JP2004069199A - Vacuum container - Google Patents

Vacuum container Download PDF

Info

Publication number
JP2004069199A
JP2004069199A JP2002229948A JP2002229948A JP2004069199A JP 2004069199 A JP2004069199 A JP 2004069199A JP 2002229948 A JP2002229948 A JP 2002229948A JP 2002229948 A JP2002229948 A JP 2002229948A JP 2004069199 A JP2004069199 A JP 2004069199A
Authority
JP
Japan
Prior art keywords
gas
vacuum
container
vacuum vessel
cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002229948A
Other languages
Japanese (ja)
Inventor
Junichi Katsuki
香月 淳一
Takashi Yamauchi
山内 隆
Kenji Abiko
安彦 兼次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2002229948A priority Critical patent/JP2004069199A/en
Publication of JP2004069199A publication Critical patent/JP2004069199A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Furnace Details (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a leak of atmospheric air with a simple structure when evacuating a vacuum container for handling the melted metal. <P>SOLUTION: A part wherein a leak of the outside gas is generated in evacuation is covered with an Ar gas flow from the outside of the container to make the Ar gas leak in place of the atmospheric air. Especially, a cover is provided outside a fastened part of a closing part, and the Ar gas is supplied to a space surrounded by the cover and the container member, and the fastened part is covered with the Ar gas flow to provide a vacuum container. An Ar gas blow-off tube is provided near a part wherein a slide-contact part of a sliding part, of which bar-like member is to be brought in slide-contact with the container member, is exposed outside, and the exposed part of the slide-contact part is covered with the Ar gas flow blown off from the tube to form a vacuum container. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、中で溶融金属を取り扱う真空容器において、真空排気時に容器外部から内部への大気のリークを防止する技術に関する。
【0002】
【従来の技術】
金属の溶解や鋳造、あるいは精錬は、しばしば真空容器中で行われる。その目的は様々であるが、主として以下のようなことが挙げられる。
▲1▼大気から溶融金属中への酸素や窒素の混入を防止する。
▲2▼湯面に酸化スケールが形成して鋳造性を損なうことを防止する。
▲3▼鋳造時にガスの巻き込みを防止する。
▲4▼溶融金属中のガス成分を効率よく除去する。
【0003】
実験用あるいは小規模生産用の真空容器としては、その内部に、高周波誘導コイルを有する金属溶解用のルツボと鋳型を設置した「高周波真空溶解炉」が種々普及している。これらは、真空容器外部からの操作により溶解と簡単な精錬および鋳造が行えるようになっている。
【0004】
大規模生産用の設備としては、鉄鋼製造ラインにおける真空脱ガス装置が挙げられる。例えば、ステンレス鋼製造ラインでは、粗脱炭および粗脱窒を行った溶鋼を取鍋のまま真空容器に装入し、真空排気しながら減圧下で酸素吹錬およびArガス底吹き攪拌を行い、次いで0.5Torr程度の真空下でArガス底吹き攪拌を行うことにより、効率よく脱炭・脱窒反応を進行させる精錬手法が採用されている(VOD法)。
【0005】
これらの溶融金属を取り扱う真空容器には、一部の実験用精密容器を除き、いくつかの共通的な特徴がある。まず、これらの容器は大径の蓋を備えている。真空溶解炉では原材料のセットや鋳型の出し入れが必要であり、VOD法の真空脱ガス装置では取鍋の出し入れが必要であるため、これらの真空容器には径の大きな蓋が必要である。また、一般的に副原料の投入等が可能なハッチを備えている。さらに、測温・サンプリング用プローブ,酸素吹錬用ランスなどの摺動部材を備えている。
【0006】
蓋やハッチは、操業中に迅速に開閉できるよう、一般的にガスケットを介した単純な閉じ合わせ構造になっている。測温・サンプリング用プローブ,酸素吹錬用ランス等は、操業中に溶融金属中に挿入するものであるから、それ自体が棒状の摺動部材を構成し、容器部材と摺接する構造になっている。真空排気を行ったとき、これらの閉じ合わせ部や摺動部は、その構造上、容器の外部から内部への気体の進入を完全に遮断することが難しく、通常、これらの部位から大気が内部へリークする。
【0007】
このような大気のリークは、様々な金属の溶解・精錬において問題となりうる。なかでも、VOD法によるステンレス鋼の精錬においては、現実に以下のような問題が生じている。
すなわち、VOD法では真空精錬を行うことにより次の脱ガス反応を促進させ、効率的に脱炭・脱窒を行っている。
 → CO(ガス)
 → N(ガス)
(下線を付した元素は溶鋼中に溶解していることを意味する)。
もともとVOD法は極低C化,極低N化には有利な方法であるとされる。ところが、近年、品質向上,材料特性向上の要求が高まり、極低C,N化を図った材料を一層安定的かつ低コストで製造する必要が生じた。
【0008】
極低C,N化を図るには、真空排気しながら気液反応界面積を増大させることが重要である。しかし、上記のとおり真空排気時には外部からの大気のリークが避けられないため、気液反応界面積を増大させると、真空容器内に侵入してきたNガスの溶鋼中への「吸窒」が促進される。特に、Cr含有量の高い高耐食ステンレス鋼では、CrとNの相互作用によりNの活量が小さくなり、吸窒量は増大しやすい。吸窒量を抑えるために溶鋼の攪拌力を下げると脱炭効率が低下してしまう。
【0009】
従来、真空精錬中の大気のリークを防止する手段として、真空容器の閉じ合わせ部や摺動部を「二重シール構造」とする方法が提案されている(特開昭50−98417号)。これは、2つのガスケットを介して真空容器の内部と外部を隔てるものであり、その2つのガスケットの間に気密室を設け、ここにArガスを2kg/cm程度に高めた状態でパージすることで内部への大気の侵入を防止しようというものである。
【0010】
【発明が解決しようとする課題】
しかし、上記「二重シール構造」を既存の設備に適用するには大がかりな改造が必要である。また、特に摺動部においては構造が複雑になるため保守に手間がかかる。さらに、精錬用の真空容器には複数の閉じ合わせ部(フランジ部)や摺部があるため、これらすべてに二重シールを設けることは構造上容易でない。
【0011】
そこで、本発明は、中で溶融金属を取り扱うための真空容器において、既存のシール構造がそのまま利用可能な簡便な手段により、真空排気時における容器内部への大気の侵入を効果的に防止する技術を提供することを目的とする。
【0012】
【課題を解決するための手段】
発明者らは、種々検討した結果、真空排気時に大気のリークが生じる箇所を容器外部からArガス流で覆うという簡便な手法を採用することで、当該真空容器中で溶融金属を処理して得られた鋳片には顕著な品質向上効果が認められることを知見し、本発明を完成するに至った。
【0013】
すなわち、上記目的は、中で溶融金属を取り扱う真空容器において、真空排気時に外部気体のリークが生じる箇所を容器外部からArガス流で覆うことにより、大気の代わりにArガスをリークさせるようにした真空容器によって達成される。
ここで、「中で溶融金属を取り扱う」とは、真空容器の内部において、i) 配合原料を溶解して溶融金属を作ること,ii) 溶融金属を精錬すること,iii) 溶融金属を鋳造すること、のうち1つ以上の処理を行うことをいう。
【0014】
また、本発明では、真空排気時に外部気体のリークが生じやすい「閉じ合わせ部」と「摺動部」について、それぞれ大気の代わりにArガスをリークさせる効果的な手段を採用した真空容器を提供する。
【0015】
まず、閉じ合わせ部の改善を図った真空容器として、閉じ合わせ部の接合箇所外側にカバーを設け、そのカバーと容器部材とで囲まれた空間にArガスを供給して、当該接合箇所をArガス流で覆うことにより、大気の代わりにArガスをリークさせるようにした真空容器を提供する。そのカバーは、閉じ合わせ部で係合する一方の部材に取り付けることにより、閉じ合わせ部の開閉動作を拘束しないようにすることができる。また、カバーと容器部材とで囲まれた空間内のガス圧が大気圧以上になるように、Arガスの供給能力に応じて、当該空間からArガスが逃げる隙間を小さくした真空容器を提供する。
【0016】
次に、摺動部の改善を図った真空容器として、棒状部材が容器部材と摺接する摺動部の、摺接箇所が外部に露出している部位の近傍に、Arガス吹き出し管を設け、その管から吹き出したArガス流で前記摺接箇所の露出部位を覆うことにより、大気の代わりにArガスをリークさせるようにした真空容器を提供する。特に、スリット状,孔状,またはノズル状のガス吹き出し口を有するArガス吹き出し管を採用し、これを、棒状部材を取り巻くように配置し、摺接箇所の露出部位全体にArガスが吹き掛かるようにした真空容器を提供する。
【0017】
摺動部における別の改善手段を採用した真空容器として、棒状部材が容器部材と摺接する摺動部の、摺接箇所が外部に露出している部位の外側に、棒状部材の動作を拘束しないようにカバーを設け、そのカバーと容器部材と棒状部材とで囲まれた空間にArガスを供給して、前記摺接箇所の露出部位をArガス流で覆うことにより、大気の代わりにArガスをリークさせるようにした真空容器を提供する。この場合、「容器部材」とは、容器を構成する部材のうち、摺動する棒状部材を除いたものをいう。また特に、カバーと容器部材と棒状部材とで囲まれた空間内のガス圧が大気圧以上になるように、Arガスの供給能力に応じて、当該空間からArガスが逃げる隙間を小さくした真空容器を提供する。
【0018】
さらに本発明では、取鍋の出し入れができるように開放可能な上蓋と、副原料投入チャンバーと、上下動可能な酸素吹錬用ランスを備えた真空脱ガス精錬用の真空容器において、真空排気時に、上蓋閉じ合わせ部の接合箇所,副原料投入チャンバー閉じ合わせ部の接合箇所およびランス摺動部の摺接箇所を容器外部からArガス流で覆うことにより、大気の代わりにArガスをリークさせるようにした真空容器を提供する。
【0019】
【発明の実施の形態】
上述のように、中で溶融金属を取り扱う一般的な真空容器は、構造上、真空排気中に閉じ合わせ部や摺動部などから大気のリークを生じる。このリークを防止するために容器の密閉性能を高めることは、技術的にも経済的にも多大の困難を伴い、操業現場への適用は現実的ではない。
本発明は、外部気体のリーク自体をくい止めるのではなく、リークする気体を大気からArガスに変えるという思想により、既存の真空容器の性能に逆らうことなく効果的に大気の侵入を防止する。
【0020】
Arガスをリークさせるために、本発明では真空排気時に外部気体のリークが生じる箇所を容器外部からArガス流で覆う手法を採る。Arガス流で覆うとは、単にリーク箇所にArガスを静的に存在させるのではなく、リーク箇所をArガスの流れに曝し、その状態を維持することである。Arガスの流れを形成することにより、周囲の大気が排除され、効率良くArガスをリークさせることができる。
【0021】
リーク箇所をArガス流で覆う方法としては、▲1▼ノズル等から吹き出したArガス流を連続的に直接リーク箇所にぶつける方法、▲2▼リーク箇所を囲うようにカバーを設け、そのカバーの内側にArガスを連続供給してArガスの流れを形成し、リーク箇所をその流れに曝す方法、などが挙げられる。
【0022】
ここで、▲2▼のカバーを用いる方法においては、そのカバーの内側の空間を気密状態にするのではなく、カバー内側に供給したArガスが外側に逃げるための隙間を設けておく。こうすることでカバー内側には常にArガス流を形成することができる。カバー内側への大気の流入をできるだけ減らすには、Arガス供給量とのバランスでカバー内側のガス圧が大気圧以上になるように、Arガスが外側に逃げるための隙間を小さくすることが有効である。
以下、「閉じ合わせ部」と「摺動部」について、大気の代わりにArガスをリークさせる手段を説明する。
【0023】
図1には、真空容器のハッチの閉じ合わせ部において、蓋と容器本体の接合箇所の周囲に環状のカバーを設けた例を示す。真空容器本体2はハッチの開口部にフランジ部3を有し、蓋1とフランジ部3とが、ガスケット4を介して接合することにより、閉じ合わせ部を構成している。真空排気時にはガスケット4を介した接合箇所から外部気体のリークが生じる。この接合箇所を囲むように、フランジ部3および蓋1の外周全体にわたって環状のカバー5を設けてある。この図の例では、閉じ合わせ部で係合する蓋1とフランジ部3のうち、蓋1の方にカバー5を取り付けてあるので、閉じ合わせ部の開閉動作を拘束しない。
【0024】
カバー5にはArガス供給管6が設けられ、カバー5と容器部材(蓋1,ガスケット4,容器のフランジ部3)とで囲まれた空間22には、真空排気時にArガス供給管6から連続的にArガスが供給される。ハッチ開口部が大きい場合にはArガス供給管6を複数設けることが望ましい。カバー5と容器部材の間には隙間7があり、空間22のArガスは隙間7から外部に逃げるようになっている。Arガスは、Arガス供給管6→空間22→隙間7の順に流動する。つまり、Arガス供給管6からArガスを供給しているとき、空間22には常にArガスの流れが生じており、ガスケット4を介した接合箇所は大気を排除したArガス流に曝される。真空排気装置を作動させると当該接合箇所から大気の代わりにArガスが容器内部にリークする。
【0025】
空間22への大気の流入をできるだけ避けるためには、Arガス供給管6からの供給量と隙間7からの放出量および容器内部へのリーク量とのバランスにより、空間22のガス圧が大気圧以上になるよう、隙間7を小さくすることが望ましい。例えば、カバー5を弾力性のある材料で作り、Arガス供給前にはカバー5と容器部材とが隙間7の箇所で接するようにしておき、Arガス供給時にその供給圧力によって最小限の隙間が自然に形成されるようにすれば、大気の流入を効果的に防止できる。
【0026】
図2には、真空容器のハッチの閉じ合わせ部において、フランジ部と蓋全体をカバーで囲んだ例を示す。ガスケット4を介した接合箇所を含むようにフランジ部と蓋全体をカバー5で囲んである。ハッチ開口部が比較的小さい場合にはこのようなカバーを設けることが構造上簡便である。この場合も、Arガスは、Arガス供給管6→空間22→隙間7の順に流動し、ガスケット4を介した接合箇所は大気を排除したArガス流に曝される。真空排気時には当該接合箇所から大気の代わりにArガスが容器内部にリークする。
【0027】
図3には、摺動部にArガス吹き出し管を設けた例を示す。測温プローブやランスなどの棒状部材10が真空容器の内部と外部を貫通して容器部材と摺接している摺動部において、その摺接箇所11が外部に露出している部位の近傍に、棒状部材10を取り巻くように、Arガス吹き出し管12が設けてある。Arガス吹き出し管12にはスリット状または複数の孔状のガス吹き出し口13があり、Arガス吹き出し管12に供給されたArガスはガス吹き出し口13から吹き出してArガス流を形成し、そのArガス流が前記摺接箇所の外部露出部位に直接ぶつかるようになっている。ガス吹き出し口13は棒状部材10の周囲にほぼ均等に設けてあるので、摺接箇所の外部露出部位の全体がArガス流に曝される。真空排気装置を作動させると当該部位から大気の代わりにArガスが容器内部にリークする。
【0028】
図4は、図3と同様の摺動部にノズル状のガス吹き出し口13を有するArガス吹き出し管12を設けた例を示す。棒状部材10を取り巻くように複数のArガス吹き出し管12を配置することで摺接箇所の外部露出部位の全体をArガス流に曝すことができる。
【0029】
図5には、摺動部の摺接箇所外側をカバーで囲んだ例を示す。棒状部材10が上記と同様に容器部材と摺接しており、その摺接箇所11が外部に露出している部位の外側に環状のカバー5を設けてある。このカバー5は容器部材に取り付けてあり、棒状部材10の動作を拘束しない。カバー5にはArガス供給管6が設けられ、カバー5と容器部材と棒状部材10とで囲まれた空間23には、真空排気時にArガス供給管6から連続的にArガスが供給される。空間23に供給されたArガスは隙間7から外部に逃げるようになっている。Arガスは、Arガス供給管6→空間23→隙間7の順に流動する。Arガス供給管6からArガスを供給しているとき、空間23には常にArガスの流れが生じており、摺接箇所の外部露出部位の全体がArガス流に曝される。真空排気装置を作動させると当該部位から大気の代わりにArガスが容器内部にリークする。
【0030】
空間23への大気の流入をできるだけ避けるためには、Arガス供給管6からの供給量と隙間7からの放出量および容器内部へのリーク量とのバランスにより、空間23のガス圧が大気圧以上になるよう、隙間7を小さくすることが望ましい。
【0031】
【実施例】
VOD法による真空脱ガス精錬用の真空容器において、真空排気時に、主たるリーク箇所から大気の代わりにArガスをリークさせるようにして、ステンレス溶鋼の精錬を行い、極低C・極低N鋼の溶製を試みた。
【0032】
図6に、真空脱ガス精錬用の真空容器の構造を模式的に示す。真空容器本体30は取鍋34を出し入れできるように上部に大きな開口部を有し、上蓋31が閉じ合わせ部50において本体30と係合する。上蓋31には、副原料投入チャンバー36と酸素吹錬用ランス38が備わる。副原料投入チャンバー36の上部にはハッチ37があり、閉じ合わせ部51によって接合する。ランス38は、先端が取鍋内の溶湯32の中に浸漬できるように上下動可能になっており、摺動部52において容器部材と摺接する。取鍋の底部にはポーラスプラグ39があり、底吹きArガスが供給される。容器本体30には真空排気装置につながる排気口35があり、真空排気装置を作動させると排気口35から内部気体が排出されると同時に、閉じ合わせ部50,51および摺動部52から外部気体がリークして真空容器内部に進入する。
【0033】
この真空容器において、閉じ合わせ部50,51および摺動部52の箇所にそれぞれ以下のように大気に代えてArガスをリークさせる機構を設けた。
・上蓋閉じ合わせ部50; 図1に示したタイプの環状のカバーを蓋側に取り付けた。Arガス供給圧力:1.2kg/cm,Arガス供給量:300NL/minとした。
・ハッチ閉じ合わせ部51; 図1に示したタイプの環状のカバーを蓋側に取り付けた。Arガス供給圧力:1.2kg/cm,Arガス供給量:300NL/minとした。
・ランス摺動部52; 図3に示したタイプのArガス吹き付け管を摺接箇所の露出部位の近傍に設け、スリット状のガス吹き出し口から出たArガス流が当該露出部位全体に直接ぶつかるようにセッティングした。Arガス供給圧力:1.2kg/cm,Arガス供給量:150NL/minとした。
【0034】
Cr含有量が約10〜30質量%,C含有量が約4.5〜6.5質量%のFe−Cr−C合金溶湯またはFe−Cr−Ni−C合金溶湯約70トンを、転炉にて酸素吹錬により粗脱炭・粗脱窒した後、取鍋に出湯し、その取鍋を上記の真空脱ガス精錬用真空容器にセットして精錬を行った。
【0035】
各チャージとも、上蓋31を閉じた後、閉じ合わせ部50,51および摺動部52にリーク用Arガスを上記の圧力および供給量にて供給開始した。その後、真空排気を行い、まず、取鍋中の溶鋼を底吹きArガス(流量:12NL/min・t)で攪拌しながらランス38を溶湯32に挿入して酸素吹錬を実施し、脱炭・脱窒を行った。C含有量が0.010〜0.013質量%に到達した後、酸素吹錬を止め、底吹きArガスで攪拌しながら真空処理のみによる脱炭を行った。このときの真空度は0.5Torrとした。この仕上げ脱炭・脱窒が終了した後、高塩基度フラックスを30kg/t−metal添加して脱酸,脱硫等の仕上げ精錬を行った。その後、真空排気を止め、底吹きArガス流量を3NL/min・tに絞ったのち、容器内部に大気を導入し、リーク用Arガスの供給も止めた。大気圧下で最終的な成分調整を行い、上蓋31を開放して取鍋を取り出し、鋳造場に移送した。
なお、比較例として、リーク用Arガスを供給しない従来の方法で同様の精錬を行った。
【0036】
表1に、各チャージで得られた鋳造材のCr,Ni,C,Nの含有量、およびC+N量を示す。脱炭・脱窒の達成度の評価は、Cr含有量レベルに応じて以下のように判定した。
・Cr量が15質量%未満の場合: C+N≦0.006質量%を良好とする。
・Cr量が15〜20質量%の場合: C+N≦0.008質量%を良好とする。
・Cr量が20質量%を超える場合: C+N≦0.010質量%を良好とする。
表1からわかるように、真空排気時に大気の代わりにArガスをリークさせた本発明例No.1〜6では、いずれのCrレベルにおいても脱炭・脱窒の達成度が「良好」と判定される極低C,N材が得られた。これに対し、大気のリークが生じる従来法を採用した比較例7〜12では、「良好」と判定される極低C,N材は得られなかった。
【0037】
【表1】

Figure 2004069199
【0038】
【発明の効果】
本発明の真空容器は、以下のような優れた効果を有する。
(1) 真空排気時に大気のリークを大幅に防止できるので、中で取り扱う溶融金属の品質が向上する。
(2) 複雑なシール構造を必要としないので、既存の真空容器のシール構造をそのまま利用できる。
(3) Arガスをリークさせるための機構は簡易な構造で十分であるから改造も容易である。
(4) 実験用の小型真空溶解炉から営業生産用の大規模真空精錬装置に至るまで幅広く適用可能である。
このように、本発明は、簡便な手段により優れた効果を発揮するので、冶金分野における研究開発や営業生産に大きな利益をもたらす。
【図面の簡単な説明】
【図1】真空容器のハッチ部分について、蓋と容器本体の接合箇所の周囲に環状のカバーを設けた閉じ合わせ部の構造を模式的に示した断面図。
【図2】真空容器のハッチ部分について、フランジ部と蓋全体をカバーで囲んだ閉じ合わせ部の構造を模式的に示した断面図。
【図3】真空容器の内部と外部を貫通する棒状部材が容器部材と摺接する摺接箇所近傍にスリット状または複数の孔状のガス吹き出し口を有するArガス吹き出し管を設けた摺動部の構造を模式的に示した断面図。
【図4】真空容器の内部と外部を貫通する棒状部材が容器部材と摺接する摺接箇所近傍に複数のノズル状のガス吹き出し口を有するArガス吹き出し管を設けた摺動部の構造を模式的に示した断面図。
【図5】真空容器の内部と外部を貫通する棒状部材が容器部材と摺接する摺接箇所外側をカバーで囲んだ摺動部の構造を模式的に示した断面図。
【図6】真空脱ガス精錬用の真空容器の構造を模式的に示した断面図。
【符号の説明】
1 蓋
2 真空容器本体
3 フランジ部
4 ガスケット
5 カバー
6 Arガス供給管
7 隙間
10 棒状部材
11 摺接箇所
12 Arガス吹き出し管
13 ガス吹き出し口
20 容器内部
21 容器外部
22 カバーと容器部材とで囲まれた空間
23 カバーと容器部材と棒状部材とで囲まれた空間
30 真空脱ガス精錬用の真空容器本体
31 上蓋
32 溶湯
33 スラグ
34 取鍋
35 排気口
36 副原料投入チャンバー
37 ハッチ
38 酸素吹錬用ランス
39 ポーラスプラグ
50 上蓋閉じ合わせ部
51 ハッチ閉じ合わせ部
52 ランス摺動部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a technique for preventing a leak of air from the outside to the inside of a vacuum container handling molten metal during vacuum evacuation.
[0002]
[Prior art]
Melting, casting, or refining of metal is often performed in a vacuum vessel. Although the purpose is various, the following are mainly mentioned.
(1) Prevent oxygen and nitrogen from being mixed into the molten metal from the atmosphere.
{Circle around (2)} Prevents oxide scale from forming on the surface of the molten metal and impairing castability.
{Circle around (3)} Prevents entrainment of gas during casting.
(4) Efficiently remove gas components in the molten metal.
[0003]
As a vacuum vessel for experiments or small-scale production, various kinds of "high-frequency vacuum melting furnaces" in which a crucible for melting a metal having a high-frequency induction coil and a mold are installed therein are widely used. These can be melted and easily refined and cast by operations from outside the vacuum vessel.
[0004]
Equipment for large-scale production includes a vacuum degassing device in a steel production line. For example, in a stainless steel production line, the molten steel subjected to rough decarburization and rough denitrification is charged into a vacuum vessel as a ladle and subjected to oxygen blowing and Ar gas bottom blowing stirring under reduced pressure while evacuating, Then, a refining method is employed in which the decarburization / denitrification reaction is efficiently advanced by performing Ar gas bottom blowing and stirring under a vacuum of about 0.5 Torr (VOD method).
[0005]
Except for some experimental precision vessels, these vacuum vessels for handling molten metal have some common features. First, these containers have large-diameter lids. In a vacuum melting furnace, a set of raw materials and a mold must be taken in and out, and in a vacuum degassing apparatus of the VOD method, a ladle needs to be taken in and out. Therefore, these vacuum vessels require large-diameter lids. In addition, a hatch is generally provided so that auxiliary materials can be charged. Further, sliding members such as a probe for temperature measurement and sampling and a lance for oxygen blowing are provided.
[0006]
Lids and hatches are typically simple closed structures via gaskets so that they can be quickly opened and closed during operation. Probes for temperature measurement and sampling, lances for oxygen blowing, etc. are inserted into the molten metal during operation, so they themselves constitute a rod-shaped sliding member and have a structure that slides on the container member. I have. When evacuated, these closing parts and sliding parts are difficult to completely block the ingress of gas from the outside to the inside of the container due to their structure. Leaks to
[0007]
Such an air leak can be a problem in the melting and refining of various metals. Above all, the following problems actually occur in refining stainless steel by the VOD method.
That is, in the VOD method, the next degassing reaction is promoted by performing vacuum refining, and decarburization and denitrification are performed efficiently.
C + O → CO (gas)
2 N → N 2 (gas)
(The underlined elements mean that they are dissolved in the molten steel).
Originally, the VOD method is considered to be an advantageous method for extremely low C and extremely low N. However, in recent years, there has been an increasing demand for quality improvement and material property improvement, and it has become necessary to produce more low-C and N-materials more stably and at lower cost.
[0008]
In order to achieve extremely low C and N, it is important to increase the gas-liquid reaction interface area while evacuating. However, as described above, leakage of atmospheric air from the outside is unavoidable during evacuation. Therefore, if the area of the gas-liquid reaction interface is increased, “nitrogen absorption” of N 2 gas entering the vacuum vessel into molten steel will occur. Promoted. In particular, in a high corrosion resistant stainless steel having a high Cr content, the activity of N is reduced due to the interaction between Cr and N, and the nitrogen absorption is liable to increase. If the stirring power of the molten steel is reduced to suppress the amount of nitrogen absorption, the decarburization efficiency is reduced.
[0009]
Hitherto, as a means for preventing air from leaking during vacuum refining, a method has been proposed in which a closing portion and a sliding portion of a vacuum vessel have a "double seal structure" (Japanese Patent Laid-Open No. 50-98417). This is to separate the inside and the outside of the vacuum vessel through two gaskets. An airtight chamber is provided between the two gaskets, and the Ar gas is purged in this state with Ar gas being increased to about 2 kg / cm 2. This is to prevent the intrusion of air into the interior.
[0010]
[Problems to be solved by the invention]
However, a major modification is required to apply the "double seal structure" to existing equipment. In addition, maintenance is troublesome because the structure is particularly complicated in the sliding portion. Furthermore, since the refining vacuum vessel has a plurality of closing portions (flange portions) and sliding portions, it is not structurally easy to provide a double seal for all of them.
[0011]
Therefore, the present invention provides a technology for effectively preventing the intrusion of the atmosphere into the inside of a vacuum container during vacuum evacuation by a simple means in which the existing sealing structure can be used as it is in a vacuum container for handling molten metal inside. The purpose is to provide.
[0012]
[Means for Solving the Problems]
As a result of various studies, the present inventors have adopted a simple method of covering a location where air leakage occurs during vacuum evacuation with an Ar gas flow from the outside of the container, thereby processing the molten metal in the vacuum container. The inventor found that a remarkable quality improving effect was recognized in the obtained cast slab, and completed the present invention.
[0013]
That is, the above object is to allow Ar gas to leak instead of air by covering a place where external gas leaks during vacuum evacuation with an Ar gas flow from outside of the container in a vacuum vessel handling molten metal therein. Achieved by a vacuum vessel.
Here, "handling the molten metal in" means i) dissolving the blended raw materials to produce a molten metal, ii) refining the molten metal, and iii) casting the molten metal inside the vacuum vessel. Means performing one or more processes.
[0014]
Further, the present invention provides a vacuum vessel which employs an effective means for leaking Ar gas instead of air for each of the "closed portion" and the "sliding portion" where leakage of external gas is likely to occur during vacuum evacuation. I do.
[0015]
First, as a vacuum container with an improved sealing portion, a cover is provided outside the joining portion of the sealing portion, and Ar gas is supplied to a space surrounded by the cover and the container member, and the joining portion is sealed with Ar gas. A vacuum vessel is provided which is covered with a gas flow so as to leak Ar gas instead of air. By attaching the cover to one of the members engaged by the closing portion, the opening and closing operation of the closing portion can be prevented. Further, according to the supply capacity of the Ar gas, there is provided a vacuum vessel in which a gap through which the Ar gas escapes from the space is reduced so that the gas pressure in the space surrounded by the cover and the container member becomes equal to or higher than the atmospheric pressure. .
[0016]
Next, as a vacuum container with an improved sliding portion, an Ar gas blowing pipe is provided near a portion where the rod-shaped member is in sliding contact with the container member, where the sliding contact portion is exposed to the outside, A vacuum vessel is provided in which the exposed portion of the sliding contact portion is covered with an Ar gas flow blown out from the pipe to leak Ar gas instead of air. In particular, an Ar gas blowing pipe having a slit-shaped, hole-shaped, or nozzle-shaped gas blowing port is employed, which is arranged so as to surround the rod-shaped member, and Ar gas is blown over the entire exposed portion of the sliding contact portion. A vacuum container is provided.
[0017]
As a vacuum container adopting another means for improving the sliding portion, the operation of the rod-shaped member is not restricted to the outside of the sliding portion where the rod-shaped member is in sliding contact with the container member, where the sliding contact portion is exposed to the outside. Ar gas is supplied to a space surrounded by the cover, the container member, and the rod-shaped member so that the exposed portion of the sliding contact portion is covered with an Ar gas flow, so that the Ar gas is used instead of the atmosphere. A vacuum vessel adapted to leak water. In this case, the “container member” refers to a member constituting the container except for a sliding rod-shaped member. Further, in particular, a vacuum in which a gap through which the Ar gas escapes from the space according to the supply capacity of the Ar gas is reduced so that the gas pressure in the space surrounded by the cover, the container member, and the rod-shaped member is equal to or higher than the atmospheric pressure. Provide a container.
[0018]
Further, according to the present invention, a vacuum vessel for vacuum degassing and refining equipped with an upper lid that can be opened and removed so that a ladle can be taken in and out, an auxiliary material charging chamber, and a vertically movable lance for oxygen blowing can be used for vacuum evacuation. By covering the joint of the upper lid closing part, the joint of the auxiliary material input chamber closing part, and the sliding contact of the lance sliding part with an Ar gas flow from outside the container, Ar gas is leaked instead of air. A vacuum container is provided.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
As described above, a general vacuum vessel handling molten metal therein leaks air from a closing portion, a sliding portion, and the like during the evacuation due to its structure. Enhancing the sealing performance of the container in order to prevent this leakage involves a great deal of technical and economical difficulties, and is not practically applicable to operation sites.
The present invention effectively prevents the invasion of the atmosphere without deteriorating the performance of the existing vacuum vessel, based on the idea of changing the leaked gas from the atmosphere to the Ar gas, instead of stopping the leak of the external gas itself.
[0020]
In order to leak Ar gas, the present invention employs a method of covering a location where external gas leaks during evacuation with an Ar gas flow from outside the container. To cover with the Ar gas flow means not to make the Ar gas statically exist at the leak location, but to expose the leak location to the flow of the Ar gas and maintain the state. By forming the flow of the Ar gas, the surrounding atmosphere is removed, and the Ar gas can be efficiently leaked.
[0021]
As a method of covering the leak location with the Ar gas flow, (1) a method in which the Ar gas flow blown out from the nozzle or the like is continuously and directly hitting the leak location, (2) a cover is provided so as to surround the leak location, and A method of continuously supplying Ar gas to the inside to form a flow of Ar gas, and exposing a leak location to the flow, and the like.
[0022]
Here, in the method using the cover of (2), the space inside the cover is not made airtight, but a gap is provided for the Ar gas supplied inside the cover to escape outside. By doing so, an Ar gas flow can always be formed inside the cover. In order to reduce the inflow of air into the inside of the cover as much as possible, it is effective to reduce the gap for the Ar gas to escape to the outside so that the gas pressure inside the cover becomes higher than the atmospheric pressure in balance with the supply amount of Ar gas. It is.
Hereinafter, means for leaking Ar gas instead of air for the “closer” and “slider” will be described.
[0023]
FIG. 1 shows an example in which an annular cover is provided around a joint between a lid and a container body at a closing portion of a hatch of a vacuum container. The vacuum vessel main body 2 has a flange portion 3 at the opening of the hatch, and the lid 1 and the flange portion 3 are joined via a gasket 4 to form a closing portion. At the time of evacuation, leakage of the external gas occurs from the joint via the gasket 4. An annular cover 5 is provided over the entire outer periphery of the flange portion 3 and the lid 1 so as to surround the joint. In the example of this figure, the cover 5 is attached to the lid 1 of the lid 1 and the flange 3 that are engaged with each other at the closing portion, so that the opening / closing operation of the closing portion is not restricted.
[0024]
An Ar gas supply pipe 6 is provided on the cover 5, and a space 22 surrounded by the cover 5 and the container member (the lid 1, the gasket 4, and the flange portion 3 of the container) is provided from the Ar gas supply pipe 6 during evacuation. Ar gas is continuously supplied. When the hatch opening is large, it is desirable to provide a plurality of Ar gas supply pipes 6. There is a gap 7 between the cover 5 and the container member, and Ar gas in the space 22 escapes from the gap 7 to the outside. The Ar gas flows in the order of the Ar gas supply pipe 6 → the space 22 → the gap 7. That is, when the Ar gas is supplied from the Ar gas supply pipe 6, the flow of the Ar gas is always generated in the space 22, and the joint portion via the gasket 4 is exposed to the Ar gas flow excluding the atmosphere. . When the evacuation device is activated, Ar gas leaks from the joint to the inside of the container instead of the air.
[0025]
In order to avoid the inflow of the atmosphere into the space 22 as much as possible, the gas pressure in the space 22 is reduced to the atmospheric pressure by the balance between the supply amount from the Ar gas supply pipe 6, the release amount from the gap 7, and the leak amount into the container. As described above, it is desirable to reduce the gap 7. For example, the cover 5 is made of a resilient material, and the cover 5 and the container member are brought into contact with each other at the gap 7 before the supply of the Ar gas. If it is formed naturally, the inflow of air can be effectively prevented.
[0026]
FIG. 2 shows an example in which the flange portion and the entire lid are surrounded by a cover at the closing portion of the hatch of the vacuum vessel. The flange and the entire lid are surrounded by a cover 5 so as to include a joint portion via the gasket 4. When the hatch opening is relatively small, providing such a cover is structurally simple. Also in this case, the Ar gas flows in the order of the Ar gas supply pipe 6 → the space 22 → the gap 7, and the joint via the gasket 4 is exposed to the Ar gas flow excluding the atmosphere. At the time of vacuum evacuation, Ar gas leaks into the container instead of the air from the joint portion.
[0027]
FIG. 3 shows an example in which an Ar gas blowing pipe is provided in the sliding portion. In a sliding portion in which a rod-shaped member 10 such as a temperature measuring probe or a lance penetrates the inside and outside of the vacuum container and is in sliding contact with the container member, in the vicinity of a portion where the sliding contact portion 11 is exposed to the outside, An Ar gas blowing pipe 12 is provided so as to surround the rod-shaped member 10. The Ar gas blowing pipe 12 has a slit-shaped or a plurality of hole-shaped gas blowing ports 13, and Ar gas supplied to the Ar gas blowing pipe 12 is blown out from the gas blowing port 13 to form an Ar gas flow, and the Ar gas flow is formed. The gas flow directly hits the externally exposed portion of the sliding contact portion. Since the gas outlet 13 is provided substantially uniformly around the rod-shaped member 10, the entire externally exposed portion of the sliding contact portion is exposed to the Ar gas flow. When the evacuation device is operated, Ar gas leaks from the portion instead of the air into the container.
[0028]
FIG. 4 shows an example in which an Ar gas blowing pipe 12 having a nozzle-shaped gas blowing port 13 is provided on the same sliding portion as in FIG. By arranging a plurality of Ar gas blowing pipes 12 so as to surround the rod-shaped member 10, the entire externally exposed portion of the sliding contact portion can be exposed to the Ar gas flow.
[0029]
FIG. 5 shows an example in which the sliding portion outside the sliding portion is surrounded by a cover. The rod-shaped member 10 is in sliding contact with the container member in the same manner as described above, and the annular cover 5 is provided outside a portion where the sliding contact portion 11 is exposed to the outside. The cover 5 is attached to the container member and does not restrict the operation of the rod-shaped member 10. An Ar gas supply pipe 6 is provided on the cover 5, and an Ar gas is continuously supplied from the Ar gas supply pipe 6 to the space 23 surrounded by the cover 5, the container member, and the rod-shaped member 10 during evacuation. . The Ar gas supplied to the space 23 escapes from the gap 7 to the outside. The Ar gas flows in the order of the Ar gas supply pipe 6 → the space 23 → the gap 7. When the Ar gas is supplied from the Ar gas supply pipe 6, a flow of the Ar gas is always generated in the space 23, and the entire externally exposed portion of the sliding contact portion is exposed to the Ar gas flow. When the evacuation device is operated, Ar gas leaks from the portion instead of the air into the container.
[0030]
In order to minimize the inflow of the atmosphere into the space 23, the gas pressure in the space 23 is reduced to the atmospheric pressure by the balance between the supply amount from the Ar gas supply pipe 6, the release amount from the gap 7, and the leakage amount into the container. As described above, it is desirable to reduce the gap 7.
[0031]
【Example】
In a vacuum vessel for vacuum degassing and refining by the VOD method, at the time of vacuum evacuation, a stainless steel molten steel is refined by leaking Ar gas instead of air from a main leak point, and ultra-low C / ultra-low N steel is produced. Attempted smelting.
[0032]
FIG. 6 schematically shows the structure of a vacuum vessel for vacuum degassing and refining. The vacuum vessel main body 30 has a large opening at the top so that the ladle 34 can be taken in and out, and the upper lid 31 is engaged with the main body 30 at the closing portion 50. The upper lid 31 is provided with an auxiliary raw material charging chamber 36 and an oxygen blowing lance 38. A hatch 37 is provided at an upper portion of the auxiliary material input chamber 36 and is joined by a closing portion 51. The lance 38 can be moved up and down so that the tip can be immersed in the molten metal 32 in the ladle, and slidably contacts the container member at the sliding portion 52. A porous plug 39 is provided at the bottom of the ladle, and bottom blown Ar gas is supplied. The container body 30 has an exhaust port 35 connected to the vacuum exhaust device. When the vacuum exhaust device is operated, the internal gas is exhausted from the exhaust port 35 and, at the same time, the external gas is exhausted from the closing portions 50 and 51 and the sliding portion 52. Leaks into the vacuum chamber.
[0033]
In this vacuum vessel, a mechanism for leaking Ar gas instead of the atmosphere was provided at each of the closing portions 50 and 51 and the sliding portion 52 as described below.
-Upper lid closing part 50: An annular cover of the type shown in Fig. 1 was attached to the lid side. Ar gas supply pressure: 1.2 kg / cm 2 , Ar gas supply: 300 NL / min.
Hatch closing portion 51: An annular cover of the type shown in FIG. 1 was attached to the lid side. Ar gas supply pressure: 1.2 kg / cm 2 , Ar gas supply: 300 NL / min.
A lance sliding portion 52; an Ar gas blowing pipe of the type shown in FIG. 3 is provided in the vicinity of the exposed portion of the sliding contact portion, and the Ar gas flow coming out of the slit-shaped gas outlet directly hits the entire exposed portion. It was set as follows. Ar gas supply pressure: 1.2 kg / cm 2 , Ar gas supply: 150 NL / min.
[0034]
About 70 tons of molten Fe—Cr—C alloy or molten Fe—Cr—Ni—C alloy having a Cr content of about 10 to 30% by mass and a C content of about 4.5 to 6.5% by weight After decarburization and denitrification by oxygen blowing, the hot water was poured into a ladle, and the ladle was set in the vacuum vessel for vacuum degassing and refining to perform refining.
[0035]
In each charge, after the upper lid 31 was closed, the supply of the Ar gas for leakage to the closing portions 50 and 51 and the sliding portion 52 at the above-described pressure and supply amount was started. Thereafter, vacuum evacuation is performed, and first, the lance 38 is inserted into the molten metal 32 while the molten steel in the ladle is stirred with bottom-blown Ar gas (flow rate: 12 NL / min · t) to perform oxygen blowing and decarburization.・ Denitrification was performed. After the C content reached 0.010 to 0.013 mass%, oxygen blowing was stopped, and decarburization was performed only by vacuum treatment while stirring with bottom-blown Ar gas. At this time, the degree of vacuum was 0.5 Torr. After the finishing decarburization / denitrification was completed, a high basicity flux was added at 30 kg / t-metal to perform finishing refining such as deoxidation and desulfurization. Thereafter, the evacuation was stopped, the flow rate of the bottom-blown Ar gas was reduced to 3 NL / min · t, and then the atmosphere was introduced into the container, and the supply of the Ar gas for leakage was stopped. The final components were adjusted under atmospheric pressure, the upper lid 31 was opened, the ladle was taken out, and transferred to the foundry.
As a comparative example, the same refining was performed by the conventional method without supplying the leak Ar gas.
[0036]
Table 1 shows the contents of Cr, Ni, C, and N and the amount of C + N of the cast material obtained by each charge. The evaluation of the degree of achievement of decarburization / denitrification was determined as follows according to the Cr content level.
When the amount of Cr is less than 15% by mass: C + N ≦ 0.006% by mass is determined to be good.
When the amount of Cr is 15 to 20% by mass: C + N ≦ 0.008% by mass is determined to be good.
When the amount of Cr exceeds 20% by mass: C + N ≦ 0.010% by mass is regarded as good.
As can be seen from Table 1, Example No. 1 of the present invention in which Ar gas was leaked instead of air during vacuum evacuation. In Nos. 1 to 6, extremely low C and N materials in which the degree of achievement of decarburization / denitrification was determined to be “good” at any Cr level were obtained. On the other hand, in Comparative Examples 7 to 12 employing the conventional method in which the air leaks, very low C and N materials judged to be “good” were not obtained.
[0037]
[Table 1]
Figure 2004069199
[0038]
【The invention's effect】
The vacuum vessel of the present invention has the following excellent effects.
(1) Since air leakage can be largely prevented at the time of evacuation, the quality of the molten metal handled therein is improved.
(2) Since a complicated sealing structure is not required, the existing sealing structure of the vacuum vessel can be used as it is.
(3) Since a simple structure is sufficient for the mechanism for leaking Ar gas, the remodeling is easy.
(4) It can be widely applied from small vacuum melting furnaces for experiments to large-scale vacuum refining equipment for commercial production.
As described above, the present invention exerts excellent effects by simple means, and thus brings great benefits to R & D and commercial production in the field of metallurgy.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing the structure of a closing portion in which a hatch portion of a vacuum container is provided with an annular cover around a joint between a lid and a container body.
FIG. 2 is a cross-sectional view schematically showing a structure of a closing portion in which a hatch portion of the vacuum vessel surrounds a flange portion and a lid with a cover.
FIG. 3 shows a sliding portion provided with an Ar gas blowing pipe having a slit-shaped or a plurality of hole-shaped gas blowing ports in the vicinity of a sliding contact point where a rod-shaped member penetrating the inside and outside of the vacuum container is in sliding contact with the container member. Sectional drawing which showed the structure typically.
FIG. 4 schematically shows a structure of a sliding portion provided with an Ar gas blowing pipe having a plurality of nozzle-shaped gas blowing ports near a sliding contact point where a rod-shaped member penetrating through the inside and outside of the vacuum vessel slides on the vessel member. FIG.
FIG. 5 is a cross-sectional view schematically illustrating a structure of a sliding portion in which a rod-shaped member penetrating through the inside and outside of the vacuum vessel is in sliding contact with the vessel member and the outside of a sliding contact portion is surrounded by a cover.
FIG. 6 is a sectional view schematically showing the structure of a vacuum vessel for vacuum degassing and refining.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Lid 2 Vacuum container main body 3 Flange part 4 Gasket 5 Cover 6 Ar gas supply pipe 7 Gap 10 Bar-shaped member 11 Sliding contact point 12 Ar gas blowing pipe 13 Gas blowing port 20 Inside of container 21 Outside of container 22 Surrounded by cover and container member Space 23 surrounded by cover, container member and rod-shaped member 30 vacuum container body 31 for vacuum degassing and refining upper lid 32 molten metal 33 slag 34 ladle 35 exhaust port 36 auxiliary material charging chamber 37 hatch 38 oxygen blowing Lance 39 Porous plug 50 Top lid closing part 51 Hatch closing part 52 Lance sliding part

Claims (9)

中で溶融金属を取り扱う真空容器において、真空排気時に外部気体のリークが生じる箇所を容器外部からArガス流で覆うことにより、大気の代わりにArガスをリークさせるようにした真空容器。A vacuum vessel for handling molten metal in a vacuum vessel, wherein an Ar gas flow from the outside of the vessel is covered with an Ar gas flow from a location where an external gas leaks during vacuum evacuation, thereby allowing Ar gas to leak instead of air. 中で溶融金属を取り扱う真空容器において、真空排気時に外部気体のリークが生じる閉じ合わせ部の接合箇所外側にカバーを設け、そのカバーと容器部材とで囲まれた空間にArガスを供給して、当該接合箇所をArガス流で覆うことにより、大気の代わりにArガスをリークさせるようにした真空容器。In a vacuum vessel handling molten metal in the inside, a cover is provided outside the joint portion of the closing part where leakage of external gas occurs during evacuation, and Ar gas is supplied to a space surrounded by the cover and the container member, A vacuum vessel in which the joint is covered with an Ar gas flow to leak Ar gas instead of air. 閉じ合わせ部で係合する一方の部材にカバーを取り付けることにより、閉じ合わせ部の開閉動作を拘束しないようにした請求項2に記載の真空容器。3. The vacuum vessel according to claim 2, wherein a cover is attached to one of the members engaged with the closing portion so as not to restrict the opening / closing operation of the closing portion. カバーと容器部材とで囲まれた空間内のガス圧が大気圧以上になるように、当該空間からArガスが逃げる隙間を小さくした請求項2または3に記載の真空容器。4. The vacuum container according to claim 2, wherein a gap for escaping Ar gas from the space is reduced so that a gas pressure in a space surrounded by the cover and the container member is equal to or higher than the atmospheric pressure. 中で溶融金属を取り扱う真空容器において、棒状部材が容器部材と摺接して真空排気時に外部気体のリークが生じる摺動部の、摺接箇所が外部に露出している部位の近傍に、Arガス吹き出し管を設け、その管から吹き出したArガス流で前記摺接箇所の露出部位を覆うことにより、大気の代わりにArガスをリークさせるようにした真空容器。In a vacuum vessel handling molten metal in the inside, Ar gas is placed in the vicinity of a portion of the sliding portion where the rod-shaped member comes into sliding contact with the container member and the external gas leaks during vacuum evacuation, where the sliding contact portion is exposed to the outside. A vacuum vessel provided with a blow-out tube and covering an exposed portion of the sliding contact portion with an Ar gas flow blown out from the tube, thereby allowing Ar gas to leak instead of air. スリット状,孔状,またはノズル状のガス吹き出し口を有するArガス吹き出し管を、棒状部材を取り巻くように配置し、摺接箇所の露出部位全体にArガスが吹き掛かるようにした請求項5に記載の真空容器。An Ar gas blowing pipe having a slit-shaped, hole-shaped or nozzle-shaped gas blowing port is arranged so as to surround the rod-shaped member, and Ar gas is blown over the entire exposed portion of the sliding contact portion. The vacuum vessel as described. 中で溶融金属を取り扱う真空容器において、棒状部材が容器部材と摺接して真空排気時に外部気体のリークが生じる摺動部の、摺接箇所が外部に露出している部位の外側に、棒状部材の動作を拘束しないようにカバーを設け、そのカバーと容器部材と棒状部材とで囲まれた空間にArガスを供給して、前記摺接箇所の露出部位をArガス流で覆うことにより、大気の代わりにArガスをリークさせるようにした真空容器。In a vacuum vessel that handles molten metal inside, a rod-shaped member slides out of the sliding part where the rod-shaped member comes into sliding contact with the container member and an external gas leaks during evacuation, where the sliding contact point is exposed to the outside. A cover is provided so as not to restrict the operation of the above, and Ar gas is supplied to a space surrounded by the cover, the container member, and the rod-shaped member, and the exposed portion of the sliding contact portion is covered with an Ar gas flow, so that Vacuum container in which Ar gas is leaked instead of. カバーと容器部材と棒状部材とで囲まれた空間内のガス圧が大気圧以上になるように、当該空間からArガスが逃げる隙間を小さくした請求項7に記載の真空容器。8. The vacuum vessel according to claim 7, wherein a gap in which the Ar gas escapes from the space surrounded by the cover, the container member, and the rod-shaped member is reduced so that a gas pressure in the space is equal to or higher than the atmospheric pressure. 取鍋の出し入れができるように開放可能な上蓋と、副原料投入チャンバーと、上下動可能な酸素吹錬用ランスを備えた真空脱ガス精錬用の真空容器において、真空排気時に、上蓋閉じ合わせ部の接合箇所,副原料投入チャンバー閉じ合わせ部の接合箇所およびランス摺動部の摺接箇所を容器外部からArガス流で覆うことにより、大気の代わりにArガスをリークさせるようにした真空容器。In a vacuum vessel for vacuum degassing and refining equipped with an upper lid that can be opened and removed so that the ladle can be taken in and out, an auxiliary material charging chamber, and a vertically movable oxygen blowing lance, the upper lid closing part A vacuum vessel in which an Ar gas is leaked instead of the atmosphere by covering the joint of the above, the joint of the closing portion of the auxiliary material input chamber, and the sliding contact of the lance sliding part with an Ar gas flow from outside the container.
JP2002229948A 2002-08-07 2002-08-07 Vacuum container Pending JP2004069199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002229948A JP2004069199A (en) 2002-08-07 2002-08-07 Vacuum container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002229948A JP2004069199A (en) 2002-08-07 2002-08-07 Vacuum container

Publications (1)

Publication Number Publication Date
JP2004069199A true JP2004069199A (en) 2004-03-04

Family

ID=32016170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002229948A Pending JP2004069199A (en) 2002-08-07 2002-08-07 Vacuum container

Country Status (1)

Country Link
JP (1) JP2004069199A (en)

Similar Documents

Publication Publication Date Title
CN111057948A (en) Narrow-range production control method for rare earth elements La and Ce in rare earth bearing steel
JPH02141540A (en) Method and device for manufacturing copper with low oxygen content
US3501290A (en) Method of treating molten metal with arc heat and vacuum
US3240588A (en) Method and apparatus for treating molten metal
JP5292870B2 (en) Reuse method of slag in ladle
JP5601132B2 (en) Melting method of low carbon aluminum killed steel with excellent cleanability
US4027095A (en) Hermetically sealed arc furnace
CN111518992B (en) Tank type single-nozzle refining furnace and vacuum refining method
CN115595401B (en) Steel refining equipment and steel-making method for improving cleanliness of molten steel
JP4592227B2 (en) Apparatus and method for sealing holes for addition of alloy / secondary material in vacuum refining furnace
EP1215288A1 (en) Ladle refining device and ladle refining method using it
JP2004069199A (en) Vacuum container
US3759700A (en) Process of refining metal melts by supersonic oxygen blow
US4401464A (en) Injection metallurgy method and equipment for its execution
RU2324744C1 (en) Method of steel vacuum refining process in ladle, mechanism (variants) and junction pipe for its implementation
US3226224A (en) Process for vacuum degasification of metal
CN209722207U (en) A kind of miniaturization rectification systems
JP2003027128A (en) Method for producing molten steel in vacuum degassing facility
US12017274B2 (en) Method for manufacturing a steel ingot
JP2010132965A (en) Method for refining extra-low nitrogen steel
JP3674422B2 (en) Melting method of high cleanliness low carbon steel
US4199350A (en) Method for the production of quality steels
CN211339585U (en) VD furnace shielding cover
JPH05337607A (en) Vessel for incorporating ladle
JPH11269531A (en) Ladle device for molten iron and refining of molten iron for stainless steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050728

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070328

A131 Notification of reasons for refusal

Effective date: 20070501

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20070904

Free format text: JAPANESE INTERMEDIATE CODE: A02