JP2004067256A - Parts feeder - Google Patents

Parts feeder Download PDF

Info

Publication number
JP2004067256A
JP2004067256A JP2002224789A JP2002224789A JP2004067256A JP 2004067256 A JP2004067256 A JP 2004067256A JP 2002224789 A JP2002224789 A JP 2002224789A JP 2002224789 A JP2002224789 A JP 2002224789A JP 2004067256 A JP2004067256 A JP 2004067256A
Authority
JP
Japan
Prior art keywords
chute
component
downstream side
inclination angle
feeder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002224789A
Other languages
Japanese (ja)
Inventor
Hiroshi Okano
岡野 浩
Akihiko Matsushita
松下 彰彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2002224789A priority Critical patent/JP2004067256A/en
Publication of JP2004067256A publication Critical patent/JP2004067256A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To feed parts at a higher speed on the upperstream side of a chute than that on the downstream side of the chute in a straight advancing feeder of a parts feeder. <P>SOLUTION: With the inclination θ<SB>1</SB>of a plate spring 14a on the upperstream side of the chute 4 in the rear to the parts feeding direction of the chute 4 of a straight advancing feeder 8 made less than the inclination θ<SB>2</SB>of a plate spring 14b and by providing a ceiling 23, which vibrates integral with the chute 4 and come into contact with the parts leaping up from the travelling passage 5 above a travelling passage 5 on the downstream side of the chute 4, where the inclination θ<SB>2</SB>of a plate spring 14b is made larger, the parts feeding speed on the upperstream side of the chute 4 is made higher than that on the downstream side of the chute 4 so that even if parts are removed from the travelling passage 5 on the upperstream side of the chute 4, higher parts feeding ability can be secured by shortening the interval between parts on the downstream side of the chute 4. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、振動式直進フィーダを備えた部品供給装置に関するものである。
【0002】
【従来の技術】
振動式直進フィーダは、図7に一例を示すように、シュート51が取り付けられた上部振動体52を前後一対の板ばね53により基台上の下部振動体54に支持し、各板ばね53に垂直線から後方へ上向きに傾く傾斜角θを設け、振動発生源としての電磁石55と可動鉄芯56間の電磁力により、シュート51に前後方向への振動を付与して部品を搬送するものである。
【0003】
図8に示すように、シュート51は板ばね53の傾斜角θと等しい仰角θの方向に振動するので、シュート51の搬送路57上の部品58は、シュート51のの振動仰角θに対応する跳ね上がり角度αで前方へ跳ね上がりながら搬送される。通常、搬送速度を大きくすることだけが要求される直進フィーダでは、板ばね53の傾斜角θを10°前後に設定している。
【0004】
従来、部品供給装置における直進フィーダの役割は、上流側のボウルフィーダで整列された部品を、排出端に配置される各種機器が要求するピッチに合わせて、移送、供給するだけのものが多かった。このため、従来の直進フィーダでは、部品をシュートの上流側から下流側まで一定の速度で搬送すればよいので、前後一対の板ばねの傾斜角θは同じ角度に設定されていた。
【0005】
しかしながら、最近の部品供給装置では、例えば、特開2000−118682号公報に記載されたもののように、上流側のボウルフィーダを単に部品を直進フィーダに送り出すだけのものとし、直進フィーダのシュート上で部品を整列するものが増加している。また、2台の直進フィーダを互いに逆方向に向けて近接配置し、一方の直進フィーダから供給される部品を他方の直進フィーダのシュート上で整列するものもある。
【0006】
このような直進フィーダのシュート上で部品を整列する部品供給装置では、シュートの上流側に溝、斜面、突起、切欠き等の整列用ツーリング部を設け、部品を所定の姿勢に選別、整列している。シュートの下流側では整列された部品の姿勢を保持しながら、その排出端まで搬送している。
【0007】
【発明が解決しようとする課題】
上述したような直進フィーダでは、シュートの上流側で姿勢不良等の部品が排除されるので、部品をシュートの上流側から下流側まで一定の速度で搬送すると、下流側での部品間隔が開いて部品供給能力を向上できない問題がある。したがって、上流側の部品搬送速度を下流側よりも大きくできれば、全体的な部品供給能力を向上させることができる。
【0008】
一方、直進フィーダでの部品搬送速度をシュートの上流側と下流側とで異なる速度とする部品供給装置としては、特開2002−46842号公報に記載されたものがある。この部品供給装置は、シュートを支持するの前後一対の板ばねの傾斜角θを前側で後側よりも大きくすることにより、前述した部品の跳ね上がり角度αをシュートの下流側で大きくして、下流側の部品搬送速度を上流側よりも速くし、下流側で部品間の間隔を開けて正確に部品数をカウントできるようにしている。
【0009】
なお、この部品供給装置で供給される部品は、円盤状や円筒状等の錠剤やカプセルであり、部品の整列を必要としない。このため、シュートの搬送路は青天井でU溝形状とされている。このような搬送路の形態では、板ばねの傾斜角θを大きくしたシュートの下流側で部品が大きく跳ね上げられ、その搬送速度が速くなる。
【0010】
したがって、この部品供給装置の直進フィーダは、上述したようなシュート上で部品を整列し、かつ、部品供給能力の向上を目的とするものには適用することができない。
【0011】
そこで、この発明の課題は、シュート上で部品を整列する直進フィーダでの部品搬送速度を、シュートの下流側よりも上流側で大きくすることである。
【0012】
【課題を解決するための手段】
上記の課題を解決するために、この発明は、シュートを前後一対の板ばねにより基台上に支持し、これらの各板ばねに垂直線から後方へ上向きに傾く傾斜角θを設け、振動発生源から前記シュートに前後方向への振動を付与して部品を搬送し、シュートの上流側の搬送路に部品の整列部を設けた直進フィーダを備えた部品供給装置において、前記シュートの部品搬送方向に対して、前記後方上流側の板ばねの傾斜角θ1 を前方下流側の板ばねの傾斜角θ2 よりも小さくして、この板ばねの傾斜角θ2 を相対的に大きくした下流側の搬送路の上方に、前記シュートと一体に振動し、搬送路から跳ね上がる部品が接触する天井を設け、前記シュートの上流側での部品搬送速度を下流側よりも大きくした構成を採用した。
【0013】
前述したように、直進フィーダのシュートを支持する板ばねの傾斜角θを大きくすると、部品の跳ね上がり角度αが大きくなって搬送速度が速くなる。したがって、シュートの上流側の部品搬送速度を下流側よりも相対的に大きくするためには、まず、上流側の板ばねの傾斜角θ1 を下流側の板ばねの傾斜角θ2 よりも大きくすることが考えられる。しかしながら、シュートの上流側で部品を整列する直進フィーダでは、上流側の板ばねの傾斜角θ1 を大きくすると、部品の跳ね上がりが大きくなって姿勢が不安定となるので、部品の選別、整列精度が低下し、下流側への部品搬送量が減少する。
【0014】
本発明者らは、部品の選別、整列精度を確保して効率よく搬送するためには、上流側の板ばねの傾斜角θ1 を4°前後まで小さくすれば良いことを確認した。これによって、部品の姿勢を確保し、かつ、姿勢の良好な部品を切欠き等の整列用ツーリング部を安定して通過させることができる。このとき、下流側の板ばねの傾斜角θ2 を、上流側の板ばねの傾斜角θ1 と同じ4°前後とすると、下流側の搬送路は前方へ大きく張り出しているので、据え付け条件や振動周波数等の影響を受けやすく、部品の跳ね上がり角度αが過少になって、部品を搬送できなくなることがあった。
【0015】
そこで、この解決手段として、上流側の傾斜角θ1 を小さくして部品の選別、整列精度を確保した上で、下流側の板ばねの傾斜角θ2 を大きくした。これにより、下流側の搬送路で十分な部品の跳ね上がり角度αが得られるようになったが、部品の踊りが過大となって、前後の部品同士の衝突により搬送路から飛び出すものが現れたので、下流側の搬送路の上方にシュートと一体に振動する天井を設けて、部品の飛び出しを防止した。このような天井を設けると、下流側の部品搬送速度が上流側よりも小さくなることを見出した。
【0016】
すなわち、下流側の板ばねの傾斜角θ2 を大きくし、このような天井を設けた場合の挙動を細かく分析すると、大きな板ばねの傾斜角θ2 により大きく跳ね上がる部品が、シュートと一体に振動する天井に接触するときには、天井は搬送方向と逆方向に戻る途中にあり、搬送方向に跳ね上がった部品が天井から逆向きの力を受けて減速されることがわかり、上述した課題を解決することができた。なお、絶対的な搬送速度のレベルは、振動の振幅または周波数を調節することにより確保することができる。
【0017】
前記上流側の板ばねの傾斜角θ1 を3〜5°とし、前記下流側の板ばねの傾斜角θ2 を5〜8°とすることが望ましい。
【0018】
前記上流側の板ばねの傾斜角θ1 を3〜5°としたのは、傾斜角θ1 が5°を超えると、部品の跳ね上がりが大きくなって、上流側での部品の選別、整列精度が低下し、傾斜角θ1 が3°未満では、部品の跳ね上がりが殆どなくなって、十分な搬送速度を確保できないからである。
【0019】
前記下流側の板ばねの傾斜角θ2 を5〜8°としたのは、傾斜角θ2 が8°を超えると、天井に接触した部品の搬送速度が急激に小さくなり、傾斜角θ2 が5°未満では、前述した据え付け条件や振動周波数等の影響で部品の跳ね上がり角度αが過少になり、部品が搬送されなくなる恐れがあるからである。
【0020】
前記整列部の下流側の搬送路に、整列された部品の4方を案内する案内面を設けることにより、上流側で整列された部品の姿勢を、その下流側で確実に保持することができる。
【0021】
上述した部品供給装置は、部品が軽量で跳ね上がりやすい、概ね体積10mm3 以下の微小部品の供給に好適である。
【0022】
【発明の実施の形態】
以下、図1乃至図6に基づき、この発明の実施形態を説明する。この部品供給装置は、図1および図2に示すように、ボウル1に投入される部品を、螺旋状の搬送路2に沿って搬送する振動式ボウルフィーダ3と、ボウルフィーダ3から搬送される部品をシュート4に受け取り、その上流側の搬送路5に設けられた整列部6で部品を整列して、排出端7に搬送供給する振動式直進フィーダ8とで構成されている。
【0023】
この部品供給装置は、図3に示すような、体積が概ね10mm3 以下の直方体形状の微小部品9を、長手方向に姿勢を整列して、排出端7に配置される機器に供給するものである。
【0024】
前記ボウルフィーダ3は、ボウル1を取り付けられた上部振動体10が、その周方向に配置された複数の板ばね11で下部振動体12と上下に連結され、上部振動体10と下部振動体12とにそれぞれ可動鉄芯と電磁石(図示省略)が組み込まれたものであり、可動鉄芯と電磁石間に作用する電磁力により、ボウル1を上部振動体10と一体でねじり振動させる。
【0025】
前記直進フィーダ8は、図4に示すように、シュート4を取り付けられた上部振動体13が、前後一対の板ばね14a、14bにより下部振動体15に支持され、上部振動体13に組み込まれた可動鉄芯16と、下部振動体15に組み込まれた電磁石17との間に作用する電磁力により、シュート4が上部振動体13と一体で前後方向に振動するようになっている。なお、図4は、図1に示した振動駆動部のカバー18を取り外した状態を示すものであり、下部振動体15は防振ばね19で基台20に取り付けられている。
【0026】
前記後方上流側の板ばね14aの垂直線からの傾斜角θ1 は4°、前方下流側の板ばね14bの傾斜角θ2 は6°に設定されており、傾斜角θ2 の方が傾斜角θ1 よりも大きくなっている。
【0027】
前記シュート4の上流側の搬送路5に設けられた整列部6は、図5に示すように、搬送路5の幅が部品9の幅寸法と概ね等しく成るように切り欠かれており、長手方向を横に向けて搬送されてくる部品9は、搬送路5の振動に伴って切欠き部21に落下し、ボウル1に戻される。したがって、長手方向を進行方向に向けて搬送されてくる所定の姿勢の部品9のみが下流側へ搬送される。
【0028】
前記整列部6の下流側の搬送路5は、図6に示すように、部品9の矩形状横断面の4周を搬送方向で案内するように、左右の壁22と天井23が設けられている。部品9の跳ね上がりを許容するために、天井23側には各壁22側よりも大きな隙間が開けられ、天井23を形成する部材は、シュート4と一体に振動するように取り付けられている。
【0029】
したがって、板ばね14bの傾斜角θ2 が大きく設定されたシュート4の下流側の搬送路5では、部品9が大きく跳ね上がろうとするが、跳ね上がった直後に搬送方向と逆方向に戻る天井23と接触して減速され、整列部6が設けられた上流側での搬送速度よりも遅くなる。このため、上流側の整列部6で姿勢不良の部品が排除されても、下流側で部品間隔が詰められ、排出端7では部品9が短ピッチで、部品9を必要とする機器につぎつぎと供給される。
【0030】
上述した実施形態では、直進フィーダをボウルフィーダの下流側に組み込んだものとしたが、本発明に係る部品供給装置の直進フィーダは、その上流側の部品搬送速度を下流側よりも大きくするニーズを有する任意の部位に組み込むことができる。
【0031】
【発明の効果】
以上のように、この発明の部品供給装置は、直進フィーダのシュートの部品搬送方向に対して、後方上流側の板ばねの傾斜角θ1 を前方下流側の板ばねの傾斜角θ2 よりも小さくして、この板ばねの傾斜角θ2 を大きくした下流側の搬送路の上方に、シュートと一体に振動し、搬送路から跳ね上がる部品に接触して減速させる天井を設けたので、シュートの上流側での部品搬送速度を下流側よりも大きくして、上流側の搬送路の整列部で部品が排除されても、下流側での部品間隔を詰めて、全体的に高い部品供給能力を確保することができる。
【0032】
また、前記整列部の下流側の搬送路に、整列された部品の4方を案内する案内面を設けることにより、上流側で整列された部品の姿勢を、その下流側で確実に保持することができる。
【図面の簡単な説明】
【図1】部品供給装置の実施形態を示す正面図
【図2】図1の平面図
【図3】図1の部品供給装置で供給される部品を示す外観斜視図
【図4】図1の直進フィーダを示す正面図
【図5】図4のV−V線に沿った断面図
【図6】図4のVI−VI線に沿った断面図
【図7】従来の直進フィーダを示す正面図
【図8】直進フィーダの搬送路での部品の跳ね上がりを説明する正面図
【符号の説明】
1 ボウル
2 搬送路
3 ボウルフィーダ
4 シュート
5 搬送路
6 整列部
7 排出端
8 直進フィーダ
9 部品
10 上部振動体
11 板ばね
12 下部振動体
13 上部振動体
14a、14b 板ばね
15 下部振動体
16 可動鉄芯
17 電磁石
18 カバー
19 防振ばね
20 基台
21 切欠き部
22 壁
23 天井
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a component feeder provided with a vibrating linear feeder.
[0002]
[Prior art]
As shown in FIG. 7, the vibrating linear feeder supports an upper vibrating body 52 to which a chute 51 is attached by a pair of front and rear leaf springs 53 on a lower vibrating body 54 on a base. A tilt angle θ that is inclined upward from the vertical line to the rear is provided, and the electromagnetic force between the electromagnet 55 as a vibration source and the movable iron core 56 applies vibration to the chute 51 in the front-rear direction to convey parts. is there.
[0003]
As shown in FIG. 8, since the chute 51 vibrates in the direction of the elevation angle θ equal to the inclination angle θ of the leaf spring 53, the component 58 on the conveyance path 57 of the chute 51 corresponds to the vibration elevation angle θ of the chute 51. The sheet is conveyed while jumping forward at a jump angle α. Normally, in a straight-ahead feeder that requires only a high transport speed, the inclination angle θ of the leaf spring 53 is set to about 10 °.
[0004]
Conventionally, the role of a straight-ahead feeder in a component supply device has often been to simply transfer and supply components arranged in an upstream bowl feeder in accordance with a pitch required by various devices arranged at a discharge end. . For this reason, in the conventional straight-ahead feeder, the components need only be conveyed from the upstream side to the downstream side of the chute at a constant speed, and the inclination angle θ of the pair of front and rear leaf springs is set to the same angle.
[0005]
However, in a recent component supply device, for example, as described in Japanese Patent Application Laid-Open No. 2000-118682, the upstream bowl feeder is configured to simply send out components to the linear feeder, and is mounted on a chute of the linear feeder. The number of parts to be arranged is increasing. There is also a type in which two linear feeders are arranged close to each other in opposite directions, and components supplied from one linear feeder are aligned on the chute of the other linear feeder.
[0006]
In a component feeder that arranges components on a chute of such a linear feeder, an alignment tooling unit such as a groove, a slope, a protrusion, or a notch is provided on an upstream side of the chute to sort and align components in a predetermined posture. ing. On the downstream side of the chute, the components are conveyed to the discharge end while maintaining the posture of the aligned components.
[0007]
[Problems to be solved by the invention]
In the straight feeder as described above, components such as posture defects are eliminated on the upstream side of the chute, so if the components are transported at a constant speed from the upstream side to the downstream side of the chute, the component intervals on the downstream side will increase. There is a problem that the parts supply capacity cannot be improved. Therefore, if the component transport speed on the upstream side can be made higher than that on the downstream side, the overall component supply capability can be improved.
[0008]
On the other hand, as a component supply device that sets the component transport speed in the straight-ahead feeder different between the upstream side and the downstream side of the chute, there is one described in JP-A-2002-46842. This component supply device increases the above-described component jump angle α on the downstream side of the chute by increasing the inclination angle θ of the pair of leaf springs before and after supporting the chute on the front side and on the rear side. The component conveying speed on the side is made faster than that on the upstream side, and the intervals between the components are provided on the downstream side so that the number of components can be counted accurately.
[0009]
The components supplied by the component supply device are tablets or capsules having a disk shape or a cylindrical shape, and do not require the components to be aligned. For this reason, the conveyance path of the chute is U-shaped with a blue ceiling. In such a configuration of the transport path, the components are greatly jumped downstream of the chute in which the inclination angle θ of the leaf spring is increased, and the transport speed is increased.
[0010]
Therefore, the linear feeder of this component supply device cannot be applied to a device for aligning components on the chute as described above and for improving the component supply capability.
[0011]
Therefore, an object of the present invention is to increase the component transport speed in a straight-ahead feeder that arranges components on a chute on the upstream side of the chute on the upstream side.
[0012]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a method in which a chute is supported on a base by a pair of front and rear leaf springs, and each of these leaf springs is provided with an inclination angle θ inclined upward from a vertical line to a rearward direction to generate vibration. A component feeder provided with a rectilinear feeder provided with a component arranging portion on a transport path on the upstream side of the chute, by imparting vibration in a front-rear direction to the chute from the source to convey the component; respect, the inclination angle theta 1 of the rear upstream of the leaf spring is made smaller than the inclination angle theta 2 of the front downstream side of the leaf spring, relatively large and the downstream side inclination angle theta 2 of the leaf spring Above the transfer path, a ceiling is provided that vibrates integrally with the chute and contacts a component that jumps up from the transfer path, and the component transfer speed on the upstream side of the chute is higher than that on the downstream side.
[0013]
As described above, when the inclination angle θ of the leaf spring that supports the chute of the rectilinear feeder is increased, the component jumping angle α is increased, and the transport speed is increased. Therefore, in order to relatively greater than the downstream parts conveying speed of the upstream side of the chute, first, the inclination angle theta 1 of the upstream side of the leaf spring larger than the inclination angle theta 2 of the downstream side of the leaf spring It is possible to do. However, in the linear feeder for aligning the parts on the upstream side of the chute, by increasing the inclination angle theta 1 of the upstream side of the leaf spring, the posture becomes unstable bounce component is increased, the selection of components, the alignment accuracy And the amount of parts transported to the downstream side decreases.
[0014]
The present inventors have found that the selection of components, in order to convey efficiently to ensure alignment accuracy, it was confirmed that the inclination angle theta 1 of the upstream side of the plate spring 4 ° may be reduced to around. As a result, it is possible to secure the posture of the component and stably allow the component having a good posture to pass through the alignment tooling portion such as the notch. At this time, the inclination angle theta 2 of the downstream side of the leaf spring, when the same 4 ° longitudinal inclination angle theta 1 of the upstream side of the leaf spring, the conveyance path on the downstream side protrudes largely forward, installation conditions Ya In some cases, the component is susceptible to the influence of the vibration frequency and the like, and the component jumping angle α becomes too small, so that the component cannot be transported.
[0015]
Therefore, as this solution, selection of parts to reduce the inclination angle theta 1 of the upstream side, while ensuring the alignment accuracy, and increasing the inclination angle theta 2 of the downstream side of the leaf spring. As a result, a sufficient component jumping angle α can be obtained in the downstream transport path, but the dancing of the parts becomes excessive, and some of the parts jump out of the transport path due to collision between the front and rear parts. In addition, a ceiling vibrating integrally with the chute is provided above the downstream conveying path to prevent parts from jumping out. It has been found that when such a ceiling is provided, the component transport speed on the downstream side is lower than that on the upstream side.
[0016]
That is, when the inclination angle θ 2 of the leaf spring on the downstream side is increased and the behavior in the case where such a ceiling is provided is analyzed in detail, the part that greatly jumps up due to the inclination angle θ 2 of the large leaf spring vibrates integrally with the chute. When the ceiling comes in contact with the ceiling, it is found that the ceiling is in the middle of returning in the direction opposite to the transport direction, and that the parts that jumped up in the transport direction are decelerated by receiving the force in the opposite direction from the ceiling, thus solving the above-described problem. Was completed. Note that the absolute transport speed level can be ensured by adjusting the amplitude or frequency of the vibration.
[0017]
Wherein the inclination angle theta 1 of the upstream side of the leaf spring and 3 to 5 °, it is preferable that the inclination angle theta 2 of the downstream side of the leaf spring and 5 to 8 °.
[0018]
Was the inclination angle theta 1 of the upstream side of the leaf spring and 3 to 5 °, when more than the inclination angle theta 1 is 5 °, bounce parts is increased, the selection of components on the upstream side, aligned precision There was lowered, the inclination angle θ less than 1 3 °, and bounce component almost disappears, because not enough transport speed.
[0019]
To that an inclination angle theta 2 of 5 to 8 ° of the downstream side of the leaf spring, the inclination angle theta 2 exceeds 8 °, the conveying speed of the parts in contact with the ceiling suddenly decreases, the inclination angle theta 2 If the angle is less than 5 °, the component arising angle α may be too small due to the above-described installation conditions, vibration frequency, and the like, and the component may not be conveyed.
[0020]
By providing a guide surface for guiding the aligned components in four directions on the transport path on the downstream side of the alignment unit, the posture of the components aligned on the upstream side can be reliably held on the downstream side. .
[0021]
The above-described component supply device is suitable for supplying a small component having a volume of approximately 10 mm 3 or less, in which the component is lightweight and easily jumps up.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described below with reference to FIGS. As shown in FIGS. 1 and 2, the component supply device conveys components to be fed into a bowl 1 along a helical conveyance path 2 and a vibratory bowl feeder 3 and conveys the components from the bowl feeder 3. The vibrating linear feeder 8 receives components on the chute 4, arranges the components on an aligning section 6 provided on a transport path 5 on the upstream side of the chute 4, and conveys the components to a discharge end 7.
[0023]
This component supply device supplies a rectangular parallelepiped micro component 9 having a volume of approximately 10 mm 3 or less as shown in FIG. 3 to a device arranged at the discharge end 7 with its posture aligned in the longitudinal direction. is there.
[0024]
In the bowl feeder 3, an upper vibrating body 10 to which the bowl 1 is attached is vertically connected to a lower vibrating body 12 by a plurality of leaf springs 11 arranged in the circumferential direction. And a movable iron core and an electromagnet (not shown) are incorporated into the bowl 1 and the bowl 1 is torsionally vibrated integrally with the upper vibrator 10 by an electromagnetic force acting between the movable iron core and the electromagnet.
[0025]
As shown in FIG. 4, the linear feeder 8 has an upper vibrating body 13 to which a chute 4 is attached, supported by a lower vibrating body 15 by a pair of front and rear leaf springs 14a and 14b, and incorporated in the upper vibrating body 13. The chute 4 vibrates in the front-rear direction integrally with the upper vibrating body 13 by the electromagnetic force acting between the movable iron core 16 and the electromagnet 17 incorporated in the lower vibrating body 15. FIG. 4 shows a state in which the cover 18 of the vibration drive unit shown in FIG. 1 is removed, and the lower vibrator 15 is attached to the base 20 with a vibration-proof spring 19.
[0026]
The rear tilt angle theta 1 from the vertical line on the upstream side of the plate spring 14a is 4 °, the inclination angle theta 2 of the front downstream side of the leaf spring 14b is set to 6 °, towards the inclined angle theta 2 is inclined It is larger than the angle θ 1.
[0027]
As shown in FIG. 5, the alignment section 6 provided in the transport path 5 on the upstream side of the chute 4 is cut out so that the width of the transport path 5 is substantially equal to the width dimension of the component 9. The component 9 conveyed in the horizontal direction falls into the notch 21 with the vibration of the conveyance path 5 and is returned to the bowl 1. Therefore, only the component 9 in a predetermined posture, which is transported with the longitudinal direction directed in the traveling direction, is transported downstream.
[0028]
As shown in FIG. 6, the transfer path 5 on the downstream side of the alignment section 6 is provided with left and right walls 22 and a ceiling 23 so as to guide four rounds of the rectangular cross section of the component 9 in the transfer direction. I have. In order to allow the parts 9 to jump, a larger gap is provided on the ceiling 23 side than on each wall 22 side, and the members forming the ceiling 23 are attached so as to vibrate integrally with the chute 4.
[0029]
Therefore, the conveying path 5 on the downstream side of the chute 4 to the inclination angle theta 2 of the plate spring 14b is set large and part 9 is going Haneagaro large, the flow returns to just after jumped in the direction opposite to the conveying direction the ceiling 23 , And is slowed down at a speed lower than the transport speed on the upstream side where the alignment unit 6 is provided. For this reason, even if a component having a poor posture is eliminated in the upstream alignment unit 6, the component interval is reduced on the downstream side, and the components 9 are arranged at a short pitch at the discharge end 7 so that the components 9 are required one after another. Supplied.
[0030]
In the embodiment described above, the straight feeder is incorporated on the downstream side of the bowl feeder. However, the straight feeder of the component supply device according to the present invention has a need to increase the component transport speed on the upstream side from the downstream side. Can be incorporated into any site having
[0031]
【The invention's effect】
As described above, the component supply device of the invention, to the component carrying direction of the chute linear feeder, also the inclination angle theta 1 of the rear upstream of the leaf spring than the inclination angle theta 2 of the front downstream side of the leaf spring and small, above the transport path on the downstream side with a larger inclination angle theta 2 of the plate spring, vibrate the chute integrally, is provided with the ceiling of decelerating in contact with the component jumps from conveying path, the chute Even if parts are eliminated at the upstream conveying path alignment section by increasing the component conveying speed on the upstream side compared with the downstream side, the intervals between the components on the downstream side are reduced to increase overall component supply capacity. Can be secured.
[0032]
Also, by providing a guide surface for guiding the aligned components in four directions on the transport path on the downstream side of the alignment section, the posture of the components aligned on the upstream side can be reliably held on the downstream side. Can be.
[Brief description of the drawings]
FIG. 1 is a front view showing an embodiment of a component supply device. FIG. 2 is a plan view of FIG. 1. FIG. 3 is an external perspective view showing components supplied by the component supply device of FIG. FIG. 5 is a sectional view taken along line VV in FIG. 4; FIG. 6 is a sectional view taken along line VI-VI in FIG. 4; FIG. 7 is a front view showing a conventional straight-moving feeder. FIG. 8 is a front view for explaining the jumping of components in the transport path of the straight-ahead feeder.
DESCRIPTION OF SYMBOLS 1 Bowl 2 Conveying path 3 Bowl feeder 4 Chute 5 Conveying path 6 Alignment part 7 Discharge end 8 Straight feeder 9 Parts 10 Upper vibrating body 11 Leaf spring 12 Lower vibrating body 13 Upper vibrating bodies 14a, 14b Leaf spring 15 Lower vibrating body 16 Movable Iron core 17 Electromagnet 18 Cover 19 Anti-vibration spring 20 Base 21 Notch 22 Wall 23 Ceiling

Claims (4)

シュートを前後一対の板ばねにより基台上に支持し、これらの各板ばねに垂直線から後方へ上向きに傾く傾斜角θを設け、振動発生源から前記シュートに前後方向への振動を付与して部品を搬送し、シュートの上流側の搬送路に部品の整列部を設けた直進フィーダを備えた部品供給装置において、前記シュートの部品搬送方向に対して、前記後方上流側の板ばねの傾斜角θ1 を前方下流側の板ばねの傾斜角θ2 よりも小さくして、この板ばねの傾斜角θ2 を相対的に大きくした下流側の搬送路の上方に、前記シュートと一体に振動し、搬送路から跳ね上がる部品が接触する天井を設け、前記シュートの上流側での部品搬送速度を下流側よりも大きくしたことを特徴とする部品供給装置。The chute is supported on a base by a pair of front and rear leaf springs, and each of these leaf springs is provided with an inclination angle θ that is inclined upward from a vertical line to a rearward direction. A component feeder provided with a straight-line feeder provided with an alignment section for components in a transport path on the upstream side of the chute, wherein the inclination of the leaf spring on the rear upstream side with respect to the component transport direction of the chute. the angle theta 1 is made smaller than the inclination angle theta 2 of the front downstream side of the leaf spring, above the transport path of the inclination angle theta 2 a relatively larger the downstream side of the plate spring, the vibration in the chute and integral A component feeder, wherein a ceiling is provided for contacting components jumping up from a transport path, and the component transport speed on the upstream side of the chute is higher than that on the downstream side. 前記上流側の板ばねの傾斜角θ1 を3〜5°とし、前記下流側の板ばねの傾斜角θ2 を5〜8°とした請求項1に記載の部品供給装置。Wherein the inclination angle theta 1 of the upstream side of the leaf spring and 3 to 5 °, the component supply device according to claim 1 in which the inclination angle theta 2 of the downstream side of the leaf spring and 5 to 8 °. 前記整列部の下流側の搬送路に、整列された部品の4方を案内する案内面を設けた請求項1または2に記載の部品供給装置。3. The component supply device according to claim 1, wherein a guide surface that guides four aligned components is provided on a transport path downstream of the alignment unit. 4. 前記部品が、概ね体積10mm3 以下の微小部品である請求項1乃至3のいずれかに記載の部品供給装置。4. The component supply device according to claim 1, wherein the component is a micro component having a volume of approximately 10 mm 3 or less. 5.
JP2002224789A 2002-08-01 2002-08-01 Parts feeder Pending JP2004067256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002224789A JP2004067256A (en) 2002-08-01 2002-08-01 Parts feeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002224789A JP2004067256A (en) 2002-08-01 2002-08-01 Parts feeder

Publications (1)

Publication Number Publication Date
JP2004067256A true JP2004067256A (en) 2004-03-04

Family

ID=32012651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002224789A Pending JP2004067256A (en) 2002-08-01 2002-08-01 Parts feeder

Country Status (1)

Country Link
JP (1) JP2004067256A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006240793A (en) * 2005-03-02 2006-09-14 Shinko Electric Co Ltd Component transfer device
JP2009130292A (en) * 2007-11-27 2009-06-11 Sinfonia Technology Co Ltd Component supply apparatus
JP2018039601A (en) * 2016-09-06 2018-03-15 キヤノン株式会社 Component supply device and component supply method
KR102538672B1 (en) * 2023-02-28 2023-05-30 이인표 tactile switch automatic inspection machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006240793A (en) * 2005-03-02 2006-09-14 Shinko Electric Co Ltd Component transfer device
JP4591116B2 (en) * 2005-03-02 2010-12-01 シンフォニアテクノロジー株式会社 Parts transfer device
JP2009130292A (en) * 2007-11-27 2009-06-11 Sinfonia Technology Co Ltd Component supply apparatus
JP2018039601A (en) * 2016-09-06 2018-03-15 キヤノン株式会社 Component supply device and component supply method
KR102538672B1 (en) * 2023-02-28 2023-05-30 이인표 tactile switch automatic inspection machine

Similar Documents

Publication Publication Date Title
CN106477249B (en) Workpiece conveying device
KR20150059624A (en) Apparatus for conveying work
CN106865167B (en) Parts feeder
JP2004067256A (en) Parts feeder
JP2007204202A (en) Component carrying device
JP3848950B2 (en) Vibrating parts conveyor
JP2016060558A (en) Vibration-type part transportation device
JP2001171826A (en) Micro-parts feeder
JP5590977B2 (en) Linear feeder and combination weigher using the same
JP5861914B2 (en) Vibrating feeder
JPH0524632A (en) Vibrating parts regulating and feeding device for flat and columnar shaped parts
JP2007308216A (en) Vibration type parts feeding device
JP5625446B2 (en) Work supply device
JP5306744B2 (en) Material discharging device
JP4691848B2 (en) Vibrating feeder with two distributors
JP2019123571A (en) Parts feeder
JP5458544B2 (en) Parts supply device
JP2009113972A (en) Oscillating type part supplying device
JPH11292255A (en) Elliptical vibration part feeder
JP7360926B2 (en) Parts feeder hopper and parts feeder equipped with it
JP2008214053A (en) Parts feeder
WO2015122327A1 (en) Vibrating-type parts transporting device
JP2007039200A (en) Part supply device
JP2002211741A (en) Parts supplying device
JP2007238283A (en) Component supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050408

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20070724

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20070731

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20071120

Free format text: JAPANESE INTERMEDIATE CODE: A02