JP2004069380A - Apparatus for measuring coefficient of linear expansion - Google Patents

Apparatus for measuring coefficient of linear expansion Download PDF

Info

Publication number
JP2004069380A
JP2004069380A JP2002226400A JP2002226400A JP2004069380A JP 2004069380 A JP2004069380 A JP 2004069380A JP 2002226400 A JP2002226400 A JP 2002226400A JP 2002226400 A JP2002226400 A JP 2002226400A JP 2004069380 A JP2004069380 A JP 2004069380A
Authority
JP
Japan
Prior art keywords
interference
light
unit
measured
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002226400A
Other languages
Japanese (ja)
Other versions
JP3897655B2 (en
Inventor
Yuichiro Yokoyama
横山 雄一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP2002226400A priority Critical patent/JP3897655B2/en
Publication of JP2004069380A publication Critical patent/JP2004069380A/en
Application granted granted Critical
Publication of JP3897655B2 publication Critical patent/JP3897655B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for measuring a coefficient of a linear expansion capable of accurately measuring and having a high operability. <P>SOLUTION: The apparatus for measuring a coefficient of a linear expansion includes a light wave interference measurement means 12 for measuring a length of an object to be measured having an already known preliminary value, and a temperature controlling means 14 for controlling a temperature of the object to a plurality of predetermined temperatures. The apparatus further includes a second and a third half mirrors 24 and 28 having an optical axis matched to the length measuring axis of the object 42, a first and second observation parts 32 and 34 for observing reference interference light and measured interference light formed by each of the half mirrors. The apparatus simultaneously observes the interference lights formed by the second and third half mirrors 24 and 28, measures the dimension of the object 42 at a predetermined temperature based on the preliminary value of the object 42 and an observed phase difference, and measures the coefficient of the linear expansion of the object 42 based on the dimensions at a plurality of different temperatures. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は線膨張係数測定装置、特にその寸法測定機構の改良に関する。
【0002】
【従来の技術】
物質の温度変化による線膨張係数αは、下記の(式1)により与えられる。
α=(1/L)・(ΔL/ΔT)  …(式1)
ここで、Lは被測定物のある基準温度(例えば20℃)での寸法であり、ΔLは前記基準温度からΔTの温度変化を与えたとき起こる寸法の変化量である。つまり、線膨張係数を求めるためには、温度の異なった状態での被測定物の寸法を測定しなくてはならない。そのため、線膨張係数を高精度に測定するには、寸法測定の正確さと被測定物の温度管理の精密さが必要である。
【0003】
高精度に寸法を測定する測定方法としては、ブロックゲージなどの端度器測定に代表される光波干渉測定が一般的である。この方法はベースプレート面にブロックゲージの一端面を密着(リンギング)させ、これをマイケルソン干渉計の一方の光路中に挿入し、他方の光路の光を参照光として、ブロックゲージの他端面及びベースプレート面からの反射光と干渉させ、これらの干渉縞の位相差と、ブロックゲージの予備値からブロックゲージの寸法を測定するというものである。
【0004】
【発明が解決しようとする課題】
しかしながら、ブロックゲージの片側測定面をベースプレートに密着させる方法では、被測定物であるブロックゲージとベースプレートとの密着が必要であり、測定を正確に行なうには、この密着のバラツキを極力減らさなくてはならない。ところが、この密着作業は熟練を必要とし大変面倒なものであった。
また、密着のバラツキによる寸法の測定の不確かさが線膨張係数を高精度に求めることの大きな妨げになっていた。
本発明は、線膨張係数の測定に際して、測定の高精度化及び作業の容易化、高速化を目的とする。
【0005】
【課題を解決するための手段】
前記目的を達成するため、本発明の線膨張係数測定装置は、被測定物の相対向する端面間の寸法を求める光波干渉測定手段と、前記被測定物を複数の所定温度に制御可能な温度制御手段と、を備える。
そして、前記光波干渉測定手段は所定のビーム径及び波長を持つ可干渉光を照射する光照射部と、前記光照射部から照射された光を二光束に分割する光分割部と、被測定物の測長軸と一致する光軸を有する第1干渉部及び第2干渉部と、前記第1干渉部及び第2干渉部の干渉縞をそれぞれ観察する第1観察部と第2観察部と、を備えたことを特徴とする。
【0006】
ここで、前記光分割部により分割された二光束の一方の光束は、前記第1干渉部に入射し、該入射した光の一部は第1参照光となり、残りは前記第1干渉部により前記被測定物の測長軸方向に反射される。
また、前記光分割部により分割された二光束の他方の光束は、前記第2干渉部に入射し、その一部は第2参照光となり、残りは前記第2干渉部により前記被測定物の測長軸方向に反射される。
【0007】
そして、前記第1干渉部から前記被測定物の測長軸方向へ反射された光は、一部が被測定物の一端において反射され、第1干渉部へと戻り第1参照光と重ね合わされ第1測定干渉光となり、その残りは被測定物の脇を通過し前記第2干渉部へ入射し、第2参照光と重ね合わされ第2基準干渉光となる。
同様に、第2干渉部から前記被測定物の測長軸方向へ反射された光は、一部が前記被測定物の他端面において反射され、第2干渉部へと戻り第2参照光と重ね合わされ第2測定干渉光となり、その他は被測定物の脇を通過し前記第1干渉部へ入射し、第1参照光と重ね合わされ第1基準干渉光となる。
【0008】
また、前記第1観察部により、前記第1干渉部で形成される第1基準干渉光と、第1測定干渉光とがそれぞれ第1基準干渉縞、第1測定干渉縞として観察される。
同様に、前記第2観察部により、前記第2干渉部で形成される第2基準干渉光と、第2測定干渉光とがそれぞれ第2基準干渉縞、第2測定干渉縞として観察される。
上記のようにして観察された前記第1基準干渉縞と前記第1測定干渉縞との位相差、前記第2基準干渉縞と前記第2測定干渉縞との位相差、および被測定物の予備値に基き、前記温度制御手段により所定の温度に維持された前記被測定物の寸法を複数の温度でそれぞれ測定し、該被測定物の線膨張係数を求める。
【0009】
また、前記温度制御手段は、前記被測定物を収容する容器となる断熱保温部と、前記被測定物を加熱する加熱部と、前記加熱部による加熱を制御する加熱制御部と、を備え、前記断熱保温部は断熱層と、測定光軸方向の側面に該測定光が透過する窓と、を備えた。
さらに、前記断熱保温部はその内部を減圧もしくは真空状態に保つため、該断熱保温部を密閉構造とし、該断熱保温部の内部を減圧または真空状態にするための真空ポンプ等を接続する真空弁を取り付けることが好適である。
【0010】
また、前記温度制御手段に、被測定物の位置調整のための微動制御部を備えることが好適である。前記加熱部と前記微動制御部が、熱膨張係数の小さい材質で形成されることも好適である。
前記光分割部から前記第1干渉部に含まれるハーフミラー、前記被測定物の一端、前記第1干渉部に含まれるハーフミラーまでの光路長をLとし、前記光分割部から前記第2干渉部に含まれるハーフミラー、前記第1干渉部に含まれるハーフミラーまでの光路長をLとし、前記光分割部から前記第2干渉部に含まれるハーフミラー、前記被測定物の他端、前記第2干渉部に含まれるハーフミラーまでの光路長をLとし、前記光分割部から前記第1干渉部に含まれるハーフミラー、前記第2干渉部に含まれるハーフミラーまでの光路長をLとする。
【0011】
このとき、下記の
【数2】により被測定物の寸法Lが表される。
【数2】
=λ/2{N+(ε−ε)+(ε−ε)},
ただし、N=N−N+N−N
:λ(N+ε),
:λ(N+ε),
:λ(N+ε),
:λ(N+ε),
λ:前記光の波長、
(i=1〜4):前記光路長Lを前記光の波長λで除したときの商の自然数部分、
ε(i=1〜4):前記光路長Lを前記光の波長λで除したときの商の端数である位相、
(ε−ε):前記第1観察部で観察された第1基準干渉縞と第1測定干渉縞との位相差、
(ε−ε):前記第2観察部で観察された第2基準干渉縞と第2測定干渉縞との位相差。
【0012】
また、上記の線膨張係数測定装置が、前記各観察部により観察された基準干渉縞と測定干渉縞との位相差を読み取る読取手段と、前記読取手段で得られた干渉縞の各位相差と被測定物の両端面間の予備値とから所定温度の被測定物の両端面間の寸法を求める演算手段と、前記演算手段により求められた被測定物の寸法を記憶する記憶手段と、を備えることも可能である。ここで、該記憶手段により記憶された被測定物の異なる温度での寸法から被測定物の線膨張係数が算出される。
【0013】
【発明の実施の形態】
本発明は非密着光波干渉測定法を用い、温度制御手段により被測定物の温度を変化させ、それぞれの温度での被測定物の寸法から温度変化による線膨張係数を求めるものである。
以下、本発明の線膨張係数測定装置の実施例を図面に従い説明する。なお、本実施形態では、被測定物として長方形断面のブロックゲージ等の端度器を想定しているが、それに限らず両面の面精度および平行度が干渉測長できる程度に良好なものであればその他の測定物にも適用できる。
【0014】
図1は、本発明の線膨張率測定装置の一実施例の概念図である。同図の線膨張係数測定装置10は、光波干渉測定手段12と温度制御手段14とを備える。被測定物42は、この温度制御手段14の設置場所に置かれている。
また、光波干渉測定手段12は光照射部16と、照射された光を分割する第1ハーフミラー18(光分割部)と、所定の距離だけ離間して配置された第2ハーフミラー24(第1干渉部)及び第3ハーフミラー28(第2干渉部)と、第2、3ハーフミラー24、28にそれぞれ対応した第1参照鏡26(第1干渉部)、第2参照鏡30(第2干渉部)と、第1スクリーン32(第1観察部)、第2スクリーン34(第2観察部)と、を備えている。第2ハーフミラー24と第3ハーフミラー28とは、それらを結ぶ測定光の光軸が被測定物42の測長軸と一致するように配置される。また、第1スクリーン32、第2スクリーン34はそれぞれ第2,3ハーフミラー24、28と対応して設置されている。
【0015】
以下では上記構成要素についてその作用を述べる。まず、温度制御手段14は、被測定物42の温度の変更を行う働きと、被測定物42の温度を一定に保つ働きを担う。この温度制御手段14により、被測定物42を複数の所定温度に制御することができる。
次に、光波干渉手段12の各構成要素について述べる。光照射部16は光源36、コリメータレンズ38、反射鏡40等を含み、所定のビーム径及び波長を持つレーザ光を照射する。後述するように、レーザ光は被測定物42の端面で反射されるものと被測定物の脇を通り抜けていくものが必要なため、レーザ光のビーム径はある程度の大きさを持つことが必要である。このため被測定物の断面積より大きいビーム径であることがより望ましい。
【0016】
第1ハーフミラー18は、光照射部16から照射されたレーザ光を二光束に分割し、それぞれの光束は第2ハーフミラー24と第3ハーフミラー28に入射する。第1参照鏡26及び第2参照鏡30がそれぞれ第2、3ハーフミラー24、28を透過した光を反射し、その光を参照光として第2、3ハーフミラー24、28において測定光と干渉させる。このように、第1参照鏡26と第2ハーフミラー24との組、第2参照鏡30と第3ハーフミラー28との組は測定光と参照光を干渉させる干渉部として働く。また、第1ハーフミラー18と第2ハーフミラー24と第3ハーフミラー28とによって、環状の干渉計が構成されている。第1、2スクリーン32,34ではそれぞれ第2、3ハーフミラー24,28で形成された干渉光を干渉縞として観察する。
【0017】
以上のような構成を持つ光波干渉測定手段12を用い、温度制御手段14により一定の温度に維持された被測定物42の寸法が測定される。また、温度制御手段14により被測定物42の温度を変更し、その温度での寸法を測定することを繰り返すことで異なる複数の温度での被測定物42の寸法が得られ、被測定物42の線膨張係数が算出される。
【0018】
次に光波干渉測定手段12でのレーザ光の光路を順に説明していく。光照射部16から照射されたレーザ光は第1ハーフミラー18により二光束に分割され、それぞれ第2ハーフミラー24、第3ハーフミラー28へと向かう。この第2ハーフミラー24に入射した光は測長軸方向へ反射する光と、第2ハーフミラー24を透過し第1参照鏡26に向かう光とに分割される。第1参照鏡26に向かった光は該第1参照鏡26で反射され、第2ハーフミラー24へと戻り、この光が第1参照光となる。また、測長軸方向へ向かった光の一部は被測定物42の図中左端面42aで反射し第2ハーフミラー24へ戻り、その残りは被測定物42の脇を通り抜け第3ハーフミラー28へ入射する。
【0019】
同様に、第1ハーフミラー18で分割された二光束のうち第3ハーフミラー28に入射した光は、測長軸方向へ反射する光と、第3ハーフミラー28を透過し第2参照鏡30に向かう光とに分割される。その第2参照鏡30に向かった光は該第2参照鏡30で反射され、第3ハーフミラー28へと戻り、第2参照光となる。また、測長軸方向へ向かった光の一部は被測定物42の図中右端面42bで反射し第3ハーフミラー28へ戻り、その残りは被測定物42の脇を通り抜け第2ハーフミラー24へ入射する。
以上のような光路を辿った光は、第2ハーフミラー24において、第1参照鏡26からくる第1参照光と、被測定物42の脇を通過してきた光とが干渉して第1基準干渉光となり、また被測定物42の左端面42aで反射された光と前記第1参照光とが干渉し第1測定干渉光となる。これらの干渉光は第1スクリーン32で干渉縞として観察され、第1基準干渉縞と第1測定干渉縞の位相差が読み取られる。
【0020】
同様にして、第3ハーフミラー28では、被測定物42の脇を通過してきた光と第2参照鏡30からの第2参照光とが干渉して第2基準干渉光となり、被測定物42の右端面42bで反射された光と、第2参照鏡30からの第2参照光とが干渉して第2測定干渉光となる。また、これらの干渉光は、第2スクリーン34でそれぞれ第2基準干渉縞、第2測定干渉縞として観測され、基準干渉縞と測定干渉縞との位相差が読み取られる。
以上のようにして、第1スクリーン32と第2スクリーン34で同時に観察される第1基準干渉縞と第2測定干渉縞との位相差、第2基準干渉縞と第2測定干渉縞との位相差と、被測定物42の予備値と、をもとにして、被測定物の寸法Lが測定される。上記位相差と被測定物の寸法との関係は後に述べる。
【0021】
被測定物の温度の変化による線膨張係数は、例えば次のようにして求めることができる。まず温度制御手段14により被測定物42をある基準温度Tに保ち、その温度での被測定物42の寸法Lを上記のように光波干渉測定手段により測定する。次に温度制御手段14により被測定物42の温度を基準温度Tから変化させ、温度T’(=T+ΔT)に維持する。この温度T’における被測定物42の寸法も同様に上記のように測長し、その長さをL’とする。(式1)に温度の変化量ΔTと寸法の変化量ΔL(=L’−L)を代入することにより、基準温度Tでの被測定物42の線膨張係数が求められる。
以上が本発明の線膨張係数測定装置の基本的な構成である。光波干渉測定手段が上記のように構成されているため、被測定物をベースプレートに密着させる必要がない。そのため、作業が容易になるとともに、リンギングのバラツキによる測定誤差が取り除かれ高精度な測定ができる。
【0022】
また、第1基準干渉縞と第1測定干渉縞とを第1スクリーン32で、第2基準干渉縞と第2測定干渉縞とを第2スクリーン34で、それぞれ同時に観察しているため、測定時間が短縮される。
さらに本発明では、第1ハーフミラー18と第2ハーフミラー24と第3ハーフミラー28により環状の干渉計が構成されているが、第2ハーフミラー24と第3ハーフミラー28が空間的に分離されているので、時計周りの光と反時計周りの光が干渉する可能性がなく、適正な測定を行なうことができる。
【0023】
図2は本発明における温度制御手段の一実施例を示した図である。同図に示す温度制御手段はその内部に被測定物42を収容する箱型の可変温度槽44として構成されている。可変温度槽44の壁(断熱保温部)46は断熱材、もしくは断熱構造を備えたもの、から形成された断熱層となっており、また測定光軸方向の両側の壁46は、光を透過するガラスなどの窓48を備える。この窓48は少なくとも使用されるレーザ光のビーム径より大きなものとする。被測定物42は均熱プレート52(加熱部)に設置され、加熱制御部はヒータ50、温度コントローラ56、電源57等から構成される。ヒータ50(加熱制御部)により均熱プレート52(加熱部)が加熱され、また被測定物42に取りつけられた温度センサ54及びヒータ50は温度コントローラ56(加熱制御部)に接続される。
【0024】
このように可変温度槽44(温度制御手段)は断熱層となっているため、可変温度層44の内部の温度環境とその外部の温度環境との間の互いへの影響が少なくなる。このため、可変温度層44の外部に設置された光波干渉手段等の光学機器が温度による影響を受けにくく、高温での測定も可能となる。また、可変温度層44内部の温度環境が安定するので、被測定物42の温度を一定に保ちやすい。
【0025】
また、被測定物42に取り付けられた温度センサ54が、被測定物42の温度を感知し、その情報を温度コントローラ56に伝えることにより、温度コントローラ56はヒータ50による加熱を適切に制御できる。図3は温度コントローラ56の制御ブロック図である。被測定物42に取り付けられた温度センサ54により感知された温度情報は、比較器58へと送られ、設定された温度との比較を行なう。またその結果は特性補償要素60へと送られヒータ50や均熱プレート52、被測定物42の熱特性に応じてヒータ50の操作量を算出し、その操作量が増幅器62へと送られヒータ50を加熱する。
【0026】
このように、被測定物の温度変化に応じて加熱量を調整するため、被測定物の温度は安定に保たれ、被測定物をさまざまな温度に設定することができる。この結果、精密な温度管理が可能となり、また均熱プレート52を介して加熱するため、被測定物42を一様に加熱することができる。
また、可変温度槽44を密閉構造とすることも可能である。このとき、可変温度槽44は、内部を減圧もしくは真空にするために、真空ポンプ等を取りつける真空弁64を備える。可変温度層44内部が減圧又は真空状態に保たれることにより、空気の密度ゆらぎによる測定光のゆらぎが低減され、より正確な測定を行なうことができる。また、可変温度層44の断熱効果もさらに高まる。
【0027】
試料42の設置台となる均熱プレート52に光学的なアライメントを行なうための微動制御部66を設けることも好適である。図2の微動制御部66には支持部材68が備えられ、この支持部材68の上に均熱プレート52が設置される。
【0028】
微動制御部66の調節つまみ65を調節することにより、被測定物42の測定光軸に対する角度や高さ方向の位置等を適切に設定することができる。さらに、温度変化によって、測定光軸に対する高さ方向に被測定物42の位置が変化するのを防ぐため、均熱プレート52と微動制御部66の間にある支持部材68は熱膨張係数の小さい材質からできていることが望ましい。また、支持部材68の他にも、均熱プレート52、微動制御部66等、可変温度槽44内部の部材は熱膨張係数の小さな材質を用いることが好ましい。熱膨張係数の小さい材質の部材を用いることにより、被測定物42を支える部材の温度変化による変形を小さく抑えることができるので、測定光軸に対する高さ方向の位置変化が少なく、測定の正確度が増す。
【0029】
被測定物42の微動制御部66による位置制御は、可変温度槽44の外部から設定することも可能である。このため、可変温度槽44の外部に備えられた微動制御駆動部67は、微動制御部66の調節つまみ65に接続され、調節つまみ65を駆動するモータ等を電気的に制御し、被測定物42の位置を設定する。また、微動制御部66の調節つまみ65を可変温度槽44の外部に設け、手動により外部から調整できるようにしてもよい。
【0030】
次に光波干渉測定手段において読み取られた位相差と被測定物の寸法との関係について、図1を参照して説明する。
第1ハーフミラー18から第2ハーフミラー24へ、さらに被測定物42の図中左端面42aに向かい、そこで反射した光が再び第2ハーフミラー24へと戻る光路の光路長をLとする。また、第1ハーフミラー18から第3ハーフミラー28に向かい、そこで反射され被測定物42の脇を通り抜け第2ハーフミラー24へ入射するまでの光路長をLとする。同様に、光路長Lは第1ハーフミラー18、第3ハーフミラー28、被測定物42の右端面42b、第3ハーフミラー28へと進む光路長とする。光路長Lは、第1ハーフミラー18から第2ハーフミラー24へと向かい、そこで反射され被測定物42の脇を通過し第3ハーフミラー28へ入射するまでの光路長とする。
【0031】
また、第1ハーフミラー18と第2ハーフミラー24との間の光路長をa、第2ハーフミラー24と被測定物42の図中左端面42aとの間の光路長をb、第1ハーフミラー18と第3ハーフミラー28との間の光路長をc、第3ハーフミラー28と被測定物42の図中右端面42bとの間の光路長をdとする。
上記の光路長L(i=1〜4)を光路長a、b、c、dを用いて表すと
=a+2b,L=b+c+d+L
=c+2d,L=a+b+d+L
となる。これらの式からa、b、c、dを消去すると被測定物42の寸法Lは次の(式2)で表される。
=1/2{(L−L)+(L−L)}  …(式2)
【0032】
また、上記の光路長L、L、L、Lを、測定に使用するレーザ光の波長λを用いて表すと以下のようになる。
=λ(N+ε)  (i=1〜4)  …(式3)
ここで、Nは光路長Lを波長λで割った時の商の整数部分、εはその商の端数部分(位相)である。(式3)を(式2)に代入すると

Figure 2004069380
となる。ただし、N=(N−N)+(N−N)とした。
【0033】
(式4)の(ε−ε)が第1スクリーン32で観測される第1基準干渉縞と第1測定干渉縞の位相差であり、また、(ε−ε)が第2スクリーン34で観測される第2基準干渉縞と第2測定干渉縞の位相差である。また、波長λは既知であり、被測定物の予備値と波長λより算出されるNを用いて(式4)より被測定物の寸法Lが求められる。温度変更を繰り返して被測定物の寸法の測定を行ない、複数の温度での寸法から被測定物の線膨張係数を求めることができる。
【0034】
図1に示すように、第1、2スクリーン32、34で形成された干渉縞をそれぞれ第1読取手段70と第2読取手段72によって観測することも可能である。この読取手段はCCDカメラ、或いはその他の光電変換手段などにより干渉縞を読み取る。
これらの位相差は、図1のコンピュータ74内の測定データ記憶手段76へと送られ記憶される。さらに、その位相差から演算手段78により上記の寸法Lが算出され、演算データ記憶手段80に記憶される。また、コンピュータ74と温度制御手段14は接続され、被測定物の温度に関するデータ等の受け渡しを行なう。それらのデータは測定データ記憶手段76に記憶される。
【0035】
温度制御手段14により被測定物42の温度を変更し、上記と同様に寸法測定を行ない、その結果を演算データ記憶手段80に記憶する。このように、異なる複数の温度での被測定物の寸法が演算データ記憶手段80に記憶される。これらの異なる温度での寸法のデータや温度データを演算データ記憶手段80、測定データ記憶手段76から呼び出し、演算手段78により所定の温度での線膨張係数を算出することができる。
【0036】
以上の構成では、測定に単一波長のレーザ光を用いた例について説明した。しかし、本発明はこれに限定されるものではなく、もちろん複数の異なる波長を用いて測定を行なってもよい。
本発明は被測定物とベースプレートを密着させる必要がないので、密着型の光波干渉測定法を用いた場合と比較して作業が容易となり、測定時間が大幅に短縮される。また、密着のバラツキによる測定誤差がなく、高精度な測定が可能となる。
【0037】
【発明の効果】
以上説明したように、本発明の線膨張係数測定装置は、非密着型の光波干渉測定手段と、被測定物の温度の維持及び温度の変更を行なう温度制御手段を備える。この結果、被測定物の線膨張係数の測定を高精度に行なうことが可能で、また作業性の向上および高速化が達成できる。
【図面の簡単な説明】
【図1】本発明の線膨張係数測定装置の概念図である。
【図2】可変温度槽(温度制御手段)の概略構成の説明図である。
【図3】温度コントローラの制御ブロック図である。
【符号の説明】
10 本発明の線膨張係数測定装置
12 光波干渉測定手段
14 温度制御手段
16 光照射部
18 第1ハーフミラー(光分割部)
24 第2ハーフミラー(第1干渉部)
26 第1参照鏡(第1干渉部)
28 第3ハーフミラー(第2干渉部)
30 第2参照鏡(第2干渉部)
32 第1スクリーン(第1観察部)
34 第2スクリーン(第2観察部)
42 被測定物[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an apparatus for measuring a coefficient of linear expansion, and more particularly to an improvement of a mechanism for measuring a dimension thereof.
[0002]
[Prior art]
The coefficient of linear expansion α due to a change in the temperature of a substance is given by the following (Equation 1).
α = (1 / L) · (ΔL / ΔT) (Equation 1)
Here, L is a dimension at a certain reference temperature (for example, 20 ° C.) of the object to be measured, and ΔL is a change in dimension that occurs when a temperature change of ΔT is given from the reference temperature. That is, in order to obtain the coefficient of linear expansion, the dimensions of the object under measurement at different temperatures must be measured. Therefore, in order to measure the linear expansion coefficient with high accuracy, it is necessary to have an accurate dimension measurement and precise temperature control of the object to be measured.
[0003]
As a measuring method for measuring a dimension with high accuracy, a light wave interference measurement represented by an edge measuring device such as a block gauge is generally used. In this method, one end surface of a block gauge is brought into close contact (ringing) with a base plate surface, inserted into one optical path of a Michelson interferometer, and the light of the other optical path is used as reference light, and the other end surface of the block gauge and the base plate are used. The interference with the light reflected from the surface is performed, and the dimensions of the block gauge are measured from the phase difference between these interference fringes and the preliminary value of the block gauge.
[0004]
[Problems to be solved by the invention]
However, in the method in which one side of the measurement surface of the block gauge is brought into close contact with the base plate, it is necessary to make close contact between the block gauge to be measured and the base plate, and in order to perform accurate measurement, it is necessary to minimize the variation in the close contact. Not be. However, this close contact work requires skill and is very troublesome.
In addition, the uncertainty of the dimension measurement due to the variation in close contact has hindered obtaining the linear expansion coefficient with high accuracy.
An object of the present invention is to increase the accuracy of measurement, facilitate the operation, and increase the speed when measuring the coefficient of linear expansion.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, a linear expansion coefficient measuring apparatus of the present invention comprises a light wave interference measuring unit for determining a dimension between opposed end faces of a device under test, and a temperature capable of controlling the device under test to a plurality of predetermined temperatures. Control means.
The light wave interference measuring means includes a light irradiating unit for irradiating coherent light having a predetermined beam diameter and a wavelength, a light dividing unit for dividing the light irradiated from the light irradiating unit into two light beams, A first interference unit and a second interference unit having an optical axis coinciding with the measurement axis of the first and second observation units, and a first observation unit and a second observation unit for observing interference fringes of the first and second interference units, respectively. It is characterized by having.
[0006]
Here, one of the two light beams split by the light splitting unit is incident on the first interference unit, a part of the incident light is a first reference light, and the rest is the first interference unit. The light is reflected in the length measurement axis direction of the object to be measured.
Further, the other light beam of the two light beams split by the light splitting unit is incident on the second interference unit, a part of which is a second reference light, and the other is a light beam of the object to be measured by the second interference unit. The light is reflected in the measurement axis direction.
[0007]
A part of the light reflected from the first interference unit in the length-measuring axis direction of the DUT is reflected at one end of the DUT, returned to the first interference unit, and superimposed on the first reference light. The first interference light is measured, and the rest passes through the side of the object to be measured and is incident on the second interference unit, and is superimposed on the second reference light to become the second reference interference light.
Similarly, the light reflected from the second interference unit in the length-measuring axis direction of the measured object is partially reflected at the other end surface of the measured object, returns to the second interference unit, and returns to the second interference unit. The second interference light is superimposed and passes through the side of the object to be measured, enters the first interference unit, and is superimposed on the first reference light to become the first reference interference light.
[0008]
Further, the first observation unit observes the first reference interference light and the first measurement interference light formed by the first interference unit as a first reference interference fringe and a first measurement interference fringe, respectively.
Similarly, the second observation unit observes the second reference interference light and the second measurement interference light formed by the second interference unit as a second reference interference fringe and a second measurement interference fringe, respectively.
The phase difference between the first reference interference fringe and the first measurement interference fringe observed as described above, the phase difference between the second reference interference fringe and the second measurement interference fringe, and the preliminary Based on the values, the dimensions of the device under test maintained at a predetermined temperature by the temperature control means are measured at a plurality of temperatures, respectively, and the coefficient of linear expansion of the device under test is determined.
[0009]
Further, the temperature control means includes an adiabatic heat retaining unit serving as a container for accommodating the object to be measured, a heating unit to heat the object to be measured, and a heating control unit to control heating by the heating unit, The heat-insulating heat-insulating section was provided with a heat-insulating layer and a window through which the measurement light was transmitted on a side surface in the measurement optical axis direction.
Furthermore, in order to keep the inside of the heat insulating and heating unit at a reduced pressure or a vacuum state, the heat insulating and heating unit has a sealed structure, and a vacuum valve for connecting a vacuum pump or the like for reducing the inside of the heat and heat insulating unit to a reduced or vacuum state. It is preferred to attach
[0010]
It is preferable that the temperature control unit includes a fine movement control unit for adjusting the position of the measured object. It is also preferable that the heating unit and the fine movement control unit are formed of a material having a small coefficient of thermal expansion.
Half mirror included in the first interference portion from said light splitting part, wherein one end of the object to be measured, the optical path length to the half mirror included in the first interference portion and L 1, the second from the light splitting unit half mirror included in the interference portion, the optical path length to the half mirror included in the first interference portion and L 2, a half mirror included in the second interference portion from said light splitting part, the other end of the object to be measured the optical path length to the half mirror included in the second interference portion and L 3, a half mirror included in the first interference portion from the light splitting unit, the optical path length to the half mirror included in the second interfering portion It is referred to as L 4.
[0011]
In this case, the dimension L B of the object to be measured is represented by Equation 2] below.
(Equation 2)
L B = λ / 2 {N + (ε 4 -ε 3) + (ε 2 -ε 1)},
However, N = N 4 -N 3 + N 2 -N 1,
L 1 : λ (N 1 + ε 1 ),
L 2 : λ (N 2 + ε 2 ),
L 3 : λ (N 3 + ε 3 ),
L 4 : λ (N 4 + ε 4 ),
λ: wavelength of the light,
N i (i = 1~4): natural number part of the quotient when the optical path length L i divided by the wavelength λ of the light,
ε i (i = 1 to 4): a phase which is a fraction of a quotient when the optical path length L i is divided by the wavelength λ of the light,
2 −ε 1 ): phase difference between the first reference interference fringe and the first measurement interference fringe observed by the first observation unit,
4 −ε 3 ): phase difference between the second reference interference fringe and the second measurement interference fringe observed by the second observation unit.
[0012]
Further, the linear expansion coefficient measuring device reads the phase difference between the reference interference fringe and the measured interference fringe observed by each of the observation units, and reads each phase difference of the interference fringe obtained by the reading unit. Comprising: a calculating means for obtaining a dimension between both end faces of the DUT at a predetermined temperature from a preliminary value between both end faces of the DUT, and a storage means for storing the dimension of the DUT determined by the calculation means. It is also possible. Here, the coefficient of linear expansion of the measured object is calculated from the dimensions of the measured object at different temperatures stored by the storage means.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention uses a non-contact light wave interference measurement method in which the temperature of an object to be measured is changed by temperature control means, and the linear expansion coefficient due to the temperature change is obtained from the dimensions of the object to be measured at each temperature.
Hereinafter, an embodiment of a linear expansion coefficient measuring apparatus according to the present invention will be described with reference to the drawings. In the present embodiment, an end device such as a block gauge having a rectangular cross section is assumed as the object to be measured. However, the present invention is not limited to this, and the surface accuracy and parallelism of both surfaces may be good enough to allow interferometric measurement. It can be applied to other measured objects.
[0014]
FIG. 1 is a conceptual diagram of one embodiment of the linear expansion coefficient measuring apparatus of the present invention. The linear expansion coefficient measuring device 10 of FIG. 1 includes a light wave interference measuring unit 12 and a temperature control unit 14. The device under test 42 is placed at the place where the temperature control means 14 is installed.
In addition, the light wave interference measuring means 12 includes a light irradiating section 16, a first half mirror 18 (a light dividing section) that divides the irradiated light, and a second half mirror 24 (a second half mirror 24) that is spaced apart by a predetermined distance. 1st interference part), the third half mirror 28 (second interference part), the first reference mirror 26 (first interference part), and the second reference mirror 30 (second interference part) corresponding to the second and third half mirrors 24 and 28, respectively. 2 interference section), a first screen 32 (first observation section), and a second screen 34 (second observation section). The second half mirror 24 and the third half mirror 28 are arranged such that the optical axis of the measurement light connecting them coincides with the length measurement axis of the device under test 42. The first screen 32 and the second screen 34 are provided corresponding to the second and third half mirrors 24 and 28, respectively.
[0015]
The operation of the above components will be described below. First, the temperature control means 14 has a function of changing the temperature of the device under test 42 and a function of maintaining the temperature of the device under test 42 constant. The temperature of the device under test 42 can be controlled to a plurality of predetermined temperatures by the temperature control means 14.
Next, each component of the light wave interference unit 12 will be described. The light irradiation unit 16 includes a light source 36, a collimator lens 38, a reflection mirror 40, and the like, and irradiates a laser beam having a predetermined beam diameter and wavelength. As will be described later, since the laser beam needs to be reflected at the end face of the device under test 42 and to pass through the side of the device under test, the beam diameter of the laser beam needs to have a certain size. It is. For this reason, it is more desirable that the beam diameter be larger than the cross-sectional area of the measured object.
[0016]
The first half mirror 18 splits the laser light emitted from the light irradiation unit 16 into two light beams, and each light beam enters the second half mirror 24 and the third half mirror 28. The first reference mirror 26 and the second reference mirror 30 reflect the light transmitted through the second and third half mirrors 24 and 28, respectively, and use the light as reference light to interfere with the measurement light at the second and third half mirrors 24 and 28. Let it. As described above, the pair of the first reference mirror 26 and the second half mirror 24 and the pair of the second reference mirror 30 and the third half mirror 28 function as an interference unit that causes the measurement light and the reference light to interfere with each other. Further, the first half mirror 18, the second half mirror 24, and the third half mirror 28 constitute an annular interferometer. The first and second screens 32 and 34 observe the interference light formed by the second and third half mirrors 24 and 28 as interference fringes, respectively.
[0017]
Using the optical interference measuring means 12 having the above-described configuration, the dimensions of the DUT 42 maintained at a constant temperature by the temperature control means 14 are measured. Further, the temperature of the DUT 42 is changed by the temperature control means 14 and the measurement at that temperature is repeated to obtain the dimensions of the DUT 42 at a plurality of different temperatures. Is calculated.
[0018]
Next, the optical path of the laser light in the light wave interference measuring means 12 will be described in order. The laser light emitted from the light irradiating unit 16 is split into two light beams by the first half mirror 18 and travels to the second half mirror 24 and the third half mirror 28, respectively. The light incident on the second half mirror 24 is split into light reflected in the length-measuring axis direction and light transmitted through the second half mirror 24 and traveling toward the first reference mirror 26. The light directed to the first reference mirror 26 is reflected by the first reference mirror 26, returns to the second half mirror 24, and becomes the first reference light. A part of the light traveling in the length measurement axis direction is reflected on the left end face 42a of the measured object 42 in the figure and returns to the second half mirror 24, and the rest passes through the measured object 42 and is located on the third half mirror. 28.
[0019]
Similarly, of the two light beams split by the first half mirror 18, the light incident on the third half mirror 28 is the light reflected in the length measurement axis direction and the light transmitted through the third half mirror 28 and the second reference mirror 30. The light is split into The light directed to the second reference mirror 30 is reflected by the second reference mirror 30, returns to the third half mirror 28, and becomes the second reference light. A part of the light traveling in the length measurement axis direction is reflected by the right end surface 42b of the measured object 42 in the drawing and returns to the third half mirror 28, and the rest passes by the measured object 42 and is returned to the second half mirror. 24.
In the second half mirror 24, the light that has traveled along the optical path described above interferes with the first reference light coming from the first reference mirror 26 and the light passing by the side of the object 42 to be measured, and the first reference light The first reference light becomes the interference light, and the light reflected by the left end surface 42a of the device under test 42 interferes with the first reference light to become the first measurement interference light. These interference lights are observed as interference fringes on the first screen 32, and the phase difference between the first reference interference fringe and the first measurement interference fringe is read.
[0020]
Similarly, in the third half mirror 28, the light passing by the side of the DUT 42 and the second reference light from the second reference mirror 30 interfere with each other to become second reference interference light, and the DUT 42 The light reflected by the right end face 42b of the light beam and the second reference light from the second reference mirror 30 interfere with each other to become the second measurement interference light. These interference lights are observed as a second reference interference fringe and a second measurement interference fringe on the second screen 34, respectively, and the phase difference between the reference interference fringe and the measurement interference fringe is read.
As described above, the phase difference between the first reference interference fringe and the second measurement interference fringe simultaneously observed on the first screen 32 and the second screen 34, and the position of the second reference interference fringe and the second measurement interference fringe. and phase difference, based on the preliminary value of the measured object 42, the dimensions L B of the object to be measured is measured. The relationship between the phase difference and the dimensions of the device under test will be described later.
[0021]
The coefficient of linear expansion due to a change in the temperature of the device under test can be determined, for example, as follows. First keeping the temperature control means 14 to the reference temperature T with the measured object 42, the size L B of the object 42 at that temperature is measured by the optical interference measuring means as described above. Next, the temperature of the DUT 42 is changed from the reference temperature T by the temperature control means 14 and is maintained at the temperature T ′ (= T + ΔT). The temperature T to 'similar dimensions of the workpiece 42 also in measurement as described above poured, the length L B' and. By substituting the change amount of the temperature variation ΔT and dimensions (Equation 1) ΔL B (= L B '-L B), the linear expansion coefficient of the DUT 42 at a reference temperature T is determined.
The above is the basic configuration of the linear expansion coefficient measuring device of the present invention. Since the light wave interference measurement means is configured as described above, it is not necessary to bring the device under test into close contact with the base plate. Therefore, the operation becomes easy, and a measurement error due to a variation in ringing is removed, so that highly accurate measurement can be performed.
[0022]
Since the first reference interference fringe and the first measurement interference fringe are simultaneously observed on the first screen 32 and the second reference interference fringe and the second measurement interference fringe are simultaneously observed on the second screen 34, the measurement time Is shortened.
Further, in the present invention, an annular interferometer is constituted by the first half mirror 18, the second half mirror 24, and the third half mirror 28, but the second half mirror 24 and the third half mirror 28 are spatially separated. Therefore, there is no possibility that the clockwise light and the counterclockwise light interfere with each other, and an appropriate measurement can be performed.
[0023]
FIG. 2 is a diagram showing one embodiment of the temperature control means in the present invention. The temperature control means shown in the figure is configured as a box-shaped variable temperature tank 44 in which an object 42 to be measured is accommodated. The wall (insulated heat retaining section) 46 of the variable temperature tank 44 is a heat insulating layer formed of a heat insulating material or a member having a heat insulating structure, and the walls 46 on both sides in the measurement optical axis direction transmit light. It is provided with a window 48 made of glass or the like. This window 48 is at least larger than the beam diameter of the laser beam used. The device under test 42 is installed on a heat equalizing plate 52 (heating unit), and the heating control unit includes a heater 50, a temperature controller 56, a power supply 57, and the like. The heater 50 (heating control unit) heats the soaking plate 52 (heating unit), and the temperature sensor 54 and the heater 50 attached to the measured object 42 are connected to a temperature controller 56 (heating control unit).
[0024]
As described above, since the variable temperature tank 44 (temperature control means) is a heat insulating layer, the mutual influence between the temperature environment inside the variable temperature layer 44 and the temperature environment outside the variable temperature layer 44 is reduced. For this reason, the optical devices such as the light wave interference unit provided outside the variable temperature layer 44 are hardly affected by the temperature, and the measurement at a high temperature becomes possible. In addition, since the temperature environment inside the variable temperature layer 44 is stabilized, the temperature of the device under test 42 can be easily kept constant.
[0025]
Further, the temperature sensor 54 attached to the measured object 42 senses the temperature of the measured object 42 and transmits the information to the temperature controller 56, so that the temperature controller 56 can appropriately control the heating by the heater 50. FIG. 3 is a control block diagram of the temperature controller 56. The temperature information sensed by the temperature sensor 54 attached to the device under test 42 is sent to a comparator 58, where it is compared with a set temperature. The result is sent to the characteristic compensating element 60, and the operation amount of the heater 50 is calculated according to the thermal characteristics of the heater 50, the heat equalizing plate 52, and the device under test 42, and the operation amount is sent to the amplifier 62 to Heat 50.
[0026]
As described above, since the heating amount is adjusted according to the temperature change of the device under test, the temperature of the device under test can be kept stable, and the device under test can be set to various temperatures. As a result, precise temperature control becomes possible, and the object to be measured 42 can be uniformly heated because the temperature is heated via the heat equalizing plate 52.
Further, the variable temperature bath 44 may have a closed structure. At this time, the variable temperature tank 44 is provided with a vacuum valve 64 to which a vacuum pump or the like is attached so as to reduce the pressure or vacuum inside. By maintaining the inside of the variable temperature layer 44 in a reduced pressure or vacuum state, the fluctuation of the measurement light due to the fluctuation of the density of the air is reduced, and more accurate measurement can be performed. Further, the heat insulating effect of the variable temperature layer 44 is further enhanced.
[0027]
It is also preferable to provide a fine movement control unit 66 for performing optical alignment on the heat equalizing plate 52 serving as a mounting table for the sample 42. The fine movement control unit 66 shown in FIG. 2 is provided with a support member 68, and the heat equalizing plate 52 is installed on the support member 68.
[0028]
By adjusting the adjustment knob 65 of the fine movement control unit 66, it is possible to appropriately set the angle of the object 42 with respect to the measurement optical axis, the position in the height direction, and the like. Further, in order to prevent the position of the DUT 42 from changing in the height direction with respect to the measurement optical axis due to a temperature change, the support member 68 between the heat equalizing plate 52 and the fine movement control unit 66 has a small thermal expansion coefficient. It is desirable to be made of a material. In addition to the support member 68, it is preferable to use a material having a small coefficient of thermal expansion for members inside the variable temperature tank 44, such as the heat equalizing plate 52 and the fine movement control unit 66. By using a member made of a material having a small coefficient of thermal expansion, the deformation of the member supporting the DUT 42 due to a temperature change can be suppressed to a small degree. Increase.
[0029]
The position control of the DUT 42 by the fine movement control unit 66 can be set from outside the variable temperature bath 44. For this reason, the fine movement control drive section 67 provided outside the variable temperature chamber 44 is connected to the adjustment knob 65 of the fine movement control section 66, and electrically controls a motor or the like that drives the adjustment knob 65, and The position of 42 is set. Further, the adjustment knob 65 of the fine movement control unit 66 may be provided outside the variable temperature bath 44 so that the adjustment can be manually performed from the outside.
[0030]
Next, the relationship between the phase difference read by the light wave interference measuring means and the dimensions of the device under test will be described with reference to FIG.
From the first half mirror 18 to the second half mirror 24, further toward the left end in the drawing surface 42a of the object 42, where the optical path length of the optical path reflected light is returned to the second half mirror 24 again as L 1 . Further, an optical path length from the first half mirror 18 to the third half mirror 28, which is reflected there, passes by the measured object 42, and enters the second half mirror 24 is defined as L 2 . Similarly, the optical path length L 3 is the first half mirror 18, the third half mirror 28, a right end face 42b, the optical path length proceeding to the third half mirror 28 of the object 42. Optical path length L 4 are, directed from the first half mirror 18 to the second half mirror 24, where it is reflected to the optical path length to be incident to the third half mirror 28 passes through the side of the object 42.
[0031]
The optical path length between the first half mirror 18 and the second half mirror 24 is a, the optical path length between the second half mirror 24 and the left end surface 42a of the device under test 42 in the drawing is b, and the first half mirror is b. The optical path length between the mirror 18 and the third half mirror 28 is c, and the optical path length between the third half mirror 28 and the right end surface 42b of the device under test 42 in the drawing is d.
The above optical path length L i (i = 1~4) of the optical path length a, b, c, expressed using a d L 1 = a + 2b, L 2 = b + c + d + L B,
L 3 = c + 2d, L 4 = a + b + d + L B,
It becomes. A From these equations, b, c, Erasing the d dimension L B of the workpiece 42 is represented by the following equation (2).
L B = 1/2 {( L 4 -L 3) + (L 2 -L 1)} ... ( Equation 2)
[0032]
The above optical path lengths L 1 , L 2 , L 3 , and L 4 are expressed as follows using the wavelength λ of the laser light used for measurement.
L i = λ (N i + ε i ) (i = 1 to 4) (Equation 3)
Here, N i is an integer portion of the quotient obtained by dividing the optical path length L i at the wavelength lambda, epsilon i is the fractional part of the quotient (phase). Substituting (Equation 3) into (Equation 2)
Figure 2004069380
It becomes. However, was N = (N 4 -N 3) + (N 2 -N 1).
[0033]
2 −ε 1 ) in (Equation 4) is the phase difference between the first reference interference fringe and the first measurement interference fringe observed on the first screen 32, and (ε 4 −ε 3 ) is the second difference. This is the phase difference between the second reference interference fringe and the second measurement interference fringe observed on the screen 34. The wavelength λ is known, the dimension L B of the object to be measured than with N calculated from the pre-value and the wavelength λ of the DUT (Equation 4) is obtained. The dimensions of the measured object are measured by repeating the temperature change, and the linear expansion coefficient of the measured object can be obtained from the dimensions at a plurality of temperatures.
[0034]
As shown in FIG. 1, the interference fringes formed by the first and second screens 32 and 34 can be observed by the first reading unit 70 and the second reading unit 72, respectively. This reading means reads the interference fringes using a CCD camera or other photoelectric conversion means.
These phase differences are sent to and stored in the measurement data storage means 76 in the computer 74 of FIG. Further, the by calculation means 78 from the phase difference above dimensions L B is calculated and stored in operation data storage section 80. Further, the computer 74 and the temperature control means 14 are connected and exchange data relating to the temperature of the device under test. Those data are stored in the measurement data storage means 76.
[0035]
The temperature of the DUT 42 is changed by the temperature control means 14, the dimension is measured in the same manner as described above, and the result is stored in the arithmetic data storage means 80. As described above, the dimensions of the device under test at a plurality of different temperatures are stored in the arithmetic data storage unit 80. The dimensional data and temperature data at these different temperatures are called from the operation data storage unit 80 and the measurement data storage unit 76, and the operation unit 78 can calculate the linear expansion coefficient at a predetermined temperature.
[0036]
In the above configuration, an example in which laser light of a single wavelength is used for measurement has been described. However, the present invention is not limited to this, and the measurement may of course be performed using a plurality of different wavelengths.
In the present invention, since there is no need to bring the object to be measured into close contact with the base plate, the work becomes easier and the measurement time is greatly reduced as compared with the case where the contact type light wave interference measurement method is used. In addition, there is no measurement error due to variations in close contact, and highly accurate measurement can be performed.
[0037]
【The invention's effect】
As described above, the linear expansion coefficient measuring apparatus of the present invention includes the non-contact type optical wave interference measuring means and the temperature control means for maintaining and changing the temperature of the device under test. As a result, the coefficient of linear expansion of the object to be measured can be measured with high accuracy, and workability can be improved and the speed can be increased.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a linear expansion coefficient measuring device of the present invention.
FIG. 2 is an explanatory diagram of a schematic configuration of a variable temperature bath (temperature control means).
FIG. 3 is a control block diagram of a temperature controller.
[Explanation of symbols]
10 Linear expansion coefficient measuring apparatus 12 of the present invention 12 Light wave interference measuring means 14 Temperature control means 16 Light irradiation unit 18 First half mirror (light splitting unit)
24 Second half mirror (first interference unit)
26 First Reference Mirror (First Interference Unit)
28 Third half mirror (second interference section)
30 Second reference mirror (second interference unit)
32 1st screen (1st observation part)
34 second screen (second observation unit)
42 DUT

Claims (7)

被測定物の相対向する端面間の寸法を求める光波干渉測定手段と、前記被測定物を複数の所定温度に制御可能な温度制御手段と、を備えた線膨張係数測定装置において、
前記光波干渉測定手段は、
所定のビーム径及び波長を持つ光を照射する光照射部と、
前記光照射部から照射された光を二光束に分割する光分割部と、
被測定物の測長軸と一致する光軸を有する第1干渉部及び第2干渉部と、
前記第1干渉部及び第2干渉部の干渉縞をそれぞれ観察する第1観察部と第2観察部と、
を備えており、
前記光分割部により分割された二光束の一方の光束は、前記第1干渉部に入射し、該光束の一部は第1参照光となり、残りは前記第1干渉部により前記被測定物の測長軸方向に反射され、
前記光分割部により分割された二光束の他方の光束は、前記第2干渉部に入射し、該光束の一部は第2参照光となり、残りは前記第2干渉部により前記被測定物の測長軸方向に反射され、
前記第1干渉部から前記被測定物の測長軸方向へ反射された光は、一部が前記被測定物の一端において反射され、第1干渉部へと戻り第1参照光と重ね合わされ第1測定干渉光となり、その残りは前記被測定物の脇を通過し前記第2干渉部へ入射し、第2参照光と重ね合わされ第2基準干渉光となり、
前記第2干渉部から前記被測定物の測長軸方向へ反射された光は、一部が前記被測定物の他端面において反射され、第2干渉部へと戻り第2参照光と重ね合わされ第2測定干渉光となり、その残りは前記被測定物の脇を通過し前記第1干渉部へ入射し、第1参照光と重ね合わされ第1基準干渉光となり、
前記第1観察部により、前記第1干渉部で形成される第1基準干渉光と第1測定干渉光とをそれぞれ第1基準干渉縞及び第1測定干渉縞として観察し、
前記第2観察部により、前記第2干渉部で形成される第2基準干渉光と第2測定干渉光とをそれぞれ第2基準干渉縞及び第2測定干渉縞として観察し、
前記第1基準干渉縞と前記第1測定干渉縞との位相差、前記第2基準干渉縞と前記第2測定干渉縞との位相差、および被測定物の予備値に基き、前記温度制御手段により所定の温度に維持された前記被測定物の寸法を複数の温度でそれぞれ測定することを特徴とする線膨張係数測定装置。
In a linear expansion coefficient measuring apparatus comprising: a light wave interference measuring unit for determining a dimension between opposed end faces of the device under test, and a temperature control device capable of controlling the device under test to a plurality of predetermined temperatures,
The light wave interference measuring means,
A light irradiating unit that irradiates light having a predetermined beam diameter and wavelength,
A light splitting unit that splits the light emitted from the light emitting unit into two light beams,
A first interference unit and a second interference unit having an optical axis coinciding with the length measurement axis of the device under test;
A first observation unit and a second observation unit for observing interference fringes of the first interference unit and the second interference unit, respectively;
With
One of the two light beams split by the light splitting unit is incident on the first interference unit, and a part of the light beam becomes the first reference light, and the rest of the light beam is measured by the first interference unit. Reflected in the measurement axis direction,
The other light beam of the two light beams split by the light splitting unit is incident on the second interference unit, and a part of the light beam becomes a second reference light, and the rest of the two light beams is generated by the second interference unit. Reflected in the measurement axis direction,
Part of the light reflected from the first interference unit in the length-measuring axis direction of the object to be measured is reflected at one end of the object to be measured, returns to the first interference unit, and is superimposed on the first reference light. 1 measurement interference light, the remainder passes through the side of the object to be measured, enters the second interference unit, is superimposed on the second reference light, and becomes the second reference interference light,
Part of the light reflected from the second interference section in the length-measuring axis direction of the object to be measured is reflected at the other end surface of the object to be measured, returns to the second interference section, and is superimposed on the second reference light. It becomes the second measurement interference light, and the rest passes through the side of the object to be measured and enters the first interference unit, is superimposed on the first reference light, and becomes the first reference interference light,
The first observation unit observes the first reference interference light and the first measurement interference light formed by the first interference unit as a first reference interference fringe and a first measurement interference fringe, respectively;
The second observation unit observes the second reference interference light and the second measurement interference light formed by the second interference unit as a second reference interference fringe and a second measurement interference fringe, respectively.
The temperature control means based on a phase difference between the first reference interference fringe and the first measurement interference fringe, a phase difference between the second reference interference fringe and the second measurement interference fringe, and a preliminary value of the device under test; A linear expansion coefficient measuring apparatus, wherein dimensions of the object to be measured maintained at a predetermined temperature are measured at a plurality of temperatures.
請求項1記載の線膨張係数測定装置において、
前記温度制御手段は、
前記被測定物を収容する容器となる断熱保温部と、
前記被測定物を加熱する加熱部と、
前記加熱部による加熱を制御する加熱制御部と、を備え、
前記断熱保温部は断熱層と、測定光軸方向の側面に該測定光が透過する窓と、を備えたことを特徴とする線膨張係数測定装置。
The linear expansion coefficient measuring device according to claim 1,
The temperature control means,
Adiabatic heat retaining unit serving as a container for accommodating the object to be measured,
A heating unit for heating the object to be measured,
A heating control unit that controls heating by the heating unit,
The linear thermal expansion coefficient measuring device, wherein the thermal insulation section includes a thermal insulation layer and a window through which the measurement light passes on a side surface in a measurement optical axis direction.
請求項2記載の線膨張係数測定装置において、
前記断熱保温部はその内部を減圧もしくは真空状態に保つため、該断熱保温部を密閉構造とし、真空弁を備えたことを特徴とする線膨張係数測定装置。
The linear expansion coefficient measuring device according to claim 2,
A linear expansion coefficient measuring device, characterized in that the heat insulating and heat retaining section has a closed structure and a vacuum valve in order to keep the inside of the heat insulating and heat retaining section under reduced pressure or vacuum.
請求項2〜3いずれかに記載の線膨張係数測定装置において、
前記温度制御手段が、被測定物の位置調整のための微動制御部を備えることを特徴とする線膨張係数測定装置。
In the linear expansion coefficient measuring device according to any one of claims 2 to 3,
A linear expansion coefficient measuring device, wherein the temperature control means includes a fine movement control unit for adjusting a position of an object to be measured.
請求項4記載の線膨張係数測定装置において、
前記加熱部と前記微動制御部とを構成する部材が熱膨張係数の小さい材質により形成されることを特徴とする線膨張係数測定装置。
The linear expansion coefficient measuring device according to claim 4,
A linear expansion coefficient measuring device, wherein members constituting the heating unit and the fine movement control unit are formed of a material having a small thermal expansion coefficient.
請求項1〜5いずれかに記載の線膨張係数測定装置において、
前記光分割部から前記第1干渉部に含まれるハーフミラー、前記被測定物の一端、前記第1干渉部に含まれるハーフミラーまでの光路長をLとし、
前記光分割部から前記第2干渉部に含まれるハーフミラー、前記第1干渉部に含まれるハーフミラーまでの光路長をLとし、
前記光分割部から前記第2干渉部に含まれるハーフミラー、前記被測定物の他端、前記第2干渉部に含まれるハーフミラーまでの光路長をLとし、
前記光分割部から前記第1干渉部に含まれるハーフミラー、前記第2干渉部に含まれるハーフミラーまでの光路長をLとし、
下記の
【数1】により被測定物の寸法Lが表されたことを特徴とする線膨張係数測定装置。
Figure 2004069380
ただし、N=N−N+N−N
:λ(N+ε),
:λ(N+ε),
:λ(N+ε),
:λ(N+ε),
λ:前記光の波長、
(i=1〜4):前記光路長Lを前記光の波長λで除したときの商の自然数部分、
ε(i=1〜4):前記光路長Lを前記光の波長λで除したときの商の端数である位相、
(ε−ε):前記第1観察部で観察された第1基準干渉縞と第1測定干渉縞との位相差、
(ε−ε):前記第2観察部で観察された第2基準干渉縞と第2測定干渉縞との位相差。
The linear expansion coefficient measuring device according to any one of claims 1 to 5,
Half mirror included in the first interference portion from said light splitting part, one end of the object to be measured, the optical path length to the half mirror included in the first interference portion and L 1,
Half mirror included in the second interference portion from the light dividing unit, an optical path length to the half mirror included in the first interference portion and L 2,
Half mirror included in the second interference portion from said light splitting part, the other end of the object to be measured, the optical path length to the half mirror included in the second interference portion and L 3,
Half mirror included in the first interference portion from the light dividing unit, an optical path length to the half mirror included in the second interference portion and L 4,
The linear expansion coefficient measurement apparatus, characterized in that the dimension L B of the object to be measured is expressed by Equation 1] below.
Figure 2004069380
However, N = N 4 -N 3 + N 2 -N 1,
L 1 : λ (N 1 + ε 1 ),
L 2 : λ (N 2 + ε 2 ),
L 3 : λ (N 3 + ε 3 ),
L 4 : λ (N 4 + ε 4 ),
λ: wavelength of the light,
N i (i = 1~4): natural number part of the quotient when the optical path length L i divided by the wavelength λ of the light,
ε i (i = 1 to 4): a phase which is a fraction of a quotient when the optical path length L i is divided by the wavelength λ of the light,
2 −ε 1 ): phase difference between the first reference interference fringe and the first measurement interference fringe observed by the first observation unit,
4 −ε 3 ): phase difference between the second reference interference fringe and the second measurement interference fringe observed by the second observation unit.
請求項1〜6いずれかに記載の線膨張係数測定装置において、
前記第1観察部および第2観察部により観察された基準干渉縞と測定干渉縞との位相差を読み取る読取手段と、
前記読取手段で得られた干渉縞の各位相差と被測定物の両端面間の予備値とから所定の温度の被測定物の両端面間の寸法を求める演算手段と、
前記演算手段により求められた被測定物の寸法を記憶する記憶手段と、を備え、
前記記憶手段に記憶された異なる複数の温度での被測定物の寸法から被測定物の線膨張係数を求めることを特徴とする線膨張係数測定装置。
In the linear expansion coefficient measuring device according to any one of claims 1 to 6,
Reading means for reading a phase difference between a reference interference fringe and a measurement interference fringe observed by the first observation unit and the second observation unit;
Calculating means for determining a dimension between both end faces of the DUT at a predetermined temperature from each phase difference of the interference fringes obtained by the reading means and a preliminary value between both end faces of the DUT,
Storage means for storing the dimensions of the measured object obtained by the calculation means,
A linear expansion coefficient measuring apparatus characterized in that a linear expansion coefficient of a measured object is obtained from dimensions of the measured object at a plurality of different temperatures stored in the storage means.
JP2002226400A 2002-08-02 2002-08-02 Linear expansion coefficient measuring device Expired - Fee Related JP3897655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002226400A JP3897655B2 (en) 2002-08-02 2002-08-02 Linear expansion coefficient measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002226400A JP3897655B2 (en) 2002-08-02 2002-08-02 Linear expansion coefficient measuring device

Publications (2)

Publication Number Publication Date
JP2004069380A true JP2004069380A (en) 2004-03-04
JP3897655B2 JP3897655B2 (en) 2007-03-28

Family

ID=32013754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002226400A Expired - Fee Related JP3897655B2 (en) 2002-08-02 2002-08-02 Linear expansion coefficient measuring device

Country Status (1)

Country Link
JP (1) JP3897655B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285783A (en) * 2006-04-14 2007-11-01 Mitsutoyo Corp Dimensional difference measuring method and its instrument
JP2009236894A (en) * 2008-03-26 2009-10-15 National Inst Of Metrology Pr China Precise phase shift generator, precise length measurement system, and precise length measurement method
JP2015010857A (en) * 2013-06-27 2015-01-19 株式会社ミツトヨ Thermostat bath
JP2017062192A (en) * 2015-09-25 2017-03-30 株式会社ミツトヨ Linear expansion coefficient measurement method and measurement apparatus for dimension reference device
CN107884433A (en) * 2017-11-10 2018-04-06 哈尔滨学院 A kind of experimental provision using Newton's ring instrument metal linear expansion coefficient measurement
CN109425635A (en) * 2017-08-31 2019-03-05 株式会社三丰 MEASURING THE THERMAL EXPANSION COEFFICIENT device and MEASURING THE THERMAL EXPANSION COEFFICIENT method
CN109425634A (en) * 2017-08-31 2019-03-05 株式会社三丰 MEASURING THE THERMAL EXPANSION COEFFICIENT device and MEASURING THE THERMAL EXPANSION COEFFICIENT method
JP2019519762A (en) * 2016-05-11 2019-07-11 コーニング インコーポレイテッド Apparatus and method for determining absolute thermal expansion coefficient of ultra low expansion material
CN111272804A (en) * 2020-03-12 2020-06-12 陕西科技大学 Device and method for measuring enamel linear thermal expansion coefficient in ceramic based on grating
CN112881457A (en) * 2021-01-18 2021-06-01 东南大学 Automatic detection device and method for temperature-controlled microemulsion phase diagram
CN117890331A (en) * 2024-01-19 2024-04-16 安庆师范大学 Full-digital detection device and method for metal linear expansion coefficient

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5436706B2 (en) 2012-03-12 2014-03-05 キヤノン株式会社 Measuring device
US10352678B2 (en) 2015-09-25 2019-07-16 Mitutoyo Corporation Coefficient-of-thermal-expansion measurement method of dimension reference gauge, measuring device for coefficient of thermal expansion and reference gauge
JP6990024B2 (en) 2016-12-22 2022-01-12 株式会社ミツトヨ Linear expansion coefficient measuring method and measuring device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07294466A (en) * 1994-04-25 1995-11-10 Hoya Corp Temperature depending characteristic measuring device
JPH11183413A (en) * 1997-12-22 1999-07-09 Ohara Inc Expansion measuring apparatus
JP2001141679A (en) * 1999-11-16 2001-05-25 Mitsubishi Electric Corp Apparatus for measuring coefficient of linear expansion
JP2002107318A (en) * 2000-09-28 2002-04-10 Mitsubishi Electric Corp Measuring device for linear expansion coefficient

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07294466A (en) * 1994-04-25 1995-11-10 Hoya Corp Temperature depending characteristic measuring device
JPH11183413A (en) * 1997-12-22 1999-07-09 Ohara Inc Expansion measuring apparatus
JP2001141679A (en) * 1999-11-16 2001-05-25 Mitsubishi Electric Corp Apparatus for measuring coefficient of linear expansion
JP2002107318A (en) * 2000-09-28 2002-04-10 Mitsubishi Electric Corp Measuring device for linear expansion coefficient

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285783A (en) * 2006-04-14 2007-11-01 Mitsutoyo Corp Dimensional difference measuring method and its instrument
JP2009236894A (en) * 2008-03-26 2009-10-15 National Inst Of Metrology Pr China Precise phase shift generator, precise length measurement system, and precise length measurement method
JP2015010857A (en) * 2013-06-27 2015-01-19 株式会社ミツトヨ Thermostat bath
JP2017062192A (en) * 2015-09-25 2017-03-30 株式会社ミツトヨ Linear expansion coefficient measurement method and measurement apparatus for dimension reference device
JP2019519762A (en) * 2016-05-11 2019-07-11 コーニング インコーポレイテッド Apparatus and method for determining absolute thermal expansion coefficient of ultra low expansion material
CN109425634A (en) * 2017-08-31 2019-03-05 株式会社三丰 MEASURING THE THERMAL EXPANSION COEFFICIENT device and MEASURING THE THERMAL EXPANSION COEFFICIENT method
CN109425635A (en) * 2017-08-31 2019-03-05 株式会社三丰 MEASURING THE THERMAL EXPANSION COEFFICIENT device and MEASURING THE THERMAL EXPANSION COEFFICIENT method
CN109425635B (en) * 2017-08-31 2022-08-02 株式会社三丰 Thermal expansion coefficient measuring device and thermal expansion coefficient measuring method
CN107884433A (en) * 2017-11-10 2018-04-06 哈尔滨学院 A kind of experimental provision using Newton's ring instrument metal linear expansion coefficient measurement
CN111272804A (en) * 2020-03-12 2020-06-12 陕西科技大学 Device and method for measuring enamel linear thermal expansion coefficient in ceramic based on grating
CN112881457A (en) * 2021-01-18 2021-06-01 东南大学 Automatic detection device and method for temperature-controlled microemulsion phase diagram
CN112881457B (en) * 2021-01-18 2022-04-12 东南大学 Automatic detection device and method for temperature-controlled microemulsion phase diagram
CN117890331A (en) * 2024-01-19 2024-04-16 安庆师范大学 Full-digital detection device and method for metal linear expansion coefficient

Also Published As

Publication number Publication date
JP3897655B2 (en) 2007-03-28

Similar Documents

Publication Publication Date Title
JP3897655B2 (en) Linear expansion coefficient measuring device
JP6157240B2 (en) Refractive index measuring method, refractive index measuring apparatus, and optical element manufacturing method
US20110304854A1 (en) Instantaneous, phase measuring interferometer apparatus and method
US10627204B2 (en) Coefficient-of-thermal-expansion measurement method and measuring device for coefficient of thermal expansion
US9310693B2 (en) Method for operating a projection exposure tool and control apparatus
JP2017003434A (en) Method of measuring refractive index, measuring device, and method of manufacturing optical element
Lewis Measurement of length, surface form and thermal expansion coefficient of length bars up to 1.5 m using multiple-wavelength phase-stepping interferometry
JP3814397B2 (en) Expansion measuring device
US8500326B2 (en) Probe for temperature measurement, temperature measuring system and temperature measuring method using the same
JP2001141679A (en) Apparatus for measuring coefficient of linear expansion
JP5728793B2 (en) Non-contact measuring device
Wengierow et al. Measurement system based on multi-wavelength interferometry for long gauge block calibration
JP2003302358A (en) Apparatus for measuring coefficient of linear expansion
JP2007040715A (en) Michelson optical interferometer, thermal expansion meter using optical interferometer, and thermal expansion amount measuring method
Diz-Bugarín et al. Design of an interferometric system for gauge block calibration
US7164481B2 (en) Coefficient of linear expansion measuring apparatus and coefficient of linear expansion measuring method
JP3908211B2 (en) Linear expansion coefficient measuring apparatus and linear expansion coefficient measuring method
JP3202183B2 (en) Scale and length measurement method using laser light
JP3351857B2 (en) Michelson-type interferometer
Gustafsson et al. New method for measuring thermal properties of transparent solids
JP2005214740A (en) Phase correction value measuring method
JP4456958B2 (en) Lightwave interference measuring device
EP0539571A4 (en) Dynamic shearing interferometer
JP2817837B2 (en) Method and apparatus for non-contact measurement of object strain using statistical interferometry
JPH08271216A (en) Measuring method for interference of light wave to non-aphesion block gauge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061219

R150 Certificate of patent or registration of utility model

Ref document number: 3897655

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160105

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees