer having a surface on which irregularities for suppressing charge and the like are formed, which can be manufactured with higher shape accuracy and more easily. .
[0011]
[Means for Solving the Problems]
By the way, it is considered that the cause of the occurrence of the swelling and constriction is that when heating a glass base material having a cross-sectional shape having different vertical and horizontal dimensions, both ends in the cross-sectional longitudinal direction are more likely to be heated than the intermediate portion. . For example, in a glass base material having a rectangular cross section, if a surface along the longitudinal direction is a long surface and a surface along the short direction is a short surface, an intermediate portion in the cross section is heated by heat from the long surface. On the other hand, both ends in the cross-section longitudinal direction are heated by receiving heat from both the long side and the short side, and are more likely to be heated as compared with the intermediate part. For this reason, if it is attempted to heat the entire length of the glass base material in the cross-sectional longitudinal direction to a state where the glass base material has a viscosity that facilitates stretching, it is considered that the heating of the both ends becomes excessive, the viscosity is reduced, and swelling is caused. Further, if the heating temperature is lowered to suppress the bulging, the heating of the intermediate portion becomes insufficient, the viscosity of the intermediate portion increases, and the concentration of stress during stretching is considered to cause necking.
[0012]
The present invention has been made in view of the causes of the above-mentioned swelling and constriction.
A spacer with irregularities formed on the surface has a cross-sectional shape with different vertical and horizontal dimensions, and a glass base material having a plurality of grooves on the outer surface along the cross-sectional longitudinal direction is heated to the drawing temperature and drawn to a required length. In a method of manufacturing a spacer manufactured by cutting into
A glass base material, from a low-viscosity glass material arranged in the inner layer of the glass base material and a high-viscosity glass material arranged in a region including at least the outer surface along the cross-sectional longitudinal direction in the surface layer portion of the glass base material Composite structure
The high-viscosity glass material includes at least a member having a plurality of grooves on the outer surface side,
The low-viscosity glass material and the high-viscosity glass material both have a viscosity in the range of 10 5 to 10 10 dPa · s, and are heated to a stretching temperature at which the viscosity of the high-viscosity glass material becomes higher than the viscosity of the low-viscosity glass material. A method for manufacturing a spacer, characterized in that:
[0013]
The present invention provides, in the above first invention,
"The low-viscosity glass material has a rectangular cross-sectional shape, and the high-viscosity glass material is addressed to at least two surfaces on the long side of the cross-section of the low-viscosity glass material."
"The high-viscosity glass material addressed to two surfaces on the long side of the cross section of the low-viscosity glass material includes a plurality of thin plate members, and the thin plate members have the same width as the pitch of the plurality of grooves. Having two different thicknesses corresponding to the peaks and valleys of the groove ",
"The resistivity of the high-viscosity glass material addressed to the two surfaces on the longer side of the cross-section of the low-viscosity glass material is 10 8 to 10 10 Ω · cm."
"The high-viscosity glass material is further addressed to the two surfaces on the short side of the cross-section of the low-viscosity glass material."
"The resistivity of the high-viscosity glass material addressed to the two short-side sides of the low-viscosity glass material is 10 3 to 10 4 Ω · cm.”
"Using multiple types of glass materials as high-viscosity glass materials",
Is included as a preferable embodiment.
[0014]
The second aspect of the present invention is as follows.
In the spacer with irregularities formed on the surface,
A low-viscosity glass material disposed on the inner layer of the spacer and a composite structure in which a high-viscosity glass material disposed on at least the region where the irregularities are formed in the surface layer portion of the spacer are integrated,
When the low-viscosity glass material and the high-viscosity glass material are heated to a temperature at which both the low-viscosity glass material and the high-viscosity glass material have a viscosity in the range of 10 5 to 10 10 dPa · s, The spacer is characterized by being a glass material in which the viscosity of a highly viscous glass material becomes higher.
[0015]
The present invention provides, in the above second invention,
"The low-viscosity glass material has a rectangular cross-sectional shape, and the high-viscosity glass material is integrated with at least two surfaces on the long side of the cross-section of the low-viscosity glass material."
"The resistivity of the high-viscosity glass material integrated with the two surfaces on the long side of the cross section of the low-viscosity glass material is 10 8 to 10 10 Ω · cm”,
"The high-viscosity glass material is further integrated with the two surfaces on the short side of the cross section of the low-viscosity glass material."
"The resistivity of the high-viscosity glass material integrated with the two surfaces on the short side of the cross section of the low-viscosity glass material is 10 3 to 10 4 Ω · cm.”
"A plurality of types of glass materials are used as high-viscosity glass materials."
Is included as a preferable embodiment.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is an explanatory view showing an example of a method of manufacturing a spacer according to the present invention, FIG. 2 is a partially enlarged view of the glass base material shown in FIG. 1, and FIG. 3 is a view of a spacer according to the present invention obtained by the method of FIG. It is an expansion perspective view.
[0017]
In FIG. 1, reference numeral 1 denotes a glass base material, and the glass base material 1 is a low-viscosity glass material having a rectangular cross section (a cross section in a direction perpendicular to the stretching direction of the glass base material 1), as shown in FIG. 2 and a plate-like high-viscosity glass material 3 sandwiching the low-viscosity glass material 2 between two surfaces (surfaces along the cross-section longitudinal direction) on the longer side of the cross-section, the cross-section becomes substantially rectangular as a whole. It has been combined as follows.
[0018]
Although a plurality of grooves are not shown in FIG. 1 for simplification of the drawing, the high-viscosity glass material 3 constituting the glass base material 1 has an outer surface as shown in FIGS. A plurality of grooves are provided on the side, that is, the surface opposite to the surface directed to the low-viscosity glass material 2 along the stretching direction.
[0019]
Although the cross-sectional shape of the glass preform 1 in this example is substantially rectangular, the present invention is not limited to the glass preform 1 having such a cross-sectional shape, and the glass preform 1 having a cross-sectional shape having different vertical and horizontal dimensions, for example, the cross-sectional shape Is also useful for the glass base material 1 having a substantially elliptical shape, a substantially trapezoidal shape, or the like. Particularly, since the heating state at the middle portion in the longitudinal direction and the heating state at both ends are likely to be different, the dimension in the longitudinal direction is smaller than the dimension in the shorter direction. This is effective for a glass base material 1 having a cross-sectional shape that is five times or more. The term “substantially rectangular” in this specification includes not only a shape in which four corners intersect at right angles, but also a shape in which corners are chamfered or rounded (R-processed). That is, considering the parts. However, in order to obtain a spacer that stably supports between the substrates, and to form the cross-sectional shape including the shape of the groove with a desired control with good controllability, a preferable form is a substantially rectangular cross-section. .
[0020]
The combination of the low-viscosity glass material 2 and the high-viscosity glass material 3 may be any of a pressed state, a fitted state, and a bonded state. In this example, as shown in FIG. 1, the low viscosity glass material 2 and the high viscosity glass material 3 are combined while being pressed against each other by tightening the periphery of the glass base material 1 with the mechanical chuck 4. I have.
[0021]
The glass constituting the low-viscosity glass material 2 and the high-viscosity glass material 3 can be selected from, for example, elemental glass, oxide glass, fluoride glass, chloride glass, sulfide glass and the like according to the application. Among these, oxide glass (for example, silicate glass, phosphate glass, borate glass, borosilicate glass, etc.) is preferable from the viewpoint of processability.
[0022]
In the example shown in FIG. 1, a glass base material 1 in which the low-viscosity glass material 2 and the high-viscosity glass material 3 are combined is used. The glass base material 1 is fastened and held by a mechanical chuck 4, and the lower portion is heated by a heater 6. It is heated and stretched, and the lower part of the stretched stretched glass base material 1 ′ is sandwiched between the take-up rollers 5. In this state, while gradually lowering the mechanical chuck 4, the take-off roller 5 is rotated to take out the drawn glass base material 1 ′ at a take-up speed higher than the descending speed of the mechanical chuck 4, and the mechanical chuck 4 and the take-up roller 5 In the meantime, the glass base material 1 is heated to the stretching temperature by the heater 6 and softened. Then, by the speed difference between the descending speed of the mechanical chuck 4 and the take-up speed by the take-off roller 5, the glass base material 1 heated to the drawing temperature and softened is drawn, and the low-viscosity glass material 2 and the high-viscosity glass material 3 are separated. A stretched glass base material 1 ′ that is integrated and has a cross-sectional shape substantially similar to that of the glass base material 1 is continuously formed. Then, the stretched glass base material 1 ′ that has passed through the take-off roller 5 in a state of being cooled and solidified is cut by a cutter 7 to obtain a plate-like or column-like spacer 8 having a desired thinness (see FIG. 3). .
[0023]
The shape of the groove provided in the high-viscosity glass material 2 constituting the glass preform 1 is, for example, rectangular, trapezoidal, or semicircular in cross section, as shown in Japanese Patent Application Laid-Open No. 2000-31608. The angle may be determined as appropriate in accordance with a design that makes it possible to minimize the incident angle of electrons incident on the surface of the spacer 8 with the spacer 8 placed between the substrates. FIG. 2 shows a case where the cross section of the groove is rectangular, while FIG. 6 shows a case where the cross section of the groove is trapezoidal. As shown in FIG. 6, it is preferable that the cross section of the groove be trapezoidal because the angle of incidence of electrons incident on the spacer surface can be further reduced.
[0024]
The dimensions such as the width, depth, and pitch of the groove differ depending on how much stretching is performed, and this is also appropriately determined according to the design of the completed state. The grooves in the present invention are not necessarily provided continuously in the stretching direction of the glass base material, and may be interrupted on the way, but considering the ease of processing, grooves continuous in the stretching direction are considered. Is preferably provided.
[0025]
The stretching of the glass base material 1 is performed when the viscosity of the low-viscosity glass material 2 and the viscosity of the high-viscosity glass material 3 are both within the range of 10 5 to 10 10 dPa · s and the viscosity of the high-viscosity glass material 3 is higher than the viscosity of the low-viscosity glass material 2. The stretching is performed by heating to a stretching temperature at which the viscosity of the polymer becomes high. When the viscosity of the low-viscosity glass material 2 and the high-viscosity glass material 3 at the stretching temperature is out of the range of 10 5 to 10 10 dPa · s, the stretching of the glass base material 1 becomes difficult. The specific stretching temperature varies depending on the material of the low-viscosity glass material 2 and the high-viscosity glass material 3 and the like, but is generally about 500 to 1000 ° C.
[0026]
The low-viscosity glass material 2 and the high-viscosity glass material 3 are both heated to a stretching temperature at which the viscosity of the high-viscosity glass material 3 is within the range of 10 5 to 10 10 dPa · s and the viscosity of the high-viscosity glass material 3 is higher than the viscosity of the low-viscosity glass material 2. In the stretching, the low-viscosity glass material and the high-viscosity glass material in the present invention were heated to a temperature at which both the viscosity of the low-viscosity glass material and the high-viscosity glass material were within the range of 10 5 to 10 10 dPa · s. Sometimes, it can be performed by using a glass material in which the viscosity of the high-viscosity glass material is higher than the viscosity of the low-viscosity glass material. The adjustment of the viscosity of the low-viscosity glass material 2 and the high-viscosity glass material 3 can be performed by adjusting the components of the low-viscosity glass material 2 and the high-viscosity glass material 3 and the amounts thereof. For example, in an oxide glass, the viscosity in a high-temperature region can be reduced (increased) by increasing (decreasing) the content of the contained alkali oxide, boron oxide, lead oxide, and the like. By increasing (decreasing) the content of silicon oxide, aluminum oxide, titanium oxide, zirconium oxide, or the like, the viscosity in the high-temperature region can be increased (decreased). Further, the adjustment of the above-mentioned components and their blending amount and the adjustment of the heating temperature of the low-viscosity glass material 2 and the high-viscosity glass material 3 can be used together. The heating temperature is adjusted by, for example, irradiating infrared rays through a lens or a concave mirror focused on the central portion of the low-viscosity glass material 2 so that the low-viscosity glass material 2 is compared with the high-viscosity glass material 3. To a high temperature.
[0027]
According to the above method, a spacer 8 without swelling and constriction as shown in FIG. 3 can be obtained. This is because the viscosity of the high-viscosity glass material 3 covering both longitudinal surfaces of the low-viscosity glass material 2 is higher than the viscosity of the low-viscosity glass material 2 at the above stretching temperature. It is considered that even if the viscosity of the low-viscosity glass material 2 at both ends becomes too low, the high-viscosity glass material 3 covering the low-viscosity glass material 2 can suppress swelling. Therefore, when the glass base material 1 is composed of only the low-viscosity glass material 2, even when the glass base material 1 is heated to a stretching temperature that causes swelling at both ends in the cross-section longitudinal direction, the swelling does not occur, and neither swelling nor constriction occurs. No spacer 8 can be obtained.
[0028]
In addition, since grooves need only be formed on one side of the high-viscosity glass material, it is possible to simplify the manufacturing machine, simplify the process, and shorten the time. Furthermore, the range of choice of material combinations is broadened by using low-viscosity glass materials and high-viscosity glass materials. The material selection criteria for low-viscosity glass materials consider the strength and the coefficient of thermal expansion (the relationship between the thermal stress and the substrate). ), Etc., and the effect of suppressing charge can be emphasized as a material selection criterion for a high-viscosity glass material.
[0029]
Usually, the thickness of the spacer 8 is about 0.05 to 0.5 mm, and the thickness of the high-viscosity glass material 3 when the spacer 8 having such a thickness is preferably 0.5 to 5 μm. That is, the thickness of the glass base material 1 and the thickness of the low-viscosity glass material 2 and the high-viscosity glass material 3 in the glass base material 1 are preferably such that the thickness after stretching is within the above range. If the thickness of the high-viscosity glass material 3 in the glass base material 1 is too large, it is difficult to perform stretching, and if the thickness of the high-viscosity glass material 3 is too small, it is difficult to obtain the effect of suppressing the swelling. Further, the difference in viscosity between the low-viscosity glass material 2 and the high-viscosity glass material 3 at the stretching temperature is preferably 0.1 dPa · s or more in order to easily obtain the effect of suppressing swelling. In this specification, the thickness of the high-viscosity glass material having a groove indicates the maximum thickness corresponding to the crest of the groove.
[0030]
By the way, as a method of using a member having a plurality of grooves on the outer surface side along the stretching method as a high-viscosity glass material, there is also a form in which the high-viscosity glass material is formed in a single plate-like member as described above. An embodiment in which the high-viscosity glass material is composed of a plurality of members including a plurality of thin plate members is also a preferred embodiment. As the thin plate member for this purpose, a member having the same width as the pitch of the plurality of grooves and having two different thickness portions corresponding to the peaks and valleys of the grooves is used. FIG. 7 is a conceptual diagram for explaining an embodiment in which a high-viscosity glass material is constituted by a plurality of members including such a plurality of thin plate members. In FIG. 7, 3 ″ represents a thin plate member. In this embodiment, a plurality of thin plate members 3 ″ having the same shape are prepared, and as a result, as shown in FIG. A high-viscosity glass material is formed by covering the surface on the long side of the cross section of the peripheral side surface.
[0031]
Note that the shape of the thin plate member may be formed in a form of one pitch in accordance with grooves having various shapes such as a rectangular shape and a trapezoidal shape, as described above, formed in a high-viscosity glass material.
[0032]
According to the configuration in which the high-viscosity glass material is constituted by such a plurality of thin plate members, the production of a single-shaped member can be simplified more than the provision of a groove in the plate material, so that further production is possible. Cost reduction becomes possible.
[0033]
The resistivity of the high-viscosity glass material addressed to the two long-side sides of the cross-section of the low-viscosity glass material having a rectangular cross-section is high enough to prevent excessive current flow between the substrates, The resistance is preferably 10 8 to 10 10 Ω · cm because the resistance is low enough to discharge properly.
[0034]
Further, since the shape stability of the spacer is good, another effect can be obtained. This effect will be described with reference to FIGS. FIG. 8 is a conceptual cross-sectional view for explaining a state in which spacers are arranged so as to support between the substrates, and FIG. 9 is a conceptual view for explaining a step of forming a low-resistance film on a bonding surface of the spacer with the substrate. FIG. In FIG. 8, reference numeral 9 denotes a low-resistance film, 1000 denotes a substrate, and 1001 denotes a wiring arranged on the substrate.
[0035]
In order to suppress the charging of the spacers, not only is the provision of unevenness on the spacers 8 to prevent the inflow or outflow of the charges causing the charging from the exposed surface, but also, as shown in FIG. It is preferable to provide a low-resistance film 9 on the joint surface between the spacer 8 and the substrate 1000 or the wiring 1001 disposed on the substrate in order to allow the resistance to escape.
[0036]
Various methods for forming the low-resistance film 9 are conceivable. As a method for forming a high-quality low-resistance film 9 on a large number of spacers, a method as shown in FIG. 9 is considered. That is, a large number of spacers 8 are bundled in a state where the bonding surface with the substrate is exposed, and a low-resistance material such as a metal is deposited on the exposed portion by a sputtering method or the like.
[0037]
However, the shape stability is poor. For example, when spacers having a distorted shape as shown in FIGS. 10 and 11 are bundled, a gap is formed between the spacers. And the predetermined low resistance film 9 cannot be formed.
[0038]
If the spacer 8 is formed with good shape stability by the method as in the present invention, such a problem at the time of forming the low-resistance film 9 can be avoided, and a good low-resistance film 9 can be obtained. Will be.
[0039]
4 is a partially enlarged view showing another example of the glass base material, and FIG. 5 is a perspective view showing a spacer according to the present invention obtained from the glass base material of FIG. 4, and the same reference numerals as those in FIGS. It is shown. Reference numeral 3 'denotes a high-viscosity glass material addressed to the short side of the cross-section of the low-viscosity glass material 2 having a rectangular cross section.
[0040]
In the glass base material 1 in this example, the high-viscosity glass material 3 ′ is also directed to the short-side of the cross-section of the low-viscosity glass material 2 having a rectangular cross-sectional shape. By doing so, the spacer 8 obtained has the short side covered with the high-viscosity glass material, and the smoothness of the short side can be more easily obtained. Further, in this example, the high-viscosity glass material 3 on the long side of the cross-section of the low-viscosity glass material 2 and the high-viscosity glass material 3 ′ on the short-side of the cross section of the low-viscosity glass 2 are of different types and / or different amounts of the contained components. And the swelling prevention control can be performed precisely.
[0041]
In the embodiment shown in FIG. 4, the resistivity of the high-viscosity glass material 3 'addressed to the two short-side surfaces of the low-viscosity glass material is 10 3 to 10 4 Ω · cm. By doing so, it can also be used as the low resistance film 9 described with reference to FIG.
[0042]
【Example】
(Example 1)
The spacer 8 was formed by stretching the heated glass base material 1 using the mechanical chuck 4 and the take-off roller 5 as shown in FIG.
[0043]
As the glass base material 1, in the form shown in FIG. 2, a low-viscosity glass material 2 having a rectangular cross section of 4 mm × 48 mm has a maximum thickness of 1 mm and a high viscosity of 48 mm width on the long side surface of the cross section. the glass material 3 intended was Ate', the cross-sectional area S 1 of the rectangle circumscribing the entire cross-section of about 288 mm 2 (dimensions of the bounding rectangle is 6 mm × 48 mm) was used for. The groove of the high-viscosity glass material 3 was formed in a rectangular cross section as shown in FIG. 2, and the depth of the groove was 0.3 mm, the width was 0.3 mm, and the pitch was 0.9 mm. As a material, the low-viscosity glass material 2 has a viscosity of 106.0 dPa · s at a heating temperature of 800 ° C. during stretching, the high-viscosity glass material 3 has a resistivity of 10 9 Ω · cm, and a heating temperature of 800 when stretching. ℃ viscosity 10 7.6 dPa · s in were used, respectively.
[0044]
The glass base material 1 is sent out by lowering the mechanical chuck 4 at a speed of V 1 = 5 mm / min, is heated to about 800 ° C. by a heater 6, and is discharged by a take-up roller 5 disposed near the heater 6 to V 2. = 4500 mm / min, the film was heated and stretched, and finally cut with a cutter 7 to a length of 1000 mm. The cross-sectional area S 2 of the obtained spacer 8 was about 0.32 mm 2 (0.2 mm × 1.6 mm), and the above-described partial necking and bulging were not observed. The groove had a rectangular cross section, a depth of 10 μm, a width of 10 μm, and a pitch of 30 μm.
[0045]
The sheet resistance of the high viscosity glass material 3 was 10 12 Ω / □.
(Example 2)
In this example, low viscous glass material 2 with viscosity 10 6.5 dPa · s at a heating temperature 800 ° C. at the time of stretching, the high viscosity glass material 3 resistivity of 10 9 Ω · cm to heating during the stretching except for using the viscous 10 7.0 dPa · s at a temperature of 800 ° C. in the same manner as in example 1 was prepared a spacer.
[0046]
Also in this example, a high-quality spacer similar to that in Example 1 was obtained.
[0047]
(Comparative example)
In this example, a spacer was prepared in the same manner as in Example 1 except that a viscosity of 10 7 dPa · s at a heating temperature of 800 ° C. during stretching was used for the entire glass base material.
[0048]
The obtained spacer was swollen as a whole and rounded, and the groove could not have the designed shape.
[0049]
(Example 3)
The spacer of this embodiment is different from that of the first embodiment in that a periodic band-shaped groove of the high-viscosity glass material 3 is formed by arranging a plurality of thin plate members 3 ″ as shown in FIG. Was prepared in the same manner as in Example 1.
[0050]
The dimension of one thin plate member 3 ″ is 0.9 mm in overall width, of which the width of the maximum thickness portion is 0.6 mm, the width of the minimum thickness portion is 0.3 mm, and the maximum thickness is 0.3 mm. The thickness was 1 mm, and the minimum thickness was 0.7 mm.
[0051]
Also in this example, a high-quality spacer similar to that in Example 1 was obtained.
[0052]
(Example 4)
The spacer 8 was formed by stretching the heated glass base material 1 using the mechanical chuck 4 and the take-off roller 5 as shown in FIG.
[0053]
As the glass base material 1, in the form shown in FIG. 4, a low-viscosity glass material 2 having a rectangular cross section of 4 mm × 46 mm has a maximum thickness of 1 mm and a high viscosity of 46 mm width on the surface on the longer side of the cross section. A high-viscosity glass material 3 'having a thickness of 1 mm and a width of 6 mm is applied to the surface on the short side of the cross section of the glass material 3 and the low-viscosity glass material 2, respectively, and the total cross-sectional area S1 is about 288 mm 2 (circumscribed rectangle) Having a size of 6 mm × 48 mm). The groove of the high-viscosity glass material 3 was formed in a rectangular cross section, the depth of the groove was 0.3 mm, the width was 0.3 mm, and the pitch was 0.9 mm. The low-viscosity glass material 2 has a viscosity of 106.0 dPa · s at a heating temperature of 800 ° C. during stretching, and the high-viscosity glass materials 3 and 3 ′ have a resistivity of 10 9 Ω · cm and a heating temperature of 800 ° C. during stretching. The viscosity at 107.6 dPa · s was used.
[0054]
The glass base material 1 is sent out by lowering the mechanical chuck 4 at a speed of V 1 = 5 mm / min, is heated to about 800 ° C. by a heater 6, and is discharged by a take-up roller 5 disposed near the heater 6 to V 2. = 4500 mm / min, the film was heated and stretched, and finally cut with a cutter 7 to a length of 1000 mm. The cross-sectional area S 2 of the obtained spacer 8 is about 0.32 mm 2 (0.2 mm × 1.6 mm), and the above-mentioned partial necking and bulging are not observed. It was superior to the spacer of Example 1. The grooves had a rectangular cross section, a depth of 10 μm, a width of 10 μm, and a pitch of 30 μm.
[0055]
The sheet resistance of the high-viscosity glass materials 3 and 3 ′ was 10 12 Ω / □.
[0056]
(Example 5)
In this example, a 10 nm-thick Ti film and a 200 nm-thick Pt film are formed by sputtering on the spacers manufactured in Examples 1 to 4 in this order by the method described with reference to FIG. A low resistance film was formed.
[0057]
As a result, no wraparound of the film-forming material was observed on the side surface on the longer side of the cross section of the spacer 8, and a desired low-resistance film having a sheet resistance of 10 3 Ω / □ was obtained.
[0058]
(Example 6)
In the present example, the material of the high-viscosity glass material 3 ′ addressed to the surface on the short side of the cross section of the low-viscosity glass material 2 is prepared by applying a material having a resistivity of 10 4 Ω · cm and a viscosity of 10 7 at a heating temperature of 800 ° C. during stretching . A spacer was prepared in the same manner as in Example 4 except that the thickness was set to 6 dPa · s.
[0059]
In the spacer obtained in this example, the portion of the high-viscosity glass material 3 ′ had a sheet resistance of 10 3 Ω / □, which was sufficient to function as a low-resistance film.
[0060]
【The invention's effect】
The present invention is as described above, and a spacer having a surface with irregularities for suppressing charge or the like can be manufactured with higher shape accuracy and more easily.
[0061]
Furthermore, a high-quality low-resistance film can be formed in a desired state without sneaking into an unnecessary portion.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing an example of a method for manufacturing a spacer according to the present invention.
FIG. 2 is a partially enlarged view of the glass base material shown in FIG.
FIG. 3 is an enlarged perspective view of a spacer according to the present invention obtained by the method of FIG. 1;
FIG. 4 is a partially enlarged view showing another example of the glass base material.
FIG. 5 is a perspective view showing a spacer according to the present invention obtained from the glass base material of FIG. 4;
FIG. 6 is a cross-sectional view of a trapezoidal cross section of a groove provided in a high-viscosity glass material.
FIG. 7 is a conceptual diagram for explaining an embodiment in which a high-viscosity glass material is constituted by a plurality of thin plate members.
FIG. 8 is a conceptual cross-sectional view for explaining a state where spacers are arranged to support between substrates.
FIG. 9 is a conceptual diagram for explaining a step of forming a low-resistance film on a bonding surface of a spacer with a substrate.
FIG. 10 is an explanatory diagram of a state of occurrence of swelling.
FIG. 11 is an explanatory diagram of a state of occurrence of constriction.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Glass base material 1 'Stretched glass base material 2 Low-viscosity glass material 3, 3' High-viscosity glass material 3 "Thin plate member 4 Mechanical chuck 5 Pick-up roller 6 Heater 7 Cutter 8 Spacer 9 Low-resistance film 1000 Substrate 1001 Wiring

Claims (13)

表面に凹凸が形成されたスペーサーを、縦横の寸法が異なる断面形状を有し、断面長手方向に沿った外面に複数の溝を有するガラス母材を延伸温度に加熱し延伸して所要の長さに切断することにより製造するスペーサーの製造方法において、
ガラス母材を、ガラス母材の内層に配された低粘性ガラス材と、ガラス母材の表層部分のうち少なくとも前記断面長手方向に沿った外面を含む領域に配された高粘性ガラス材とからなる複合構造とし、
高粘性ガラス材は、外面側に複数の溝を有する部材を少なくとも含み、
低粘性ガラス材と高粘性ガラス材の粘性が共に10〜1010dPa・sの範囲内でかつ低粘性ガラス材の粘性より高粘性ガラス材の粘性が高くなる延伸温度に加熱して延伸することを特徴とするスペーサーの製造方法。
A spacer with irregularities formed on the surface has a cross-sectional shape with different vertical and horizontal dimensions, and a glass base material having a plurality of grooves on the outer surface along the cross-sectional longitudinal direction is heated to the drawing temperature and drawn to a required length. In a method of manufacturing a spacer manufactured by cutting into
A glass base material, from a low-viscosity glass material arranged in the inner layer of the glass base material and a high-viscosity glass material arranged in a region including at least the outer surface along the cross-sectional longitudinal direction in the surface layer portion of the glass base material Composite structure
The high-viscosity glass material includes at least a member having a plurality of grooves on the outer surface side,
The low-viscosity glass material and the high-viscosity glass material both have a viscosity in the range of 10 5 to 10 10 dPa · s, and are heated to a stretching temperature at which the viscosity of the high-viscosity glass material becomes higher than the viscosity of the low-viscosity glass material. A method for producing a spacer, comprising:
低粘性ガラス材は、断面形状が長方形であり、高粘性ガラス材は、少なくとも低粘性ガラス材の断面長辺側の2面に宛われていることを特徴とする請求項1に記載のスペーサーの製造方法。2. The spacer according to claim 1, wherein the low-viscosity glass material has a rectangular cross-sectional shape, and the high-viscosity glass material is addressed to at least two surfaces on the long side of the cross-section of the low-viscosity glass material. 3. Production method. 低粘性ガラス材の断面長辺側の2面に宛われた高粘性ガラス材が、複数の細板部材を含み、該細板部材は、前記複数の溝のピッチと同じ幅を持ち、該溝の山部と谷部に対応する2つの異なる厚さの部分を有することを特徴とする請求項2に記載のスペーサーの製造方法。The high-viscosity glass material addressed to the two surfaces on the longer side of the cross section of the low-viscosity glass material includes a plurality of thin plate members, and the thin plate members have the same width as the pitch of the plurality of grooves. 3. The method according to claim 2, wherein the spacer has two portions having different thicknesses corresponding to the peaks and the valleys. 低粘性ガラス材の断面長辺側の2面に宛われた高粘性ガラス材の抵抗率が、10〜1010Ω・cmであることを特徴とする請求項2又は3に記載のスペーサーの製造方法。4. The spacer according to claim 2, wherein the resistivity of the high-viscosity glass material addressed to the two long-side surfaces of the low-viscosity glass material is 10 8 to 10 10 Ω · cm. 5. Production method. 高粘性ガラス材が、更に低粘性ガラス材の断面短辺側の2面に宛われていることを特徴とする請求項2から4のいずれかに記載のスペーサーの製造方法。The method for manufacturing a spacer according to any one of claims 2 to 4, wherein the high-viscosity glass material is further applied to two surfaces on the short side of the cross section of the low-viscosity glass material. 低粘性ガラス材の断面短辺側の2面に宛われた高粘性ガラス材の抵抗率が、10〜10Ω・cmであることを特徴とする請求項5に記載のスペーサーの製造方法。The method for manufacturing a spacer according to claim 5, wherein the resistivity of the high-viscosity glass material directed to the two short-side sides of the low-viscosity glass material is 10 3 to 10 4 Ω · cm. . 高粘性ガラス材として、複数種類のガラス材を用いることを特徴とする請求項1から6のいずれか1項に記載のスペーサーの製造方法。The method for manufacturing a spacer according to any one of claims 1 to 6, wherein a plurality of types of glass materials are used as the high-viscosity glass material. 表面に凹凸が形成されたスペーサーにおいて、
スペーサーの内層に配された低粘性ガラス材と、スペーサーの表層部分のうち少なくとも前記凹凸が形成された領域に配された高粘性ガラス材とが一体化された複合構造を有し、
低粘性ガラス材と高粘性ガラス材とが、低粘性ガラス材と高粘性ガラス材の粘性が共に10〜1010dPa・sの範囲内となる温度に加熱した時に、低粘性ガラス材の粘性より高粘性ガラス材の粘性が高くなるガラス材であることを特徴とするスペーサー。
In the spacer with irregularities formed on the surface,
A low-viscosity glass material disposed on the inner layer of the spacer and a composite structure in which a high-viscosity glass material disposed on at least the region where the irregularities are formed in the surface layer portion of the spacer are integrated,
When the low-viscosity glass material and the high-viscosity glass material are heated to a temperature at which both the low-viscosity glass material and the high-viscosity glass material have a viscosity in the range of 10 5 to 10 10 dPa · s, A spacer characterized in that the viscosity of the high-viscosity glass material is higher.
低粘性ガラス材は、断面形状が長方形であり、高粘性ガラス材は、少なくとも低粘性ガラス材の断面長辺側の2面に一体化されていることを特徴とする請求項8に記載のスペーサー。The spacer according to claim 8, wherein the low-viscosity glass material has a rectangular cross-section, and the high-viscosity glass material is integrated at least on two surfaces on the long side of the cross-section of the low-viscosity glass material. . 低粘性ガラス材の断面長辺側の2面に一体化された高粘性ガラス材の抵抗率が、10〜1010Ω・cmであることを特徴とする請求項9に記載のスペーサー。The spacer according to claim 9, wherein the resistivity of the high-viscosity glass material integrated with the two surfaces on the longer side of the cross section of the low-viscosity glass material is 10 8 to 10 10 Ω · cm. 高粘性ガラス材が、更に低粘性ガラス材の断面短辺側の2面に一体化されていることを特徴とする請求項9又は10に記載のスペーサー。The spacer according to claim 9, wherein the high-viscosity glass material is further integrated with two surfaces on the short side of the cross section of the low-viscosity glass material. 低粘性ガラス材の断面短辺側の2面に一体化された高粘性ガラス材の抵抗率が、10〜10Ω・cmであることを特徴とする請求項11に記載のスペーサー。The spacer according to claim 11, wherein the resistivity of the high-viscosity glass material integrated with the two surfaces on the short side of the cross section of the low-viscosity glass material is 10 3 to 10 4 Ω · cm. 高粘性ガラス材として、複数種類のガラス材が用いられていることを特徴とする請求項8から12のいずれかに記載のスペーサー。The spacer according to any one of claims 8 to 12, wherein a plurality of types of glass materials are used as the high-viscosity glass material.
JP2002224348A 2002-08-01 2002-08-01 Manufacturing method of spacer, and spacer Withdrawn JP2004071163A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002224348A JP2004071163A (en) 2002-08-01 2002-08-01 Manufacturing method of spacer, and spacer
US10/630,679 US7052354B2 (en) 2002-08-01 2003-07-31 Method for producing spacer and spacer
CN03160262.2A CN1290139C (en) 2002-08-01 2003-08-01 Separator plate making method and separator plate thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002224348A JP2004071163A (en) 2002-08-01 2002-08-01 Manufacturing method of spacer, and spacer

Publications (1)

Publication Number Publication Date
JP2004071163A true JP2004071163A (en) 2004-03-04

Family

ID=32012329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002224348A Withdrawn JP2004071163A (en) 2002-08-01 2002-08-01 Manufacturing method of spacer, and spacer

Country Status (1)

Country Link
JP (1) JP2004071163A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006244870A (en) * 2005-03-03 2006-09-14 Nippon Electric Glass Co Ltd Manufacturing method for glass spacer for flat panel display device, and the glass spacer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006244870A (en) * 2005-03-03 2006-09-14 Nippon Electric Glass Co Ltd Manufacturing method for glass spacer for flat panel display device, and the glass spacer

Similar Documents

Publication Publication Date Title
US8393175B2 (en) Methods for extracting strengthened glass substrates from glass sheets
US7629746B2 (en) Plasma display panel having sealing structure for reducing noise
US9990066B2 (en) Curved display panel, manufacturing method thereof and display device
TW200823573A (en) Liquid crystal display panel and manufacture method thereof
US8629969B2 (en) Liquid crystal display panel and method of manufacturing the liquid crystal display panel
JP2004209925A (en) Flexible mold, its manufacturing method, rear plate for pdp and its manufacturing method
US20090277887A1 (en) Joint method using laser beam and manufacturing method of airtight container
US10707439B2 (en) Packaging adhesive, packaging method, display panel and display device
JP2006225170A (en) Heat-drawing apparatus and method for producing glass spacer by using the same
JP2004071163A (en) Manufacturing method of spacer, and spacer
JP4179853B2 (en) Flexible mold and method for producing fine structure
US7052354B2 (en) Method for producing spacer and spacer
JP2004071161A (en) Manufacturing method of spacer, and spacer
JP2004071162A (en) Manufacturing method of spacer, and spacer
JP2004067393A (en) Method for producing spacer and spacer
JP2000284303A (en) Production of liquid crystal device
EP3159735B1 (en) Method for manufacturing liquid crystal panel and heating device
JP4914001B2 (en) Method for manufacturing stretched glass member, method for manufacturing spacer for image display device, and method for manufacturing image display device
JPH04196364A (en) Manufacture of photovoltage device
JPH05127174A (en) Production of liquid crystal display panel
TW200925746A (en) Method of fabricating a display panel having dielectric arranging structure
JPS62262824A (en) Manufacture of liquid crystal cell
JPH01120532A (en) Liquid crystal element and its production
JP3921406B2 (en) Liquid crystal display
TW201018993A (en) Liquid crystal display panel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051004