JP2004067728A - Thermoplastic resin composition utilizing recycled polyethylene terephthalate resin material - Google Patents

Thermoplastic resin composition utilizing recycled polyethylene terephthalate resin material Download PDF

Info

Publication number
JP2004067728A
JP2004067728A JP2002224941A JP2002224941A JP2004067728A JP 2004067728 A JP2004067728 A JP 2004067728A JP 2002224941 A JP2002224941 A JP 2002224941A JP 2002224941 A JP2002224941 A JP 2002224941A JP 2004067728 A JP2004067728 A JP 2004067728A
Authority
JP
Japan
Prior art keywords
weight
resin
resin composition
thermoplastic resin
vinyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002224941A
Other languages
Japanese (ja)
Inventor
Toshio Takemoto
竹元 敏雄
Eiichiro Kawaguchi
川口 英一郎
Soichiro Yamaguchi
山口 聡一郎
Hiromichi Sasano
笹野 博道
Kiyoshi Shirai
白井 潔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Techno UMG Co Ltd
Original Assignee
UMG ABS Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UMG ABS Ltd filed Critical UMG ABS Ltd
Priority to JP2002224941A priority Critical patent/JP2004067728A/en
Publication of JP2004067728A publication Critical patent/JP2004067728A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoplastic resin composition excellent in impact resistance, moldability, heat resistance, and dimensional properties by utilizing a recycled material of polyethylene terephthalate (PET) resin moldings. <P>SOLUTION: This thermoplastic resin composition is prepared by compounding (A) a crushed material of PET resin moldings, (B) a graft copolymer represented by an ABS resin and having a specific composition, (C) an AS resin having a specific composition and other copolymers, and (D) a polycarbonate resin having a specified mol.wt., the weights of (A), a rubbery polymer derived from (B), and (D) being 1-50 wt.%, 10-25 wt.%, and 0-20 wt.%, respectively, based on the total weight of (A)+(B)+(C)+(D), followed by melt kneading with a vacuum-vented extruder under a reduced pressure at a resin temperature in the range of 255-285°C. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はポリエチレンテレフタレート樹脂リサイクル材、グラフト共重合体及びポリカーボネート樹脂等からなる、耐衝撃性、成形加工性、耐熱性等の実用特性に優れた熱可塑性樹脂組成物に関する。
【0002】
【従来の技術】
ポリエチレンテレフタレート(PET)樹脂は、機械的強度・透明性・耐薬品性・ガスバリア性・衛生性等に優れ、近年各種ボトル・食品トレー・シート等に広く用いられている。一方、PET樹脂製品の普及に伴い、環境保全や資源有効利用の観点から、それらの廃棄物の回収、再利用が緊急の課題とされている。
【0003】
PET樹脂は、ノッチ付き耐衝撃性に劣る、ガラス転移温度(Tg)が低いため、耐熱性に劣る、融点が高いため、成形温度が高い、寸法安定性が悪い、更に同じポリエステル樹脂であるポリブチレンテレフタレート(PBT)樹脂に比べても、結晶化速度が遅く成形サイクルが長くなる、加水分解し易い等の欠点が有り、一般射出成形素材としては使いにくい材料である。
【0004】
そのため、再利用の方法としては、繊維としての用途が多く、最近ではモノマーに戻すケミカルリサイクルの技術が検討され、実用化が期待されている。
【0005】
【発明が解決しようとする課題】
PET樹脂リサイクル材は、市販されているペレット状製品(バージン材)に比べて、分子量が低下している場合が多く機械的強度が劣る、吸湿しており、また、結晶化していないため、乾燥温度を上げると固結してしまうという問題が発生する。
【0006】
ポリエステル樹脂の耐衝撃性を改良する方法については、古くから研究が行われてきた。例えば、特公昭51−25261号公報にはポリエステル樹脂にABS樹脂をブレンドする方法が、特公昭55−9435号公報にはポリエステル樹脂にグラフト重合体、ポリカーボネート樹脂を配合する方法が、特公平1―34462号公報にはポリエステル樹脂に特定のグラフト重合体、共重合体を配合して成形品のウエルド強度を改善する方法が、特公平6−6663号公報にはポリエステル樹脂にグラフト重合体、エポキシ化合物、カルボジイミド化合物を配合する方法が、特開平10−81813号公報にはポリエステル樹脂に特定のグラフト重合体、共重合体を配合する方法が開示されている。
【0007】
しかしこれらの方法は、耐衝撃性は改善されるが流動性に劣る等の実用性に問題が有ることが多く、実施例としてもABS樹脂に対してポリエステル樹脂として相溶性が比較的良好なPBT樹脂を選択している場合が多い。そのため、PET樹脂のリサイクル材においては、未だに工業部材に求められる要求特性、或いは品質の信頼性に答えられていないのが現状であり、再利用の用途が限定されている。
【0008】
本発明の目的は、上記課題を解決し、PET樹脂成形品のリサイクル材を活用して、耐衝撃性・成形加工性・耐熱性・寸法性に優れた熱可塑性樹脂組成物を提供することにある。
【0009】
【課題を解決するための手段】
本発明に従って、ポリエチレンテレフタレート樹脂リサイクル材(A)、ゴム質重合体にシアン化ビニル、芳香族ビニルの一方又は両方を重合してなるグラフト重合体(B)、シアン化ビニル、芳香族ビニルの一方又は両方及び必要によりこれらと共重合可能なその他の単量体からなるビニル共重合体(C)及びポリカーボネート樹脂(D)を、(A)+(B)+(C)+(D)の全重量に対して、(A)が1〜60重量%、(B)に由来するゴム質重合体が10〜25重量%、(D)が0〜20重量%、となるよう配合してなる熱可塑性樹脂組成物が提供される。
【0010】
【発明の実施の形態】
以下に、本発明の実施の形態を詳細に説明する。
【0011】
そこで、本発明者らは、従来の技術の検証、改良に鋭意努力した結果、特定の混練条件下で、特定の組成のグラフト重合体又はグラフト重合体及びポリカーボネート樹脂をPET樹脂に配合することによって、ノッチ付き衝撃強度が改善され、流動性、耐熱性及び寸法性等の実用特性に優れた樹脂組成物を得ることを見出し、本発明に至った。
【0012】
本発明において破砕材(A)として用いられるPET樹脂成形品は、PETボトルが代表的なものであるが、それに限定されることはなく、PET樹脂製品のオフグレードや成形工程で発生する廃材等も対象とすることができる。
【0013】
使用済みPETボトルや食品トレー等を回収して得られるリサイクル材については、分別により異種材料や金属の混入を避ける必要が有り、また、アルカリ水等によって洗浄した場合は、PET樹脂の加水分解を促進させるアルカリ分が残留しないように、十分に水洗した後、乾燥処理が必要である。
【0014】
破砕材(A)の形状としては、フレーク状が一般的である。平均粒径としては2〜5mmが好ましく、また異物除去のためにいったんペレット化(リペレット)したものを用いてもよい。
【0015】
本発明で使用するグラフト重合体(B)とは、一般にABS、ASA、AES、MBS等で表現される、ゴム質重合体に硬質重合体がグラフト重合したコア/シェル構造を有したものである。
【0016】
グラフト重合体(B)を形成するゴム質重合体とは、例えば、ポリブタジエン、スチレン/ブタジエン共重合体、アクリル酸エステル/ブタジエン共重合体、スチレン/イソプレン共重合体等の共役ジエン系ゴム、ポリアクリル酸ブチル等のアクリル系ゴム、エチレン/プロピレン共重合体等のオレフィン系ゴム、ポリオルガノシロキサン等のシリコーン系ゴム、熱可塑性エラストマー等が挙げられ、これらは1種又は2種以上で使用される。
【0017】
上記のゴム質重合体は、耐衝撃性等の機械的特性を有効に発現するために、適度な架橋度と粒子径が必要である。これは、一般のABS樹脂、ASA樹脂、AES樹脂、MBS樹脂等の従来の技術が適用でき、例えば、架橋度としてはトルエン溶液不溶のゲル含有量が65〜95%で、平均粒子径が300〜400nmであるものが好ましい。この範囲を外れたものでは耐衝撃性が低下することがある。
【0018】
グラフト重合体(B)は、上記のゴム質重合体20〜70重量%の存在下、硬質重合体を形成する単量体混合物80〜30重量%をグラフト重合させて得られ、グラフト率(アセトン不溶分重量/ゴム質重合体重量−1)が20〜90重量%であることが好ましい。グラフト率が20重量%より低い場合には、衝撃強度の低下や光沢低下を生じ易く、グラフト率が90重量%より高い場合には、流動性が低下し易くなる。
【0019】
グラフト重合体(B)及び共重合体(C)を形成する単量体としては、シアン化ビニル系については、例えばアクリロニトリルが、芳香族ビニル系については、例えばスチレンやα−メチルスチレン等が用いられる。また、共重合可能なその他の単量体としては、不飽和カルボン酸エステル、不飽和ジカルボン酸無水物及び不飽和ジカルボン酸イミド化合物(N−PMI等)等が挙げられる。
【0020】
グラフト重合体(B)及びビニル共重合体(C)を形成する単量体混合物の構成比(重量比)は、シアン化ビニル/芳香族ビニルが10/90〜35/65の範囲が好ましく、より好ましくは20/80〜30/70である。この範囲外では高い衝撃強度が得られ難い。
【0021】
ゴム質重合体、グラフト重合体(B)、ビニル共重合体(C)の製造方法は、乳化重合、懸濁重合及び塊状重合等の公知の技術を用いることができ、特に制限はないが、一般的にはグラフト重合体(B)については乳化重合が、ビニル共重合体(C)については懸濁重合や塊状重合が用いられる。乳化重合の場合、ラテックスからポリマーを析出させるに当たって、酸による凝固が好ましい。塩による凝固の場合、ポリマー中に残留する鹸化物が、PET樹脂(A)及びポリカーボネート樹脂(D)の加水分解を促進するためである。
【0022】
本発明に用いるポリカーボネート樹脂の数平均分子量は、15,000〜25,000の範囲が好ましい。15,000未満では衝撃強度改善効果が得られにくく、25000を超えると流動性が著しく低下することがある。
【0023】
本発明による樹脂組成物の構成(重量比)は、PET樹脂リサイクル材(A)が1〜60重量%で、グラフト重合体(B)に由来するゴム質重合体が10〜25重量%、ポリカーボネート樹脂(D)が0〜20重量%である。PET樹脂が60重量%より増えると、衝撃強度や耐熱性が低下し、成形収縮・ソリ等により寸法性が悪くなる。ゴム質重合体が10重量%より少ないと十分な衝撃強度が得られず、25重量%より多いと流動性や剛性・耐熱性が低下する。ポリカーボネート樹脂は、PET樹脂の分子量が大きく低下している(目安として、数平均分子量で15,000、固有粘度値[η]で0.60以下)場合及びPET樹脂の比率が多い場合に添加される。この時、添加量が20重量%より多くなると流動性が低下してくる。好ましくは5〜20重量%の範囲であり、5%未満では衝撃強度改善効果が得られ難くなる。
【0024】
上記構成の樹脂組成物については、必要に応じて、安定剤、滑剤、着色剤、無機充填剤又は繊維状強化剤等を添加することができる。特に、無機フィラーを配合すると寸法性・耐熱性・剛性が向上する。
【0025】
本発明による樹脂組成物を生産するに当たって、前記構成の配合品を1軸或いは2軸押し出し機によって、1個所以上の真空ベント口より減圧脱気しつつ、樹脂温度が255〜285℃の範囲にあるように混練・造粒することが好ましい。ゴム等の混練機として一般的なバンバリーミキサーや加熱ロールでは、PET樹脂の融点以上に樹脂温度を上げることが困難であるばかりでなく、混練中に配合品中に含まれる水分によるPET樹脂の加水分解を防ぐことが出来ない。また、押し出し機でも真空ベントのない場合、樹脂温度の上昇に比例して加水分解が促進され、物性の低下が避けられない。配合品の溶融と同時に真空ベントによる脱気が不可欠であり、長時間の熱履歴を避け十分な混練・分散を得るためには、2段ベントを備えた2軸押し出し機を使用することが好ましい。
【0026】
以下に本発明で用いるグラフト重合体とビニル共重合体の製造例を示す。
【0027】
<製造例−1:グラフト重合体(B−1)>
蒸留水200重量部に、ゲル含有率98重量%、重量平均粒子径290〜300nmのジエン系ゴム50重量部と、スチレン75重量%及びアクリロニトリル25重量%のビニル単量体混合物50重量部と、不均化ロジン酸カリウム1重量部、水酸化ナトリウム0.01重量部、ピロリン酸ナトリウム0.45重量部、硫酸第1鉄0.01重量部、デキストローズ0.57重量部、t−ドデシルメルカプタン0.08重量部及びクメンハイドロパーオキサイド1.0重量部とを仕込み、60℃から反応を開始し、途中で75℃まで昇温し、2時間後乳化グラフト重合を停止してグラフト共重合体(B−1)を得た。なお、単量体転化率は96重量%であった。アセトン可溶部のゲルパーミエーションクロマトグラフィーにより測定した重量平均分子量は44,000で、グラフト率は70%であった。
【0028】
<製造例−2:ビニル共重合体(C−1)の製造>
蒸留水120重量部にアルキルベンゼンスルホン酸ナトリウム0.003重量部とスチレン73.0重量%及びアクリロニトリル27.0重量%のビニル単量体混合物100重量部と、t−ドデシルメルカプタン0.6重量部、過酸化ベンゾイル0.15重量部及びリン酸カルシウム0.5重量部とを添加して、110℃で10時間懸濁重合し、ビニル共重合体(C−1)を得た。
【0029】
このビニル共重合体(C−1)のゲルパーミエーションクロマトグラフィーにより測定した数平均分子量Mnは63,000、重量平均分子量Mwは115,000で、分子量分布比Mw/Mnは1.8であった。また、単量体転化率は92重量%であった。
【0030】
【実施例】
以下、実施例及び比較例により、本発明を具体的に説明するが、本発明はこれにより限定されるものではない。なお、実施例及び比較例では、物性の測定を以下の方法で行った。
【0031】
<試験片の成形>
得られた組成物ペレットを熱風循環式乾燥機で80℃で3時間乾燥し、日本製鋼所製4oz射出成形機を使い、シリンダー温度260℃、金型温度60℃に設定し、ASTM試験片を成形した。
【0032】
<流動性:SSP(ショートショット圧力)>
ASTM D638に準じた引張り試験片を充填する最小圧力を示した。
【0033】
<機械的特性>
アイゾット衝撃強度=ASTM D256、引張り特性=ASTM D638、曲げ特性=ASTM D790に準じて23℃で測定した。
【0034】
<熱的特性>
ASTM D648に準拠して、0.451MPa(低荷重)又は1.82MPa(高荷重)条件で熱変形温度を測定した。
【0035】
(実施例1)
ポリエチレンテレフタレート(PET)の質量を変化させた時の熱可塑性樹脂組成物の特性の変化を試験した。
【0036】
実施例1で用いた熱可塑性樹脂組成物は、(A)ポリエチレンテレフタレートには西日本ペットボトル(株)製フレーク状再生品、(B)のグラフト重合体には(B−1)、(C)のビニル共重合体には(C−1)、(D)のポリカーボネートには三菱エンジニアリングプラステックス社製のH3000、数平均分子量17500を用い配合した。
【0037】
【表1】

Figure 2004067728
【0038】
表1よりPETが40質量%以上では衝撃強度・耐熱性が低下するが、ポリカーボネート樹脂を添加することにより改善することが分かる。
【0039】
(実施例2)
ポリカーボネート(PC)の質量を変化させた時の熱可塑性樹脂組成物の特性の変化を試験した。
【0040】
<製造例:ビニル共重合体(C−2)の製造>
蒸留水170重量部に不均化ロジン酸塩2.5重量部とα−メチルスチレン74.0重量%及びアクリロニトリル26.0重量%のビニル単量体混合物100重量部と、t−ドデシルメルカプタン0.6重量部、過酸化ベンゾイル0.15重量部を添加して、70℃で3時間乳化重合し、ビニル共重合体(C−2)を得た。
【0041】
このビニル共重合体(C−2)の重量平均分子量Mwは116,000で、また、単量体転化率は96重量%であった。
【0042】
【表2】
Figure 2004067728
【0043】
表2よりポリカーボネートが5%未満では衝撃強度が低くなり易く、20%を超えると流動性が低下することが分かる。
【0044】
(実施例3)
ビニル共重合体の製法で、アクリロニトリルを変量した以外はビニル共重合体C−1と同様にしてC−3〜C−8を作製した。
【0045】
ビニル共重合体の構成比(アクリロニトリル比)・分子量(固有粘度)を変化させた時の熱可塑性樹脂組成物の特性の変化を試験した。
【0046】
【表3】
Figure 2004067728
【0047】
表3よりアクリロニトリル%が13〜32重量%、固有粘度が0.46〜0.63の範囲では衝撃強度が高いが、それ以外の場合には衝撃強度が低いことが分かる。
【0048】
(実施例4)
グラフト重合体の製法で、ゴムの粒子径・ゲル含有量を変えた以外はB−1と同様にしてB−2〜B−7を作製した。
【0049】
グラフト重合体のグラフト率とゴムの粒子径・ゲル含有量を変化させた時の熱可塑性樹脂組成物の特性の変化を試験した。
【0050】
【表4】
Figure 2004067728
【0051】
表4よりグラフト率が20重量%より低い場合、ゴム粒子径が小さい場合は衝撃強度が低い。ゲル含有量は一般のABS樹脂に使用される範囲(65%〜95%)であれば、特に制約は無い。
【0052】
(実施例5)
実施例1と同様の配合でグラフト重合体(B−1)とビニル重合体(C−1)の配合比を変量し、グラフト重合体に由来するゴム量を変化させた時の熱可塑性樹脂組成物の特性の変化を試験した。
【0053】
【表5】
Figure 2004067728
【0054】
表5よりゴム量が10%以下では衝撃強度が低く、25%以上では流動性・剛性が低下し実用性に劣ると判断される。
【0055】
(実施例6)
PETの分子量を変化させた時の熱可塑性樹脂組成物の特性の変化を試験した。
【0056】
【表6】
Figure 2004067728
【0057】
表6よりPETの固有粘度値[η]が0.65以下では衝撃強度が低下することが分かった。
【0058】
(実施例7)
ポリカーボネートの分子量を変化させた時の熱可塑性樹脂組成物の特性の変化を試験した。
【0059】
【表7】
Figure 2004067728
【0060】
表7よりポリカーボネートの分子量が15,000以下では衝撃強度が低く、25,000以上では流動性の低下が大きいと判断される。
【0061】
(実施例8)
熱可塑性樹脂組成物の混練条件を2軸押し出し機、バレル温度260℃、スクリュー240RPMとして、原料レジンの含水率、ベントによる脱気の影響を試験した。また、バレル温度を250℃、スクリュー回転数を変えて樹脂温度を変更してサンプルを作製した。
【0062】
【表8】
Figure 2004067728
【0063】
表8よりベントでの脱気が無い場合、加水分解により分子切断が起こり、流動性が上がり衝撃強度が低下する。また、樹脂温度が255℃以下及び285℃以上の場合には、未溶融や分散不良或いは熱劣化による衝撃強度低下が想定される。
【0064】
(実施例9)
無機フィラーを添加した時の熱可塑性樹脂組成物の特性の変化を試験した。
【0065】
【表9】
Figure 2004067728
【0066】
表9より無機フィラーを配合する事によって、寸法性・耐熱性・剛性の向上が認められる。
【0067】
【発明の効果】
上述したように、本発明によって、ポリエチレンテレフタレート樹脂リサイクル材におけるノッチ付き衝撃強度が改善され、流動性、耐熱性及び寸法性等の実用特性に優れた熱可塑性樹脂組成物を提供することが可能となった。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a thermoplastic resin composition comprising a recycled polyethylene terephthalate resin, a graft copolymer, a polycarbonate resin, and the like, and having excellent practical properties such as impact resistance, moldability and heat resistance.
[0002]
[Prior art]
Polyethylene terephthalate (PET) resin is excellent in mechanical strength, transparency, chemical resistance, gas barrier properties, hygiene properties, etc., and is widely used in various bottles, food trays, sheets and the like in recent years. On the other hand, with the spread of PET resin products, collection and reuse of these wastes are urgent issues from the viewpoint of environmental conservation and effective use of resources.
[0003]
PET resin has poor notched impact resistance, low glass transition temperature (Tg), poor heat resistance, high melting point, high molding temperature, poor dimensional stability, and the same polyester resin, Compared to butylene terephthalate (PBT) resin, it has disadvantages such as slow crystallization speed, long molding cycle, and easy hydrolysis, and is difficult to use as a general injection molding material.
[0004]
For this reason, as a method of reuse, there are many uses as fibers, and recently, a technique of chemical recycling for returning to a monomer has been studied, and commercialization is expected.
[0005]
[Problems to be solved by the invention]
The recycled PET resin material has a lower molecular weight in many cases than the commercially available pelletized product (virgin material), has poor mechanical strength, absorbs moisture, and is not crystallized. When the temperature is increased, a problem of solidification occurs.
[0006]
Methods for improving the impact resistance of polyester resins have been studied for a long time. For example, Japanese Patent Publication No. 51-25261 discloses a method of blending an ABS resin with a polyester resin, and Japanese Patent Publication No. 55-9435 discloses a method of blending a graft polymer and a polycarbonate resin with a polyester resin. Japanese Patent Publication No. 34462 discloses a method for improving the weld strength of a molded product by blending a specific graft polymer and a copolymer with a polyester resin, and Japanese Patent Publication No. 6-6663 discloses a method for improving the weld strength of a polyester resin. As a method of blending a carbodiimide compound, Japanese Patent Application Laid-Open No. 10-81813 discloses a method of blending a specific graft polymer or copolymer with a polyester resin.
[0007]
However, these methods often have problems in practicability such as improved impact resistance but poor fluidity, and even in Examples, PBT having relatively good compatibility as a polyester resin with an ABS resin is used. In many cases, resin is selected. Therefore, at present, recycled PET resin materials have not yet responded to the required characteristics required for industrial components or the reliability of quality, and their applications for reuse are limited.
[0008]
An object of the present invention is to solve the above problems and provide a thermoplastic resin composition having excellent impact resistance, molding workability, heat resistance, and dimensional properties by utilizing a recycled material of a PET resin molded product. is there.
[0009]
[Means for Solving the Problems]
According to the present invention, a recycled polyethylene terephthalate resin (A), a graft polymer (B) obtained by polymerizing one or both of vinyl cyanide and aromatic vinyl on a rubbery polymer, one of vinyl cyanide and aromatic vinyl Alternatively, the vinyl copolymer (C) and the polycarbonate resin (D) composed of both, and if necessary, other monomers copolymerizable therewith, are combined with (A) + (B) + (C) + (D) Heat obtained by blending so that (A) is 1 to 60% by weight, rubbery polymer derived from (B) is 10 to 25% by weight, and (D) is 0 to 20% by weight, based on the weight. A plastic resin composition is provided.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0011]
Therefore, the present inventors have made intensive efforts to verify and improve the conventional technology. As a result, under specific kneading conditions, a graft polymer having a specific composition or a graft polymer and a polycarbonate resin are blended into a PET resin. It was found that a resin composition having improved notched impact strength and excellent practical properties such as fluidity, heat resistance and dimensional properties was obtained, and the present invention was achieved.
[0012]
The PET resin molded product used as the crushed material (A) in the present invention is typically a PET bottle, but is not limited thereto. Off-grade of PET resin products, waste materials generated in the molding process, and the like. Can also be targeted.
[0013]
For recycled materials obtained by collecting used PET bottles, food trays, etc., it is necessary to avoid mixing of different materials and metals by separation, and when washed with alkaline water, hydrolysis of PET resin is required. After thoroughly washing with water so that no alkali component to be promoted remains, a drying treatment is required.
[0014]
The crushed material (A) generally has a flake shape. The average particle size is preferably from 2 to 5 mm, and those once pelletized (repellet) for removing foreign substances may be used.
[0015]
The graft polymer (B) used in the present invention has a core / shell structure in which a hard polymer is graft-polymerized on a rubber polymer, which is generally represented by ABS, ASA, AES, MBS, or the like. .
[0016]
The rubbery polymer forming the graft polymer (B) includes, for example, conjugated diene rubber such as polybutadiene, styrene / butadiene copolymer, acrylate / butadiene copolymer, styrene / isoprene copolymer, Examples include acrylic rubber such as butyl acrylate, olefin rubber such as ethylene / propylene copolymer, silicone rubber such as polyorganosiloxane, and thermoplastic elastomer. These are used alone or in combination of two or more. .
[0017]
The rubbery polymer needs an appropriate degree of cross-linking and particle size in order to effectively exhibit mechanical properties such as impact resistance. Conventional techniques such as general ABS resin, ASA resin, AES resin, MBS resin and the like can be applied. For example, the degree of crosslinking is 65 to 95% in toluene solution-insoluble gel, and the average particle diameter is 300%. It is preferably from 400 to 400 nm. If it is out of this range, the impact resistance may decrease.
[0018]
The graft polymer (B) is obtained by graft-polymerizing 80 to 30% by weight of a monomer mixture that forms a hard polymer in the presence of 20 to 70% by weight of the rubbery polymer described above. The weight ratio of insoluble matter / weight of rubbery polymer-1) is preferably from 20 to 90% by weight. When the graft ratio is lower than 20% by weight, the impact strength and gloss are likely to decrease, and when the graft ratio is higher than 90% by weight, the fluidity is likely to decrease.
[0019]
As a monomer forming the graft polymer (B) and the copolymer (C), for example, acrylonitrile is used for vinyl cyanide, and styrene or α-methylstyrene is used for aromatic vinyl. Can be Examples of other copolymerizable monomers include unsaturated carboxylic esters, unsaturated dicarboxylic anhydrides, and unsaturated dicarboxylic imide compounds (such as N-PMI).
[0020]
As for the composition ratio (weight ratio) of the monomer mixture forming the graft polymer (B) and the vinyl copolymer (C), vinyl cyanide / aromatic vinyl is preferably in the range of 10/90 to 35/65, More preferably, it is 20/80 to 30/70. Outside this range, it is difficult to obtain a high impact strength.
[0021]
The rubbery polymer, the graft polymer (B), and the vinyl copolymer (C) can be produced by a known technique such as emulsion polymerization, suspension polymerization, or bulk polymerization, and is not particularly limited. Generally, emulsion polymerization is used for the graft polymer (B), and suspension polymerization or bulk polymerization is used for the vinyl copolymer (C). In the case of emulsion polymerization, coagulation with an acid is preferred for precipitating the polymer from the latex. In the case of coagulation with a salt, the saponified product remaining in the polymer promotes hydrolysis of the PET resin (A) and the polycarbonate resin (D).
[0022]
The number average molecular weight of the polycarbonate resin used in the present invention is preferably in the range of 15,000 to 25,000. If it is less than 15,000, the effect of improving the impact strength is hardly obtained, and if it exceeds 25,000, the fluidity may be remarkably reduced.
[0023]
The composition (weight ratio) of the resin composition according to the present invention is such that the recycled PET resin material (A) is 1 to 60% by weight, the rubbery polymer derived from the graft polymer (B) is 10 to 25% by weight, Resin (D) is 0 to 20% by weight. When the amount of the PET resin is more than 60% by weight, impact strength and heat resistance decrease, and dimensional properties deteriorate due to molding shrinkage and warpage. If the amount of the rubbery polymer is less than 10% by weight, sufficient impact strength cannot be obtained, and if it is more than 25% by weight, the fluidity, rigidity and heat resistance decrease. The polycarbonate resin is added when the molecular weight of the PET resin is greatly reduced (as a guide, the number average molecular weight is 15,000 and the intrinsic viscosity value [η] is 0.60 or less) and when the ratio of the PET resin is large. You. At this time, if the addition amount is more than 20% by weight, the fluidity decreases. The content is preferably in the range of 5 to 20% by weight, and if it is less than 5%, the effect of improving impact strength becomes difficult to obtain.
[0024]
If necessary, a stabilizer, a lubricant, a coloring agent, an inorganic filler, a fibrous reinforcing agent, and the like can be added to the resin composition having the above-described configuration. In particular, when an inorganic filler is blended, dimensional properties, heat resistance and rigidity are improved.
[0025]
In producing the resin composition according to the present invention, the resin temperature falls within a range of 255 to 285 ° C. while decompressing and degassing the compound having the above constitution from one or more vacuum vent ports by a single-screw or twin-screw extruder. It is preferable to knead and granulate as described. With a general Banbury mixer or heating roll as a kneader for rubber or the like, it is not only difficult to raise the resin temperature to above the melting point of the PET resin, but also to mix the PET resin with water contained in the compound during kneading. Decomposition cannot be prevented. In addition, in the case where there is no vacuum vent even in the extruder, hydrolysis is promoted in proportion to the rise in resin temperature, and a decrease in physical properties is inevitable. Deaeration by a vacuum vent is indispensable at the same time as melting of the compound, and it is preferable to use a twin screw extruder equipped with a two-stage vent in order to avoid long-term heat history and obtain sufficient kneading and dispersion. .
[0026]
Hereinafter, production examples of the graft polymer and the vinyl copolymer used in the present invention will be described.
[0027]
<Production Example-1: Graft polymer (B-1)>
In 200 parts by weight of distilled water, 50 parts by weight of a diene rubber having a gel content of 98% by weight and a weight average particle diameter of 290 to 300 nm, 50 parts by weight of a vinyl monomer mixture of 75% by weight of styrene and 25% by weight of acrylonitrile, 1 part by weight of disproportionated potassium rosinate, 0.01 part by weight of sodium hydroxide, 0.45 part by weight of sodium pyrophosphate, 0.01 part by weight of ferrous sulfate, 0.57 part by weight of dextrose, t-dodecyl mercaptan 0.08 parts by weight and 1.0 part by weight of cumene hydroperoxide were charged, the reaction was started at 60 ° C., the temperature was raised to 75 ° C. on the way, and after 2 hours, the emulsion graft polymerization was stopped to obtain a graft copolymer. (B-1) was obtained. The conversion of the monomer was 96% by weight. The weight average molecular weight of the acetone-soluble portion measured by gel permeation chromatography was 44,000, and the graft ratio was 70%.
[0028]
<Production Example-2: Production of vinyl copolymer (C-1)>
120 parts by weight of distilled water, 100 parts by weight of a vinyl monomer mixture of 0.003 parts by weight of sodium alkylbenzenesulfonate, 73.0% by weight of styrene and 27.0% by weight of acrylonitrile, 0.6 part by weight of t-dodecyl mercaptan, 0.15 parts by weight of benzoyl peroxide and 0.5 parts by weight of calcium phosphate were added, and suspension polymerization was performed at 110 ° C. for 10 hours to obtain a vinyl copolymer (C-1).
[0029]
The number average molecular weight Mn of the vinyl copolymer (C-1) measured by gel permeation chromatography was 63,000, the weight average molecular weight Mw was 115,000, and the molecular weight distribution ratio Mw / Mn was 1.8. Was. The monomer conversion was 92% by weight.
[0030]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited thereto. In Examples and Comparative Examples, physical properties were measured by the following methods.
[0031]
<Formation of test piece>
The obtained composition pellets were dried at 80 ° C. for 3 hours using a hot-air circulation dryer, and the cylinder temperature was set to 260 ° C. and the mold temperature was set to 60 ° C. using a 4oz injection molding machine manufactured by Japan Steel Works. Molded.
[0032]
<Fluidity: SSP (short shot pressure)>
The minimum pressure for filling the tensile test piece according to ASTM D638 was indicated.
[0033]
<Mechanical properties>
Izod impact strength was measured at 23 ° C. according to ASTM D256, tensile properties = ASTM D638, bending properties = ASTM D790.
[0034]
<Thermal characteristics>
The heat distortion temperature was measured under the conditions of 0.451 MPa (low load) or 1.82 MPa (high load) according to ASTM D648.
[0035]
(Example 1)
The change in the properties of the thermoplastic resin composition when the mass of polyethylene terephthalate (PET) was changed was tested.
[0036]
The thermoplastic resin composition used in Example 1 was (A) polyethylene terephthalate, a recycled flake product manufactured by West Japan Plastic Bottle Co., Ltd., and (B) the graft polymer (B-1) and (C). The vinyl copolymer of (C-1) and the polycarbonate of (D) were blended using H3000 manufactured by Mitsubishi Engineering-Platx Co., Ltd., and having a number average molecular weight of 17,500.
[0037]
[Table 1]
Figure 2004067728
[0038]
Table 1 shows that when the PET content is 40% by mass or more, the impact strength and heat resistance are reduced, but are improved by adding a polycarbonate resin.
[0039]
(Example 2)
The change in the properties of the thermoplastic resin composition when the mass of the polycarbonate (PC) was changed was tested.
[0040]
<Production Example: Production of Vinyl Copolymer (C-2)>
In 170 parts by weight of distilled water, 2.5 parts by weight of disproportionated rosinate, 100 parts by weight of a vinyl monomer mixture of 74.0% by weight of α-methylstyrene and 26.0% by weight of acrylonitrile, and t-dodecyl mercaptan 0 After adding 0.6 parts by weight and 0.15 parts by weight of benzoyl peroxide, emulsion polymerization was carried out at 70 ° C. for 3 hours to obtain a vinyl copolymer (C-2).
[0041]
The weight average molecular weight Mw of this vinyl copolymer (C-2) was 116,000, and the monomer conversion was 96% by weight.
[0042]
[Table 2]
Figure 2004067728
[0043]
From Table 2, it can be seen that when the polycarbonate content is less than 5%, the impact strength tends to decrease, and when the polycarbonate content exceeds 20%, the fluidity decreases.
[0044]
(Example 3)
C-3 to C-8 were produced in the same manner as the vinyl copolymer C-1, except that the amount of acrylonitrile was varied in the production method of the vinyl copolymer.
[0045]
The change in the properties of the thermoplastic resin composition when the constituent ratio (acrylonitrile ratio) and molecular weight (intrinsic viscosity) of the vinyl copolymer were changed was tested.
[0046]
[Table 3]
Figure 2004067728
[0047]
Table 3 shows that the impact strength is high when the acrylonitrile% is in the range of 13 to 32% by weight and the intrinsic viscosity is in the range of 0.46 to 0.63, but the impact strength is low in other cases.
[0048]
(Example 4)
B-2 to B-7 were produced in the same manner as B-1 except that the rubber particle diameter and the gel content were changed by the method for producing the graft polymer.
[0049]
The change in the properties of the thermoplastic resin composition when the graft ratio of the graft polymer and the particle size and gel content of the rubber were changed was tested.
[0050]
[Table 4]
Figure 2004067728
[0051]
According to Table 4, when the graft ratio is lower than 20% by weight and when the rubber particle diameter is small, the impact strength is low. The gel content is not particularly limited as long as it is within the range (65% to 95%) used for general ABS resin.
[0052]
(Example 5)
Thermoplastic resin composition when the blending ratio between the graft polymer (B-1) and the vinyl polymer (C-1) was varied in the same manner as in Example 1 to change the amount of rubber derived from the graft polymer. Changes in the properties of the objects were tested.
[0053]
[Table 5]
Figure 2004067728
[0054]
From Table 5, it is determined that the impact strength is low when the amount of rubber is 10% or less, and the fluidity and rigidity decrease when 25% or more, resulting in poor practicality.
[0055]
(Example 6)
The change in the properties of the thermoplastic resin composition when the molecular weight of PET was changed was tested.
[0056]
[Table 6]
Figure 2004067728
[0057]
From Table 6, it was found that when the intrinsic viscosity value [η] of PET was 0.65 or less, the impact strength was reduced.
[0058]
(Example 7)
The change in the properties of the thermoplastic resin composition when the molecular weight of the polycarbonate was changed was tested.
[0059]
[Table 7]
Figure 2004067728
[0060]
From Table 7, it can be determined that when the molecular weight of the polycarbonate is 15,000 or less, the impact strength is low, and when the molecular weight is 25,000 or more, the decrease in fluidity is large.
[0061]
(Example 8)
The kneading conditions of the thermoplastic resin composition were set to a twin screw extruder, a barrel temperature of 260 ° C., and a screw of 240 RPM, and the effects of water content of the raw resin and deaeration by venting were tested. A sample was prepared by changing the resin temperature by changing the barrel temperature to 250 ° C. and the screw rotation speed.
[0062]
[Table 8]
Figure 2004067728
[0063]
As shown in Table 8, when there is no degassing at the vent, molecular breakage occurs due to hydrolysis, and the fluidity increases and the impact strength decreases. When the resin temperature is 255 ° C. or lower and 285 ° C. or higher, impact strength may decrease due to unmelting, poor dispersion, or thermal degradation.
[0064]
(Example 9)
The change in the properties of the thermoplastic resin composition when the inorganic filler was added was tested.
[0065]
[Table 9]
Figure 2004067728
[0066]
Table 9 shows that the addition of the inorganic filler improves the dimensional properties, heat resistance and rigidity.
[0067]
【The invention's effect】
As described above, according to the present invention, a notched impact strength in a recycled polyethylene terephthalate resin material is improved, and it is possible to provide a thermoplastic resin composition having excellent practical properties such as fluidity, heat resistance, and dimensional properties. became.

Claims (5)

ポリエチレンテレフタレート樹脂リサイクル材(A)、
ゴム質重合体にシアン化ビニル、芳香族ビニルを重合してなるグラフト重合体(B)、
シアン化ビニル、芳香族ビニル及び必要によりこれらと共重合可能なその他の単量体からなるビニル共重合体(C)
及びポリカーボネート樹脂(D)を、
(A)+(B)+(C)+(D)の全重量に対して、(A)が1〜60重量%、(B)に由来するゴム質重合体が10〜25重量%、(D)が0〜20重量%、となるよう配合してなることを特徴とする熱可塑性樹脂組成物。
Polyethylene terephthalate resin recycled material (A),
Graft polymer (B) obtained by polymerizing vinyl cyanide and aromatic vinyl on a rubbery polymer,
Vinyl copolymer (C) comprising vinyl cyanide, aromatic vinyl and other monomers copolymerizable therewith if necessary
And a polycarbonate resin (D)
(A) is 1 to 60% by weight, rubbery polymer derived from (B) is 10 to 25% by weight, based on the total weight of (A) + (B) + (C) + (D). A thermoplastic resin composition characterized by being blended so that D) is 0 to 20% by weight.
前記配合物を、1軸或いは2軸押し出し機にて、1個所以上の真空ベント口より減圧脱気しつつ、樹脂温度が255〜285℃の範囲にあるように溶融混練してペレットとする請求項1に記載の熱可塑性樹脂組成物。The mixture is melt-kneaded into pellets by a single-screw or twin-screw extruder so that the resin temperature is in the range of 255 to 285 ° C. while being degassed through one or more vacuum vents under reduced pressure. Item 10. The thermoplastic resin composition according to Item 1. グラフト重合体(B)のグラフト率(アセトン不溶分重量/ゴム質重合体重量−1)が20〜90%である請求項1又は2に記載の熱可塑性樹脂組成物。The thermoplastic resin composition according to claim 1 or 2, wherein the graft ratio of the graft polymer (B) (weight of acetone-insoluble matter / weight of rubbery polymer-1) is 20 to 90%. グラフト重合体(B)及び共重合体(C)のシアン化ビニル/芳香族ビニルの構成比(重量比)が、10/90〜35/65であり、かつ共重合体(C)の25℃MEK溶液による固有粘度値[η]が0.40〜0.65の範囲にある請求項1〜3のいずれかに記載の熱可塑性樹脂組成物。The vinyl cyanide / aromatic vinyl constitutional ratio (weight ratio) of the graft polymer (B) and the copolymer (C) is 10/90 to 35/65, and the copolymer (C) has a 25 ° C. The thermoplastic resin composition according to any one of claims 1 to 3, wherein an intrinsic viscosity value [η] of the MEK solution is in a range of 0.40 to 0.65. ポリカーボネート樹脂(D)の数平均分子量が15,000〜25,000である請求項1〜4のいずれかに記載の熱可塑性樹脂組成物。The thermoplastic resin composition according to any one of claims 1 to 4, wherein the polycarbonate resin (D) has a number average molecular weight of 15,000 to 25,000.
JP2002224941A 2002-08-01 2002-08-01 Thermoplastic resin composition utilizing recycled polyethylene terephthalate resin material Pending JP2004067728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002224941A JP2004067728A (en) 2002-08-01 2002-08-01 Thermoplastic resin composition utilizing recycled polyethylene terephthalate resin material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002224941A JP2004067728A (en) 2002-08-01 2002-08-01 Thermoplastic resin composition utilizing recycled polyethylene terephthalate resin material

Publications (1)

Publication Number Publication Date
JP2004067728A true JP2004067728A (en) 2004-03-04

Family

ID=32012761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002224941A Pending JP2004067728A (en) 2002-08-01 2002-08-01 Thermoplastic resin composition utilizing recycled polyethylene terephthalate resin material

Country Status (1)

Country Link
JP (1) JP2004067728A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161024A (en) * 2004-11-15 2006-06-22 Umg Abs Ltd Polylactic acid-based thermoplastic resin composition and its molded article
JP2012036405A (en) * 2004-11-15 2012-02-23 Umg Abs Ltd Polylactic acid-based thermoplastic resin composition and its molded article
KR20140133498A (en) 2012-02-29 2014-11-19 도레이 카부시키가이샤 Thermoplastic resin composition and molded article of same
JP2015096576A (en) * 2013-11-15 2015-05-21 ユーエムジー・エービーエス株式会社 Thermoplastic resin composition and formed article thereof
JP2015113464A (en) * 2013-12-09 2015-06-22 エルジー・ケム・リミテッド Thermoplastic polycarbonate resin composition
JP5796121B1 (en) * 2014-12-02 2015-10-21 ユーエムジー・エービーエス株式会社 Reinforced thermoplastic resin composition and molded article thereof
JP2016108355A (en) * 2014-12-02 2016-06-20 ユーエムジー・エービーエス株式会社 Reinforced thermoplastic resin composition and molded article thereof
WO2017169912A1 (en) * 2016-03-30 2017-10-05 ユーエムジー・エービーエス株式会社 Reinforced thermoplastic resin composition and molded article thereof
JP2018080254A (en) * 2016-11-16 2018-05-24 ユーエムジー・エービーエス株式会社 Reinforced thermoplastic resin composition having excellent adhesive strength to epoxy-based adhesive and molded article of the same
JP2018080253A (en) * 2016-11-16 2018-05-24 ユーエムジー・エービーエス株式会社 Reinforced thermoplastic resin composition having excellent adhesive strength to epoxy-based adhesive and molded article of the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161024A (en) * 2004-11-15 2006-06-22 Umg Abs Ltd Polylactic acid-based thermoplastic resin composition and its molded article
JP2012036405A (en) * 2004-11-15 2012-02-23 Umg Abs Ltd Polylactic acid-based thermoplastic resin composition and its molded article
JP2013147672A (en) * 2004-11-15 2013-08-01 Umg Abs Ltd Polylactic acid-based thermoplastic resin composition and its molded article
KR20140133498A (en) 2012-02-29 2014-11-19 도레이 카부시키가이샤 Thermoplastic resin composition and molded article of same
JP2015096576A (en) * 2013-11-15 2015-05-21 ユーエムジー・エービーエス株式会社 Thermoplastic resin composition and formed article thereof
JP2015113464A (en) * 2013-12-09 2015-06-22 エルジー・ケム・リミテッド Thermoplastic polycarbonate resin composition
JP5796121B1 (en) * 2014-12-02 2015-10-21 ユーエムジー・エービーエス株式会社 Reinforced thermoplastic resin composition and molded article thereof
JP2016108355A (en) * 2014-12-02 2016-06-20 ユーエムジー・エービーエス株式会社 Reinforced thermoplastic resin composition and molded article thereof
KR20160085242A (en) * 2014-12-02 2016-07-15 유엠지 에이비에스 가부시키가이샤 Reinforced Thermoplastic Resin Composition and Molded Article
CN105849193A (en) * 2014-12-02 2016-08-10 Umgabs株式会社 Reinforced thermoplastic resin composition and molded article thereof
KR101677246B1 (en) 2014-12-02 2016-11-17 유엠지 에이비에스 가부시키가이샤 Reinforced Thermoplastic Resin Composition and Molded Article
US10414919B2 (en) 2014-12-02 2019-09-17 Umg Abs, Ltd. Reinforced thermoplastic resin composition and molded article thereof
WO2017169912A1 (en) * 2016-03-30 2017-10-05 ユーエムジー・エービーエス株式会社 Reinforced thermoplastic resin composition and molded article thereof
JP2018080254A (en) * 2016-11-16 2018-05-24 ユーエムジー・エービーエス株式会社 Reinforced thermoplastic resin composition having excellent adhesive strength to epoxy-based adhesive and molded article of the same
JP2018080253A (en) * 2016-11-16 2018-05-24 ユーエムジー・エービーエス株式会社 Reinforced thermoplastic resin composition having excellent adhesive strength to epoxy-based adhesive and molded article of the same

Similar Documents

Publication Publication Date Title
EP2235106B1 (en) Moldable polyester compositions, processes of manufacture, and articles thereof
US8791189B2 (en) Moldable polyester compositions, processes of manufacture, and articles thereof
KR20100078850A (en) Polylactic acid resin composition
JP2004067728A (en) Thermoplastic resin composition utilizing recycled polyethylene terephthalate resin material
JP2007308648A (en) Thermoplastic resin composition and sheet
JPH01163243A (en) Thermoplastic resin composition
JPH075814B2 (en) Fiber-reinforced thermoplastic resin composition
JPH01123854A (en) Thermoplastic resin composition
KR100949377B1 (en) Polyactic acid composition
JPH0224346A (en) Fiber-reinforced thermoplastic resin composition
JP2006169460A (en) Thermoplastic resin composition and molded products thereof
JP3376622B2 (en) Thermoplastic resin composition
JP5154765B2 (en) Thermoplastic resin composition and molded article thereof
JPH04146956A (en) Polybutylene terephthalate resin composition
KR20130082222A (en) Methylmethacrylate-butadiene-styrene impact modifier and environment-friendly polylactic acid resin composition comprising the same
JP2011099048A (en) Thermoplastic resin composition and molded product thereof
JP2671487B2 (en) Thermoplastic resin composition and method for producing the same
JP2864748B2 (en) Thermoplastic resin composition
WO2002055571A1 (en) Impact modifier and amorphous polyester resin compositions containing the same
JP2003335913A (en) Thermoplastic resin composition and molded product thereof
JP2002234984A (en) Thermoplastic resin composition and molded article thereof
JPH07166027A (en) Fiber-reinforced thermoplastic resin composition
JPH107858A (en) Thermoplastic resin composition for blow molding and blow molded article consisting of the same
JPH0328255A (en) Thermoplastic resin composition
JPH03292349A (en) Reinforced polyester composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080930