JP2004068776A - Method for operating two fluid injection internal combustion engine and device for injecting two type fluid - Google Patents

Method for operating two fluid injection internal combustion engine and device for injecting two type fluid Download PDF

Info

Publication number
JP2004068776A
JP2004068776A JP2002232526A JP2002232526A JP2004068776A JP 2004068776 A JP2004068776 A JP 2004068776A JP 2002232526 A JP2002232526 A JP 2002232526A JP 2002232526 A JP2002232526 A JP 2002232526A JP 2004068776 A JP2004068776 A JP 2004068776A
Authority
JP
Japan
Prior art keywords
injection
fluid
water
main fuel
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002232526A
Other languages
Japanese (ja)
Other versions
JP3924219B2 (en
Inventor
Suminosuke Ando
安藤 純之介
Akihiro Yunoki
柚木 晃広
Hirotoshi Kitagawa
北川 博敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002232526A priority Critical patent/JP3924219B2/en
Publication of JP2004068776A publication Critical patent/JP2004068776A/en
Application granted granted Critical
Publication of JP3924219B2 publication Critical patent/JP3924219B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B47/00Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines
    • F02B47/02Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being water or steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/022Adding fuel and water emulsion, water or steam
    • F02M25/0227Control aspects; Arrangement of sensors; Diagnostics; Actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/022Adding fuel and water emulsion, water or steam
    • F02M25/025Adding water
    • F02M25/03Adding water into the cylinder or the pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/022Adding fuel and water emulsion, water or steam
    • F02M25/032Producing and adding steam
    • F02M25/038Producing and adding steam into the cylinder or the pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/027Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for operating a two type fluid injection internal combustion engine and a device for injecting two type fluid capable of well balancing NOx concentration reduction in combustion and engine output increase accompanied with water injection by properly establishing injection quantity and injection timing of water injection before a top dead center and after the top dead center. <P>SOLUTION: In a four cycle two type fluid injection internal combustion engine injecting main fluid and another injection fluid into a combustion chamber and firing the same, the injection fluid is injected with divided into twice before and after combustion top dead center in such a manner that injection quantity ratio between a first injection and a second injection can be changed and that a first injection timing is established to overlap main fuel injection timing. Especially, injection quantity of the second injection is established greater than injection quantity of the first injection. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、主燃料と高温水等の噴射流体とを燃焼室内に噴射して燃焼せしめる4サイクル二流体噴射内燃機関の運転方法及び該内燃機関用二流体噴射装置に関する。
【0002】
【従来の技術】
ディーゼル機関においては、機関のシリンダ内での燃焼過程で発生するNOx(窒素酸化物)の量を低減する手段として、燃焼室内へ水を直接噴射する技術が多く提供されている。
水を燃焼室内へ直接に噴射する形式の場合、水噴射は、通常、圧縮行程終期から燃焼行程の初期つまり燃焼過程前および/または燃焼行程中に行われる。かかる水の噴射タイミングを採ることにより、多量の水を燃焼室内へ噴射することができ、それによって、50〜60%程度のNOx削減が可能となっている。
【0003】
4サイクルディーゼル機関において、前記のように燃焼室内への水噴射を、圧縮行程終期から燃焼行程の初期に行うようにした技術の1つとして、特開2001−200761号の発明がある。
かかる発明においては、圧力5MPa以上でかつ温度250℃以上の高圧水を機関の上死点の前後好ましくはクランク角で上死点前90°〜上死点後60°の範囲に行い、上死点前の燃焼室内に該燃焼室内温度よりも低温の前記高圧水を噴射することにより燃焼に伴い発生するNOx濃度を低減し、上死点後の燃焼室内に高圧水を噴射することにより排熱回収効果を向上させるようになっている。
【0004】
【発明が解決しようとする課題】
前記特開2001−200761号の発明においては、高圧水を上死点前に噴射することによりシリンダ内温度を低下せしめてNOx濃度を低減するとともに、該高圧水を上死点後に噴射することにより燃焼室内における作動流体量を増大することにより排熱回収量を増大して熱効率を向上している。
【0005】
しかしながら、かかる発明においては、単に高圧水を上死点前及び上死点後の2回に分けて噴射するにとどまっており、上死点前における高圧水噴射量と上死点後における高圧水噴射量との割合、あるいは上死点前における高圧水の噴射と主燃料の噴射始め時期との関係及び上死点後における高圧水の噴射と主燃料の噴射終り時期との関係については明示されていない。
【0006】
このため、かかる発明にあっては、上死点前における高圧水噴射量が過大になるとシリンダ内温度低下によるNOx濃度の低減効果は大きくなる一方でシリンダ内最高圧力の低下に伴う機関出力の低下を引き起こし、また上死点前における高圧水噴射量が過小になると燃焼室内における作動流体量増大による排熱回収量の増大効果が低下するとともに高圧水噴射による主燃料の燃焼促進作用が抑制され高圧水噴射による機関熱効率の向上を実現できない。
【0007】
さらにかかる発明にあっては、前記のように、上死点前における高圧水の噴射時期と主燃料の噴射始め時期との関係が明示されていないため、高圧水と主燃料との混合作用による燃焼促進とNOx濃度の低減作用とをバランス良く発揮できる上死点前での高圧水の噴射時期を把握できず、また上死点後における高圧水の噴射時期と主燃料の噴射終り時期との関係についても明示されていないため、高圧水噴射による主燃料の燃焼促進効果を発揮し得る高圧水の噴射時期を把握できない、
等の問題点を有している。
【0008】
本発明はかかる従来技術の課題に鑑み、上死点前における水噴射と上死点後における水噴射との噴射量及び噴射時期を適正に設定することにより、燃焼時におけるNOx濃度の低減作用と水噴射に伴う機関出力の増大作用とをバランス良く発揮できる二流体噴射内燃機関の運転方法及び該内燃機関用二流体噴射装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、かかる従来技術の課題に鑑み、請求項1の発明として、主燃料と他の噴射流体とを燃焼室内に噴射して燃焼せしめる4サイクル二流体噴射内燃機関の運転方法において、前記噴射流体を燃焼上死点の前後の2回に分け、かつ第1回噴射と第2回噴射との噴射量比を変化可能にして噴射し、前記第1回噴射時期を前記主燃料の噴射時期と重なるように設定したことを特徴とする二流体噴射内燃機関の運転方法を提案する。
【0010】
請求項2記載の発明は請求項1に加えて、前記第2回噴射の噴射量を、第1回噴射の噴射量よりも多く設定したことを特徴とする。
【0011】
また請求項3記載の発明は請求項1に加えて、前記第2回噴射の噴射開始時期を、前記主燃料の噴射終り時期に近接させるかあるいは前記主燃料の噴射終期に重なるように設定する。
【0012】
また請求項1において、請求項4のように前記噴射流体として高温水または水蒸気を用いるか、あるいは請求項5のように超臨界水を用いるのがよい。
【0013】
次に、請求項6ないし8記載の発明は、請求項1ないし5の発明に係る運転方法に用いる装置の発明に係り、請求項6の発明は、主燃料と他の噴射流体とを燃焼室内に噴射して燃焼せしめる4サイクル二流体噴射内燃機関において、前記噴射流体を前記燃焼室内に噴射する噴射弁と、該噴射弁から前記噴射流体を、燃焼上死点の前後の第1回噴射と第2回噴射との2回に分けかつ前記第1回噴射時期が前記主燃料の噴射時期と重なるようにするとともに前記2回の噴射量比を変化可能にして噴射せしめる流体噴射装置とを備えてなることを特徴とする。
【0014】
請求項7の発明は請求項6に加えて、前記流体噴射装置は、前記第2回噴射の噴射量を第1回噴射の噴射量よりも多く噴射せしめるように構成してなる。
【0015】
また請求項8の発明は請求項6に加えて、前記流体噴射装置は、前記第2回噴射の噴射開始時期を前記主燃料の噴射終り時期に近接させるかあるいは前記主燃料の噴射終期に重ねて噴射せしめるように構成してなる。
【0016】
かかる発明によれば、流体噴射装置は、燃料噴射弁から燃焼室内に噴射される主燃料とは別の加圧された噴射流体を、噴射弁から燃焼室内に、機関の燃焼上死点の前でかつ前記主燃料の噴射時期好ましくは該主燃料の噴射初期に重なるように第1回噴射をせしめるとともに、前記燃焼上死点後において請求項3のように前記主燃料の噴射終り時期に近接させるかあるいは該主燃料の噴射終期に重なるように第2回噴射をせしめる。
【0017】
前記第1回噴射の噴射量と第2回噴射の噴射量との割合(噴射量比)は、前記流体噴射装置によって機関負荷(機関出力)、機関回転数等の機関運転条件によって予め設定し、具体的には請求項2及び7のように前記第2回噴射の噴射量を第1回噴射の噴射量よりも多く噴射せしめる。
【0018】
従ってかかる発明によれば、燃焼上死点前における噴射流体の第1回噴射により燃焼温度の上昇を抑制しNOx発生量を低減しつつ、主燃料噴射初期における加圧噴射流体の噴射により燃焼室内における噴射済み主燃料の拡散燃焼を促進して燃焼性能を維持するとともに、燃焼上死点後における噴射流体の第2回噴射により、噴射流体によって噴射済み主燃料の噴霧を増速せしめることにより燃焼が促進されて筒内最高圧力が上昇し、これによって機関出力を増大し熱効率を上昇せしめることができる。
【0019】
殊に、請求項2及び7のように構成すれば、第2回噴射の噴射量を第1回噴射の噴射量よりも多く噴射せしめることにより、噴射流体による噴射済み主燃料の噴霧増速作用及びこれに伴う筒内最高圧力の上昇、さらには機関出力の増大に伴う熱効率の上昇が顕著となる。
また請求項3及び8のように構成すれば、主燃料の噴射終り時期に近接させるかあるいは該主燃料の噴射終期に重なるように第2回噴射を行うことにより、主燃料の噴射終期近傍における拡散エネルギーが減少しつつある主燃料噴霧を噴射流体により増速せしめることによって、前記拡散エネルギーが復活し燃焼が促進されて筒内最高圧力の上昇に伴う機関出力の増大及び熱効率の上昇効果が顕著となる。
【0020】
要するにかかる発明によれば、前記流体噴射装置によって噴射流体の第1回噴射と第2回噴射との噴射量比を自在に変化せしめることができるので、燃焼上死点前における噴射流体の第1回噴射によって燃焼性能を維持しつつNOx発生量を低減することと、燃焼上死点後における噴射流体の第2回噴射によって筒内最高圧力の上昇による機関出力の増大及び熱効率の上昇をなすこととをバランス良く実現し得る噴射量比になるように、噴射流体の噴射制御を行うことができる。
【0021】
また前記噴射流体としては、請求項4のような高温水または水蒸気あるいは請求項5のような超臨界水が好適であるが、殊に請求項5のような超臨界水を用いれば、該超臨界水による拡散係数の増大によって水と燃料の均一相形成が容易となり局所的な高温燃焼部が少なくなり、さらに該超臨界水においては凝縮冷却が抑制されるため燃焼室内における温度分布の均一化が促進され、NOx発生の抑制効果がさらに増大する。
【0022】
【発明の実施の形態】
以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載される構成部品の寸法、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく単なる説明例に過ぎない。
【0023】
図1は本発明の実施例に係る二流体噴射装置を備えた4サイクルディーゼル機関の噴射タイミング線図である。図2は前記4サイクルディーゼル機関における二流体噴射システムの系統図、図3は前記4サイクルディーゼル機関における燃焼室周りの概略断面図である。図4は前記実施例における上死点前後の噴射量比と熱効率との関係線図である。
【0024】
全体システムを示す図2において、1はディーゼル機関(以下機関と略称する)、7は該機関1の給気マニホールド、8は排気マニホールド、3は該機関1に直結駆動される発電機である。4は過給機で、前記機関1の排気マニホールド8から排気管10を経て導入される排ガスによりタービン4aを駆動し該タービン4aに直結駆動されるコンプレッサ4bにより空気を圧縮し該加圧空気即ち給気を給気管9を通して前記機関1の給気マニホールド7に供給する。2は主燃料を高圧に加圧して前記機関1の燃料噴射弁16(図3参照)に圧送する燃料噴射ポンプである。
【0025】
5は排熱ボイラで、前記過給機4のタービン4aを駆動し排気管10を経て導入された排ガスと、給水ポンプ6により給水管24を介して送給された水とを熱交換して該水を加熱し、高温水あるいは水蒸気(あるいは後述するような超臨界水)を生成するものである。該排熱ボイラ5は公知の排熱ボイラを用いるので、その構造説明は省略する。
26は高温水噴射ポンプで、前記排熱ボイラ5で生成された高温水を加圧し高圧の高温水として、高温水噴射管25を通して前記機関1側の水噴射弁22(図3参照)に圧送する。
【0026】
28は前記発電機3を駆動するための機関1の負荷(出力)を検出する負荷検出器、29は機関回転数及び機関のクランク角を検出する回転数検出器である。該回転数検出器29には必要に応じて機関のクランク角を検出するクランク角検出器を併設する。
27は高温水噴射制御装置で、前記負荷検出器28から入力される機関負荷(出力)の検出値及び回転数検出器29から入力される機関回転数の検出値(必要に応じてクランク角の検出値)に基づき前記高温水噴射ポンプ25に水噴射弁22(図3参照)の噴射タイミングの制御操作信号を出力する。
【0027】
前記機関1の燃焼室周りの概略を示す図3において、前記機関1は、シリンダライナ19と、シリンダヘッド12と、ピストンリング13が介装され前記シリンダライナ19内で往復運動するピストン14と、前記ピストン14の往復動力をクランク軸(図示省略)を介して前記発電機3に伝達する連接棒15等とからなる。
また前記機関1において、20は給気ポート、21は排気ポート、11は前記シリンダヘッド12及びピストン14にて区画形成される燃焼室である。
【0028】
該燃焼室11に対面する中央部には燃料噴射弁16、その左右両側には前記給気ポートを開閉して燃焼室11内に空気を供給する給気弁17と、前記排気ポート21を開閉して燃焼室11からの排ガスの排出を行う排気弁18とを具え、機関1の基本動作である吸入、圧縮、燃焼、排気を4サイクルつまりクランク軸の2回転で完了する。
22は本発明の対象となる水噴射弁で、前記給気弁17及び排気弁18の外側の燃焼室11上部に1個あるいは複数個(この例では2個)設けられている。
【0029】
かかる構成からなる二流体噴射システムを備えた4サイクルディーゼル機関の運転時において、燃焼室11内での燃焼が行われた後、ピストン14の下死点前で排気弁18が開かれると、排ガス(燃焼ガス)は排気ポート21から排気管10を通って過給機4のタービン4aを駆動し、排気管10を通って排熱ボイラ5に導かれる。
該排熱ボイラ5においては、前記排ガスと前記給水ポンプ6により給水管24を通して送給された水とを熱交換することにより該水を加熱して水蒸気を含む高温水(あるいは後述する超臨界水)を生成する。この高温水は高温水噴射ポンプ26により所定圧力に加圧され、機関1の水噴射弁22に送給され、該水噴射弁22から後述する噴射タイミングで以って燃焼室11内に噴射される。
【0030】
一方、前記過給機4のタービン4aに直結駆動されるコンプレッサ4bで加圧された空気は給気管9を通って給気ポート20に導かれ、給気弁17の開弁により燃焼室11内に導入される。
そして、吸入行程では前記給気弁17の開弁とともにピストン14が下死点まで下降し、該ピストン14が下死点より一定角度(通常、+20°〜80°程度)上昇した時点で給気弁17が閉じて圧縮行程に移行する。
圧縮行程においては、ピストン14の上昇により燃焼室11内の空気に圧縮作用が始まり、主燃料の自己着火温度以上の高温にする。そして圧縮行程の終期近くで(上死点より−10°〜−20°前後)燃料噴射弁16により燃焼室11内の空気中に主燃料を噴射すると、主燃料は自己着火により燃焼して温度及び圧力が急上昇し、ピストン14は上死点を経て下死点に押し下げられ、膨張仕事をなす。
【0031】
本発明においては、前記水噴射弁22から燃焼室11内に噴射される噴射流体高温水(水蒸気を含む、以下同様)(噴射流体)の噴射方法あるいは噴射手段を次のように構成している。
すなわち、図1に示す前記4サイクルディーゼル機関の噴射タイミング線図において、前記水噴射弁22からの高温水は、機関の燃焼上死点の前におけるθw1〜θw2の期間の第1回噴射と、前記燃焼上死点の後におけるθw3〜θw4の期間の第2回噴射との2回に分けて噴射する。
【0032】
そして、前記燃焼上死点前の第1回噴射においては、その噴射期間θw1〜θw2が、燃料噴射弁16から燃焼室11内に噴射される主燃料の噴射期間θf1θf2の噴射初期に重なるような噴射タイミングで以って噴射する。
また前記燃焼上死点後の第2回噴射においては、その噴射期間θw3〜θw4が前記主燃料の噴射終り時期θf2に近接させるかあるいは該主燃料の噴射終期に重なるようような噴射タイミングで以って噴射する。
【0033】
また、前記第1回噴射θw1〜θw2及び第2回噴射θw3〜θw4の噴射量との割合(噴射量比)は、前記高温水噴射制御装置27によって制御する。
即ち、前記高温水噴射制御装置27による高温水の噴射時期及び噴射期間の制御は、該高温水噴射制御装置27に負荷検出器28から入力される機関負荷(出力)の検出値及び回転数検出器29から入力される機関回転数の検出値(必要に応じてクランク角の検出値)に基づき、前記高温水噴射ポンプ25に図1に示されるような水噴射弁22の第1回噴射θw1〜θw2及び第2回噴射θw3〜θw4の噴射タイミングの制御操作信号を出力して該高温水噴射ポンプ25を駆動操作することにより行う。
【0034】
前記高温水噴射制御装置27においては、前記第1回噴射θw1〜θw2の噴射量と第2回噴射θw3〜θw4の噴射量との割合(噴射量比)を自在に変化せしめ、この実施例では、前記第2回噴射θw3〜θw4の噴射量を第1回噴射θw1〜θw2の噴射量よりも多く噴射せしめるように、前記高温水噴射ポンプ25及び水噴射弁22を制御する。
このように構成すれば、前記高温水の噴射タイミング及び噴射量を機関運転状態に適応して正確に設定することが可能となり、機関出力の増大効果、NOx発生の抑制効果、及び排気ガスからの熱回収効率のより高い増大効果が得られる。
また、前記高温水噴射ポンプ25及び水噴射弁22の噴射タイミング及び噴射量制御は、前記給気弁17及び排気弁18の開閉タイミングとともに、図示しないクランク軸の回転に連動されるタイミングギアにより行ってもよい。
【0035】
従ってかかる実施例によれば、水噴射弁22からの燃焼上死点前における高温水(噴射流体)の第1回噴射θw1〜θw2により燃焼温度の上昇を抑制しNOx発生量を低減しつつ、燃料噴射弁16からの主燃料の噴射初期に加圧高温水を噴射することにより、燃焼室11内における噴射済み主燃料の拡散燃焼を促進して燃焼性能を維持する。
そして、燃焼上死点後における前記加圧高温水の第2回噴射θw3〜θw4によって、該加圧高温水よって噴射済み主燃料の噴霧を増速せしめることにより燃焼が促進されて筒内最高圧力が上昇し、これによって機関出力が増大し熱効率が上昇する。
【0036】
殊に、第2回噴射θw3〜θw4の噴射量を第1回噴射θw1〜θw2の噴射量よりも多く噴射せしめることにより、高温水による噴射済み主燃料の噴霧増速作用及びこれに伴う筒内最高圧力の上昇、さらには機関出力の増大に伴う熱効率の上昇が顕著となる。
また、前記第2回噴射θw3〜θw4を、主燃料の噴射終り時期θf2に近接させるかあるいは該主燃料の噴射終期に重なるように第2回噴射を行うことにより、主燃料の噴射終期近傍における拡散エネルギーが減少しつつある主燃料噴霧を高温水により増速せしめることによって、前記拡散エネルギーが復活し燃焼が促進されて筒内最高圧力の上昇に伴う機関出力の増大及び熱効率の上昇効果が顕著となる。
【0037】
図4は、かかる実施例における上死点前後の噴射量比と筒内最高温度及び熱効率とのシミュレーション計算に基づく関係線図である。
図において、e、c、dは従来技術で、eは高温水の噴射無し、cは上死点前でのみ高温水を噴射した場合、dは上死点後でのみ高温水を噴射した場合を示す。
A、Bは本発明で、Aは上死点前に1、25、上死点後に1、25の2回噴射、Bは上死点前に2、5、上死点後に2、5の2回噴射の場合である。
図4に明らかなように、本発明(A、B)においては、上死点前及び上死点後における高温水の噴射により筒内最高温度の上昇を抑えてNOx発生量を低減し、かつ熱効率を高く維持することが可能となる。
【0038】
さらに、前記高温水に代えて374℃以上でかつ22MPa以上の超臨界水(あるいは250℃〜300℃以上で10MPa以上の亜臨界水を含む)を用いることができる。
前記超臨界水は、ディーゼルやガスタービンの場合、排ガスの温度が550℃若しくはそれ以上であることから、前記排熱ボイラ5において機関1からの排ガスにより給水ポンプ6から送給される給水を加熱することにより容易に製造できる。
【0039】
前記超臨界水や250℃〜300℃以上で10MPa以上の亜臨界水は、その誘電率が有機溶媒程度なみに低くなり炭化水素系燃料との相互溶解性が向上するため、また拡散係数の増大によって水と燃料の均一相形成が容易となり、局所的な高温燃焼部が少なくなる。よって燃焼中におけるNOxの生成を抑制できる。
また前記超臨界水や亜臨界水は、前記のように液状水に比べて拡散係数が大きく粘度が低くなって燃焼時に拡散し易くなり、燃焼効率の向上につながる。
また前記超臨界水や亜臨界水は、超臨界点近傍では温度・圧力により物性が大きく変化するために、温度・圧力を制御することによりこれらの物性をコントロールすることができる。これにより多種多様な炭化水素系燃料への対応、また負荷・回転数による燃料噴射の形態に応じた超臨界水の噴射が可能である。
【0040】
また前記のように超臨界水は拡散係数が大きいため、燃料との混合が良好に行われ、さらに水や水蒸気のように燃料粒子と夫々独立して混合されるのではなく、超臨界水が有機溶媒のような特性を持つため、燃料に溶け込み、より均一な燃焼場を形成することができる。
ディーゼル機関は燃料と空気の比が、1:30前後であることから、さらにこの燃料及び空気に超臨界水を燃料質量比2〜4程度(燃料:空気:臨界水=1:30:2〜4)噴射することにより、前記のような均一な燃焼場を得ることができる。
【0041】
【発明の効果】
以上記載のごとく本発明によれば、燃焼上死点前における噴射流体の第1回噴射により燃焼温度の上昇を抑制しNOx発生量を低減しつつ主燃料噴射初期に加圧された噴射流体の噴射により燃焼室内における噴射済み主燃料の拡散燃焼を促進して燃焼性能を維持するとともに、燃焼上死点後における噴射流体の第2回噴射によって、噴射流体によって噴射済み主燃料の噴霧を増速せしめることにより燃焼が促進されて筒内最高圧力が上昇し、これにより機関出力を増大し熱効率を上昇せしめることができる。
【0042】
殊に、請求項2及び7のように構成すれば、第2回噴射の噴射量を第1回噴射の噴射量よりも多く噴射せしめることにより、噴射流体による噴射済み主燃料の噴霧増速作用及びこれに伴う筒内最高圧力の上昇、これによる機関出力の増大及び熱効率の上昇が顕著となる。
【0043】
また請求項3及び8のように構成すれば、主燃料の噴射終り時期に近接させるかあるいは該主燃料の噴射終期に重なるように第2回噴射を行うことにより、主燃料の噴射終期近傍における拡散エネルギーが減少しつつある主燃料噴霧を噴射流体よって増速せしめることによって、前記拡散エネルギーが復活し燃焼が促進されて筒内最高圧力の上昇に伴う機関出力の増大及び熱効率の上昇効果が顕著となる。
【0044】
要するにかかる発明によれば、前記流体噴射装置によって前記噴射流体の第1回噴射と第2回噴射との噴射量比を自在に変化せしめることができるので、燃焼上死点前における噴射流体の第1回噴射によって燃焼性能を維持しつつNOx発生量を低減することと、燃焼上死点後における噴射流体の第2回噴射によって筒内最高圧力の上昇による機関出力の増大及び熱効率の上昇をなすこととをバランス良く実現し得る噴射量比になるように、噴射流体の噴射制御を行うことができる。
【0045】
また前記噴射流体として請求項5のような超臨界水を用いれば、該超臨界水による拡散係数の増大によって水と燃料の均一相形成が容易となり局所的な高温燃焼部が少なくなり、さらに該超臨界水においては凝縮冷却が抑制されるため燃焼室内における温度分布の均一化が促進され、NOx発生の抑制効果がさらに増大する。
【図面の簡単な説明】
【図1】本発明の実施例に係る二流体噴射装置を備えた4サイクルディーゼル機関の噴射タイミング線図である。
【図2】前記4サイクルディーゼル機関における二流体噴射システムの系統図である。
【図3】前記4サイクルディーゼル機関における燃焼室周りの概略断面図である。
【図4】前記実施例における上死点前後の噴射量比と熱効率との関係線図である。
【符号の説明】
1 ディーゼル機関
2 燃料噴射ポンプ
3 発電機
4 過給機
5 排熱ボイラ
6 給水ポンプ
9 給気管
10 排気管
11 燃焼室
12 シリンダヘッド
14 ピストン
16 燃料噴射弁
17 給気弁
18 排気弁
22 水噴射弁
26 高温水噴射ポンプ
27 高温水噴射制御装置
28 負荷検出器
29 回転数検出器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for operating a four-cycle two-fluid injection internal combustion engine in which main fuel and an injection fluid such as high-temperature water are injected into a combustion chamber and combusted, and a two-fluid injection device for the internal combustion engine.
[0002]
[Prior art]
In a diesel engine, many techniques for directly injecting water into a combustion chamber are provided as means for reducing the amount of NOx (nitrogen oxide) generated in the combustion process in a cylinder of the engine.
In the case of the type in which water is directly injected into the combustion chamber, the water injection is usually performed from the end of the compression stroke to the beginning of the combustion stroke, that is, before the combustion process and / or during the combustion stroke. By adopting such water injection timing, a large amount of water can be injected into the combustion chamber, thereby reducing NOx by about 50 to 60%.
[0003]
In a four-cycle diesel engine, as one of techniques for performing water injection into the combustion chamber as described above from the end of the compression stroke to the beginning of the combustion stroke, there is an invention of Japanese Patent Laid-Open No. 2001-200761.
In this invention, high pressure water having a pressure of 5 MPa or more and a temperature of 250 ° C. or more is applied before and after the top dead center of the engine, preferably at a crank angle in a range of 90 ° before top dead center to 60 ° after top dead center. By injecting the high-pressure water having a temperature lower than the temperature in the combustion chamber into the combustion chamber before the point, the NOx concentration generated by combustion is reduced, and by exhausting the high-pressure water into the combustion chamber after the top dead center, exhaust heat is discharged. The collection effect is improved.
[0004]
[Problems to be solved by the invention]
In the invention of Japanese Patent Laid-Open No. 2001-200761, by injecting high-pressure water before top dead center, the temperature in the cylinder is lowered to reduce NOx concentration, and the high-pressure water is injected after top dead center. By increasing the amount of working fluid in the combustion chamber, the amount of exhaust heat recovered is increased to improve thermal efficiency.
[0005]
However, in this invention, the high-pressure water is simply injected in two steps before the top dead center and after the top dead center. The high-pressure water injection amount before the top dead center and the high-pressure water after the top dead center. The ratio to the injection amount, or the relationship between the high-pressure water injection before the top dead center and the main fuel injection timing, and the relationship between the high-pressure water injection after the top dead center and the main fuel injection end time are clearly indicated. Not.
[0006]
For this reason, in this invention, if the amount of high-pressure water injection before the top dead center becomes excessive, the effect of reducing the NOx concentration due to the temperature drop in the cylinder increases, while the engine output decreases with the decrease in the cylinder maximum pressure. If the amount of high-pressure water injection before the top dead center is too small, the effect of increasing the amount of exhaust heat recovered due to the increase in the amount of working fluid in the combustion chamber will be reduced, and the high-pressure water injection will suppress the combustion promotion effect of the main fuel and The engine thermal efficiency cannot be improved by water injection.
[0007]
Further, in the invention, as described above, since the relationship between the injection timing of the high-pressure water before the top dead center and the injection start timing of the main fuel is not clearly shown, it is caused by the mixing action of the high-pressure water and the main fuel. The injection timing of high-pressure water before top dead center that can achieve a good balance between combustion promotion and NOx concentration reduction cannot be grasped, and the injection timing of high-pressure water and the main fuel injection end timing after top dead center Since the relationship is not clearly stated, it is impossible to grasp the injection timing of high-pressure water that can exert the effect of promoting combustion of main fuel by high-pressure water injection.
And so on.
[0008]
In view of the problems of the prior art, the present invention has a function of reducing NOx concentration during combustion by appropriately setting the injection amount and injection timing of water injection before top dead center and water injection after top dead center. It is an object of the present invention to provide a method for operating a two-fluid injection internal combustion engine capable of exerting a good balance between an increase in engine output accompanying water injection and a two-fluid injection device for the internal combustion engine.
[0009]
[Means for Solving the Problems]
In view of the problems of the prior art, the present invention provides an operation method of a four-cycle two-fluid injection internal combustion engine in which main fuel and another injection fluid are injected into a combustion chamber and combusted. The fluid is divided into two parts before and after the combustion top dead center, and the injection amount ratio between the first injection and the second injection is made variable, and the first injection timing is set as the main fuel injection timing. A method for operating a two-fluid injection internal combustion engine is proposed.
[0010]
The invention of claim 2 is characterized in that, in addition to claim 1, the injection amount of the second injection is set to be larger than the injection amount of the first injection.
[0011]
According to a third aspect of the present invention, in addition to the first aspect, the injection start timing of the second injection is set close to the main fuel injection end timing or overlapped with the main fuel injection end timing. .
[0012]
Further, in claim 1, high temperature water or water vapor is preferably used as the jet fluid as in claim 4, or supercritical water is preferably used as in claim 5.
[0013]
Next, the invention described in claims 6 to 8 relates to an invention of an apparatus used in the operating method according to the inventions of claims 1 to 5, and the invention of claim 6 relates to the main fuel and other injection fluids in the combustion chamber. In a four-cycle two-fluid injection internal combustion engine that injects the fuel into the combustion chamber, an injection valve that injects the injection fluid into the combustion chamber, and a first injection before and after the combustion top dead center from the injection valve A fluid injection device that is divided into two injections, the second injection, and the first injection timing overlaps with the main fuel injection timing, and the injection amount ratio of the two injections is variable and injection is performed. It is characterized by.
[0014]
According to a seventh aspect of the present invention, in addition to the sixth aspect, the fluid ejecting apparatus is configured to eject the second injection amount more than the first injection amount.
[0015]
According to an eighth aspect of the present invention, in addition to the sixth aspect, the fluid injection device causes the injection start timing of the second injection to approach the main fuel injection end timing or overlaps the main fuel injection end timing. It is configured to be sprayed.
[0016]
According to this invention, the fluid injection device supplies a pressurized injection fluid, which is different from the main fuel injected from the fuel injection valve, into the combustion chamber, from the injection valve to the combustion chamber, before the combustion top dead center of the engine. And the injection timing of the main fuel, preferably the first injection so as to overlap the initial injection of the main fuel, and close to the end timing of the main fuel injection as in claim 3 after the top dead center of combustion. Alternatively, the second injection is performed so as to overlap the final injection of the main fuel.
[0017]
The ratio (injection amount ratio) between the injection amount of the first injection and the injection amount of the second injection is set in advance by the fluid injection device according to engine operating conditions such as engine load (engine output) and engine speed. Specifically, as in the second and seventh aspects, the injection amount of the second injection is increased more than the injection amount of the first injection.
[0018]
Therefore, according to such an invention, the first injection of the injection fluid before the combustion top dead center suppresses the increase in the combustion temperature and reduces the amount of NOx generated, while the injection of the pressurized injection fluid at the initial stage of the main fuel injection causes the combustion chamber to The combustion of the injected main fuel is accelerated by accelerating the spray of the injected main fuel by the injection fluid by the second injection of the injection fluid after the top dead center of combustion while promoting the diffusion combustion of the injected main fuel at This increases the maximum in-cylinder pressure, thereby increasing the engine output and increasing the thermal efficiency.
[0019]
In particular, according to the second and seventh aspects, the injection speed of the injected main fuel by the injection fluid is increased by causing the injection amount of the second injection to be greater than the injection amount of the first injection. In addition, an increase in the maximum in-cylinder pressure associated therewith, and a further increase in thermal efficiency accompanying an increase in engine output become significant.
According to the third and eighth aspects of the present invention, the second injection is performed so as to be close to the main fuel injection end time or overlap the main fuel injection end time. By accelerating the main fuel spray, whose diffusion energy is decreasing, with the injection fluid, the diffusion energy is restored and combustion is promoted, so that the engine output and the thermal efficiency increase due to the increase in the in-cylinder maximum pressure are remarkable. It becomes.
[0020]
In short, according to the invention, since the injection amount ratio between the first injection and the second injection of the injection fluid can be freely changed by the fluid injection device, the first injection fluid before the combustion top dead center is obtained. Reduce the amount of NOx generated while maintaining combustion performance by multiple injections, and increase the engine output and increase the thermal efficiency due to the increase in the in-cylinder maximum pressure by the second injection of the injection fluid after combustion top dead center The injection control of the injection fluid can be performed so that the injection amount ratio can be realized in a balanced manner.
[0021]
As the jet fluid, high-temperature water or water vapor as in claim 4 or supercritical water as in claim 5 is suitable, but in particular, if supercritical water as in claim 5 is used, Increased diffusion coefficient due to critical water facilitates the formation of a homogeneous phase of water and fuel, reduces the number of local high-temperature combustion parts, and further suppresses condensation and cooling in the supercritical water, making the temperature distribution uniform in the combustion chamber Is promoted, and the NOx generation suppressing effect is further increased.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, unless otherwise specified, the dimensions, shapes, relative arrangements, and the like of the components described in this embodiment are merely illustrative examples and not intended to limit the scope of the present invention.
[0023]
FIG. 1 is an injection timing diagram of a four-cycle diesel engine equipped with a two-fluid injection device according to an embodiment of the present invention. FIG. 2 is a system diagram of a two-fluid injection system in the 4-cycle diesel engine, and FIG. 3 is a schematic sectional view around a combustion chamber in the 4-cycle diesel engine. FIG. 4 is a relationship diagram between the injection amount ratio around the top dead center and the thermal efficiency in the embodiment.
[0024]
In FIG. 2 showing the entire system, 1 is a diesel engine (hereinafter abbreviated as an engine), 7 is an air supply manifold of the engine 1, 8 is an exhaust manifold, and 3 is a generator that is directly connected to the engine 1. A turbocharger 4 drives a turbine 4a with exhaust gas introduced from an exhaust manifold 8 of the engine 1 through an exhaust pipe 10 and compresses air by a compressor 4b that is directly connected to the turbine 4a. The supply air is supplied to the supply manifold 7 of the engine 1 through the supply pipe 9. A fuel injection pump 2 pressurizes the main fuel to a high pressure and feeds it to the fuel injection valve 16 (see FIG. 3) of the engine 1.
[0025]
An exhaust heat boiler 5 drives the turbine 4a of the supercharger 4 and exchanges heat between the exhaust gas introduced through the exhaust pipe 10 and the water fed by the feed water pump 6 through the feed water pipe 24. The water is heated to generate high-temperature water or water vapor (or supercritical water as described later). Since the exhaust heat boiler 5 uses a known exhaust heat boiler, its structural description is omitted.
A high-temperature water injection pump 26 pressurizes the high-temperature water generated in the exhaust heat boiler 5 and supplies it as high-pressure high-temperature water to the water injection valve 22 (see FIG. 3) on the engine 1 side through the high-temperature water injection pipe 25. To do.
[0026]
28 is a load detector for detecting the load (output) of the engine 1 for driving the generator 3, and 29 is a rotation speed detector for detecting the engine speed and the crank angle of the engine. The rotation speed detector 29 is provided with a crank angle detector for detecting the crank angle of the engine as required.
Reference numeral 27 denotes a high-temperature water injection control device, which is a detection value of the engine load (output) input from the load detector 28 and a detection value of the engine speed input from the rotation speed detector 29 (if necessary, the crank angle Based on the detected value), a control operation signal for the injection timing of the water injection valve 22 (see FIG. 3) is output to the high-temperature water injection pump 25.
[0027]
In FIG. 3 which shows the outline around the combustion chamber of the engine 1, the engine 1 includes a cylinder liner 19, a cylinder head 12, and a piston 14 which is reciprocated within the cylinder liner 19 with a piston ring 13 interposed therebetween. The connecting rod 15 and the like transmit the reciprocating power of the piston 14 to the generator 3 via a crankshaft (not shown).
In the engine 1, 20 is an air supply port, 21 is an exhaust port, and 11 is a combustion chamber defined by the cylinder head 12 and the piston 14.
[0028]
A fuel injection valve 16 is provided at the center facing the combustion chamber 11, an air supply valve 17 that opens and closes the air supply port and supplies air into the combustion chamber 11 on both the left and right sides, and an exhaust port 21 is opened and closed. The exhaust valve 18 for discharging the exhaust gas from the combustion chamber 11 is completed, and the basic operations of the engine 1, suction, compression, combustion, and exhaust, are completed in four cycles, that is, two rotations of the crankshaft.
Reference numeral 22 denotes a water injection valve which is an object of the present invention, and one or a plurality (two in this example) are provided above the combustion chamber 11 outside the air supply valve 17 and the exhaust valve 18.
[0029]
When the exhaust valve 18 is opened before the bottom dead center of the piston 14 after the combustion in the combustion chamber 11 is performed during the operation of the four-cycle diesel engine equipped with the two-fluid injection system having such a configuration, the exhaust gas The (combustion gas) drives the turbine 4 a of the supercharger 4 from the exhaust port 21 through the exhaust pipe 10, and is guided to the exhaust heat boiler 5 through the exhaust pipe 10.
In the exhaust heat boiler 5, high-temperature water (or supercritical water described later) containing water vapor is heated by exchanging heat between the exhaust gas and water fed through the feed pipe 24 by the feed pump 6. ) Is generated. The high-temperature water is pressurized to a predetermined pressure by a high-temperature water injection pump 26, supplied to the water injection valve 22 of the engine 1, and injected from the water injection valve 22 into the combustion chamber 11 at an injection timing described later. The
[0030]
On the other hand, the air pressurized by the compressor 4 b that is directly connected to the turbine 4 a of the supercharger 4 is guided to the air supply port 20 through the air supply pipe 9, and the combustion chamber 11 is opened by opening the air supply valve 17. To be introduced.
In the intake stroke, when the air supply valve 17 is opened, the piston 14 descends to the bottom dead center, and when the piston 14 rises from the bottom dead center by a certain angle (usually about + 20 ° to 80 °), the air supply is performed. The valve 17 closes and the process proceeds to the compression stroke.
In the compression stroke, the piston 14 ascends, and the compression action of the air in the combustion chamber 11 is started, so that the temperature becomes higher than the self ignition temperature of the main fuel. When the main fuel is injected into the air in the combustion chamber 11 by the fuel injection valve 16 near the end of the compression stroke (around -10 ° to -20 ° from the top dead center), the main fuel is burned by self-ignition and temperature Then, the pressure suddenly rises, and the piston 14 is pushed down to the bottom dead center through the top dead center to perform the expansion work.
[0031]
In the present invention, an injection method or injection means of injection fluid high-temperature water (including water vapor, the same applies hereinafter) (injection fluid) injected from the water injection valve 22 into the combustion chamber 11 is configured as follows. .
That is, in the injection timing diagram of the 4-cycle diesel engine shown in FIG. 1, the high-temperature water from the water injection valve 22 is injected first in the period of θ w1 to θ w2 before the combustion top dead center of the engine. And the second injection in the period of θ w3 to θ w4 after the combustion top dead center.
[0032]
In the first injection before the combustion top dead center, the injection periods θ w1 to θ w2 are injected during the main fuel injection periods θ f1 to θf2 injected into the combustion chamber 11 from the fuel injection valve 16. Injection is performed at an injection timing that overlaps in the initial stage.
In the second injection after the combustion top dead center, the injection period θ w3 to θ w4 is close to the main fuel injection end time θ f2 or overlaps the main fuel injection end time. Inject with timing.
[0033]
Also, the ratio (injection amount ratio) of the first injection θ w1 to θ w2 and the second injection θ w3 to θ w4 to the injection amount is controlled by the high temperature water injection control device 27.
That is, the control of the injection timing and injection period of the high temperature water by the high temperature water injection control device 27 is performed by detecting the engine load (output) input from the load detector 28 to the high temperature water injection control device 27 and detecting the rotational speed. On the basis of the detected value of the engine speed inputted from the vessel 29 (the detected value of the crank angle as required), the first injection θ of the water injection valve 22 as shown in FIG. outputs w1 through? w2 and control operation signal of the injection timing of the second stage fuel injection theta w3 through? w4 performed by driving operating the high-hot water injection pump 25.
[0034]
In the hot water injection control device 27, freely contain altered the ratio (injection amount ratio) between the injection amount of the injection amount and the 2nd injection theta w3 through? W4 of the first-time injection theta w1 through? W2, in this embodiment, the second time injection theta w3 through? the injection amount of w4 as allowed to injection more than the injection amount of the first-time injection theta w1 through? w2, the hot water injection pump 25 and the water injection valve 22 To control.
If comprised in this way, it will become possible to set correctly the injection timing and injection quantity of the said high temperature water according to an engine operating state, the increase effect of an engine output, the suppression effect of NOx generation, and exhaust gas from A higher increase effect of the heat recovery efficiency can be obtained.
The injection timing and injection amount control of the high-temperature water injection pump 25 and the water injection valve 22 are performed by timing gears that are linked to the rotation of the crankshaft (not shown) together with the opening and closing timings of the air supply valve 17 and the exhaust valve 18. May be.
[0035]
Therefore, according to this embodiment, the first injection θ w1 to θ w2 of the high temperature water (injection fluid) before the combustion top dead center from the water injection valve 22 suppresses the increase in the combustion temperature and reduces the NOx generation amount. However, by injecting pressurized high-temperature water at the initial stage of injection of the main fuel from the fuel injection valve 16, diffusion combustion of the injected main fuel in the combustion chamber 11 is promoted to maintain combustion performance.
Then, the second injection θ w3 to θ w4 of the pressurized hot water after the combustion top dead center accelerates the spray of the injected main fuel by the pressurized hot water, thereby promoting the combustion. Maximum pressure increases, which increases engine power and increases thermal efficiency.
[0036]
In particular, by a number allowed to injection than the injection amount of the second stage fuel injection theta w3 through? W4 injection quantity of the first-time injection theta w1 through? W2, hot water by injecting spent main fuel spray enhanced action and its As a result, the increase in the in-cylinder maximum pressure and the increase in the thermal efficiency accompanying the increase in engine output become remarkable.
In addition, the second fuel injection is performed by bringing the second fuel injection θ w3 to θ w4 close to the main fuel injection end timing θ f2 or overlapping the main fuel injection end time to thereby overlap the main fuel injection. By accelerating the main fuel spray, whose diffusion energy is decreasing near the end of the cycle, with high-temperature water, the diffusion energy is restored and combustion is promoted to increase engine output and increase thermal efficiency as the maximum in-cylinder pressure increases. The effect becomes remarkable.
[0037]
FIG. 4 is a relationship diagram based on a simulation calculation of the injection amount ratio before and after the top dead center, the in-cylinder maximum temperature, and the thermal efficiency in this embodiment.
In the figure, e, c, and d are conventional technologies, e is no hot water injection, c is hot water injection only before top dead center, and d is hot water injection only after top dead center Indicates.
A and B are the present invention, A is 1 and 25 before top dead center, 1 and 25 after top dead center injection, B is 2 and 5 before top dead center, 2 and 5 after top dead center This is a case of two-time injection.
As is apparent from FIG. 4, in the present invention (A, B), the increase in the in-cylinder maximum temperature is suppressed by the injection of high temperature water before and after top dead center, and the amount of NOx generated is reduced. It becomes possible to maintain high thermal efficiency.
[0038]
Further, supercritical water at 374 ° C. or higher and 22 MPa or higher (or including subcritical water at 250 ° C. to 300 ° C. or higher and 10 MPa or higher) can be used instead of the high temperature water.
In the case of diesel or gas turbine, the supercritical water has an exhaust gas temperature of 550 ° C. or higher, and thus heats the feed water supplied from the feed water pump 6 by the exhaust gas from the engine 1 in the exhaust heat boiler 5. Can be easily manufactured.
[0039]
Supercritical water and subcritical water of 10 MPa or more at 250 ° C. to 300 ° C. or higher have a dielectric constant as low as that of an organic solvent, improving mutual solubility with hydrocarbon fuel, and increasing diffusion coefficient. This facilitates the formation of a uniform phase of water and fuel and reduces the number of local high-temperature combustion parts. Therefore, the generation of NOx during combustion can be suppressed.
Further, as described above, the supercritical water and subcritical water have a larger diffusion coefficient and lower viscosity than liquid water, and are easily diffused during combustion, leading to improvement in combustion efficiency.
Further, the physical properties of the supercritical water and subcritical water change greatly depending on the temperature and pressure near the supercritical point, and therefore these physical properties can be controlled by controlling the temperature and pressure. As a result, it is possible to cope with a wide variety of hydrocarbon fuels and to inject supercritical water according to the form of fuel injection depending on the load and the number of revolutions.
[0040]
In addition, as described above, supercritical water has a large diffusion coefficient, so that mixing with fuel is performed well, and it is not mixed with fuel particles independently like water or water vapor. Since it has characteristics like an organic solvent, it can dissolve in fuel and form a more uniform combustion field.
Since the ratio of fuel to air is around 1:30 in a diesel engine, supercritical water is further added to the fuel and air at a fuel mass ratio of about 2 to 4 (fuel: air: critical water = 1: 30: 2 4) A uniform combustion field as described above can be obtained by injection.
[0041]
【The invention's effect】
As described above, according to the present invention, the first injection of the injection fluid before the combustion top dead center suppresses the increase in the combustion temperature and reduces the NOx generation amount, while reducing the NOx generation amount. The injection promotes the diffusion combustion of the injected main fuel in the combustion chamber to maintain the combustion performance, and the injection of the injected main fuel is accelerated by the injection fluid by the second injection of the injected fluid after the combustion top dead center. By causing the combustion to occur, combustion is promoted and the in-cylinder maximum pressure increases, thereby increasing the engine output and increasing the thermal efficiency.
[0042]
In particular, according to the second and seventh aspects, the injection speed of the injected main fuel by the injection fluid is increased by causing the injection amount of the second injection to be greater than the injection amount of the first injection. As a result, the increase in the in-cylinder maximum pressure, the increase in engine output and the increase in thermal efficiency due to this increase become significant.
[0043]
According to the third and eighth aspects of the present invention, the second injection is performed so as to be close to the main fuel injection end time or overlap the main fuel injection end time. By accelerating the main fuel spray, whose diffusion energy is decreasing, with the injection fluid, the diffusion energy is restored and combustion is promoted, and the increase in engine output and the increase in thermal efficiency due to the increase in the in-cylinder maximum pressure are remarkable. It becomes.
[0044]
In short, according to the invention, since the injection amount ratio between the first injection and the second injection of the injection fluid can be freely changed by the fluid injection device, the first injection fluid before the combustion top dead center can be changed. Reducing the amount of NOx generated while maintaining combustion performance by a single injection, and increasing the engine output and the thermal efficiency due to the increase in the in-cylinder maximum pressure by the second injection of the injection fluid after the combustion top dead center Therefore, it is possible to perform the injection control of the injection fluid so that the injection amount ratio can be achieved in a balanced manner.
[0045]
Further, if supercritical water as in claim 5 is used as the injection fluid, a uniform phase of water and fuel can be easily formed by increasing the diffusion coefficient due to the supercritical water, and the number of local high-temperature combustion parts is reduced. In supercritical water, condensation cooling is suppressed, so that uniform temperature distribution in the combustion chamber is promoted, and the NOx generation suppressing effect is further increased.
[Brief description of the drawings]
FIG. 1 is an injection timing diagram of a four-cycle diesel engine equipped with a two-fluid injection device according to an embodiment of the present invention.
FIG. 2 is a system diagram of a two-fluid injection system in the 4-cycle diesel engine.
FIG. 3 is a schematic sectional view around a combustion chamber in the four-cycle diesel engine.
FIG. 4 is a relationship diagram between an injection amount ratio before and after top dead center and thermal efficiency in the embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Diesel engine 2 Fuel injection pump 3 Generator 4 Supercharger 5 Exhaust heat boiler 6 Water supply pump 9 Supply pipe 10 Exhaust pipe 11 Combustion chamber 12 Cylinder head 14 Piston 16 Fuel injection valve 17 Supply valve 18 Exhaust valve 22 Water injection valve 26 High-temperature water injection pump 27 High-temperature water injection control device 28 Load detector 29 Rotation speed detector

Claims (8)

主燃料と他の噴射流体とを燃焼室内に噴射して燃焼せしめる4サイクル二流体噴射内燃機関の運転方法において、前記噴射流体を燃焼上死点の前後の2回に分け、かつ第1回噴射と第2回噴射との噴射量比を変化可能にして噴射し、前記第1回噴射時期を前記主燃料の噴射時期と重なるように設定したことを特徴とする二流体噴射内燃機関の運転方法。In a method for operating a four-cycle two-fluid injection internal combustion engine in which main fuel and another injection fluid are injected into a combustion chamber and combusted, the injection fluid is divided into two before and after combustion top dead center, and the first injection And the second injection, the injection amount ratio is variable and the injection is performed, and the first injection timing is set to overlap the injection timing of the main fuel. . 前記第2回噴射の噴射量を、第1回噴射の噴射量よりも多く設定したことを特徴とする請求項1記載の二流体噴射内燃機関の運転方法。2. The method of operating a two-fluid injection internal combustion engine according to claim 1, wherein an injection amount of the second injection is set larger than an injection amount of the first injection. 前記第2回噴射の噴射開始時期を、前記主燃料の噴射終り時期に近接させるかあるいは前記主燃料の噴射終期に重なるように設定したことを特徴とする請求項1記載の二流体噴射内燃機関の運転方法。2. The two-fluid injection internal combustion engine according to claim 1, wherein an injection start timing of the second injection is set to be close to an injection end timing of the main fuel or overlap with an end of injection of the main fuel. Driving method. 前記噴射流体として高温水または水蒸気を用いることを特徴とする請求項1記載の二流体噴射内燃機関の運転方法。2. The method of operating a two-fluid injection internal combustion engine according to claim 1, wherein high-temperature water or water vapor is used as the injection fluid. 前記噴射流体として超臨界水を用いることを特徴とする請求項1記載の二流体噴射内燃機関の運転方法。2. A method of operating a two-fluid injection internal combustion engine according to claim 1, wherein supercritical water is used as the injection fluid. 主燃料と他の噴射流体とを燃焼室内に噴射して燃焼せしめる4サイクル二流体噴射内燃機関において、前記噴射流体を前記燃焼室内に噴射する噴射弁と、該噴射弁から前記噴射流体を、燃焼上死点の前後の第1回噴射と第2回噴射との2回に分けかつ前記第1回噴射時期が前記主燃料の噴射時期と重なるようにするとともに前記2回の噴射量比を変化可能にして噴射せしめる流体噴射装置とを備えてなることを特徴とする内燃機関の二流体噴射装置。In a four-cycle two-fluid injection internal combustion engine in which main fuel and another injection fluid are injected into a combustion chamber and combusted, an injection valve that injects the injection fluid into the combustion chamber, and the injection fluid is combusted from the injection valve The first injection and the second injection before and after the top dead center are divided into two, and the first injection timing is overlapped with the main fuel injection timing and the ratio of the two injections is changed. A two-fluid injection device for an internal combustion engine, comprising: a fluid injection device that enables injection. 前記流体噴射装置は、前記第2回噴射の噴射量を第1回噴射の噴射量よりも多く噴射せしめるように構成したことを特徴とする請求項6記載の内燃機関の二流体噴射装置。The two-fluid injection device for an internal combustion engine according to claim 6, wherein the fluid injection device is configured to inject an injection amount of the second injection more than an injection amount of the first injection. 前記流体噴射装置は、前記第2回噴射の噴射開始時期を前記主燃料の噴射終り時期に近接させるかあるいは前記主燃料の噴射終期に重ねて噴射せしめるように構成したことを特徴とする請求項6記載の内燃機関の二流体噴射装置。The fluid injection device is configured such that an injection start timing of the second injection is close to an injection end timing of the main fuel or is overlapped with an injection end timing of the main fuel. 7. A two-fluid injection device for an internal combustion engine according to claim 6.
JP2002232526A 2002-08-09 2002-08-09 Method for operating two-fluid injection internal combustion engine and two-fluid injection device Expired - Fee Related JP3924219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002232526A JP3924219B2 (en) 2002-08-09 2002-08-09 Method for operating two-fluid injection internal combustion engine and two-fluid injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002232526A JP3924219B2 (en) 2002-08-09 2002-08-09 Method for operating two-fluid injection internal combustion engine and two-fluid injection device

Publications (2)

Publication Number Publication Date
JP2004068776A true JP2004068776A (en) 2004-03-04
JP3924219B2 JP3924219B2 (en) 2007-06-06

Family

ID=32017900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002232526A Expired - Fee Related JP3924219B2 (en) 2002-08-09 2002-08-09 Method for operating two-fluid injection internal combustion engine and two-fluid injection device

Country Status (1)

Country Link
JP (1) JP3924219B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007032308A (en) * 2005-07-25 2007-02-08 Japan Automobile Research Inst Inc Combustion method and combustion device for diesel engine
CN102076944A (en) * 2008-06-24 2011-05-25 汉堡-哈尔堡工业大学 Method for braking an internal combustion engine
CN102137992A (en) * 2008-06-26 2011-07-27 寒武纪能源发展公司 Apparatus and method for operating an engine with non-fuel fluid injection
JP2014173493A (en) * 2013-03-08 2014-09-22 Mazda Motor Corp Compression ignition engine
JP2015092068A (en) * 2013-11-08 2015-05-14 トヨタ自動車株式会社 Water supply control device of direct injection type internal combustion engine
JP2017025774A (en) * 2015-07-22 2017-02-02 マツダ株式会社 Control device for engine
JP2017089555A (en) * 2015-11-12 2017-05-25 マツダ株式会社 Control device of engine
JP2017089554A (en) * 2015-11-12 2017-05-25 マツダ株式会社 Control device of engine
JP2018035762A (en) * 2016-09-01 2018-03-08 マツダ株式会社 Controller of engine
JP2018040260A (en) * 2016-09-05 2018-03-15 マツダ株式会社 Control device of engine
DE102016012894B4 (en) 2015-11-12 2018-05-09 Mazda Motor Corporation An engine, control device therefor, method of controlling an engine and computer program product
US10260458B2 (en) 2016-09-01 2019-04-16 Mazda Motor Corporation Homogeneous charge compression ignition engine
EP3514352A4 (en) * 2016-10-07 2019-10-16 Mazda Motor Corporation Premixed compression ignition engine system
EP3961024A1 (en) * 2020-08-26 2022-03-02 Mazda Motor Corporation Engine system, vehicle, method of controlling engine system, and computer program product
EP3961011A1 (en) * 2020-08-26 2022-03-02 Mazda Motor Corporation Engine system, vehicle, method of controlling engine system, and computer program product

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007032308A (en) * 2005-07-25 2007-02-08 Japan Automobile Research Inst Inc Combustion method and combustion device for diesel engine
JP4579077B2 (en) * 2005-07-25 2010-11-10 財団法人日本自動車研究所 Diesel engine combustion method
CN102076944A (en) * 2008-06-24 2011-05-25 汉堡-哈尔堡工业大学 Method for braking an internal combustion engine
JP2011525581A (en) * 2008-06-24 2011-09-22 トゥーテック イノヴェイション ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for braking an internal combustion engine
KR101414161B1 (en) * 2008-06-24 2014-07-01 만 디젤 앤 터보 에스이 Method for braking an internal combustion engine
CN102137992A (en) * 2008-06-26 2011-07-27 寒武纪能源发展公司 Apparatus and method for operating an engine with non-fuel fluid injection
JP2014173493A (en) * 2013-03-08 2014-09-22 Mazda Motor Corp Compression ignition engine
EP3067544A4 (en) * 2013-11-08 2017-04-19 Toyota Jidosha Kabushiki Kaisha Water supply control device for in-cylinder injection internal combustion engine
JP2015092068A (en) * 2013-11-08 2015-05-14 トヨタ自動車株式会社 Water supply control device of direct injection type internal combustion engine
WO2015068761A1 (en) * 2013-11-08 2015-05-14 トヨタ自動車株式会社 Water supply control device for in-cylinder injection internal combustion engine
JP2017025774A (en) * 2015-07-22 2017-02-02 マツダ株式会社 Control device for engine
DE102016012894B4 (en) 2015-11-12 2018-05-09 Mazda Motor Corporation An engine, control device therefor, method of controlling an engine and computer program product
JP2017089555A (en) * 2015-11-12 2017-05-25 マツダ株式会社 Control device of engine
JP2017089554A (en) * 2015-11-12 2017-05-25 マツダ株式会社 Control device of engine
US10132273B2 (en) 2015-11-12 2018-11-20 Mazda Motor Corporation Control system of engine
US10260458B2 (en) 2016-09-01 2019-04-16 Mazda Motor Corporation Homogeneous charge compression ignition engine
JP2018035762A (en) * 2016-09-01 2018-03-08 マツダ株式会社 Controller of engine
JP2018040260A (en) * 2016-09-05 2018-03-15 マツダ株式会社 Control device of engine
US10508613B2 (en) 2016-09-05 2019-12-17 Mazda Motor Corporation Direct injection engine and control method thereof
EP3514352A4 (en) * 2016-10-07 2019-10-16 Mazda Motor Corporation Premixed compression ignition engine system
US10830186B2 (en) 2016-10-07 2020-11-10 Mazda Motor Corporation Premixed compression ignition engine system
EP3961024A1 (en) * 2020-08-26 2022-03-02 Mazda Motor Corporation Engine system, vehicle, method of controlling engine system, and computer program product
EP3961011A1 (en) * 2020-08-26 2022-03-02 Mazda Motor Corporation Engine system, vehicle, method of controlling engine system, and computer program product

Also Published As

Publication number Publication date
JP3924219B2 (en) 2007-06-06

Similar Documents

Publication Publication Date Title
JP4335533B2 (en) Operation method of supercritical water injection type internal combustion engine
JP3924219B2 (en) Method for operating two-fluid injection internal combustion engine and two-fluid injection device
US8065878B2 (en) Two phase exhaust for internal combustion engine
US6543411B2 (en) Method for generating a homogeneous mixture for auto-ignition internal combustion engines and for controlling the combustion process
US7117843B2 (en) Emission reduction in a diesel engine using an alternative combustion process and a low-pressure EGR loop
US20060037563A1 (en) Internal combustion engine with auto ignition
US7051700B2 (en) Internal combustion engine and control device for the internal combustion engine
KR20220021441A (en) How to inject ammonia fuel into a reciprocating engine
WO2002084092A1 (en) Method of operating reciprocating internal combustion engines, and system therefor
JP5888235B2 (en) Split cycle engine
KR101807042B1 (en) Apparatus of controlling of gasolin-diesel complex combustion engine and method thereof
CN106968776A (en) Method and control device for running engine
US20110079198A1 (en) Injection method and device for controlling an injection process in an internal combustion engine
JP2018172999A (en) Control device of homogeneous charge compression ignition type engine
JP4274063B2 (en) Control device for internal combustion engine
CN114017178B (en) Lean combustion control method and device and hydrogen engine system
JP2918400B2 (en) Heat shield type gas engine with valve opening control device
JP3930398B2 (en) Two-fluid injection internal combustion engine and method of operating the same
JP2009115024A (en) Reciprocating internal combustion engine using isothermal compression cylinder
JP2871317B2 (en) Fuel supply system for gas engine
JP2000328974A (en) Diesel engine with egr system
CN217582302U (en) Ammonia engine system
JP7214490B2 (en) Gas engine system and its control method
JPH10274087A (en) Control device for diesel engine
JP2018172981A (en) Control device of homogeneous charge compression ignition type engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070223

R151 Written notification of patent or utility model registration

Ref document number: 3924219

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees