JP2004067997A5 - - Google Patents

Download PDF

Info

Publication number
JP2004067997A5
JP2004067997A5 JP2003148944A JP2003148944A JP2004067997A5 JP 2004067997 A5 JP2004067997 A5 JP 2004067997A5 JP 2003148944 A JP2003148944 A JP 2003148944A JP 2003148944 A JP2003148944 A JP 2003148944A JP 2004067997 A5 JP2004067997 A5 JP 2004067997A5
Authority
JP
Japan
Prior art keywords
solid
melt
polyester resin
producing
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003148944A
Other languages
Japanese (ja)
Other versions
JP2004067997A (en
JP4127119B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2003148944A priority Critical patent/JP4127119B2/en
Priority claimed from JP2003148944A external-priority patent/JP4127119B2/en
Publication of JP2004067997A publication Critical patent/JP2004067997A/en
Publication of JP2004067997A5 publication Critical patent/JP2004067997A5/ja
Application granted granted Critical
Publication of JP4127119B2 publication Critical patent/JP4127119B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【特許請求の範囲】
【請求項1】 テレフタル酸又はそのエステル形成性誘導体を主成分とするジカルボン酸成分と、エチレングリコールを主成分とするジオール成分とを、エステル化反応或いはエステル交換反応を経て重縮合させることにより製造された溶融重合ポリマーを固相重縮合してポリエステル樹脂を製造する方法に於いて、
(1)テレフタル酸成分およびエチレングリコール成分以外の共重合成分量が5.5以下、固有粘度が0.08dl/g以上0.50dl/g以下、かつ見掛け結晶子サイズが9nm未満の溶融重合ポリマーを得、
(2)該溶融重合ポリマーを、該溶融重合ポリマーのガラス転移温度より140℃高い温度以上、融点以下の温度で固相重縮合することにより、見掛け結晶子サイズ9nm未満のポリエステル樹脂を得る、
ことを特徴とするポリエステル樹脂の製造方法。
【請求項2】 固相重縮合を、該溶融重合ポリマーのガラス転移温度より145℃高い温度以上の温度で行うことを特徴とする請求項1記載のポリエステル樹脂の製造方法。
【請求項3】 固相重縮合を、該溶融重合ポリマーのガラス転移温度より150℃高い温度以上の温度で行うことを特徴とする請求項記載のポリエステル樹脂の製造方法。
【請求項4】 溶融重合ポリマーの見掛け結晶子サイズが8nm以下であり、ポリエステル樹脂の見掛け結晶子サイズが8nm以下であることを特徴とする請求項1〜3の何れか1項に記載のポリエステル樹脂の製造方法。
【請求項5】 溶融重合ポリマーの固有粘度が、0.10dl/g以上0.45dl/g以下であることを特徴とする請求項1〜4の何れか1項に記載のポリエステル樹脂の製造方法。
【請求項6】 テレフタル酸成分およびエチレングリコール成分以外の共重合成分量が4.5以下であることを特徴とする請求項1〜5の何れか1項に記載のポリエステル樹脂の製造方法。
【請求項7】 該溶融重合ポリマーの平均粒径が10〜1500μmであることを特徴とする請求項1〜6の何れか1項に記載のポリエステル樹脂の製造方法。
【請求項8】 ポリエステル樹脂の平均粒径が10〜1500μmであることを特徴とする請求項1〜7の何れか1項に記載のポリエステル樹脂の製造方法。
【請求項】 ポリエステル樹脂の固有粘度を0.60dl/g以上とすることを特徴とする請求項1〜のいずれか1項に記載のポリエステル樹脂の製造方法。
【請求項10】 テレフタル酸又はそのエステル形成性誘導体を主成分とするジカルボン酸成分と、エチレングリコールを主成分とするジオール成分とを、エステル化反応或
いはエステル交換反応を経て重縮合させることにより製造された溶融重合ポリマーを固相重縮合してポリエステル樹脂を製造する方法に於いて、
(1)テレフタル酸成分およびエチレングリコール成分以外の共重合成分量が5.5以下、固有粘度が0.08dl/g以上0.50dl/g以下、かつ見掛け結晶子サイズが9nm未満の溶融重合ポリマーを、
(2)該溶融重合ポリマーの見掛け結晶子サイズを9nm未満に維持した状態で、該溶融重合ポリマーのガラス転移温度より140℃高い温度以上、融点以下の温度で固相重縮合する、
ことを特徴とするポリエステル樹脂の製造方法。
【請求項11】 テレフタル酸又はそのエステル形成性誘導体を主成分とするジカルボン酸成分と、エチレングリコールを主成分とするジオール成分とを、エステル化反応或いはエステル交換反応を経て重縮合させることにより製造された溶融重合ポリマーを固相重縮合してポリエステル樹脂を製造する方法において、
(1)溶融重合により、テレフタル酸成分及びエチレングリコール成分以外の共重合成分量が5.5以下で、固有粘度が0.20dl/g以上で0.50dl/g以下の液状の溶融重合ポリマーを生成させ、
(2)該溶融重合ポリマーを急冷して、見掛け結晶子サイズが8nm以下の固体状の溶融重合ポリマーとし、
(3)該固体状の溶融重合ポリマーを、平均粒径1500μm以下にして、そのガラス転移点よりも140℃以上高くてかつ融点以下の温度で、固有粘度が0.60dl/g以上となるまで固相重縮合する、
ことを特徴とするポリエステル樹脂の製造方法。
【請求項12】 テレフタル酸又はそのエステル形成性誘導体を主成分とするジカルボン酸成分と、エチレングリコールを主成分とするジオール成分とを、エステル化反応或いはエステル交換反応を経て重縮合させることにより製造された溶融重合ポリマーを固相重縮合してポリエステル樹脂を製造する方法において、
(1)溶融重合により、テレフタル酸成分及びエチレングリコール成分以外の共重合成分が5.5以下で、固有粘度が0.20dl/g以上で0.45dl/g以下の液状の溶融重合ポリマーを生成させ、
(2)該溶融重合ポリマーを急冷して、見掛け結晶子サイズが7nm以下の固体状の溶融重合ポリマーとし、
(3)該固体状の溶融重合ポリマーを、平均粒径500μm以下にして、そのガラス転移点よりも150℃以上高くてかつ融点以下の温度で、固有粘度が0.60dl/g以上となるまで固相重縮合する、
ことを特徴とするポリエステル樹脂の製造方法。
【請求項13】 テレフタル酸又はそのエステル形成性誘導体を主成分とするジカルボン酸成分と、エチレングリコールを主成分とするジオール成分とを、エステル化反応或いはエステル交換反応を経て重縮合させることにより製造された溶融重合ポリマーを固相重縮合してポリエステル樹脂を製造する方法において、
(1)溶融重合により、テレフタル酸成分及びエチレングリコール成分以外の共重合成分が4.5以下で、固有粘度が0.20dl/g以上で0.40dl/g以下の液状の溶融重合ポリマーを生成させ、
(2)該溶融重合ポリマーを急冷して、見掛け結晶子サイズが0の固体状の溶融重合ポリマーとし、
(3)該固体状の溶融重合ポリマーを、平均粒径500μm以下にして、そのガラス転移点よりも150℃以上高くてかつ融点以下の温度で、固有粘度が0.60dl/g以上となるまで固相重縮合する、
ことを特徴とするポリエステル樹脂の製造方法。
【請求項14】 溶融重合ポリマーを、溶融状態からその結晶化温度以下まで1秒以内で急冷することを特徴とする請求項11〜13の何れか1項に記載のポリエステル樹脂
の製造方法。
【請求項15】 溶融重合ポリマーの固相重縮合温度への昇温を、200℃に到達するまでは100℃/分以下の速度で行うことを特徴とする請求項1〜14の何れか1項に記載のポリエステル樹脂の製造方法。
【請求項16】 固相重縮合を、100〜150kPaの圧力下行うことを特徴とする請求項1〜15の何れか1項に記載のポリエステル樹脂の製造方法。
【請求項17】 溶融重合を、触媒としてチタン化合物の存在下行うことを特徴とする請求項1〜16の何れか1項に記載のポリエステル樹脂の製造方法。
【請求項18】 溶融重合を、ジカルボン酸成分に対して1〜2倍(モル比)のジオール成分を用いて行うことを特徴とする請求項1〜17の何れか1項に記載のポリエステル樹脂の製造方法。
【請求項19】 溶融重合を、250〜290℃で行うことを特徴とする請求項1〜18のいずれか1項に記載のポリエステル樹脂の製造方法。
【請求項20】 溶融重合を、1333〜13.3Paの圧力下で行うことを特徴とする請求項1〜19のいずれか1項に記載のポリエステル樹脂の製造方法。
[Claims]
    1. A polycarboxylic acid component comprising terephthalic acid or an ester-forming derivative thereof as a main component and a diol component comprising ethylene glycol as a main component are subjected to polycondensation via an esterification reaction or a transesterification reaction. In a method of producing a polyester resin by solid-phase polycondensation of the melt polymer that was obtained,
  (1) A melt-polymerized polymer having an amount of a copolymer component other than a terephthalic acid component and an ethylene glycol component of 5.5 or less, an intrinsic viscosity of 0.08 dl / g or more and 0.50 dl / g, and an apparent crystallite size of less than 9 nm. Get
  (2) obtaining a polyester resin having an apparent crystallite size of less than 9 nm by subjecting the melt-polymerized polymer to solid-phase polycondensation at a temperature of 140 ° C. or higher and a melting point or lower than the glass transition temperature of the melt-polymerized polymer;
A method for producing a polyester resin.
    2. The process for producing a polyester resin according to claim 1, wherein the solid-phase polycondensation is carried out at a temperature of 145 ° C. or higher than the glass transition temperature of the molten polymer.
    3. The solid-state polycondensation is performed at a temperature of 150 ° C. or higher than the glass transition temperature of the molten polymer.1The method for producing the polyester resin described in the above.
    (4) TheThe method for producing a polyester resin according to any one of claims 1 to 3, wherein the apparent crystallite size of the melt-polymerized polymer is 8 nm or less, and the apparent crystallite size of the polyester resin is 8 nm or less.
    (5) TheThe method for producing a polyester resin according to any one of claims 1 to 4, wherein an intrinsic viscosity of the melt-polymerized polymer is 0.10 dl / g or more and 0.45 dl / g or less.
    6. The amount of a copolymer component other than the terephthalic acid component and the ethylene glycol component is 4.5 or less.Characterized byA method for producing the polyester resin according to claim 1.
    7. The method for producing a polyester resin according to claim 1, wherein the average particle size of the melt-polymerized polymer is 10 to 1500 μm.
    8. The method for producing a polyester resin according to claim 1, wherein the average particle size of the polyester resin is 10 to 1500 μm.
    Claims9The intrinsic viscosity of the polyester resin is set to 0.60 dl / g or more.Characterized byClaim 18The method for producing a polyester resin according to any one of the above.
    Claims10A dicarboxylic acid component containing terephthalic acid or an ester-forming derivative thereof as a main component and a diol component containing ethylene glycol as a main component are subjected to an esterification reaction or
In a method of producing a polyester resin by solid-phase polycondensation of a melt-polymerized polymer produced by polycondensation through a transesterification reaction,
  (1) A melt-polymerized polymer having an amount of a copolymer component other than a terephthalic acid component and an ethylene glycol component of 5.5 or less, an intrinsic viscosity of 0.08 dl / g or more and 0.50 dl / g, and an apparent crystallite size of less than 9 nm. To
  (2) solid-state polycondensation at a temperature not lower than 140 ° C. higher than the glass transition temperature of the molten polymer and not higher than the melting point thereof while maintaining the apparent crystallite size of the melt-polymerized polymer at less than 9 nm;
A method for producing a polyester resin.
    11. A melt-polymerized polymer produced by polycondensing a dicarboxylic acid component mainly containing terephthalic acid or an ester-forming derivative thereof and a diol component mainly containing ethylene glycol through an esterification reaction or a transesterification reaction. In the method of producing a polyester resin by solid-phase polycondensation,
  (1) By melt polymerization, a liquid molten polymer having an amount of a copolymer component other than a terephthalic acid component and an ethylene glycol component of 5.5 or less and an intrinsic viscosity of 0.20 dl / g or more and 0.50 dl / g or less is obtained. Generate
  (2) quenching the melt-polymerized polymer to obtain a solid melt-polymerized polymer having an apparent crystallite size of 8 nm or less;
  (3) until the solid-state melt-polymerized polymer has an average particle diameter of 1500 μm or less and has an intrinsic viscosity of 0.60 dl / g or more at a temperature higher than its glass transition point by 140 ° C. or higher and lower than its melting point. Solid-phase polycondensation,
A method for producing a polyester resin.
    12. A melt-polymerized polymer produced by polycondensing a dicarboxylic acid component mainly containing terephthalic acid or an ester-forming derivative thereof and a diol component mainly containing ethylene glycol through an esterification reaction or a transesterification reaction. In the method of producing a polyester resin by solid-phase polycondensation,
  (1) A melt-polymerized liquid polymer having a copolymer component other than terephthalic acid component and ethylene glycol component of 5.5 or less and an intrinsic viscosity of 0.20 dl / g or more and 0.45 dl / g or less is produced. Let
  (2) quenching the melt-polymerized polymer to obtain a solid melt-polymerized polymer having an apparent crystallite size of 7 nm or less;
  (3) The solid-state melt-polymerized polymer is made to have an average particle size of 500 μm or less, and has an intrinsic viscosity of 0.60 dl / g or more at a temperature of 150 ° C. or more and a melting point or less of its glass transition point. Solid-phase polycondensation,
A method for producing a polyester resin.
    Claim 13 A melt-polymerized polymer produced by polycondensing a dicarboxylic acid component mainly containing terephthalic acid or an ester-forming derivative thereof and a diol component mainly containing ethylene glycol through an esterification reaction or a transesterification reaction. In the method of producing a polyester resin by solid-phase polycondensation,
  (1) By melt polymerization, a liquid melt-polymerized polymer having a copolymerization component other than the terephthalic acid component and the ethylene glycol component of 4.5 or less and an intrinsic viscosity of 0.20 dl / g or more and 0.40 dl / g or less is produced. Let
  (2) quenching the molten polymer to form a solid molten polymer having an apparent crystallite size of 0;
  (3) The solid-state melt-polymerized polymer is made to have an average particle size of 500 μm or less, and has an intrinsic viscosity of 0.60 dl / g or more at a temperature of 150 ° C. or more and a melting point or less of its glass transition point. Solid-phase polycondensation,
A method for producing a polyester resin.
    14. The polyester resin according to any one of claims 11 to 13, wherein the melt-polymerized polymer is rapidly cooled from a molten state to a temperature lower than its crystallization temperature within one second.
Manufacturing method.
    ClaimsFifteenThe temperature of the melt-polymerized polymer is raised to the solid-state polycondensation temperature at a rate of 100 ° C./min or less until the temperature reaches 200 ° C.Characterized byClaim 114The method for producing a polyester resin according to any one of the above.
    Claims16The solid-state polycondensation is performed under a pressure of 100 to 150 kPa.ToDoCharacterized byClaim 1FifteenThe method for producing a polyester resin according to any one of the above.
    17.   Melt polymerization, In the presence of a titanium compound as a catalystToClaim 1 characterized by performing16The method for producing a polyester resin according to any one of the above.
    18.   Melt polymerization,For dicarboxylic acid component1 to 2 times (molar ratio) a diol component.Claim 117The method for producing a polyester resin according to any one of the above.
    (19)  The melt polymerization is performed at 250 to 290 ° C.18The method for producing a polyester resin according to any one of the above.
    20.  The melt polymerization is performed under a pressure of 1333 to 13.3 Pa.19The method for producing a polyester resin according to any one of the above.

固相重縮合によって得られるポリエステル樹脂の固有粘度は通常、0.60dl/g以上、好ましくは0.65dl/g以上、更に好ましくは0.70dl/g以上である。又、通常、1.20dl/g以下、好ましくは1.10dl/g以下、より好ましくは1.00dl/g以下である。0.60dl/g未満の場合、特にブロー成形に用いた場合に肉厚ムラが発生しやすく、1.20dl/gより大きいと特に射出成形時に金型への樹脂充填量不足による形状異常(ヒケ)が発生しやすい。
The intrinsic viscosity of the polyester resin obtained by the solid-phase polycondensation is usually 0.60 dl / g or more, preferably 0.65 dl / g or more, more preferably 0.70 dl / g or more. Further, it is usually at most 1.20 dl / g, preferably at most 1.10 dl / g, more preferably at most 1.00 dl / g. If it is less than 0.60 dl / g, especially when used for blow molding, thickness unevenness is likely to occur, and if it is more than 1.20 dl / g, shape abnormality due to insufficient resin filling in the mold especially during injection molding (sinking). ) Is easy to occur.

続いて、粉砕品について、実施例1と同様にして固相重縮合を行った。得られたポリマーの分析結果を表1の製品欄に示す。
実施例1と同じ固相重縮合時間で、得られたポリマーの固有粘度が低いことから、重縮合速度が遅いことが分かる。
比較例2
実施例2と同様にしてエステル化反応及び重縮合反応を行った後、得られた重縮合反応物について、比較例1と同様に処理して粉砕品(固相重縮合原料(溶融重合ポマー))を得た。固相重縮合原料(溶融重合ポリマー)の分析結果を表1の固相重縮合原料欄に示す。
Subsequently, the pulverized product was subjected to solid-phase polycondensation in the same manner as in Example 1. The analysis results of the obtained polymer are shown in the product column of Table 1.
At the same solid-phase polycondensation time as in Example 1, the intrinsic viscosity of the obtained polymer was low, indicating that the polycondensation rate was low.
Comparative Example 2
After performing an esterification reaction and a polycondensation reaction in the same manner as in Example 2, the obtained polycondensation reaction product is treated in the same manner as in Comparative Example 1 to obtain a pulverized product (solid-state polycondensation raw material (melt polymerization pomer)). ) Got. The analysis results of the solid-phase polycondensation raw material (melt polymerized polymer) are shown in the column of solid-phase polycondensation raw material in Table 1.

続いて、粉砕品について、実施例1と同様にして固相重縮合を行った。得られたポリマーの分析結果を表1の製品欄に示す。
実施例2と同じ固相重縮合時間で、得られたポリマーの固有粘度が低いことから、重縮合速度が遅いことが分かる。
比較例3
イソフタル酸0.73部とテレフタル酸12.3部とをテレフタル酸13部の代わりとしてスラリー調製槽に連続的に供給した以外は実施例3と同様にして粉砕品(固相重縮合原料(溶融重合ポリマー))を得た。固相重縮合原料(溶融重合ポリマー)の分析結果を表1の固相重縮合原料欄に示す。引き続き表1記載の固相重縮合温度、固相重縮合時間とした以外は実施例1と同様にして固相重縮合を行った。得られたポリマーの分析結果を表1の製品欄に示す。
比較例4
実施例3によって得られた粉砕品(固相重縮合原料(溶融重合ポリマー))を用い、表1記載の固相重縮合温度、固相重縮合時間とした以外は実施例1と同様にして固相重縮合を行った。得られたポリマーの分析結果を表1の製品欄に示す。
Subsequently, the pulverized product was subjected to solid-phase polycondensation in the same manner as in Example 1. The analysis results of the obtained polymer are shown in the product column of Table 1.
At the same solid phase polycondensation time as in Example 2, the intrinsic viscosity of the obtained polymer was low, indicating that the polycondensation rate was low.
Comparative Example 3
In the same manner as in Example 3 except that 0.73 part of isophthalic acid and 12.3 parts of terephthalic acid were continuously supplied to the slurry preparation tank instead of 13 parts of terephthalic acid, a crushed product (solid-state polycondensation raw material (melted Polymerized polymer)) was obtained. The analysis results of the solid-phase polycondensation raw material (melt polymerized polymer) are shown in the column of solid-phase polycondensation raw material in Table 1. Subsequently, solid-phase polycondensation was carried out in the same manner as in Example 1 except that the solid-phase polycondensation temperature and the solid-phase polycondensation time shown in Table 1 were used. The analysis results of the obtained polymer are shown in the product column of Table 1.
Comparative Example 4
Using the ground product (solid-state polycondensation raw material (melt polymerized polymer)) obtained in Example 3, in the same manner as in Example 1 except that the solid-phase polycondensation temperature and the solid-phase polycondensation time shown in Table 1 were used. Solid phase polycondensation was performed. The analysis results of the obtained polymer are shown in the product column of Table 1.

JP2003148944A 2002-06-12 2003-05-27 Production method of polyester resin Expired - Fee Related JP4127119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003148944A JP4127119B2 (en) 2002-06-12 2003-05-27 Production method of polyester resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002171708 2002-06-12
JP2003148944A JP4127119B2 (en) 2002-06-12 2003-05-27 Production method of polyester resin

Publications (3)

Publication Number Publication Date
JP2004067997A JP2004067997A (en) 2004-03-04
JP2004067997A5 true JP2004067997A5 (en) 2006-04-06
JP4127119B2 JP4127119B2 (en) 2008-07-30

Family

ID=32032264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003148944A Expired - Fee Related JP4127119B2 (en) 2002-06-12 2003-05-27 Production method of polyester resin

Country Status (1)

Country Link
JP (1) JP4127119B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101159845B1 (en) * 2004-12-29 2012-06-25 에스케이케미칼주식회사 Polyester resine and method for producing the same
CN102516508A (en) 2005-09-01 2012-06-27 三菱化学株式会社 Method of multistage solid-phase polycondensation of polyester particle
US20080182963A1 (en) 2005-09-01 2008-07-31 Mitsubishi Chemical Corporation Method For Producing Polyester
JP4645600B2 (en) * 2006-05-08 2011-03-09 三菱化学株式会社 Method for producing polyethylene terephthalate
JP5444803B2 (en) * 2008-04-21 2014-03-19 三菱化学株式会社 Method for producing polyethylene terephthalate
JP5734569B2 (en) 2010-01-18 2015-06-17 富士フイルム株式会社 SOLAR CELL BACK SHEET, MANUFACTURING METHOD THEREOF, AND SOLAR CELL MODULE
JP5575671B2 (en) 2010-01-18 2014-08-20 富士フイルム株式会社 Polyester resin polymerization method, polyester resin composition and polyester film
JP2011165967A (en) 2010-02-10 2011-08-25 Fujifilm Corp Solar cell backsheet and solar cell module
JP5623938B2 (en) 2010-03-25 2014-11-12 富士フイルム株式会社 Solar cell backsheet
JP2012017456A (en) 2010-06-11 2012-01-26 Fujifilm Corp Polyester film and method for producing the same, back sheet for solar cell, and solar cell module
US20120048348A1 (en) 2010-08-26 2012-03-01 Fujifilm Corporation Solar cell protective sheet and its production method, backsheet for solar cell, and solar cell module
CN103201851A (en) 2010-11-12 2013-07-10 富士胶片株式会社 Back sheet for solar cells and process for production thereof, and solar cell module
JP5753110B2 (en) 2012-02-03 2015-07-22 富士フイルム株式会社 Back surface protection sheet for solar cell module and solar cell module
JP6200131B2 (en) 2012-03-28 2017-09-20 富士フイルム株式会社 Polymer sheet, back surface protection sheet for solar cell, and solar cell module
JP5852626B2 (en) 2012-11-06 2016-02-03 富士フイルム株式会社 Ketene imine compound, polyester film, back sheet for solar cell module and solar cell module

Similar Documents

Publication Publication Date Title
JP2004067997A5 (en)
CN1263783C (en) Method of preparing modified polyester bottle resins
US8865304B2 (en) Biodegradable aliphatic polyester particles and production process thereof
JP4167159B2 (en) Production method of polyester resin
JP5855973B2 (en) Polyester resin and polyester film using the same
JP4127119B2 (en) Production method of polyester resin
JP2537534B2 (en) Method for producing thermotropic liquid crystalline polyester
JP6757669B2 (en) Polyester resin pellets, their manufacturing methods and molded products made from them
TW202110994A (en) Polyester resin blend
KR100455456B1 (en) Polyester resin with improved infrared absorbing properties
JP3999620B2 (en) Production method of polyester resin
JPH0413719A (en) Production of polybutylene terephthalate having high degree of polymerization
JP3515053B2 (en) Method for producing polyester block copolymer
KR20050100648A (en) Extrusion blow molded articles
CN112375237B (en) Functional master batch production system for polyester film
JP3792020B2 (en) Molding method of polyester resin
JP2005041903A (en) Method for producing polyester
JP3323247B2 (en) Manufacturing method of molded products
JP4943582B2 (en) Production of improved polymers by using star cores
CN110317329B (en) Preparation method of polyarylate based on 2- (3-carboxyl-4-methoxyphenyl) -5-hydroxypyridoimidazole
JP3395423B2 (en) polyester
KR100680378B1 (en) Highly viscous and amorphous polyester copolymer having improved impact resistance
JP4234043B2 (en) Method for crystallizing aliphatic polyester
KR940002183B1 (en) Processing method of polyester polymer
JPH02165912A (en) Molding method for saturable crystalline polyester