【0001】
【発明の属する技術分野】
本発明は、磁気検知部としての磁性体に高周波電流を印加すると、外部磁界に応じて磁性体の両端間のインピーダンスが変化する磁気インピーダンス素子を備え、バイアス磁界を印加するコイルを組み込んだ磁気検出素子に関するものである。
【0002】
【従来の技術】
近年、携帯電話やPDA等の小型情報端末が発達し、地図情報表示やGPS搭載等で地磁気方位を表示する要求が高まっている。
【0003】
しかし、携帯機器の小型化に伴い、部品環境も高密度実装が前提となり、占有面積や高さの要求が厳しくなっている。方位センサとしては、既にフラックスゲートセンサ、磁気抵抗素子(MRセンサ)が知られているが、素子のサイズには限界があり、チップ部品サイズの磁界センサが望まれている。
【0004】
【発明が解決しようとする課題】
出願人は特許第3096413号のような磁性薄膜による方位センサの応用方法を提案している。これは図7に示すように、ガラス等の非磁性基板1上に細長い直線状の複数本の折り返しパターンから成る磁性薄膜2を形成した素子を実用化させており、チップ抵抗のような小型サイズを実現している。センサとしての動作はパターンの両端の電極3a、3bから高周波電流を印加し、矢印の磁界検知方向に対して、その両端のインピーダンスを変化させることを使用している。
【0005】
しかし、方位センサとして駆動させるためには、感度の良い個所にバイアス磁界を印加するコイルが必要であるが、図7に示すような外付けのコイル4では、折角の素子サイズも生かせず、携帯機器等の省スペースに対応できない。
【0006】
図8、図9に示すようにバイアスコイル4を導電性薄膜により構成し、素子に組み込むことができれば要求を満足できるが、図9の断面図に示すように、ソレノイド型のバイアスコイルを採用した場合には、磁性薄膜2の下部にも薄膜コイル層5を形成する必要があり、絶縁層6を介しての材料間の応力歪みによる特性劣化や、絶縁層6の耐熱性による温度条件の制約によって、磁性薄膜2の特性の確保が困難になる。
【0007】
具体的には、図9に示す磁性薄膜2と非磁性基板1の間に、絶縁膜6と薄膜コイル層5が挟み込まれ、磁性薄膜2への応力制御が難しく、磁気特性が最適な条件を得ることが困難になることや、磁気異方性を付するための熱処理時に、例えば500℃を超えるような温度に耐えられない等の制約が発生する。
【0008】
そこで、磁性体に高周波電流を印加し、その両端部間のインピーダンスが外部磁界に対し変化する磁気インピーダンス素子であって、非磁性基板上に磁性薄膜で磁界検知方向に細長い磁気検知部を設け、その上に絶縁膜を挟んで、渦巻き型の平面コイルが形成されることを特徴とするバイアスコイル積層型磁気インピーダンス素子が有効であると考えられる。
【0009】
つまり、光反応性型ベンゾシクロブテン系、光反応型ポリイミド系、光反応型フルオレンアクリレート等の絶縁膜上にスパッタリング法により膜厚3μmの銅膜を成膜し、フォトリソグラフィ工程によりレジストパターニングまで行う。その後に、ドライエッチング又はウエットエッチング工程により銅膜をエッチングし、平面状のコイル層を形成した後に、同様の絶縁膜を塗布した後に銅膜を成膜することにより電極を形成する。
【0010】
しかしながら、電極の形成後に電気抵抗を測定したところ、100Ω以上あるはずの磁性薄膜2の電極3a−3b間、コイル層5の電極3c−3d間の抵抗値は数Ωしかなく、また絶縁されているはずの電極3a−3c間、3a−3d間等において導通があり、コイル層5の最外周と電極が短絡してしまうことが分かった。
【0011】
その理由は、コイル層5の最外周の外側の角部に絶縁膜が途切れている部分が生ずるためである。これは次のように考えることができる。エッチング後のコイルパターンに絶縁膜を塗布する際に、隣接してパターンがある場合には一定の膜厚が維持される。しかし、コイル層5の最外周では絶縁膜がすそを引くため、結果として角部の膜厚が極端に薄くなり、図10に示すように、コイル層5の角部5aが絶縁膜7から露出し、この上に電極形成のための銅膜が成膜されると、電極とコイル層5の短絡が生じてしまい、コイル層5の絶縁が十分に得られない。
【0012】
角部5aの絶縁膜7の膜厚が不足し、角部5aが露出してしまう原因の1つとして、エッチングしたパターンの角部が鋭利であることが挙げられる。短絡を防止するために配線パターンの角部を丸める技術としては、特開昭62−211935号公報が知られている。これはアルミ配線において、パターン形成、レジスト除去後に、ウェットエッチング処理をすることにより角部を丸めるというものであり、銅配線においても可能と考えられる。しかし、同時にパターン全体も溶けるため、膜厚が薄くなるという問題、及び工程が追加されるためコストが上昇するという問題が生ずる。
【0013】
また、特開平9−298201号公報はレジストの剥離時に、アルミ配線に対してエッチング性を示す剥離液を使用し、レジストの剥離と同時に角部を丸める技術が開示されており、銅配線においても応用は可能と考えられる。
【0014】
しかしながら、レジストの剥離液が限定され、一般的な溶剤、例えばアセトンを使用してレジストを剥離しようとする場合には、新たな添加物が必要となり、廃液の処理が面倒となるという問題や、三槽以上の剥離槽を有するレジスト剥離装置を前提としているためコストが増大するという問題や、更にはレジスト剥離時にサイドエッチングが進行するという問題がある。
【0015】
本発明の目的は、上述の課題を解決し、チップサイズの素子にバイアス印加用の平面コイルを組み込む上で、平面コイルの電気絶縁性を確保し、所定の出力を得ることができる磁気検出素子を提供することにある。
【0016】
【課題を解決するための手段】
上記目的を達成するための本発明に係る磁気検出素子は、非磁性基板上に磁界検知方向に細長い磁性薄膜から成る磁気検知部を設け、該磁気検知部の上に絶縁膜を挟んで渦巻き型の平面コイルを設け、該平面コイル上に絶縁膜を挟んで前記磁気検知部及び平面コイルの電極を引き出したバイアスコイル積層型磁気インピーダンス素子を形成し、前記磁気検知部に高周波電流を印加すると前記磁気検知部の両端部間のインピーダンスが外部磁界に対し変化する磁気検出素子において、前記平面コイルの外側にダミー配線パターンを独立して設け、該ダミー配線パターンを複数に分割した不連続な構成としたことを特徴とする。
【0017】
【発明の実施の形態】
本発明を図示の実施の形態に基づいて詳細に説明する。
図1は斜視図、図2は平面図、図3は部分拡大図、図4は模式的分解図を示している。ガラス基板等の非磁性基板11の上に、磁性薄膜により細長く互いに平行な折り返しパターンに構成した磁気検知部12が形成され、この磁気検知部12の両端は電極13a、13bに接続されている。磁気検知部12の上には絶縁膜14を介して、磁気検知部12の両端部をそれぞれ中心とする2つの渦巻きから成る渦巻き型の平面コイル15が配置され、この平面コイル15の両端は電極16a、16bに接続されている。
【0018】
平面コイル15の最外周部15aの更に外側には、平面コイル15と同じ間隔の例えば17個に分割されたダミー配線パターン17が設けられている。平面コイル15を作成する際のレジストの線幅は9〜16.5μmを目標としているが、これは抵抗値、露光装置の能力等から決定される。また、ダミー配線パターン17の幅は9μm、分割の隙間17aは10μmを目標としている。
【0019】
この場合に、隙間17aの内側に位置する平面コイル15の最外周部15aは、外側にダミー配線パターン17がないため、その角部で短絡が発生する虞れがある。しかし、隙間17aの幅が10〜50μmであれば、絶縁膜14の粘性により、角部においても十分な膜厚が確保でき、平面コイル15と電極との間で短絡が発生することはない。
【0020】
この磁気検出素子の製造方法を説明すると、ガラス基板等の非磁性基板11上にスパッタリングにより膜厚2μmのFe−Al−Ta−Nb−C−O−Cu−Dy系の高透磁率磁性膜を成膜する。次いで、磁場中で熱処理を行うことにより磁気異方性を得る。更に、フォトリソグラフィ工程により折り返しパターンのレジストをパターンニングし、ドライエッチング法により磁気検知部12を形成する。
【0021】
次に、磁気検知部12と平面コイル15を絶縁するため、光反応型フルオレンアクリレートの絶縁膜14を形成する。また、フォトリソグラフィ工程により電極13a、13bへの導通を得るための窓部14a、14bを開けておく。
【0022】
続いて、絶縁膜14の上にスパッタリングにより、銅を3μm成膜し、フォトリソグラフィ工程により渦巻き型の平面コイル15及びダミー配線パターン17のレジストをパターンニングし、ドライエッチング又はウェットエッチングで平面コイル15及びダミー配線パターン17を形成する。この場合に、平面コイル15を形成すると同時に、ダミー配線パターン17も形成するため工程の増加はない。
【0023】
なお、エッチングはドライエッチング、ウェットエッチングの何れでも可能である。ドライエッチングの場合にはイオンミーリングを用い、ウェットエッチングの場合にはエッチング液に塩化第二鉄0.2mol/l溶液を使用する。また、塩化第二銅1mol/l溶液を使用しても同様のウェットエッチングが可能である。
【0024】
次に、平面コイル15、ダミー配線パターン17の上に、絶縁膜14と同材質の膜厚3〜4μmの第2の絶縁膜18を同様に形成し、フォトリソグラフィ工程により電極13a、13b、16a、16bへの導通を得るための窓部18aを形成する。
【0025】
最後に、レジストを塗布し、フォトリソグラフィ工程によりパターニング後に銅を全面に成膜し、レジストをアセトンで除去することにより、レジスト上の余分な銅を同時に除去し、電極13a、13b、16a、16bを形成してインピーダンス素子を得ることができる。
【0026】
このような構成により、平面コイル15の絶縁不良の発生率は約60%から0%と低減させることができ、また電極13a、13b、16a、16bとダミー配線パターン17が短絡しても問題ない。
【0027】
他の実施の形態として、図5に示すように平面コイル15の最内周において、平面コイル15を設けない部分の面積を大きくし、最外周の外側にダミー配線パターン17を設けると同様に、最内周の内側にダミー配線パターン21を設けることにより、平面コイル15の内側での短絡を防止することもできる。
【0028】
図6は更に他の実施の形態を示しており、先の実施の形態においてはダミー配線パターン17は平面コイル15の配線パターンと類似していたため、平面コイル15の外側に更に1本の平面コイルパターンがあるかのように見えてしまうことになる。
【0029】
しかし、平面コイル15を覆う絶縁膜14の厚さを保つことができればよいので、ダミー配線パターン17の形状は配線状のものとは限らず、図6に示すように面積型のダミー配線パターン22でも支障はない。また、平面コイル15の最外周とこのダミー配線パターン22の間隔は、平面コイル15のパターン間隔と同じである必要もないが、必要以上に距離を置くと、平面コイル15の最外周では短絡が生ずる虞れはあるとは限らない。
【0030】
【発明の効果】
以上説明したように本発明に係る磁気検出素子は、渦巻き型の平面コイルに不連続なダミー配線を、独立して最外周の外側又はそれに加えて最内周の内側にも配置することにより、工程を増加することなく、平面コイルの電気絶縁性を確保することができる。
【図面の簡単な説明】
【図1】磁気検出素子の斜視図である。
【図2】磁気検出素子の平面図である。
【図3】磁気検出素子の部分拡大図である。
【図4】磁気検出素子の模式的分解図である。
【図5】他の実施の形態の磁気検出素子の平面図である。
【図6】更に他の実施の形態の磁気検出素子の平面図である。
【図7】従来の外付コイルタイプの磁気検出素子の斜視図である。
【図8】従来のソレノイドコイルタイプの磁気検出素子の平面図である。
【図9】従来のソレノイドコイルタイプの磁気検出素子の断面図である。
【図10】短絡の原因となる説明図である。
【符号の説明】
11 非磁性基板
12 磁気検知部
13a、13b、16a、16b 電極
14、18 絶縁膜
15 平面コイル
17、21、22 ダミー配線パターン[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a magnetic detection device that includes a magnetic impedance element that changes the impedance between both ends of a magnetic material according to an external magnetic field when a high-frequency current is applied to the magnetic material as a magnetic detection unit, and incorporates a coil that applies a bias magnetic field. It concerns an element.
[0002]
[Prior art]
2. Description of the Related Art In recent years, small information terminals such as mobile phones and PDAs have been developed, and demands for displaying geomagnetic directions in map information display, GPS mounting, and the like have been increasing.
[0003]
However, with the miniaturization of portable devices, the component environment is premised on high-density mounting, and the requirements for the occupied area and height are becoming strict. Fluxgate sensors and magnetoresistive elements (MR sensors) are already known as azimuth sensors, but the size of the elements is limited, and a magnetic field sensor having a chip component size is desired.
[0004]
[Problems to be solved by the invention]
The applicant has proposed an application method of a direction sensor using a magnetic thin film as disclosed in Japanese Patent No. 3096413. As shown in FIG. 7, this is a practical use of an element in which a magnetic thin film 2 composed of a plurality of elongated linear folded patterns is formed on a non-magnetic substrate 1 made of glass or the like. Has been realized. The operation as a sensor is to apply a high-frequency current from the electrodes 3a and 3b at both ends of the pattern and change the impedance at both ends in the magnetic field detection direction indicated by the arrow.
[0005]
However, in order to drive as an azimuth sensor, a coil for applying a bias magnetic field to a location having high sensitivity is necessary. However, the external coil 4 as shown in FIG. Inability to cope with space-saving equipment.
[0006]
As shown in FIGS. 8 and 9, the requirement can be satisfied if the bias coil 4 is formed of a conductive thin film and can be incorporated into the element. However, as shown in the sectional view of FIG. 9, a solenoid type bias coil is employed. In such a case, it is necessary to form the thin film coil layer 5 also under the magnetic thin film 2, and the characteristic deterioration due to stress distortion between the materials via the insulating layer 6 and the restriction of the temperature condition due to the heat resistance of the insulating layer 6. This makes it difficult to secure the characteristics of the magnetic thin film 2.
[0007]
Specifically, the insulating film 6 and the thin-film coil layer 5 are sandwiched between the magnetic thin film 2 and the non-magnetic substrate 1 shown in FIG. However, there are restrictions such as difficulty in obtaining the temperature and heat treatment for imparting magnetic anisotropy, for example, inability to withstand temperatures exceeding 500 ° C.
[0008]
Therefore, a high-frequency current is applied to the magnetic body, and the impedance between both ends is a magnetic impedance element that changes with respect to an external magnetic field. It is considered that a bias coil laminated magnetic impedance element characterized by forming a spiral planar coil with an insulating film interposed therebetween is effective.
[0009]
That is, a copper film having a thickness of 3 μm is formed by a sputtering method on an insulating film such as a photoreactive benzocyclobutene-based, photoreactive polyimide-based, or photoreactive fluorene acrylate, and resist patterning is performed by a photolithography process. . Thereafter, the copper film is etched by a dry etching or wet etching process to form a planar coil layer, and then a similar insulating film is applied, and then a copper film is formed to form an electrode.
[0010]
However, when the electrical resistance was measured after the formation of the electrodes, the resistance between the electrodes 3a and 3b of the magnetic thin film 2 and the resistance between the electrodes 3c and 3d of the coil layer 5, which should be 100Ω or more, was only several Ω, and the resistance was insulated. It has been found that there is continuity between the electrodes 3a and 3c, which should be present, between 3a and 3d, and the outermost periphery of the coil layer 5 and the electrodes are short-circuited.
[0011]
The reason is that there is a portion where the insulating film is interrupted at the outermost outer corner of the coil layer 5. This can be considered as follows. When applying an insulating film to the coil pattern after etching, if there is an adjacent pattern, a constant film thickness is maintained. However, at the outermost periphery of the coil layer 5, the insulating film is pulled down. As a result, the thickness of the corner is extremely thin, and the corner 5 a of the coil layer 5 is exposed from the insulating film 7 as shown in FIG. However, when a copper film for forming an electrode is formed thereon, a short circuit between the electrode and the coil layer 5 occurs, so that sufficient insulation of the coil layer 5 cannot be obtained.
[0012]
One of the causes that the thickness of the insulating film 7 at the corners 5a is insufficient and the corners 5a are exposed is that the corners of the etched pattern are sharp. As a technique for rounding a corner of a wiring pattern in order to prevent a short circuit, Japanese Patent Application Laid-Open No. 62-21935 is known. This means that corners are rounded by performing wet etching after pattern formation and resist removal in aluminum wiring, and it is considered that copper wiring is also possible. However, at the same time, the entire pattern is melted, which causes a problem that the film thickness is reduced, and a problem that the cost is increased due to an additional process.
[0013]
Also, Japanese Patent Application Laid-Open No. 9-298201 discloses a technique in which a resist is stripped using a stripper having an etching property with respect to aluminum wiring, and the corners are rounded at the same time as the resist is stripped. Application is considered possible.
[0014]
However, the resist stripping solution is limited, and when a general solvent, for example, acetone is used to strip the resist, a new additive is required, and the problem of waste liquid treatment becomes troublesome, Since a resist stripping apparatus having three or more stripping tanks is premised, there is a problem that the cost increases, and further, there is a problem that side etching progresses at the time of stripping the resist.
[0015]
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-described problems, and to incorporate a planar coil for bias application into a chip-sized element, to secure electrical insulation of the planar coil and obtain a predetermined output. Is to provide.
[0016]
[Means for Solving the Problems]
In order to achieve the above object, a magnetic detecting element according to the present invention is provided with a magnetic detecting portion formed of a magnetic thin film elongated in a magnetic field detecting direction on a non-magnetic substrate, and a spiral type with an insulating film interposed on the magnetic detecting portion. A planar coil, and a bias coil laminated magnetic impedance element in which electrodes of the magnetic sensing unit and the planar coil are drawn out with an insulating film interposed therebetween on the planar coil is formed, and a high frequency current is applied to the magnetic sensing unit. In the magnetic detection element in which the impedance between both ends of the magnetic detection unit changes with respect to an external magnetic field, a dummy wiring pattern is independently provided outside the plane coil, and the dummy wiring pattern is divided into a plurality of discontinuous structures. It is characterized by having done.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention will be described in detail based on the illustrated embodiment.
1 is a perspective view, FIG. 2 is a plan view, FIG. 3 is a partially enlarged view, and FIG. 4 is a schematic exploded view. On a non-magnetic substrate 11 such as a glass substrate, a magnetic detecting portion 12 formed by a magnetic thin film and formed in an elongated and parallel folded pattern is formed, and both ends of the magnetic detecting portion 12 are connected to electrodes 13a and 13b. A spiral flat coil 15 composed of two spirals centered on both ends of the magnetic detection unit 12 is disposed on the magnetic detection unit 12 with an insulating film 14 interposed therebetween. 16a, 16b.
[0018]
Further outside the outermost peripheral portion 15a of the planar coil 15, dummy wiring patterns 17 divided into, for example, 17 pieces at the same interval as the planar coil 15 are provided. The line width of the resist when forming the planar coil 15 is aimed at 9 to 16.5 μm, which is determined from the resistance value, the capability of the exposure apparatus, and the like. The width of the dummy wiring pattern 17 is set to 9 μm, and the gap 17 a is set to 10 μm.
[0019]
In this case, since the outermost peripheral portion 15a of the planar coil 15 located inside the gap 17a has no dummy wiring pattern 17 outside, there is a possibility that a short circuit may occur at the corner. However, if the width of the gap 17a is 10 to 50 μm, a sufficient film thickness can be ensured even at the corners due to the viscosity of the insulating film 14, and no short circuit occurs between the planar coil 15 and the electrode.
[0020]
The method of manufacturing this magnetic sensing element will be described. A 2 μm-thick Fe—Al—Ta—Nb—CO—Cu—Dy-based high-permeability magnetic film is formed on a nonmagnetic substrate 11 such as a glass substrate by sputtering. Form a film. Next, magnetic anisotropy is obtained by performing heat treatment in a magnetic field. Further, the resist of the folded pattern is patterned by a photolithography process, and the magnetic sensing unit 12 is formed by a dry etching method.
[0021]
Next, in order to insulate the magnetic detection unit 12 from the planar coil 15, an insulating film 14 of photoreactive fluorene acrylate is formed. Also, windows 14a and 14b for obtaining conduction to the electrodes 13a and 13b are opened by a photolithography process.
[0022]
Subsequently, copper is deposited to a thickness of 3 μm on the insulating film 14 by sputtering, and the resist of the spiral planar coil 15 and the dummy wiring pattern 17 is patterned by a photolithography process, and the planar coil 15 is formed by dry etching or wet etching. And a dummy wiring pattern 17 is formed. In this case, since the dummy wiring pattern 17 is formed simultaneously with the formation of the planar coil 15, the number of steps is not increased.
[0023]
The etching can be either dry etching or wet etching. In the case of dry etching, ion milling is used, and in the case of wet etching, a 0.2 mol / l solution of ferric chloride is used as an etching solution. The same wet etching can be performed by using a 1 mol / l cupric chloride solution.
[0024]
Next, a second insulating film 18 of the same material as the insulating film 14 having a thickness of 3 to 4 μm is similarly formed on the planar coil 15 and the dummy wiring pattern 17, and the electrodes 13a, 13b, and 16a are formed by a photolithography process. , 16b are formed for obtaining conduction to the gates 16b.
[0025]
Finally, a resist is applied, copper is deposited on the entire surface after patterning by a photolithography process, and the resist is removed with acetone, so that excess copper on the resist is removed at the same time, and the electrodes 13a, 13b, 16a, 16b are removed. Is formed to obtain an impedance element.
[0026]
With such a configuration, the rate of occurrence of insulation failure of the planar coil 15 can be reduced from about 60% to 0%, and there is no problem even if the electrodes 13a, 13b, 16a, 16b and the dummy wiring pattern 17 are short-circuited. .
[0027]
As another embodiment, as shown in FIG. 5, in the innermost periphery of the planar coil 15, the area of the portion where the planar coil 15 is not provided is increased, and the dummy wiring pattern 17 is provided outside the outermost periphery. By providing the dummy wiring pattern 21 inside the innermost circumference, a short circuit inside the plane coil 15 can be prevented.
[0028]
FIG. 6 shows still another embodiment. In the previous embodiment, the dummy wiring pattern 17 was similar to the wiring pattern of the planar coil 15, and therefore one more planar coil was provided outside the planar coil 15. It will look as if there is a pattern.
[0029]
However, since it is sufficient that the thickness of the insulating film 14 covering the planar coil 15 can be maintained, the shape of the dummy wiring pattern 17 is not limited to a wiring shape, and as shown in FIG. But there is no problem. Further, the interval between the outermost periphery of the planar coil 15 and the dummy wiring pattern 22 does not need to be the same as the pattern interval of the planar coil 15, but if the distance is longer than necessary, a short circuit occurs at the outermost periphery of the planar coil 15. It is not always the case.
[0030]
【The invention's effect】
As described above, the magnetic sensing element according to the present invention is configured such that the dummy wiring discontinuous to the spiral type planar coil is independently disposed outside the outermost circumference or inside the innermost circumference in addition to the dummy wiring. The electrical insulation of the planar coil can be ensured without increasing the number of steps.
[Brief description of the drawings]
FIG. 1 is a perspective view of a magnetic sensing element.
FIG. 2 is a plan view of a magnetic sensing element.
FIG. 3 is a partially enlarged view of a magnetic sensing element.
FIG. 4 is a schematic exploded view of the magnetic sensing element.
FIG. 5 is a plan view of a magnetic sensor according to another embodiment.
FIG. 6 is a plan view of a magnetic sensor according to still another embodiment.
FIG. 7 is a perspective view of a conventional external coil type magnetic sensing element.
FIG. 8 is a plan view of a conventional solenoid coil type magnetic detecting element.
FIG. 9 is a sectional view of a conventional solenoid coil type magnetic sensing element.
FIG. 10 is an explanatory diagram showing a cause of a short circuit.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Non-magnetic substrate 12 Magnetic detection part 13a, 13b, 16a, 16b Electrode 14, 18 Insulating film 15 Planar coil 17, 21, 22 Dummy wiring pattern