JP2004069297A - Physical quantity measuring method and apparatus thereof - Google Patents

Physical quantity measuring method and apparatus thereof Download PDF

Info

Publication number
JP2004069297A
JP2004069297A JP2002210507A JP2002210507A JP2004069297A JP 2004069297 A JP2004069297 A JP 2004069297A JP 2002210507 A JP2002210507 A JP 2002210507A JP 2002210507 A JP2002210507 A JP 2002210507A JP 2004069297 A JP2004069297 A JP 2004069297A
Authority
JP
Japan
Prior art keywords
measurement
physical quantity
cycle
value
intermittent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002210507A
Other languages
Japanese (ja)
Other versions
JP4353682B2 (en
Inventor
Masatomo Kobayashi
小林 賢知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2002210507A priority Critical patent/JP4353682B2/en
Publication of JP2004069297A publication Critical patent/JP2004069297A/en
Application granted granted Critical
Publication of JP4353682B2 publication Critical patent/JP4353682B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring method and a measuring apparatus for maintaining power saving and greatly reducing measurement errors. <P>SOLUTION: When V(n) is less than Vth, a section (n) is acknowledged as an intermittent measurement section, and a measurement period is set to C(n) = C1 regardless of the previous period. Additionally, a weighting factor is set to W(n) = C1 (step S111). In the case of V(n) ≥ Vth, it is acknowledged as a continuous measurement section, thus judging whether a measurement section immediately before is an intermittent measurement section or not (namely, period C(n-1) = C1 or not) (step S105). When the period C(n-1) immediately before is the intermittent measurement section (YES in figure), the measurement period is switched to C(n) = C2, and the weighting factor is set to W(n) = Cm (step S106). When the period C(n-1) immediately before is the continuous measurement section (NO in figure), the measurement section in the section is set to the same C(n) = C2 as the previous period, and the weighting factor is also set to W(n) = C2 (step S113). <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、物理量計測方法及び装置に関し、特に省電力タイプの計測装置に適した物理量計測方法及び装置に関する。
【0002】
【従来の技術】
従来、電源としてバッテリーを用いる都市ガスメータ等においては、流量が検知されないか微量な場合には、計測周期を長くして間欠的に計測し(間欠計測区間)、流量がある閾値を超えた場合には計測周期を短く(連続計測区間)することにより、流量変化への迅速な対応と省電力化を両立させる計測方法が提案されている(例えば特開2000−146648)。以降、便宜上「連続計測」と称するが、実際には上述の通り計測周期を短くしている間欠的な計測状態を表す。
【0003】
しかし、間欠計測区間中に閾値を超える大きな流量変化が生じた場合など、計測値を単純にデータとして採用したのでは誤差が無視できない場合が生じる。また、特に小型湯沸器のような短時間に使用−停止が繰り返される場合に、この傾向が顕著になる。このことを図3及び表1を用いて説明する。図3は、ガス流量の時間的変化を示したものであり、横軸は時刻t、縦軸は流量計測値V(t)である。また、表1は、図3のような流量変化に対する従来の計測方法を示したものである。同表において、計測周期を切り替える閾値Vth=5、間欠計測区間における計測周期C1=3秒、連続計測区間の計測周期C2=1秒とする。また、遅延周期値は0、すなわち閾値以上の値を検出した場合には、直ちに計測周期をC1からC2に切り替えるものとする。また、閾値未満の値を検出した場合は、遅延なく計測周期をC2からC1に戻すものとする。
【0004】
【表1】

Figure 2004069297
【0005】
計測開始時期としては、同表に示す通り、確率的にケース1乃至ケース3の3通りとなる。まず、ケース1が発生した場合、t=0で最初の計測が行われ、このときの流量V(0)=0であるから間欠計測区間と判定され、計測周期はC1=3秒、重み係数は3となる。従って、この区間の流量は0×3=0となる。次の計測はt=3で行わる。このときの流量V(3)=0であるから間欠計測区間が継続し、区間流量は前の区間と同様に0×3=0となる。次の計測はt=6で行われ、このときの流量V(6)=10であり閾値を超えているため計測周期がC2=1秒に切り替えられ、連続計測区間となる。重み係数が1であるので、区間流量は計測値10がそのまま採用される。t=6からt=9までは連続計測区間が継続する。t=10において流量V(10)=0となるので間欠計測区間と判定され、計測周期がC1=3秒に戻される。なお、重み係数は3であるので区間流量は0である。以降、間欠計測区間が継続する。このようにして各区間の計測結果が累積され、全区間の累積流量値は49となる。
【0006】
ケース2が発生した場合はt=2で最初の計測が行われ、このときの流量V(0)=0であるから間欠計測区間と判定され、計測周期はC1=3秒、重み係数は3となる。従って、この区間の流量は0×3=0となる。次の計測はt=4で行わる。このときの流量V(4)=10と閾値を超えているため計測周期がC2=1秒に切り替えられ、連続計測区間となる。区間流量は、重み係数が1になるので、計測値10がそのまま採用される。以下、ケース1と同様にして計測が行われる。ケース2の場合の全区間の累積流量値は53となる。ケース3が発生した場合についても同様にして計測が行われ、全区間の累積流量値はそれぞれ48となる。
【0007】
ここに、ケース1乃至ケース3の発生確率は等しいから、累積流量の期待値はこれらの平均値である50となる。従って、真の累積流量56に対して誤差は−10.7%である。このような誤差は、間欠計測区間中の計測時以外のタイミングで閾値以上の流量変化があった場合に生じ、また、短時間の使用−停止回数が増加するほど、流量変化量が大きくなるほど誤差が大きくなる。従来、このような誤差の解消方法については開示されていない。
【0008】
【発明が解決しようとする課題】
本発明は上記課題を解決するためのものであって、省電力を維持しつつ測定誤差を極力小さくすることを可能にする使用量測定方法及び装置を提供するものである。
【0009】
【課題を解決するための手段】
上記課題を解決するために本発明は以下の内容を要旨とする。すなわち、
(1)所定の閾値を境にして計測周期を間欠計測から連続計測に切り替え、かつ、間欠計測区間と連続計測区間の計測値にそれぞれ所定の重み係数を乗じた数値を当該区間のデータとして採用する物理量計測方法であって、さらに、間欠計測区間から連続計測区間に切り替わった後の第一周期については、通常の連続計測区間の重み係数とは異なる特定重み係数を用いることを特徴とする物理量計測方法。
【0010】
本発明において、「物理量」としては例えば流量、周波数、重量、長さ、成分比等、計測手段により計測可能なものを含む。さらに、例えば商品に対する顧客の嗜好度のような、定性的なデータを定量化したものも含む概念である。
【0011】
本発明の作用を単純化して説明するため、閾値未満の計測値を0、閾値以上の計測値を1とする正規化を行う。今、閾値を超える計測値の連続が6秒間、間欠計測区間の周期2秒、連続計測区間の周期1秒、遅延周期0回の場合を考える(表2参照)。
【0012】
【表2】
Figure 2004069297
【0013】
この場合の起こりうるケースとしては、ケースA(0001111110)か、ケースB(0011111100)の2通りである。両者の出現確率は等しくそれぞれ0.5である。また、いずれのケースとも積算値(真値)は6である。
【0014】
ケースAが発生した場合は、計測周期の変更は区間B3で行われる。このときのデータとして従来方式のようにB3の計測値1をそのまま採用すると、累積値は5となる(演算値1欄)。これに対して「重み係数」として変更前の計測周期値2を乗じるとB3のデータ値は2となり、累積値は6となる(演算値2欄)。
【0015】
次にケースBが発生した場合も同様に計算することができ、演算値1、演算値2の累積値はそれぞれ6、7となる。
【0016】
すなわち、計測周期変更後の第一計測時の「重み係数」として変更前の周期値を用いるか、変更後の周期値を用いるかによって、常に演算値2≧真値≧演算値1の関係が成立する。このことから、「重み係数」として変更前後の計測周期値の中間値を採用することにより、どちらかの周期値を用いるより誤差の絶対値を小さくすることができることが分かる。請求項1以下に示す「特定重み係数」とは、このような計測周期値の中間値を指している。
【0017】
(2)上記において、「特定重み係数」が、間欠計測の周期値と連続計測の周期値との平均値であることを特徴とする物理量計測方法。
【0018】
さらに、「特定重み係数」として変更前後の計測周期の平均値を採用すれば、確率的に誤差の期待値は最小となる。表2において演算値3は「特定重み係数」として変更前後の計測周期の平均値である1.5を用いている。
【0019】
(3)所定の閾値を境にして計測周期を間欠計測から連続計測に切り替え、かつ、間欠計測区間と連続計測区間の計測値にそれぞれ所定の重み係数を乗じた数値を当該区間のデータとして採用する物理量計測方法であって、間欠計測と連続計測とを含む計測区間の累積量の演算については、計測区間が全て間欠計測区間であるとしたときのデータを用いることを特徴とする物理量計測方法。
【0020】
本発明は、計量用のサンプリングと波形推定用サンプリングを分離して用いるものである。表2のケースBを例にして説明する。間欠計測区間はB1、B8に該当し、連続計測区間はB2乃至B7に該当する。本発明は、計量用データとしては、連続計測区間のうち間欠計測周期に該当するB2、B4、B6の計測値を用いるものであり、B3、B5、B7の計測値については計量用データとしては用いない。但し、物理量の波形推定には連続計測区間の計測値全てを用いる。このような計測方法を採用することにより、長時間に亘る計測については、間欠計測から連続計測に切り替えるときに生じる演算誤差の影響をなくすことが可能となる。同時に、瞬時値が必要な場合に連続計測区間の計測値を利用できるという特徴がある。
【0021】
なお、(3)の発明以外では、計測値が安定している状態でサンプリングレートを連続計測から間欠計測に戻す際に、元のサンプリングタイミングに一致しなくても構わない。(3)の発明に関しては、サンプリングレートを連続計測から間欠計測に戻す際に、元の間欠計測のサンプリングタイミングに一致させることが望ましい。
【0022】
(4)前記物理量が流速又は流量であることを特徴とする(1)乃至(3)に記載の物理量計測方法。
【0023】
(5)上記(1)乃至(4)において、計測周期の切り替えが所定の遅延周期を含んでなされることを特徴とする計測方法。
【0024】
ここに「遅延周期」とは、閾値を超える計測値変化を検出したときに従前の計測周期を持続する周期数をいう。波形推定の精度を上げるためには遅延周期をできるだけ小さくすることが望ましく、一方で、累積値の精度を上げるためには、遅延周期が大きい方が望ましい。実際に装置に実装する場合等には、センサが検出した計測値を判定するためには一定の計算時間が必要となり、計算を終えた時点では既に連続計測周期の次回の計測タイミングが過ぎていることもありうる。間欠計測のときは計算速度を犠牲にして消費電力を下げているため、遅延周期が必要になるのである。
【0025】
なお、遅延周期値は、間欠計測周期と連続計測周期の比、想定される計測値の変化速度、制御部の計算速度等を総合的に判断して決定することができる。
【0026】
(6)所定の周期ごとに計測を行う物理量計測手段と、物理量計測手段に対して計測周期を指示する計測条件指示手段と、特定の計測周期に対して物理量計測手段から送られる計測値に「特定重み係数」を乗じる処理を行うデータ処理手段と、を備えたことを特徴とする物理量計測装置。
【0027】
「特定重み係数」とは、(1)乃至(3)に示す係数をいう。また、「計測条件指示手段」及び「データ処理手段」は、より具体的なハード構成としてマイクロ・プロセッサーのような汎用演算回路により好適に具現化できるが、ディスクリ−トな素子や回路を組み合わせたものであっても良い。
【0028】
(7)上記各発明において、物理量が「流速」又は「流量」であることを特徴とする物理量計測方法又は物理量計測装置。
【0029】
(8)上記(6)、(7)において、「物理量計測手段」が超音波流量センサー又サーマルフローセンサであることを特徴とする物理量計測装置。
【0030】
(9) 上記(1)乃至(5)において、さらに、前記所定の閾値を超える連続回数の母集団分布が既知のときに、母集団分布の所定の信頼区間内に含まれる連続回数が出現したときに計測誤差を最小にするように、間欠計測周期と遅延周期の組み合わせを選択することを特徴とする物理量計測方法。
【0031】
本発明は、閾値を超える計測値の連続回数に応じて間欠計測周期と遅延周期を適当に選択することにより、計測誤差を最小にする物理量計測方法を提供するものである。
【0032】
図4乃至図6に基づいて本発明の作用を説明する。図4は、間欠計測周期n=2のときに、連続回数が1回から5回まで変化したときの計測誤差εがどのように変化したかを示したものである。ここに、同図(a)は遅延周期m=0、(b)はm=1、(c)はm=2のときの連続回数変化に伴う計測誤差εの変化を比較したものである。なお、単純化のため閾値以下の計測値を0、閾値を超える計測値を1とする正規化を行っている。同図(a)において起こりえるケースA、B、特定重み係数をw、積算値ΣA又はΣB、期待値(ΣA+ΣB)/2で示される。また計測誤差εは、ε=真値−期待値で計算される。同図(a)において、w=3/2(すなわち連続計測周期1と間欠計測周期2の平均値)にすれば、連続回数1回では誤差は−1/4となり、連続回数2回以上では誤差は生じないことがわかる。同様に(b)では、連続回数3回で誤差は−1/4、その他の回数では誤差は生じない。さらに(c)では、連続回数5回で誤差は−1/4、その他の回数では誤差は生じない。全く同様にして、図5、図6はそれぞれn=3、n=4について計測誤差εの変化を示したものである。
【0033】
これらを一般化すると、特定重み係数として連続計測周期と間欠計測周期の平均値を用いると、連続回数(m・n+1)回乃至(m・n+n−1)回については特定重み係数の値に依存する誤差が生じるが、その他の回数については誤差が0となる。この原理を利用することにより、閾値を超える連続回数の母集団分布が既知のとき、間欠計測周期と遅延周期を適当に選択することにより、計測誤差が最小になるようにすることが可能となる。
【0034】
図7は、このことをさらに具体的に示したものである。同図において、横軸は連続回数、縦軸は閾値超え頻度である。今、閾値超え連続回数の母集団分布をD1、分散σのときに、連続回数X1=(m・n+1)回乃至Xc=(m・n+n−1)回が±σから外れるように間欠計測周期nと遅延周期mの組み合わせを選択することにより、所定の信頼性を確保することができることになる。さらに、母集団分布D2、分散σのときに、X1乃至Xnが±3σから外れるように間欠計測周期nと遅延周期mを選択すれば、さらに計測信頼性が上昇することが分かる。
【0035】
なお、本発明において「所定の信頼区間」とは、ある計測値が含まれる確率が所定の信頼係数(%)にある範囲をいい、いわゆる3シグマ方式による管理を含む概念である。
【0036】
(10)上記(1)乃至(5)において、さらに、前記所定の閾値を超える連続回数の母集団分布が未知のときに、所定回数の事前事象にもとづいて母集団分布を推定し、推定母集団分布の所定の信頼区間内に含まれる連続回数が出現したときに計測誤差を最小にするように、間欠計測周期と遅延周期の組み合わせを選択することを特徴とする物理量計測方法。
【0037】
本発明は、閾値超え連続回数の母集団分布が未知のときに、事前の連続回数の発生頻度により母集団分布を推定し、これに基づいて間欠計測周期と遅延周期を選択するものである。この方法にさらに学習効果を応用することができる。
【0038】
(11)母集団分布が規則的又は不規則的に変化するときに、変化に追随して間欠計測周期と遅延周期を選択することを特徴とする(9)乃至(10)に記載の物理量計測方法。
【0039】
(12)上記(1)、(3)乃至(5)において、さらに、閾値を超える連続回数の母集団分布が既知のときに、母平均に等しい連続回数が発生したときに計測誤差を最小とするように、特定重み係数を選択することを特徴とする物理量計測方法。
【0040】
本発明は、間欠計測周期と遅延周期が固定されている場合等に有効な計測方法である。
【0041】
例えば、間欠計測周期n=2、遅延周期m=1に固定されており、かつ、閾値超え連続回数の母集団分布の母平均が3である場合、図4(b)において特定重み係数wとして2を選択することにより、母平均値のときに誤差ε=0とすることができる。この場合、分散を考慮してさらに最適な特定重み係数wを選択できることはいうまでもない。
【0042】
(13)上記(1)、(3)乃至(5)において、さらに、前記所定の閾値を超える連続回数の母集団分布が未知のときに、所定の事前事象にもとづいて母集団分布を推定し、母平均推定値に等しい連続回数が発生したときに計測誤差を最小とするように、特定重み係数を選択することを特徴とする物理量計測方法。
【0043】
(14)母集団分布が規則的又は不規則的に変化するときに、変化に追随して特定重み係数を選択することを特徴とする(12)又は(13)に記載の物理量計測方法。
【0044】
(17)上記(1)乃至(5)において、さらに、前記所定の閾値を超える連続回数の母集団分布が未知のときに、計測誤差を所定の許容範囲内にするように間欠計測周期と遅延周期を選択することを特徴とする物理量計測方法。
【0045】
実際の計測においては、連続回数の母集団分布は未知であり、一方、計測誤差の許容範囲は規定されている場合が多いので、このような場合に本発明が効果的である。
【0046】
本発明の作用は以下の通りである。図4乃至6において、m=0のときのn=2,3,4について、連続回数j(但し、j≦nの整数)と期待値Pの関係をまとめると図8となる(図8にはn=5の場合も記載した)。これらの関係を一般化すると式1のように表される。さらに、特定重み係数wとして、間欠計測の周期値と連続計測の周期値との平均値、すなわち、w=(n+1)/2を用いると式1は式2のように表される。
これより計測誤差εは、ε=P−jを用いて式3のように表される。式3と図4乃至6におけるεm(w=(n+1)/2としたときεの値)から明らかなように、計測誤差を生じるのはj<nの範囲である。
【0047】
さらに、m=1,2,・・・の場合の計測誤差が発生する連続回数の範囲は、図8をm・nだけシフトさせたもの、すなわち、(m・n+j)に等しい。これを用いると誤差率Eの一般式は式4のように表されることになる。
【0048】
【式1】
Figure 2004069297
【0049】
【式2】
Figure 2004069297
【0050】
【式3】
Figure 2004069297
【0051】
【式4】
Figure 2004069297
【0052】
これらの関係から、本発明によれば遭遇する連続回数が未知である場合であって許容される誤差率Etが設定されたとき、Et>Eを満たすように式3のm、nを選択すればよいことが分かる。この場合、式3より一般に遅延回数mが大きいほうが許容誤差を小さく設定できることが明らかである。なお、m、nの設定に際しては、1<j<(n−1)である各jについてEt>Eであることが条件となる。また、図4乃至図6のεmの欄から明らかなように、間欠周期nが大きくなるほど誤差を生じる確率が大きくなることが分かる。但し、特定の物理量の連続回数が継続することが既知である場合には、nを大きくすることによりEtを小さく設定できる場合がある。
【0053】
(16)上記(6)乃至(8)において、さらに間欠計測周期と遅延周期を選択する組み合わせ選択手段を備えたことを特徴とする物理量計測装置。
【0054】
【発明の実施の形態】
以下、本発明の実施形態を図1乃至3及び表3、4を参照して詳細に説明する。なお、以下の実施形態は例示であって、本発明の技術的範囲が実施形態に限定されるものでないことはいうまでもない。
【0055】
図1は、本発明の一実施形態であるガス流量計測装置1の全体構成図である。本発明に係る流量計測装置1は、制御部2、流量センサー7、ガス流路9、表示部10を備えている。制御部2は、流量計測装置1の計測制御全般(閾値の判定、計測周期等の決定、流量センサー7への計測指示、流量センサー7の計測データの取り込み、必要な演算の実施、RAM4への格納指示等を含む)を司るCPU3(中央演算処理装置)、CPU3の指示により各部から取り込まれる情報を格納するためのRAM4、計測制御プログラム等を格納したROM5、CPU3の時間制御を司るクロックパルス発生回路6を備えている。なお、CPU3は請求項4における「計測条件指示手段」及び「データ処理手段」に、流量センサー7は「物理量計測手段」に該当する。
【0056】
ガス流路9はガス配管又はガスメータ等を代表的に示したものである。流量センサー7はガス流路9の途中に設けられており、瞬時流量を計測できるタイプの流量センサー、例えば超音波流量計、フルイディック流量計、質量流量計等を好適に用いることができる。
【0057】
表示部10は、CPU3の命令によりRAM4に蓄積されている流量データを常時又は必要に応じて随時表示できるように構成されている。表示流量は、瞬時流量及び累積流量のいずれか又は両者であり、同時又は切替操作により表示できるように構成されている。
【0058】
次に、ガス流量計測装置1の動作について、図2をも参照して説明する。図2は本実施形態の計測フローを示す図である。測定に先立って初期条件の設定が行われる(ステップS100)。ROM5には計測条件として間欠計測区間の計測周期C1、連続計測区間の計測周期C2、遅延周期値0が設定されている。また、周期切替直後の計測の重み係数として、間欠・連続計測区間の周期平均値Cm=(C1+C2)/2が設定されている。なお、RAM4には計測区間ごとの計測周期値、単位時間流量データ、演算結果等を記憶する領域が設けられているものとする。
【0059】
CPU3からの計測開始指示に基づいて(ステップS101)、流量センサー7は区間n=0における流量V(0)の計測を行い、その結果をCPU3に送信する(ステップS102、S103)。なお、以下の説明では、図2のフローが既に繰り返し実行された状態(区間n)を想定する。
【0060】
CPU3によりV(n)と閾値Vthとが比較され(ステップS104)、その結果に基づいて区間nにおける計測周期C(n)と重み係数W(n)が以下のようにして決定される。
【0061】
まず、V(n)がVth未満のとき、区間nは間欠計測区間と認定され、計測周期は前の周期に拘わらずC(n)=C1に設定される。また、重み係数はW(n)=C1に設定される(ステップS111)。
【0062】
V(n)≧Vthのときは連続計測区間と認定され、次に直前の計測区間が間欠計測区間であるか否か(すなわち周期C(n−1)=C1か否か)の判定が行われる(ステップS105)。直前の周期C(n−1)が間欠計測区間であるときは(同図においてYES)、計測周期はC(n)=C2に切り替えられ、重み係数はW(n)=Cmに設定される(ステップS106)。直前の周期C(n−1)が連続計測区間であれば(同図においてNO)、本区間の計測周期は前周期と同一のC(n)=C2に設定され、また、重み係数もW(n)=C2に設定される(ステップS113)。
【0063】
次にこの区間の流量Qn=V(n)*Wnが演算される(ステップS107)。演算結果、計測周期等はRAM4に記憶される(ステップS108)。
【0064】
次に、計測終了の指示の有無を判定し(ステップS109)、指示がない場合は次の計測タイミングまで待機する(ステップS110)。計測タイミングが到来したときはn=n+1とし、上述の演算が繰り返される(ステップS110)。終了の指示があった場合は計測を終了する(ステップS112)。
【0065】
(図3の流量変化に対する計測:遅延周期0の場合)
次に、表3を参照して、図3の如き流量変化があった場合の本発明による実施形態について、従来例と比較して説明する。本実施形態の計測条件については、従来例と同じく閾値Vth=5m/秒、間欠計測区間の計測周期C1=3秒、連続計測区間の計測周期C2=1秒、遅延周期数0回が設定されている。但し、従来例と異なり、周期切替後の第1計測周期の「重み係数」として、(C1+C2)/2=2を用いている。
【0066】
【表3】
Figure 2004069297
【0067】
この場合の計測開始時期としては、確率的にケース1乃至ケース3の3通りとなる。まず、ケース1が発生した場合、t=0で最初の計測が行われ、このときの流量V(0)=0であるから間欠計測区間と判定され、計測周期はC1=3秒、重み係数は3となる。従って、この区間の流量は0×3=0となる。次の計測はt=3で行わる。このときの流量V(3)=3(閾値未満)であるから間欠計測区間が継続し、区間流量は3×3=9となる。次の計測はt=6で行われ、このときの流量V(6)=10であり閾値を超えているため計測周期がC2=1秒に切り替えられ、連続計測区間となる。このときの重み係数は2であるので、区間流量は10×2=20と演算される。t=6からt=9までは連続計測区間が継続する。t=10において流量V(10)=0となるので間欠計測区間と判定され、計測周期がC1=3秒に戻される。なお、重み係数は3になるが区間流量は0×3=0である。以降、間欠計測区間が継続する。このようにして各区間の計測結果が累積され、全区間の累積流量値は59となる。
【0068】
ケース2が発生した場合はt=1で最初の計測が行われ、このときの流量V(0)=0であるから間欠計測区間と判定され、計測周期はC1=3秒、重み係数は3となる。従って、この区間の流量は0×3=0となる。次の計測はt=4で行わる。このときの区間流量はV(4)=5であり閾値を超えているため、計測周期がC2=1秒に切り替えられ、連続計測区間となる。区間流量は、重み係数が2になるので、区間流量は5×2=10と演算される。以下、ケース1と同様にして計測が行われる。従って、ケース2における全区間の累積流量値は58となる。ケース3が発生した場合についても同様にして計測が行われ、全区間の累積流量値はそれぞれ56となる。
【0069】
ここに、ケース1乃至ケース3の発生確率は1/3で等しいから、累積流量の期待値はこれらの平均値である57.7となる。一方、単位時間ごとの流量積算値(真の流量)は56mであるので、誤差は約3.0%となる。一方、表1の従来方式では上述のように誤差は約−10.7%であるから、本発明によれば誤差の絶対値が約8ポイント改良されていることが分かる。
【0070】
(図3の流量変化に対する計測:遅延周期1の場合)
以上、遅延がない場合について説明したが、次に、遅延周期1回の場合の実施形態について、表4を参照して説明する。本実施形態は特に請求項6に相当するものである。本実施形態では、遅延周期を除く他の計測条件は、上述の遅延周期0回のものと同一であり、閾値Vth=5m/秒、間欠計測区間の計測周期C1=3秒、連続計測区間の計測周期C2=1秒、周期変更後の第1計測の重み係数W=2である。
【0071】
【表4】
Figure 2004069297
【0072】
この場合についても計測開始時期としては確率的にケース1乃至ケース3の3通りとなる。ケース1が発生した場合、t=0で最初の計測が行われ、このときの流量V(0)=0であるから間欠計測区間と判定され、計測周期はC1=3秒、重み係数は3となる。従って、この区間の流量は0×3=0となる。
【0073】
次の計測はt=3で行われ、このときの流量V(3)=3(閾値未満)であるから間欠計測区間が継続し、区間流量は3×3=9となる。次の計測はt=6で行われる。このときの流量V(6)=10であり閾値を超えているが、判定が遅れるため計測周期はC1=3秒、重み係数は3のまま維持される。従って、この区間の流量は、10×3=30と演算される。
【0074】
さらに、次の計測はt=9で行われる。このときの流量V(9)=10(閾値以上)であり、この時点で計測周期がC2=1秒に切り替えられ、連続計測区間となる。重み係数は2となるので、区間流量は10×2=20と演算される。さらに次の計測がt=10で行われる。流量V(10)=0であるため間欠計測区間と判定され、計測周期がC1=3秒に戻される。なお、重み係数は3になるが区間流量は0×3=0である。以降、間欠計測区間が継続する。このようにして各区間の計測結果が累積され、全区間の累積流量値は59となる。
【0075】
ケース2、ケース3の場合についても同様にして計測が行われ、全区間の累積流量値はそれぞれ55、54となる。従って、累積流量の期待値はこれらの平均値である56.0となり、真の流量と同一であるから、この場合は誤差が生じないことになる。
【0076】
一方、従来方式では表5の通りとなり、累積流量の期待値は46mであるから、誤差は約−18%となる。この場合も、本発明による測定方法が優れていることが明らかである。
【0077】
【表5】
Figure 2004069297
【0078】
なお、上述の各実施形態では物理量として流量をとり、計測周期として時間軸に関するものを示したが、本発明は、これに限らず、例えば地図データ等に用いる空間軸、音量等に用いる周波数軸に関するもの等であってもよい。
【0079】
また、閾値についても1段階のものを示したが、2段階以上の閾値を設定することも可能である。
【0080】
以下、本発明の他の実施形態について図9を参照して説明する。本実施形態は、通常電力且つ高精度で物理量を計測する通常電力モードと、省電力且つ低精度で物理量の大きな変化の検出を行う省電力モードの2つのモードを持つ計測方式に本発明(請求項3)を応用するものである。すなわち、累積値の計量については通常電力モードにより行い、一方、波形推定には通常電力モードと省電力モードを組み合わせて計測する。このようにすれば、精度良く平均値を計測しつつ流れの変化パターンをより高分解能で計測できる。
【0081】
超音波流量センサー、サーマルフローセンサを例にとると、高精度計測の場合、例えば1秒間に50回サンプリングしてその平均値を出力できるのに対して、低精度計測の場合にはサンプリング回数を1/10程度に抑えることが求められる。一般に測定の精度はサンプリング数の平方根に比例するため、電力を10倍使うことにより凡そ3.2倍の精度向上が期待できる。逆にいえば、3.2倍の精度低下を容認すれば1/10に省電力できることになる。
【0082】
図9はこのような計測方法の具体例であり、n=3、m=1、連続回数5回の場合である。ケースA乃至Cは、発生しうる3ケースを示し、これらの発生確率は等しい。精度欄の「精」は通常電力モードによる高精度計測であることを、「粗」は省電力モードによる低精度計測であることを表している。また、計測値欄の「0?」は、低精度計測において変化量(率)が基準値未満であることを、「1?」は、変化量が基準値以上であることを表している。「1?」を検出すると省電力モードから通常電力モードに切り替えるように構成されている。
ケースAにおいて、累積値の計量については時刻t0、t3、t6、t9、t12に通常電力モードで間欠的に高精度計測が行われる。この間、t6において閾値を超えた値を計測するが、この場合の重みは3であるので、t0−t12間の累積値は3となる。
【0083】
次に、波形推定の計測について説明する。累積値計量の各時刻における計測値は波形推定にも用いられる。これ以外の時刻における波形推定計測は次のように行われる。t1、t2において省電力モードで変化量(率)監視が行われ、変化量が基準値未満であることを検出する。t4において基準値以上の値を検出するため、次の計測タイミングt5では通常電力モードによる高精度計測連続計測区間に切り替えられる。さらにこれ以降t9までの間、通常電力モードが連続する。さらに、t9において計測値0であるため、t10では省電力モードに戻される。
【0084】
ケースB、Cについても全く同様にして計測、演算が行われ、累積値は共に6となる。従って、累計値の期待値は(3+6+6)/3=5となり、真値5に等しく誤差が生じていないことが分かる。なお、この関係は、計測周期n、遅延周期m、連続回数にかかわらず常に成立することが分かっている。
【0085】
波形推定についても、間欠区間において省電力モードによる低精度計測が連続的に行われているため、真の波形に近い推定が可能であることが波形推定1、2欄を見ると分かる。なお、波形推定1は、変化量が所定値以上であると直ちに波形推定に反映するものであり、波形推定2は、次回の計測タイミングから波形推定に反映するものである。
【0086】
なお、本実施形態では、省電力モードで変化量が基準値以上であることを検出したときは、直ちに通常電力モードによる高精度連続計測に切り替えたが、これに限らず間欠計測の次のタイミングから切り替えてもよい。
【0087】
さらに、本実施形態では、省電力モードから通常電力モードに切り替える際の重み係数として計測周期n(この場合は3)を用いたが、これに限らず「特定重み係数」(請求項1又は2に相当)を用いてもよい。
【0088】
【発明の効果】
本発明によれば、間欠計測により省電力性を維持しつつ、測定誤差を小さくすることが可能となる。特に、従来の測定方法又は装置では誤差が大きくなっていた短時間に使用−停止が繰り返されるような物理量の測定について、本発明ではこのような弊害をなくすことができた。
【図面の簡単な説明】
【図1】本発明に係る物理量計測装置の一実施形態を示す図である。
【図2】本発明の一実施形態における計測フローを示す図である。
【図3】流量の時間的変化を示す図である。
【図4】連続回数変化に伴う計測誤差の変化を示す図である(間欠計測周期n=2)。
【図5】連続回数変化に伴う計測誤差の変化を示す図である(間欠計測周期n=3)。
【図6】連続回数変化に伴う計測誤差の変化を示す図である(間欠計測周期n=4)。
【図7】間欠計測周期と遅延周期を適当に選択することにより、計測誤差を最小にすることができることを示す図である。
【図8】連続回数jと期待値Pの関係を示す図である。
【図9】通常電力モードと省電力モードを持つ計測方式に本発明を応用した実施形態を示す図である。
【符号の説明】
1……流量計測装置、2……制御部、3……CPU、4……RAM、5……ROM、6……クロックパルス発生回路、7……流量センサー、9……ガス流路、10……表示部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a physical quantity measuring method and apparatus, and more particularly to a physical quantity measuring method and apparatus suitable for a power saving type measuring apparatus.
[0002]
[Prior art]
Conventionally, in a city gas meter or the like that uses a battery as a power source, when the flow rate is not detected or is very small, the measurement cycle is lengthened and the measurement is performed intermittently (intermittent measurement section). A measurement method has been proposed which shortens the measurement cycle (continuous measurement section) to achieve both quick response to a change in flow rate and power saving (for example, JP-A-2000-146648). Hereinafter, it is referred to as “continuous measurement” for convenience, but actually represents an intermittent measurement state in which the measurement cycle is shortened as described above.
[0003]
However, if a large change in the flow rate exceeding the threshold value occurs during the intermittent measurement section, the error may not be negligible if the measured value is simply adopted as data. In particular, this tendency becomes remarkable when the use and stop are repeated in a short time as in a small water heater. This will be described with reference to FIG. FIG. 3 shows a temporal change of the gas flow rate. The horizontal axis represents time t, and the vertical axis represents the flow rate measurement value V (t). Table 1 shows a conventional measurement method for a flow rate change as shown in FIG. In the table, the threshold value Vth = 5 for switching the measurement cycle, the measurement cycle C1 in the intermittent measurement section is 3 seconds, and the measurement cycle C2 in the continuous measurement section is 1 second. When the delay cycle value is 0, that is, when a value equal to or greater than the threshold value is detected, the measurement cycle is immediately switched from C1 to C2. When a value less than the threshold value is detected, the measurement cycle is returned from C2 to C1 without delay.
[0004]
[Table 1]
Figure 2004069297
[0005]
As shown in the table, the measurement start times are stochastically three cases, Case 1 to Case 3. First, when Case 1 occurs, the first measurement is performed at t = 0, and since the flow rate V (0) = 0 at this time, it is determined to be an intermittent measurement section, the measurement cycle is C1 = 3 seconds, and the weighting factor is Becomes 3. Therefore, the flow rate in this section is 0 × 3 = 0. The next measurement is performed at t = 3. Since the flow rate V (3) = 0 at this time, the intermittent measurement section continues, and the section flow rate becomes 0 × 3 = 0 as in the previous section. The next measurement is performed at t = 6. At this time, since the flow rate V (6) = 10, which exceeds the threshold value, the measurement cycle is switched to C2 = 1 second, and a continuous measurement section is set. Since the weight coefficient is 1, the measured value 10 is employed as it is for the section flow rate. The continuous measurement section continues from t = 6 to t = 9. At t = 10, the flow rate V (10) = 0, so that it is determined to be an intermittent measurement section, and the measurement cycle is returned to C1 = 3 seconds. Since the weight coefficient is 3, the section flow rate is 0. Thereafter, the intermittent measurement section continues. Thus, the measurement results of each section are accumulated, and the accumulated flow value of all sections is 49.
[0006]
When Case 2 occurs, the first measurement is performed at t = 2. At this time, since the flow rate V (0) = 0, it is determined to be an intermittent measurement section, the measurement cycle is C1 = 3 seconds, and the weight coefficient is 3 It becomes. Therefore, the flow rate in this section is 0 × 3 = 0. The next measurement is performed at t = 4. Since the flow rate V (4) = 10 at this time exceeds the threshold value, the measurement cycle is switched to C2 = 1 second, and a continuous measurement section is set. Since the weight coefficient becomes 1 for the section flow rate, the measurement value 10 is employed as it is. Hereinafter, measurement is performed in the same manner as in case 1. In the case of Case 2, the accumulated flow value of all sections is 53. The measurement is performed in the same manner also in the case where the case 3 occurs, and the accumulated flow value of all the sections is 48.
[0007]
Here, since the occurrence probabilities of Cases 1 to 3 are equal, the expected value of the accumulated flow rate is 50 which is the average value of these. Therefore, the error is -10.7% with respect to the true accumulated flow rate 56. Such an error occurs when there is a flow change equal to or larger than the threshold value at a timing other than the time of measurement during the intermittent measurement section, and the error increases as the number of short-time use-stop increases or the flow change amount increases. Becomes larger. Conventionally, a method for eliminating such an error has not been disclosed.
[0008]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and provides a method and an apparatus for measuring a usage amount, which makes it possible to minimize a measurement error while maintaining power saving.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, the present invention has the following contents. That is,
(1) A measurement cycle is switched from intermittent measurement to continuous measurement at a predetermined threshold value, and a numerical value obtained by multiplying the measured value of the intermittent measurement section and the measurement value of the continuous measurement section by a predetermined weight coefficient is adopted as the data of the section. A physical quantity measuring method, wherein, for the first cycle after switching from the intermittent measurement section to the continuous measurement section, a specific weight coefficient different from the weight coefficient of the normal continuous measurement section is used. Measurement method.
[0010]
In the present invention, “physical quantities” include those that can be measured by measuring means, such as flow rate, frequency, weight, length, component ratio, and the like. Furthermore, the concept includes a quantification of qualitative data such as a customer's preference for a product.
[0011]
In order to simplify and explain the operation of the present invention, normalization is performed with a measured value less than the threshold value being 0 and a measured value greater than the threshold value being 1. Now, consider a case where the measurement value exceeding the threshold is continuous for 6 seconds, the intermittent measurement section period is 2 seconds, the continuous measurement section period is 1 second, and the delay period is 0 times (see Table 2).
[0012]
[Table 2]
Figure 2004069297
[0013]
There are two possible cases in this case: case A (0001111110) or case B (0011111100). The appearance probabilities of both are equally 0.5. In each case, the integrated value (true value) is 6.
[0014]
When the case A occurs, the measurement cycle is changed in the section B3. If the measured value 1 of B3 is directly used as the data at this time as in the conventional method, the accumulated value is 5 (calculated value 1 column). On the other hand, when the measurement cycle value 2 before the change is multiplied as the “weight coefficient”, the data value of B3 becomes 2, and the accumulated value becomes 6 (calculation value 2 column).
[0015]
Next, the same calculation can be performed when the case B occurs, and the cumulative values of the calculated value 1 and the calculated value 2 are 6, 7 respectively.
[0016]
That is, depending on whether the cycle value before the change or the cycle value after the change is used as the “weighting factor” at the time of the first measurement after the change of the measurement cycle, the relationship of the calculated value 2 ≧ true value ≧ calculated value 1 is always satisfied. To establish. From this, it is understood that the absolute value of the error can be made smaller by using the intermediate value of the measurement cycle values before and after the change as the “weight coefficient” than using either of the cycle values. The “specific weight coefficient” described in claim 1 and the following refers to an intermediate value of such a measurement cycle value.
[0017]
(2) In the above, the “specific weighting coefficient” is an average value of a periodic value of intermittent measurement and a periodic value of continuous measurement.
[0018]
Furthermore, if the average value of the measurement periods before and after the change is adopted as the “specific weight coefficient”, the expected value of the error is stochastically minimized. In Table 2, the calculation value 3 uses 1.5 as the average value of the measurement cycle before and after the change as the “specific weight coefficient”.
[0019]
(3) The measurement cycle is switched from intermittent measurement to continuous measurement at a predetermined threshold, and a numerical value obtained by multiplying the measured value of the intermittent measurement section and the measurement value of the continuous measurement section by a predetermined weighting factor is used as the data of the section. A method for calculating a cumulative amount of a measurement section including intermittent measurement and continuous measurement, wherein data is used assuming that all measurement sections are intermittent measurement sections. .
[0020]
The present invention uses the sampling for measurement and the sampling for waveform estimation separately. Description will be made by taking the case B of Table 2 as an example. The intermittent measurement section corresponds to B1 and B8, and the continuous measurement section corresponds to B2 to B7. The present invention uses the measurement values of B2, B4, and B6 corresponding to the intermittent measurement cycle in the continuous measurement section as the measurement data, and uses the measurement values of B3, B5, and B7 as the measurement data. Do not use. However, all the measured values in the continuous measurement section are used for estimating the waveform of the physical quantity. By employing such a measurement method, it is possible to eliminate the influence of a calculation error that occurs when switching from intermittent measurement to continuous measurement for measurement over a long time. At the same time, when an instantaneous value is required, there is a feature that a measured value in a continuous measurement section can be used.
[0021]
Note that, other than the invention of (3), when returning the sampling rate from the continuous measurement to the intermittent measurement in a state where the measured value is stable, the sampling rate does not have to coincide with the original sampling timing. Regarding the invention of (3), when returning the sampling rate from the continuous measurement to the intermittent measurement, it is desirable to match the sampling timing of the original intermittent measurement.
[0022]
(4) The physical quantity measuring method according to any one of (1) to (3), wherein the physical quantity is a flow velocity or a flow rate.
[0023]
(5) The measurement method according to any one of (1) to (4), wherein the switching of the measurement cycle includes a predetermined delay cycle.
[0024]
Here, the “delay cycle” refers to the number of cycles that maintain the previous measurement cycle when a measurement value change exceeding a threshold value is detected. To increase the accuracy of waveform estimation, it is desirable to make the delay period as small as possible, while to increase the accuracy of the accumulated value, it is desirable that the delay period be large. In the case of actual mounting in an apparatus, a certain calculation time is required to determine the measurement value detected by the sensor, and the next measurement timing of the continuous measurement cycle has already passed at the time of completion of the calculation. It is possible. In the case of intermittent measurement, the power consumption is reduced at the expense of the calculation speed, so a delay cycle is required.
[0025]
The delay cycle value can be determined by comprehensively determining the ratio between the intermittent measurement cycle and the continuous measurement cycle, the assumed change rate of the measurement value, the calculation speed of the control unit, and the like.
[0026]
(6) Physical quantity measuring means for performing measurement at predetermined intervals, measurement condition instructing means for instructing the physical quantity measuring means on the measurement cycle, and a measurement value sent from the physical quantity measuring means for a specific measurement cycle. And a data processing means for performing a process of multiplying by a “specific weighting factor”.
[0027]
The “specific weight coefficient” refers to a coefficient shown in (1) to (3). The "measurement condition indicating means" and the "data processing means" can be suitably embodied by a general-purpose arithmetic circuit such as a microprocessor as a more specific hardware configuration, but are combined with discrete elements and circuits. May be used.
[0028]
(7) In each of the above inventions, the physical quantity measuring method or the physical quantity measuring device, wherein the physical quantity is “flow velocity” or “flow rate”.
[0029]
(8) The physical quantity measuring device according to (6) or (7), wherein the "physical quantity measuring means" is an ultrasonic flow sensor or a thermal flow sensor.
[0030]
(9) In the above (1) to (5), when the population distribution of the continuous number exceeding the predetermined threshold is known, the continuous number included in the predetermined confidence interval of the population distribution appears. A physical quantity measurement method characterized by selecting a combination of an intermittent measurement cycle and a delay cycle so as to minimize a measurement error.
[0031]
The present invention provides a physical quantity measurement method that minimizes a measurement error by appropriately selecting an intermittent measurement cycle and a delay cycle according to the number of consecutive measurement values exceeding a threshold.
[0032]
The operation of the present invention will be described with reference to FIGS. FIG. 4 shows how the measurement error ε changes when the number of consecutive times changes from 1 to 5 when the intermittent measurement cycle n = 2. Here, FIG. 7A compares the change of the measurement error ε with the change of the number of continuous times when the delay period m = 0, FIG. 7B shows the case where m = 1, and FIG. Note that, for simplicity, normalization is performed such that a measured value below the threshold is 0 and a measured value exceeding the threshold is 1. In FIG. 7A, possible cases A and B, a specific weighting coefficient is indicated by w, an integrated value ΣA or ΣB, and an expected value (ΣA + ΣB) / 2. The measurement error ε is calculated as ε = true value−expected value. In FIG. 9A, if w = 3/2 (that is, the average value of the continuous measurement cycle 1 and the intermittent measurement cycle 2), the error becomes-/ when the number of continuous times is 1, and when the number of continuous times is 2 or more, It can be seen that no error occurs. Similarly, in (b), the error is -−1 at three consecutive times, and no error occurs at other times. Further, in (c), the error is-/ when the number of consecutive times is five, and no error occurs when the number of other times is five. Similarly, FIGS. 5 and 6 show changes in the measurement error ε for n = 3 and n = 4, respectively.
[0033]
When these are generalized, if the average value of the continuous measurement cycle and the intermittent measurement cycle is used as the specific weight coefficient, the continuous number (m · n + 1) to (m · n + n−1) times depends on the value of the specific weight coefficient. Error occurs, but the error becomes 0 for other times. By utilizing this principle, it is possible to minimize the measurement error by appropriately selecting the intermittent measurement period and the delay period when the population distribution of the number of consecutive times exceeding the threshold is known. .
[0034]
FIG. 7 shows this more specifically. In the figure, the horizontal axis represents the number of consecutive times, and the vertical axis represents the frequency exceeding the threshold. Now, the population distribution of the continuous number exceeding the threshold is D1, the variance σ 1 , The number of consecutive times X1 = (mn + 1) to Xc = (mn + n-1) is ± σ 1 By selecting a combination of the intermittent measurement cycle n and the delay cycle m so as to deviate from the above, predetermined reliability can be ensured. Further, the population distribution D2 and the variance σ 2 When X1 to Xn are ± 3σ 2 It can be seen that if the intermittent measurement cycle n and the delay cycle m are selected so as to deviate from the above, the measurement reliability further increases.
[0035]
In the present invention, the “predetermined confidence interval” refers to a range in which the probability that a certain measured value is included is within a predetermined reliability coefficient (%), and is a concept that includes management by a so-called three-sigma method.
[0036]
(10) In the above (1) to (5), further, when the population distribution of the continuous number exceeding the predetermined threshold is unknown, the population distribution is estimated based on the predetermined number of prior events, and A physical quantity measurement method characterized by selecting a combination of an intermittent measurement cycle and a delay cycle so as to minimize a measurement error when the number of consecutive times included in a predetermined confidence interval of a population distribution appears.
[0037]
According to the present invention, when the population distribution of the number of consecutive times exceeding the threshold is unknown, the population distribution is estimated based on the frequency of occurrence of the number of consecutive times in advance, and the intermittent measurement cycle and the delay cycle are selected based on this. Learning effects can be further applied to this method.
[0038]
(11) The physical quantity measurement according to (9) to (10), wherein when the population distribution changes regularly or irregularly, the intermittent measurement cycle and the delay cycle are selected following the change. Method.
[0039]
(12) In the above (1), (3) to (5), when the population distribution of the number of consecutive times exceeding the threshold value is known, the measurement error is minimized when the number of consecutive times equal to the population mean occurs. A physical quantity measurement method, wherein a specific weighting factor is selected.
[0040]
The present invention is an effective measurement method when the intermittent measurement cycle and the delay cycle are fixed.
[0041]
For example, if the intermittent measurement cycle n = 2 and the delay cycle m = 1 are fixed and the population mean of the population distribution of the number of consecutive times exceeding the threshold is 3, the specific weight coefficient w in FIG. By selecting 2, the error ε = 0 can be obtained when the population average value is used. In this case, it goes without saying that a more optimal specific weight coefficient w can be selected in consideration of the variance.
[0042]
(13) In the above (1), (3) to (5), when the population distribution of a continuous number of times exceeding the predetermined threshold is unknown, the population distribution is estimated based on a predetermined prior event. A physical weight measuring method, wherein a specific weighting factor is selected so that a measurement error is minimized when the number of consecutive times equal to the population mean estimated value occurs.
[0043]
(14) The physical quantity measurement method according to (12) or (13), wherein when the population distribution changes regularly or irregularly, a specific weight coefficient is selected following the change.
[0044]
(17) In the above (1) to (5), further, when the population distribution of the continuous number exceeding the predetermined threshold is unknown, the intermittent measurement cycle and the delay may be set so that the measurement error is within a predetermined allowable range. A physical quantity measurement method characterized by selecting a period.
[0045]
In actual measurement, the population distribution of the continuous number is unknown, while the allowable range of the measurement error is often defined. Therefore, the present invention is effective in such a case.
[0046]
The operation of the present invention is as follows. 4 to 6, for n = 2, 3, and 4 when m = 0, FIG. 8 summarizes the relationship between the number of continuations j (where j is an integer of n) and the expected value P. Is also described for n = 5). When these relationships are generalized, they are expressed as in Equation 1. Furthermore, when the average value of the intermittent measurement cycle value and the continuous measurement cycle value, that is, w = (n + 1) / 2, is used as the specific weight coefficient w, Equation 1 is expressed as Equation 2.
From this, the measurement error ε is expressed as in Equation 3 using ε = P−j. As is clear from Expression 3 and εm (value of ε when w = (n + 1) / 2) in FIGS. 4 to 6, it is in the range of j <n that a measurement error occurs.
[0047]
Further, the range of the number of consecutive times in which a measurement error occurs when m = 1, 2,... Is equal to FIG. 8 shifted by mn, that is, equal to (mn + j). When this is used, the general expression of the error rate E is expressed as Expression 4.
[0048]
(Equation 1)
Figure 2004069297
[0049]
[Equation 2]
Figure 2004069297
[0050]
[Equation 3]
Figure 2004069297
[0051]
(Equation 4)
Figure 2004069297
[0052]
From these relationships, according to the present invention, when the number of consecutive times encountered is unknown and an allowable error rate Et is set, m and n in Equation 3 are selected so as to satisfy Et> E. It turns out that it is good. In this case, it is clear from Equation 3 that the larger the number of delays m is, the smaller the allowable error can be set. When setting m and n, the condition is that Et> E holds for each j satisfying 1 <j <(n−1). Further, as is clear from the column of εm in FIGS. 4 to 6, it is understood that the probability of occurrence of an error increases as the intermittent period n increases. However, when it is known that the continuous number of the specific physical quantity continues, Et may be able to be set smaller by increasing n.
[0053]
(16) The physical quantity measurement device according to any one of (6) to (8), further including a combination selection unit that selects an intermittent measurement period and a delay period.
[0054]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to FIGS. 1 to 3 and Tables 3 and 4. The following embodiment is an exemplification, and it goes without saying that the technical scope of the present invention is not limited to the embodiment.
[0055]
FIG. 1 is an overall configuration diagram of a gas flow measurement device 1 according to an embodiment of the present invention. The flow measurement device 1 according to the present invention includes a control unit 2, a flow sensor 7, a gas flow path 9, and a display unit 10. The control unit 2 performs overall measurement control of the flow rate measuring device 1 (determination of a threshold value, determination of a measurement cycle, etc., measurement instruction to the flow rate sensor 7, fetching of measurement data of the flow rate sensor 7, execution of necessary calculations, CPU 3 (Central Processing Unit), which stores storage instructions, etc .; RAM 4, which stores information taken in from each unit according to instructions from CPU 3, ROM 5, which stores a measurement control program, etc .; and clock pulse generation, which controls the time of CPU 3 The circuit 6 is provided. Note that the CPU 3 corresponds to “measurement condition instructing means” and “data processing means” in claim 4, and the flow sensor 7 corresponds to “physical quantity measuring means”.
[0056]
The gas flow path 9 is typically a gas pipe or a gas meter. The flow sensor 7 is provided in the middle of the gas flow path 9, and a flow sensor of a type capable of measuring an instantaneous flow rate, for example, an ultrasonic flow meter, a fluidic flow meter, a mass flow meter, or the like can be suitably used.
[0057]
The display unit 10 is configured to display the flow rate data stored in the RAM 4 according to a command from the CPU 3 at all times or as needed. The displayed flow rate is one or both of the instantaneous flow rate and the accumulated flow rate, and is configured to be displayed simultaneously or by a switching operation.
[0058]
Next, the operation of the gas flow measurement device 1 will be described with reference to FIG. FIG. 2 is a diagram illustrating a measurement flow according to the present embodiment. Prior to the measurement, initial conditions are set (step S100). In the ROM 5, a measurement cycle C1 of an intermittent measurement section, a measurement cycle C2 of a continuous measurement section, and a delay cycle value 0 are set as measurement conditions. In addition, as the weighting coefficient of the measurement immediately after the switching of the cycle, the cycle average value Cm = (C1 + C2) / 2 in the intermittent / continuous measurement section is set. It is assumed that the RAM 4 has an area for storing a measurement cycle value, a unit time flow rate data, a calculation result, and the like for each measurement section.
[0059]
Based on the measurement start instruction from the CPU 3 (step S101), the flow sensor 7 measures the flow rate V (0) in the section n = 0, and transmits the result to the CPU 3 (steps S102 and S103). In the following description, it is assumed that the flow of FIG. 2 has already been repeatedly executed (section n).
[0060]
The CPU 3 compares V (n) with the threshold value Vth (step S104), and based on the result, determines the measurement cycle C (n) and the weight coefficient W (n) in the section n as follows.
[0061]
First, when V (n) is less than Vth, section n is recognized as an intermittent measurement section, and the measurement cycle is set to C (n) = C1 regardless of the previous cycle. The weight coefficient is set to W (n) = C1 (step S111).
[0062]
When V (n) ≧ Vth, it is recognized as a continuous measurement section, and then it is determined whether or not the immediately preceding measurement section is an intermittent measurement section (that is, whether or not the cycle C (n−1) = C1). (Step S105). When the immediately preceding cycle C (n-1) is an intermittent measurement section (YES in the figure), the measurement cycle is switched to C (n) = C2, and the weight coefficient is set to W (n) = Cm. (Step S106). If the immediately preceding cycle C (n-1) is a continuous measurement section (NO in the figure), the measurement cycle of this section is set to C (n) = C2, which is the same as the previous cycle, and the weight coefficient is also W (N) = C2 is set (step S113).
[0063]
Next, the flow rate Qn = V (n) * Wn in this section is calculated (step S107). The calculation result, the measurement cycle, and the like are stored in the RAM 4 (Step S108).
[0064]
Next, it is determined whether or not there is a measurement end instruction (step S109). If there is no instruction, the process waits until the next measurement timing (step S110). When the measurement timing has come, n = n + 1 is set, and the above-described calculation is repeated (step S110). When there is a termination instruction, the measurement is terminated (step S112).
[0065]
(Measurement for change in flow rate in FIG. 3: case of delay period 0)
Next, with reference to Table 3, an embodiment according to the present invention when the flow rate changes as shown in FIG. 3 will be described in comparison with a conventional example. Regarding the measurement conditions of the present embodiment, the threshold Vth = 5 m as in the conventional example. 3 / Sec, the measurement cycle C1 of the intermittent measurement section = 3 seconds, the measurement cycle C2 of the continuous measurement section = 1 second, and the number of delay cycles is set to 0. However, unlike the conventional example, (C1 + C2) / 2 = 2 is used as the “weighting coefficient” of the first measurement cycle after the cycle switching.
[0066]
[Table 3]
Figure 2004069297
[0067]
In this case, the measurement start times are stochastically three cases, Case 1 to Case 3. First, when Case 1 occurs, the first measurement is performed at t = 0, and since the flow rate V (0) = 0 at this time, it is determined to be an intermittent measurement section, the measurement cycle is C1 = 3 seconds, and the weighting factor is Becomes 3. Therefore, the flow rate in this section is 0 × 3 = 0. The next measurement is performed at t = 3. Since the flow rate V (3) at this time is 3 (less than the threshold value), the intermittent measurement section continues, and the section flow rate is 3 × 3 = 9. The next measurement is performed at t = 6. At this time, since the flow rate V (6) = 10, which exceeds the threshold value, the measurement cycle is switched to C2 = 1 second, and a continuous measurement section is set. Since the weight coefficient at this time is 2, the section flow rate is calculated as 10 × 2 = 20. The continuous measurement section continues from t = 6 to t = 9. At t = 10, the flow rate V (10) = 0, so that it is determined to be an intermittent measurement section, and the measurement cycle is returned to C1 = 3 seconds. The weight coefficient is 3, but the section flow rate is 0 × 3 = 0. Thereafter, the intermittent measurement section continues. Thus, the measurement results of each section are accumulated, and the accumulated flow value of all sections is 59.
[0068]
When Case 2 occurs, the first measurement is performed at t = 1, and since the flow rate V (0) = 0 at this time, it is determined to be an intermittent measurement section, the measurement cycle is C1 = 3 seconds, and the weight coefficient is 3 It becomes. Therefore, the flow rate in this section is 0 × 3 = 0. The next measurement is performed at t = 4. Since the section flow rate at this time is V (4) = 5 and exceeds the threshold value, the measurement cycle is switched to C2 = 1 second, and a continuous measurement section is performed. Since the section flow rate has a weighting factor of 2, the section flow rate is calculated as 5 × 2 = 10. Hereinafter, measurement is performed in the same manner as in case 1. Therefore, the cumulative flow value of all sections in Case 2 is 58. The measurement is performed similarly in the case where Case 3 occurs, and the accumulated flow value of all sections is 56 respectively.
[0069]
Here, since the occurrence probabilities of Cases 1 to 3 are equal to 1/3, the expected value of the accumulated flow rate is 57.7 which is the average value of these. On the other hand, the integrated flow value (true flow) per unit time is 56 m 3 Therefore, the error is about 3.0%. On the other hand, since the error in the conventional method shown in Table 1 is about -10.7% as described above, it can be seen that the absolute value of the error is improved by about 8 points according to the present invention.
[0070]
(Measurement for change in flow rate in FIG. 3: case of delay period 1)
The case where there is no delay has been described above. Next, an embodiment where the delay period is one will be described with reference to Table 4. The present embodiment particularly corresponds to claim 6. In the present embodiment, the other measurement conditions except for the delay period are the same as those for the above-described zero delay period, and the threshold value Vth = 5 m 3 / Sec, the measurement cycle C1 of the intermittent measurement section = 3 seconds, the measurement cycle C2 of the continuous measurement section = 1 second, and the weight coefficient W of the first measurement after the cycle change = 2.
[0071]
[Table 4]
Figure 2004069297
[0072]
Also in this case, the measurement start timings are stochastically three cases, Case 1 to Case 3. When Case 1 occurs, the first measurement is performed at t = 0, and the flow rate V (0) = 0 at this time is determined to be an intermittent measurement section, the measurement cycle is C1 = 3 seconds, and the weighting factor is 3 It becomes. Therefore, the flow rate in this section is 0 × 3 = 0.
[0073]
The next measurement is performed at t = 3. At this time, since the flow rate V (3) = 3 (less than the threshold value), the intermittent measurement section continues, and the section flow rate becomes 3 × 3 = 9. The next measurement is performed at t = 6. At this time, the flow rate V (6) = 10, which exceeds the threshold value. However, since the determination is delayed, the measurement cycle is maintained at C1 = 3 seconds, and the weight coefficient is maintained at 3. Therefore, the flow rate in this section is calculated as 10 × 3 = 30.
[0074]
Further, the next measurement is performed at t = 9. At this time, the flow rate V (9) = 10 (the threshold value or more), and at this time, the measurement cycle is switched to C2 = 1 second, and a continuous measurement section is formed. Since the weight coefficient is 2, the section flow rate is calculated as 10 × 2 = 20. Further measurement is performed at t = 10. Since the flow rate V (10) = 0, it is determined to be an intermittent measurement section, and the measurement cycle is returned to C1 = 3 seconds. The weight coefficient is 3, but the section flow rate is 0 × 3 = 0. Thereafter, the intermittent measurement section continues. Thus, the measurement results of each section are accumulated, and the accumulated flow value of all sections is 59.
[0075]
Measurements are performed in the same manner in cases 2 and 3, and the accumulated flow values in all sections are 55 and 54, respectively. Therefore, the expected value of the accumulated flow rate is 56.0 which is the average value of these, and is the same as the true flow rate. In this case, no error occurs.
[0076]
On the other hand, in the conventional method, it is as shown in Table 5, and the expected value of the accumulated flow rate is 46 m. 3 Therefore, the error is about -18%. Also in this case, it is clear that the measurement method according to the present invention is excellent.
[0077]
[Table 5]
Figure 2004069297
[0078]
In each of the embodiments described above, the flow rate is taken as a physical quantity and the measurement cycle is related to the time axis. However, the present invention is not limited to this. For example, a spatial axis used for map data and the like, a frequency axis used for volume and the like are used. And the like.
[0079]
Although the threshold is shown in one step, it is also possible to set the threshold in two or more steps.
[0080]
Hereinafter, another embodiment of the present invention will be described with reference to FIG. The present embodiment relates to a measurement method having two modes, a normal power mode for measuring a physical quantity with normal power and high accuracy, and a power saving mode for detecting a large change in physical quantity with low power and low accuracy. Item 3) is applied. That is, the measurement of the accumulated value is performed in the normal power mode, and the waveform estimation is performed by measuring the normal power mode and the power saving mode in combination. This makes it possible to measure the flow change pattern with higher resolution while measuring the average value with high accuracy.
[0081]
Taking the ultrasonic flow sensor and the thermal flow sensor as examples, in the case of high-accuracy measurement, for example, sampling can be performed 50 times per second, and the average value can be output. It is required to suppress it to about 1/10. In general, the accuracy of measurement is proportional to the square root of the number of samples, and therefore, by using 10 times the power, it is possible to expect a 3.2 times improvement in accuracy. Conversely, if a 3.2-fold decrease in accuracy is tolerated, power consumption can be reduced to 1/10.
[0082]
FIG. 9 shows a specific example of such a measurement method, in which n = 3, m = 1, and the number of consecutive times is five. Cases A to C show three cases that can occur, and their occurrence probabilities are equal. “Precision” in the accuracy column indicates high accuracy measurement in the normal power mode, and “coarse” indicates low accuracy measurement in the power saving mode. “0?” In the measurement value column indicates that the amount of change (rate) is less than the reference value in low-accuracy measurement, and “1?” Indicates that the amount of change is equal to or greater than the reference value. When "1?" Is detected, the power saving mode is switched to the normal power mode.
In case A, regarding the measurement of the accumulated value, the high precision measurement is performed intermittently in the normal power mode at times t0, t3, t6, t9, and t12. During this time, the value exceeding the threshold value is measured at t6. In this case, since the weight is 3, the accumulated value between t0 and t12 is 3.
[0083]
Next, measurement of waveform estimation will be described. The measurement value at each time of the cumulative value measurement is also used for waveform estimation. The waveform estimation measurement at other times is performed as follows. At t1 and t2, the amount of change (rate) is monitored in the power saving mode, and it is detected that the amount of change is less than the reference value. At t4, the measurement is switched to the high-precision measurement continuous measurement section in the normal power mode at the next measurement timing t5 to detect a value equal to or greater than the reference value at t4. After that, the normal power mode continues until t9. Furthermore, since the measured value is 0 at t9, the mode is returned to the power saving mode at t10.
[0084]
Measurements and calculations are performed in exactly the same way for cases B and C, and the cumulative value is both 6. Therefore, the expected value of the accumulated value is (3 + 6 + 6) / 3 = 5, which indicates that no error occurs equal to the true value 5. It is known that this relationship always holds regardless of the measurement cycle n, the delay cycle m, and the number of consecutive times.
[0085]
Regarding the waveform estimation, the low-precision measurement in the power saving mode is continuously performed in the intermittent section, so it can be seen from the waveform estimation 1 and 2 columns that the estimation close to the true waveform is possible. The waveform estimation 1 reflects the waveform estimation immediately after the change amount is equal to or more than the predetermined value, and the waveform estimation 2 reflects the waveform estimation from the next measurement timing.
[0086]
In the present embodiment, when it is detected in the power saving mode that the amount of change is equal to or larger than the reference value, the mode is immediately switched to the high-precision continuous measurement in the normal power mode. May be switched.
[0087]
Furthermore, in the present embodiment, the measurement cycle n (3 in this case) is used as a weighting factor when switching from the power saving mode to the normal power mode, but the present invention is not limited to this, and a “specific weighting factor” (claim 1 or 2) May be used).
[0088]
【The invention's effect】
According to the present invention, it is possible to reduce a measurement error while maintaining power saving by intermittent measurement. In particular, in the present invention, such an adverse effect can be eliminated in the measurement of a physical quantity in which use and stop are repeated in a short time, which has a large error in the conventional measurement method or apparatus.
[Brief description of the drawings]
FIG. 1 is a diagram showing one embodiment of a physical quantity measuring device according to the present invention.
FIG. 2 is a diagram showing a measurement flow in one embodiment of the present invention.
FIG. 3 is a diagram showing a temporal change of a flow rate.
FIG. 4 is a diagram showing a change in a measurement error due to a change in the number of continuous times (intermittent measurement cycle n = 2).
FIG. 5 is a diagram showing a change in a measurement error due to a change in the number of continuous times (intermittent measurement cycle n = 3).
FIG. 6 is a diagram showing a change in a measurement error accompanying a change in the number of continuous times (intermittent measurement cycle n = 4).
FIG. 7 is a diagram showing that a measurement error can be minimized by appropriately selecting an intermittent measurement cycle and a delay cycle.
FIG. 8 is a diagram showing a relationship between the number of continuous times j and an expected value P.
FIG. 9 is a diagram showing an embodiment in which the present invention is applied to a measurement method having a normal power mode and a power saving mode.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Flow measuring device, 2 ... Control part, 3 ... CPU, 4 ... RAM, 5 ... ROM, 6 ... Clock pulse generation circuit, 7 ... Flow sensor, 9 ... Gas flow path, 10 ...... Display section

Claims (16)

所定の閾値を境にして計測周期を間欠計測から連続計測に切り替え、かつ、間欠計測区間と連続計測区間の計測値にそれぞれ所定の重み係数を乗じた数値を当該区間のデータとして採用する物理量計測方法であって、
さらに、間欠計測区間から連続計測区間に切り替わった後の第一周期については、前記所定の重み係数とは異なる特定重み係数を用いることを特徴とする物理量計測方法。
A physical quantity measurement that switches a measurement cycle from intermittent measurement to continuous measurement at a predetermined threshold value, and employs a numerical value obtained by multiplying a measurement value of an intermittent measurement section and a continuous measurement section by a predetermined weighting factor as data of the section. The method
Furthermore, a physical quantity measurement method characterized in that a specific weight coefficient different from the predetermined weight coefficient is used for a first cycle after switching from an intermittent measurement section to a continuous measurement section.
前記特定重み係数が、間欠計測の周期値と連続計測の周期値との平均値であることを特徴とする請求項1に記載の物理量計測方法。The physical quantity measurement method according to claim 1, wherein the specific weighting coefficient is an average value of a cycle value of intermittent measurement and a cycle value of continuous measurement. 所定の閾値を境にして計測周期を間欠計測から連続計測に切り替え、かつ、間欠計測区間と連続計測区間の計測値にそれぞれ所定の重み係数を乗じた数値を当該区間のデータとして採用する物理量計測方法であって、間欠計測と連続計測とを含む計測区間の累積量の演算については、前記計測区間が全て間欠計測区間であるとしたときのデータを用いることを特徴とする物理量計測方法。A physical quantity measurement that switches a measurement cycle from intermittent measurement to continuous measurement at a predetermined threshold value, and employs a numerical value obtained by multiplying a measurement value of an intermittent measurement section and a continuous measurement section by a predetermined weighting factor as data of the section. A method for calculating a cumulative amount of a measurement section including intermittent measurement and continuous measurement, using data when all the measurement sections are intermittent measurement sections. 前記物理量が流速又は流量であることを特徴とする請求項1乃至3に記載の物理量計測方法。4. The physical quantity measuring method according to claim 1, wherein the physical quantity is a flow velocity or a flow rate. 前記計測周期の切り替えが所定の遅延周期を含んでなされることを特徴とする請求項1乃至4に記載の物理量計測方法。The physical quantity measurement method according to claim 1, wherein the switching of the measurement cycle includes a predetermined delay cycle. 所定の周期ごとに計測を行う物理量計測手段と、前記物理量計測手段に対して計測周期を指示する計測条件指示手段と、特定の計測周期に対して前記物理量計測手段から送られる計測値に特定重み係数を乗じる処理を行うデータ処理手段と、を備えたことを特徴とする物理量計測装置。Physical quantity measuring means for performing measurement at predetermined intervals, measurement condition instructing means for instructing the physical quantity measuring means on a measurement cycle, and a specific weight for a measurement value sent from the physical quantity measuring means for a specific measurement cycle A physical quantity measurement device comprising: a data processing unit that performs a process of multiplying by a coefficient. 前記物理量が流速又は流量であることを特徴とする請求項6に記載の物理量計測装置。The physical quantity measuring device according to claim 6, wherein the physical quantity is a flow velocity or a flow rate. 前記物理量計測手段が超音波流量センサー又はサーマルフローセンサであることを特徴とする請求項6又は7に記載の物理量計測装置。The physical quantity measuring device according to claim 6, wherein the physical quantity measuring unit is an ultrasonic flow sensor or a thermal flow sensor. 請求項1乃至5において、さらに、前記閾値を超える連続回数の母集団分布が既知のときに、母集団分布の所定の信頼区間内に含まれる連続回数が出現したときに計測誤差を最小にするように、間欠計測周期と遅延周期の組み合わせを選択することを特徴とする物理量計測方法。The method according to any one of claims 1 to 5, further comprising minimizing a measurement error when a continuous number included in a predetermined confidence interval of the population distribution appears when the population distribution of the continuous number exceeding the threshold is known. Thus, a physical quantity measurement method characterized by selecting a combination of an intermittent measurement cycle and a delay cycle. 請求項1乃至5において、さらに、前記閾値を超える連続回数の母集団分布が未知のときに、所定回数の事前事象にもとづいて母集団分布を推定し、推定母集団分布の所定の信頼区間内に含まれる連続回数が出現したときに計測誤差を最小にするように、間欠計測周期と遅延周期の組み合わせを選択することを特徴とする物理量計測方法。The method according to any one of claims 1 to 5, further comprising: estimating a population distribution based on a predetermined number of prior events when a population distribution of a continuous number exceeding the threshold is unknown, and within a predetermined confidence interval of the estimated population distribution. A physical quantity measurement method characterized by selecting a combination of an intermittent measurement cycle and a delay cycle such that a measurement error is minimized when the number of consecutive times included in the above occurs. 前記母集団分布が規則的又は不規則的に変化するときに、変化に追随して間欠計測周期と遅延周期を選択することを特徴とする請求項9又は10に記載の物理量計測方法。11. The physical quantity measurement method according to claim 9, wherein when the population distribution changes regularly or irregularly, an intermittent measurement cycle and a delay cycle are selected following the change. 請求項1、4又は5において、さらに、前記閾値を超える連続回数の母集団分布が既知のときに、母平均に等しい連続回数が発生したときに計測誤差を最小とするように、特定重み係数を選択することを特徴とする物理量計測方法。6. The specific weighting coefficient according to claim 1, 4 or 5, further comprising: when a population distribution having a continuous number exceeding the threshold is known, a measurement error is minimized when a continuous number equal to the population average occurs. A physical quantity measurement method characterized by selecting: 請求項1、4又は5において、さらに、前記閾値を超える連続回数の母集団分布が未知のときに、所定の事前事象にもとづいて母集団分布を推定し、母平均推定値に等しい連続回数が発生したときに計測誤差を最小とするように、特定重み係数を選択することを特徴とする物理量計測方法。In Claim 1, 4 or 5, Furthermore, when the population distribution of the continuous number exceeding the threshold is unknown, the population distribution is estimated based on a predetermined prior event, and the continuous number equal to the population average estimated value is obtained. A physical quantity measuring method, wherein a specific weighting factor is selected so as to minimize a measurement error when the physical quantity occurs. 前記母集団分布が時間的に変化するときに、変化に追随して特定重み係数を選択することを特徴とする請求項12又は13に記載の物理量計測方法。14. The physical quantity measurement method according to claim 12, wherein when the population distribution changes over time, a specific weight coefficient is selected following the change. 請求項1乃至5において、さらに、前記閾値を超える連続回数の母集団分布が未知のときに、計測誤差を所定の許容範囲内にするように間欠計測周期と遅延周期を選択することを特徴とする物理量計測方法。6. The intermittent measurement cycle and the delay cycle according to claim 1, further comprising, when a population distribution of a continuous number of times exceeding the threshold is unknown, so that a measurement error is within a predetermined allowable range. Physical quantity measurement method. 請求項6乃至8において、さらに間欠計測周期と遅延周期を選択する組み合わせ選択手段を備えたことを特徴とする物理量計測装置。9. The physical quantity measurement device according to claim 6, further comprising a combination selection unit that selects an intermittent measurement cycle and a delay cycle.
JP2002210507A 2002-06-11 2002-07-19 Flow rate measuring method and apparatus Expired - Fee Related JP4353682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002210507A JP4353682B2 (en) 2002-06-11 2002-07-19 Flow rate measuring method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002169895 2002-06-11
JP2002210507A JP4353682B2 (en) 2002-06-11 2002-07-19 Flow rate measuring method and apparatus

Publications (2)

Publication Number Publication Date
JP2004069297A true JP2004069297A (en) 2004-03-04
JP4353682B2 JP4353682B2 (en) 2009-10-28

Family

ID=32032211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002210507A Expired - Fee Related JP4353682B2 (en) 2002-06-11 2002-07-19 Flow rate measuring method and apparatus

Country Status (1)

Country Link
JP (1) JP4353682B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009288137A (en) * 2008-05-30 2009-12-10 Toshiba Corp Watt-hour meter
US8428099B2 (en) 2007-05-09 2013-04-23 Nec Corporation Wireless communication system and frequency hopping method therefor, and base station and mobile station

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103925951B (en) * 2014-04-24 2016-08-24 中煤科工集团重庆研究院有限公司 By the blower fan of Frequency Converter Control by air quantity on-line monitoring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8428099B2 (en) 2007-05-09 2013-04-23 Nec Corporation Wireless communication system and frequency hopping method therefor, and base station and mobile station
JP2009288137A (en) * 2008-05-30 2009-12-10 Toshiba Corp Watt-hour meter

Also Published As

Publication number Publication date
JP4353682B2 (en) 2009-10-28

Similar Documents

Publication Publication Date Title
JP3432210B2 (en) Flow measurement device
US20090144006A1 (en) Calibration of multi-metric sensitive delay measurement circuits
US7805277B2 (en) Step number measuring apparatus
CN112462846A (en) Clock correction method, clock correction device, computer equipment and storage medium
JPH0650772Y2 (en) Travel detector
JP4353682B2 (en) Flow rate measuring method and apparatus
JP2005516222A5 (en)
JP5787096B2 (en) Physical quantity measuring device, physical quantity measuring method
JP3100741B2 (en) Electronic thermometer
JP3329215B2 (en) AC signal measuring device
JP2000074962A (en) Cycle-measuring device and method therefor, and storage medium
JP2712045B2 (en) Rotational speed measuring device
US9880058B2 (en) Semiconductor integrated circuit
JP2002055128A (en) Ac signal measuring instrument
JP3100740B2 (en) Electronic thermometer
JP2019045343A (en) Pulse output device, electromagnetic flowmeter, and pulse output method
JP7211902B2 (en) Time measuring device and method
JPH10318848A (en) Method and device for raising response characteristics of sensor
JP4688252B2 (en) Ultrasonic flow meter
JP2003315115A (en) Flow measuring device
JP2001012981A (en) Flowmeter
JP2504753B2 (en) Electronic thermometer
JP2569071Y2 (en) Frequency voltage converter
JP4117261B2 (en) Demand monitoring system and apparatus
JP2001333890A (en) Method of computing pulse rate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071024

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090311

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090728

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees