JP2004065750A - Method for manufacturing gradient magnetic field coil - Google Patents

Method for manufacturing gradient magnetic field coil Download PDF

Info

Publication number
JP2004065750A
JP2004065750A JP2002231308A JP2002231308A JP2004065750A JP 2004065750 A JP2004065750 A JP 2004065750A JP 2002231308 A JP2002231308 A JP 2002231308A JP 2002231308 A JP2002231308 A JP 2002231308A JP 2004065750 A JP2004065750 A JP 2004065750A
Authority
JP
Japan
Prior art keywords
cutting
magnetic field
coil
manufacturing
gradient magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002231308A
Other languages
Japanese (ja)
Inventor
Masamiki Yamashita
山下 正幹
Yoshitomo Sakakura
坂倉 良知
Makoto Sasaki
佐々木 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002231308A priority Critical patent/JP2004065750A/en
Publication of JP2004065750A publication Critical patent/JP2004065750A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a gradient magnetic field coil which can exactly, surely and automatically remove few cutting burrs even if the few cutting burr occurs when a coil is cut out from a metal plate by a cutting machine. <P>SOLUTION: The method for manufacturing the gradient magnetic field coil having the steps of mounting a cylinder 1 previously formed in a bent state on a jig 2 and cutting the cylinder 1 in a coil winding pattern 4 formed at the mounted cylinder 1 includes the steps of cutting the cutting burrs generated when a coil winding part 8 is formed by cutting along the coil winding pattern 4 formed at the cylinder 1 by using a surface treating unit 13, and then removing cutting scraps by using a cleaning means. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、磁気共鳴イメージング装置に適用する傾斜磁場コイルの製造方法に関する。
【0002】
【従来の技術】
磁気共鳴イメージング装置MRI(Magnetic Resonance Imaging)では、被検体に対して非常に強い静磁場が求められている。このような求めに対し、従来の磁気共鳴イメージング装置では、時間的に変化する傾斜磁場を加えて静磁場を強化するようになっている。
【0003】
このように静磁場を強化した磁気共鳴イメージング装置は、被検体に高周波磁場を与え、被検体の中から高周波の磁気共鳴信号が発せられ、この信号を検出して被検体の断層像が撮像される構成になっている。
【0004】
ところで、磁気共鳴イメージング装置においては、静磁場強度が、通常、キロガウスから10キロガウス(1テラス)程度、必要とされている。また、静磁場の空間的均一が求められ、数10ppm以下の均一性が必要とされる。また、必要とされる空間的な領域は、しばしば50cm直径の球状の大きさとされている。
【0005】
最近の磁気共鳴イメージング装置では、イメージング技術の高速化に伴い、傾斜磁場の高速スイッチングと、より一層の高強度化が必要不可欠とされている。このため、傾斜磁場コイルには、高電圧が印加されるので、傾斜磁場コイルの銅線パターン間も狭くなりつつある。
【0006】
このような技術背景の下、より高性能な傾斜磁場コイルの製造方法が、例えば、特開2000−82627号公報に開示されている。
【0007】
この傾斜磁場コイルの製造方法は、湾曲状に成形加工した金属板を治具に固設させ、切削加工機で湾曲状の金属板を螺旋状のコイル巻線パターンに沿って切削し、コイル巻線のみを治具上に残し、コイル巻線に接着剤を塗布し、絶縁シートを治具に被着させ、被着後、絶縁シートを治具から剥すことにより、簡易かつ短時間の製造工程を実現させたものである。
【0008】
【発明が解決しようとする課題】
特開2000−82627号公報に開示された傾斜磁場コイルの製造方法は、従来に較べて簡易かつ短時間の製造工程を実現させた点で意義があるものの、それでも幾つかの問題を抱えており、その一つに切削加工機で金属板から削り出す際に発生する切削バリがある。
【0009】
従来、湾曲状に形成した、例えば銅板等の金属板からコイルを、例えば高速ミーリング等の切削加工機で削り出すとき、高速に切削するので、切削バリは、それほど多くないにしても、発生することがある。
【0010】
この場合、発生した切削バリは、手作業で除去していたが、何分にも手間がかかるだけでなく、見落とすこともままあった。
【0011】
最近のように、より高速撮影が要求され、より高電圧が印加され、さらにコイル巻線パターン間の距離もより一層狭くなってくると、微小といえども切削バリが残っていると絶縁破壊の要因になり、ひいては撮影による画像が不鮮明になる等のおそれがある。
【0012】
本発明は、このような事情に基づいてなされたもので、金属板からコイルを切削加工機で削り出すとき、僅かな切削バリが発生しようとも的確にして確実に、かつ自動的に除去できる傾斜磁場コイルの製造方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明に係る傾斜磁場コイルの製造方法は、上述の目的を達成するために、請求項1に記載したように、予め湾曲状に形成した筒体を治具に装着し、装着した筒体に形成されるコイル巻線パターンに沿って切削加工する傾斜磁場コイルの製造方法において、前記筒体に形成されるコイル巻線パターンに沿って切削加工してコイル巻線部分を形成する際に発生する切削バリを表面処理装置を用いて切削した後、洗浄手段を用いて切削屑を除去する方法である。
【0014】
また、本発明に係る傾斜磁場コイルの製造方法は、上述の目的を達成するために、請求項2に記載したように、予め湾曲状に形成した筒体を治具に装着し、装着した筒体に形成されるコイル巻線パターンに沿って切削加工する傾斜磁場コイルの製造方法において、前記筒体の外表面に形成されるコイル巻線パターンに沿って切削加工してコイル巻線部分を形成する際に発生する切削バリを表面処理装置を用いて切削するとともに、切削加工後の切削屑を洗浄手段を用いて除去した後、前記筒体の内表面側も表面処理装置を用いて切削バリを除去し、切削バリ除去後の切削屑を洗浄手段を用いて除去する方法である。
【0015】
また、本発明に係る傾斜磁場コイルの製造方法は、上述の目的を達成するために、請求項3に記載したように、表面処理装置は、ブラスト処理装置および研磨装置のうち、いずれかを用いる方法である。
【0016】
また、本発明に係る傾斜磁場コイルの製造方法は、上述の目的を達成するために、請求項4に記載したように、ブラスト処理装置は、エアブラスト、ショットブラストおよびウェットブラストのうち、いずれかであることを特徴とする方法である。
【0017】
また、本発明に係る傾斜磁場コイルの製造方法は、上述の目的を達成するために、請求項5に記載したように、洗浄手段は、超音波洗浄であることを特徴とする方法である。
【0018】
【発明の実施の形態】
以下、本発明に係る傾斜磁場コイルの製造方法の実施形態を図面および図面に付した符号を引用して説明する。
【0019】
本発明に係る傾斜磁場コイルの製造方法は、傾斜磁場コイルの形状である円筒または長円筒に、予め曲げ加工された、例えば銅製の金属板を、螺旋状のコイル巻線に沿って切削加工機で切削加工するとともに、余肉部分に相当する不要部分を取り除き、その際に発生する切削バリを表面処理装置を用いて効果的に除去する構成にしたものである。
【0020】
このような構成を備える本実施形態に係る傾斜磁場コイルの製造方法の具体例を説明する。
【0021】
図3は、本実施形態に適用する傾斜磁場コイルの原型を示す円筒または長円筒(楕円筒)を半割れ状に形成した筒体1である。この半割れ状の筒体1は、例えば銅等の金属で作製され、予めローラ加工機等で成形加工されている。
【0022】
ローラ加工機等で成形加工された筒体1は、図4に示すように、治具2の表面に接着剤を塗布し、被着させて固定する。
【0023】
治具2に被着させた半割れ状の筒体1は、図6に示すように、例えばミーリング等の切削加工機3に取り付けられ、切削加工の際、螺旋状のコイル巻線パターン4の輪郭に沿って切り取られる。
【0024】
切削加工機3は、治具2を固定するマンドレル6と、筒体1を切削するエンドミル5とを備え、マンドレル6をY軸を中心に回転させるとともに、エンドミル5をX,Y,Z軸方向へ自在に回転移動させることができる構成になっている。
【0025】
一方、傾斜磁場コイルのうち、Gxコイル,Gyコイル等のサドルコイルを製造する製造手順は、図5に示すように、まず、上述のコイル巻線パターン4の輪郭に沿って切削された筒体1を治具2ごと切削加工機3から取り外し、筒体1のうち、コイル巻線パターン4以外の不要な余肉部分(金属部分)7を剥し、螺旋状のコイル巻線部分8のみを治具2上に残す。
【0026】
次に、コイル巻線部分8上に接着剤を塗布した後、治具2上に絶縁シート9を被せ、コイル巻線部分8を絶縁シート9に被着させる。この場合、絶縁シート9をコイル巻線部分8に被着させる接着剤は、筒体1を治具2に接着させる接着剤よりも強力な接着力になっている。ここで、接着剤は、両面接着シートでもよい。また、接着剤は、コイル巻線部分8以外の治具2の表面にはみ出ることがない粘度になっている。なお、符号10は、樹脂を含浸するために用いる穴である。
【0027】
コイル巻線部分8に絶縁シート9を被着し、数分経過後、絶縁シート9を治具2から剥すと、筒体1の表面形状の螺旋状のコイル巻線部分8に絶縁シート9が接着され、サドルコイルが製造される。
【0028】
他方、螺旋状のコイル巻線部分8は、切削加工機3で筒体1から削り取られる際、往々にして切削バリが発生することがある。
【0029】
切削バリが目視確認されると、サドルコイルは、図1に示すように、コイル巻線パターン4における螺旋状のコイル巻線部分8の斜め後方向の数箇所から研磨剤11を噴射する複数個のノズル12を備えた表面処理装置13、例えばエアブラスト、ショットブラスト、ウェットブラスト等のブラスト装置、または研磨装置等を用いて螺旋状のコイル巻線部分8の表面を処理する。例えば、ブラスト装置の場合、ノズル12から研磨剤11を噴射して螺旋状のコイル巻線部分8に発生した切削バリを除去する。
【0030】
そして、最初の切削バリの除去が終了すると、ブラスト装置等の表面処理装置13は、次の切削バリの箇所に移動する。
【0031】
その際、治具2を回転させ、ノズル12を移動させるか、あるいは治具2を移動させ、ノズル12を回転させるかして螺旋状のコイル巻線部分8として形成したサドルコイルの全表面に亘って切削バリの除去を行って表面処理を行う。
【0032】
サドルコイルは、その外表面の表面処理を行った後、図2に示すように、内面側(外表面の反対側)もブラスト処理機等で切削バリの除去を行う。
【0033】
その際、サドルコイルは、筒体1に絶縁シート9を被着後、治具2から取り外し、上述と同様に裏面に対してもブラスト処理機等を用いて切削バリの除去を行う。切削バリの除去にあたり、治具2を回転させノズル12を移動させ、あるいは治具2を移動させ、ノズル12を回転させるかして螺旋状のコイル巻線部分8として形成したサドルコイルの全表面に亘って移動を行う。
【0034】
そして、サドルコイルは、外表面および内面側のそれぞれの切削バリを除去後、超音波洗浄を行い、付着した切削屑を除去して絶縁性を高く維持させる。
【0035】
【発明の効果】
以上の説明の通り、本発明に係る傾斜磁場コイルの製造方法は、予め曲面加工された筒体を螺旋状のコイルパターンに沿って切削してコイル巻線を形成し、切削したコイル巻線に発生した切削バリを表面処理装置を用いて除去するので、微小な切削バリでも自動的に、かつ確実に除去することができる。
【0036】
また、本発明に係る傾斜磁場コイルの製造方法は、筒体から切削したコイル巻線に発生した切削バリを表面処理装置を用いて除去する際、コイル巻線の表面を面荒らしを行うので、絶縁シートを被着する際、接着強度を向上させることができ、組立時、接着強度や含浸樹脂との接着強度をより一層増加させることができる。
【0037】
また、本発明に係る傾斜磁場コイルの製造方法は、筒体から切削したコイル巻線に発生した切削バリを表面処理装置を用いて除去後、超音波洗浄を行うので、表面に付着した切削屑を確実に除去することができ、絶縁シート被着による絶縁性能をより一層高く維持させることができる。
【図面の簡単な説明】
【図1】本発明に係る傾斜磁場コイルの製造方法におけるサドルコイルの外表面の表面処理を行う概念図。
【図2】本発明に係る傾斜磁場コイルの製造方法におけるサドルコイルの裏面の表面処理を行う概念図。
【図3】本発明に係る傾斜磁場コイルの製造方法におけるサドルコイルに適用される加工済の筒体を示す概念図。
【図4】図3に示した筒体を治具に固定し、筒体をコイル巻線部分に沿って切削した形状を示すコイル巻線部分の概念図。
【図5】切削加工後、筒体から余肉部分を剥し、絶縁シートをコイル巻線部分に被着させたサドルコイルの一製造工程を示す概念図。
【図6】図4に示す筒体からコイル巻線部分を削り出す際に用いる切削加工機を示す概念図。
【符号の説明】
1 筒体
2 治具
3 切削加工機
4 コイル巻線パターン
5 エンドミル
6 マンドレル
7 余肉部分
8 コイル巻線部分
9 絶縁シート
10 穴
11 研磨剤
12 ノズル
13 表面処理装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a gradient magnetic field coil applied to a magnetic resonance imaging apparatus.
[0002]
[Prior art]
In a magnetic resonance imaging apparatus MRI (Magnetic Resonance Imaging), a very strong static magnetic field is required for a subject. In response to such a demand, in a conventional magnetic resonance imaging apparatus, a static magnetic field is strengthened by adding a time-varying gradient magnetic field.
[0003]
The magnetic resonance imaging apparatus in which the static magnetic field is strengthened in this manner applies a high-frequency magnetic field to the subject, generates a high-frequency magnetic resonance signal from the subject, detects this signal, and captures a tomographic image of the subject. Configuration.
[0004]
By the way, in a magnetic resonance imaging apparatus, a static magnetic field strength is generally required to be about kilogauss to about 10 kilogauss (one terrace). Further, spatial uniformity of the static magnetic field is required, and uniformity of several tens of ppm or less is required. Also, the required spatial area is often of a spherical size with a diameter of 50 cm.
[0005]
In recent magnetic resonance imaging apparatuses, high-speed switching of a gradient magnetic field and higher strength are indispensable as imaging techniques become faster. For this reason, since a high voltage is applied to the gradient coil, the distance between the copper wire patterns of the gradient coil is also becoming narrower.
[0006]
Under such a technical background, a method for manufacturing a higher performance gradient magnetic field coil is disclosed in, for example, JP-A-2000-82627.
[0007]
The method of manufacturing this gradient magnetic field coil is to fix a metal plate formed into a curved shape to a jig, cut the curved metal plate along a spiral coil winding pattern with a cutting machine, and perform coil winding. A simple and short manufacturing process by leaving the wire alone on the jig, applying an adhesive to the coil winding, attaching the insulating sheet to the jig, and then peeling off the insulating sheet from the jig Is realized.
[0008]
[Problems to be solved by the invention]
Although the method of manufacturing a gradient magnetic field coil disclosed in Japanese Patent Application Laid-Open No. 2000-82627 is significant in that a simple and short manufacturing process is realized as compared with the related art, it still has some problems. One of them is a cutting burr generated when a metal is cut from a metal plate by a cutting machine.
[0009]
Conventionally, when a coil is cut from a metal plate such as a copper plate formed in a curved shape, for example, by a cutting machine such as a high-speed milling, cutting is performed at a high speed, so that cutting burrs are generated even if not so much. Sometimes.
[0010]
In this case, the generated cutting burrs were manually removed, but it took a lot of time and was sometimes overlooked.
[0011]
As in recent years, higher-speed imaging has been required, higher voltages have been applied, and the distance between the coil winding patterns has become even smaller. This may cause the image to be unclear, for example.
[0012]
The present invention has been made based on such circumstances, and when a coil is cut from a metal plate by a cutting machine, even if slight cutting burrs are generated, an inclined surface that can be accurately and reliably removed automatically. An object of the present invention is to provide a method for manufacturing a magnetic field coil.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, a method for manufacturing a gradient magnetic field coil according to the present invention, as described in claim 1, attaches a previously formed tubular body to a jig, and attaches the fitted tubular body to the jig. In the method of manufacturing a gradient magnetic field coil that performs cutting along a coil winding pattern to be formed, the gradient magnetic field coil is generated when cutting is performed along a coil winding pattern formed on the cylindrical body to form a coil winding portion. This is a method in which cutting burrs are cut using a surface treatment device, and then cutting chips are removed using a cleaning unit.
[0014]
Further, in order to achieve the above object, the method for manufacturing a gradient magnetic field coil according to the present invention, as described in claim 2, attaches a previously formed tubular body to a jig, and attaches the attached tubular body to the jig. In a method of manufacturing a gradient magnetic field coil that is cut along a coil winding pattern formed on a body, a cutting process is performed along a coil winding pattern formed on an outer surface of the cylindrical body to form a coil winding portion. After the cutting burrs generated at the time of cutting are cut using a surface treatment device, and the cutting chips after the cutting process are removed using a cleaning means, the inner surface side of the cylindrical body is also cut with the surface treatment device. This is a method of removing the cutting debris after removing the cutting burrs by using a cleaning means.
[0015]
Further, in the method for manufacturing a gradient magnetic field coil according to the present invention, in order to achieve the above-described object, as described in claim 3, the surface treatment device uses any one of a blast treatment device and a polishing device. Is the way.
[0016]
In order to achieve the above object, the method for manufacturing a gradient magnetic field coil according to the present invention is configured such that, as described in claim 4, the blast processing device includes any one of air blast, shot blast, and wet blast. The method is characterized in that:
[0017]
Further, in the method of manufacturing a gradient magnetic field coil according to the present invention, in order to achieve the above-mentioned object, as described in claim 5, the cleaning means is ultrasonic cleaning.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a method of manufacturing a gradient magnetic field coil according to the present invention will be described with reference to the drawings and reference numerals attached to the drawings.
[0019]
The manufacturing method of the gradient magnetic field coil according to the present invention is a cutting machine for cutting a metal plate made of, for example, copper, which has been bent in advance into a cylinder or a long cylinder having the shape of the gradient magnetic field coil, along a spiral coil winding. In addition to cutting, unnecessary portions corresponding to excess portions are removed, and cutting burrs generated at that time are effectively removed using a surface treatment device.
[0020]
A specific example of the method for manufacturing a gradient coil according to the present embodiment having such a configuration will be described.
[0021]
FIG. 3 shows a cylinder 1 in which a cylinder or a long cylinder (elliptical cylinder) showing a prototype of a gradient magnetic field coil applied to the present embodiment is formed in a half-split shape. The half-split cylinder 1 is made of a metal such as copper, for example, and is formed in advance by a roller processing machine or the like.
[0022]
As shown in FIG. 4, the cylindrical body 1 formed by a roller processing machine or the like is coated with an adhesive on the surface of the jig 2, adhered and fixed.
[0023]
As shown in FIG. 6, the half-split cylindrical body 1 attached to the jig 2 is attached to a cutting machine 3 such as a milling machine. Cut along the contour.
[0024]
The cutting machine 3 includes a mandrel 6 for fixing the jig 2 and an end mill 5 for cutting the cylindrical body 1. The mandrel 6 is rotated about the Y axis, and the end mill 5 is moved in the X, Y, and Z axis directions. It can be freely rotated and moved.
[0025]
On the other hand, among the gradient magnetic field coils, a manufacturing procedure for manufacturing a saddle coil such as a Gx coil or a Gy coil is, as shown in FIG. 5, first, a cylindrical body cut along the contour of the coil winding pattern 4 described above. 1 is removed from the cutting machine 3 together with the jig 2, the unnecessary excess portion (metal portion) 7 other than the coil winding pattern 4 is peeled off from the cylindrical body 1, and only the spiral coil winding portion 8 is cured. Leave on tool 2.
[0026]
Next, after applying an adhesive on the coil winding portion 8, an insulating sheet 9 is put on the jig 2, and the coil winding portion 8 is put on the insulating sheet 9. In this case, the adhesive for attaching the insulating sheet 9 to the coil winding portion 8 has a stronger adhesive force than the adhesive for attaching the cylindrical body 1 to the jig 2. Here, the adhesive may be a double-sided adhesive sheet. The adhesive has a viscosity that does not protrude to the surface of the jig 2 other than the coil winding portion 8. Reference numeral 10 is a hole used to impregnate the resin.
[0027]
After the insulating sheet 9 is applied to the coil winding portion 8 and the insulating sheet 9 is peeled off from the jig 2 after a lapse of several minutes, the insulating sheet 9 is attached to the spiral coil winding portion 8 having the surface shape of the cylindrical body 1. It is glued and a saddle coil is manufactured.
[0028]
On the other hand, when the spiral coil winding portion 8 is cut off from the cylindrical body 1 by the cutting machine 3, cutting burrs often occur.
[0029]
When cutting burrs are visually confirmed, as shown in FIG. 1, the saddle coil includes a plurality of abrasives 11 that spray abrasives 11 from several positions obliquely rearward of the spiral coil winding portion 8 in the coil winding pattern 4. The surface of the helical coil winding portion 8 is treated by using a surface treatment device 13 having a nozzle 12 of, for example, a blast device such as air blast, shot blast, or wet blast, or a polishing device. For example, in the case of a blast device, the abrasive 11 is sprayed from the nozzle 12 to remove cutting burrs generated in the spiral coil winding portion 8.
[0030]
Then, when the removal of the first cutting burrs is completed, the surface treatment device 13 such as a blast device moves to the next cutting burrs.
[0031]
At this time, the jig 2 is rotated and the nozzle 12 is moved, or the jig 2 is moved and the nozzle 12 is rotated, so that the entire surface of the saddle coil formed as the spiral coil winding portion 8 is formed. The surface treatment is performed by removing the cutting burrs over the entire surface.
[0032]
After performing the surface treatment of the outer surface of the saddle coil, as shown in FIG. 2, the inner surface side (the opposite side of the outer surface) is also subjected to removal of cutting burrs by a blasting machine or the like.
[0033]
At this time, the saddle coil is removed from the jig 2 after the insulating sheet 9 is attached to the cylindrical body 1, and the burrs are also removed from the back surface using a blasting machine or the like as described above. In removing the cutting burr, the jig 2 is rotated to move the nozzle 12, or the jig 2 is moved and the nozzle 12 is rotated to form the entire surface of the saddle coil formed as the spiral coil winding portion 8. Move over.
[0034]
Then, after removing the cutting burrs on the outer surface and the inner surface, the saddle coil is subjected to ultrasonic cleaning to remove the attached cutting chips and maintain high insulation.
[0035]
【The invention's effect】
As described above, the manufacturing method of the gradient magnetic field coil according to the present invention is to cut a preliminarily curved cylindrical body along a helical coil pattern to form a coil winding, and apply the cut coil winding to Since the generated cutting burrs are removed using the surface treatment device, even minute cutting burrs can be automatically and reliably removed.
[0036]
Further, the method for manufacturing the gradient magnetic field coil according to the present invention, when removing the cutting burrs generated in the coil winding cut from the cylindrical body using a surface treatment device, since the surface of the coil winding is roughened, When the insulating sheet is applied, the adhesive strength can be improved, and the adhesive strength and the adhesive strength with the impregnated resin can be further increased during assembly.
[0037]
Further, in the method for manufacturing a gradient magnetic field coil according to the present invention, since cutting burrs generated on the coil windings cut from the cylindrical body are removed using a surface treatment device and then ultrasonic cleaning is performed, cutting dust attached to the surface is removed. Can be reliably removed, and the insulating performance due to the attachment of the insulating sheet can be maintained even higher.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of performing a surface treatment on an outer surface of a saddle coil in a method of manufacturing a gradient magnetic field coil according to the present invention.
FIG. 2 is a conceptual diagram of performing a surface treatment on the back surface of the saddle coil in the method of manufacturing a gradient coil according to the present invention.
FIG. 3 is a conceptual diagram showing a processed cylinder applied to a saddle coil in the method of manufacturing a gradient coil according to the present invention.
FIG. 4 is a conceptual diagram of a coil winding part showing a shape in which the cylinder shown in FIG. 3 is fixed to a jig and the cylinder is cut along the coil winding part.
FIG. 5 is a conceptual diagram showing a manufacturing process of a saddle coil in which a surplus portion is peeled off from a cylindrical body after cutting, and an insulating sheet is applied to a coil winding portion.
FIG. 6 is a conceptual diagram showing a cutting machine used to cut a coil winding portion from the cylindrical body shown in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cylindrical body 2 Jig 3 Cutting machine 4 Coil winding pattern 5 End mill 6 Mandrel 7 Excess part 8 Coil winding part 9 Insulating sheet 10 Hole 11 Abrasive 12 Nozzle 13 Surface treatment device

Claims (5)

予め湾曲状に形成した筒体を治具に装着し、装着した筒体に形成されるコイル巻線パターンに沿って切削加工する傾斜磁場コイルの製造方法において、前記筒体に形成されるコイル巻線パターンに沿って切削加工してコイル巻線部分を形成する際に発生する切削バリを表面処理装置を用いて切削した後、洗浄手段を用いて切削屑を除去することを特徴とする傾斜磁場コイルの製造方法。In a method for manufacturing a gradient magnetic field coil, in which a cylindrical body formed in a curved shape in advance is mounted on a jig and cut along a coil winding pattern formed on the mounted cylindrical body, a coil winding formed on the cylindrical body is provided. A gradient magnetic field characterized in that cutting burrs generated when forming a coil winding portion by cutting along a line pattern are cut using a surface treatment device, and then cutting chips are removed using cleaning means. Manufacturing method of coil. 予め湾曲状に形成した筒体を治具に装着し、装着した筒体に形成されるコイル巻線パターンに沿って切削加工する傾斜磁場コイルの製造方法において、前記筒体の外表面に形成されるコイル巻線パターンに沿って切削加工してコイル巻線部分を形成する際に発生する切削バリを表面処理装置を用いて切削するとともに、切削加工後の切削屑を洗浄手段を用いて除去した後、前記筒体の内表面側も表面処理装置を用いて切削バリを除去し、切削バリ除去後の切削屑を洗浄手段を用いて除去することを特徴とする傾斜磁場コイルの製造方法。A method for manufacturing a gradient magnetic field coil, in which a cylindrical body formed in advance in a curved shape is mounted on a jig and cut along a coil winding pattern formed on the mounted cylindrical body, is formed on an outer surface of the cylindrical body. The cutting burrs generated when forming the coil winding portion by cutting along the coil winding pattern are cut using a surface treatment device, and the cutting chips after the cutting process are removed using cleaning means. A method of manufacturing a gradient magnetic field coil, further comprising removing cutting burrs on the inner surface side of the cylindrical body using a surface treatment device, and removing cutting chips from which cutting burrs have been removed using a cleaning unit. 表面処理装置は、ブラスト処理装置および研磨装置のうち、いずれかを用いることを特徴とする請求項1または2記載の傾斜磁場コイルの製造方法。3. The method for manufacturing a gradient magnetic field coil according to claim 1, wherein the surface treatment device uses one of a blast treatment device and a polishing device. ブラスト処理装置は、エアブラスト、ショットブラストおよびウェットブラストのうち、いずれかであることを特徴とする請求項1または2記載の傾斜磁場コイルの製造方法。The method for manufacturing a gradient magnetic field coil according to claim 1, wherein the blast processing device is any one of air blast, shot blast, and wet blast. 洗浄手段は、超音波洗浄であることを特徴とする請求項1または2記載の傾斜磁場コイルの製造方法。3. The method for manufacturing a gradient magnetic field coil according to claim 1, wherein the cleaning means is an ultrasonic cleaning.
JP2002231308A 2002-08-08 2002-08-08 Method for manufacturing gradient magnetic field coil Pending JP2004065750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002231308A JP2004065750A (en) 2002-08-08 2002-08-08 Method for manufacturing gradient magnetic field coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002231308A JP2004065750A (en) 2002-08-08 2002-08-08 Method for manufacturing gradient magnetic field coil

Publications (1)

Publication Number Publication Date
JP2004065750A true JP2004065750A (en) 2004-03-04

Family

ID=32017115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002231308A Pending JP2004065750A (en) 2002-08-08 2002-08-08 Method for manufacturing gradient magnetic field coil

Country Status (1)

Country Link
JP (1) JP2004065750A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017115224A1 (en) * 2015-12-31 2017-07-06 Koninklijke Philips N.V. Magnetic field gradient coils with closely packed windings and methods of manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017115224A1 (en) * 2015-12-31 2017-07-06 Koninklijke Philips N.V. Magnetic field gradient coils with closely packed windings and methods of manufacturing same
US11536787B2 (en) * 2015-12-31 2022-12-27 Koninklijke Philips N.V. Magnetic field gradient coils with closely packed windings and methods of manufacturing same

Similar Documents

Publication Publication Date Title
JP2004065750A (en) Method for manufacturing gradient magnetic field coil
JP2008301699A (en) Method of cleaning generator coil
JP2002224916A (en) Method and device for cutting iron core
JP5641575B2 (en) Insulating film removing tool and method for removing insulated wire conductor
KR100228690B1 (en) A hardening means of motor coil
JPH05313394A (en) Production of cylindrical substrate for electrophotographic sensitive body
JP2018060645A (en) Burr removal and inspection method for cut end face of electrode and burr removal and inspection device for cut end face of electrode
JP2003224952A (en) Stator core, its manufacturing method, and its manufacturing apparatus
WO2018164134A1 (en) Wire and method for manufacturing same
JPS61197119A (en) Burr remover of rotor for motor
JP2941666B2 (en) Swaging method of pipe
JPH0760553A (en) Wire cut electric discharge machine
US20090133712A1 (en) Methods for cleaning generator coils
JP2002192453A (en) Magnetism applied machining method and device for the same
JPS61221553A (en) Varnish treating method for rotary electric machine
JP3736472B2 (en) Method for bonding permanent magnet to stator and yoke for rotating armature
CN215357657U (en) Metal material fine perforation deburring device
JPH0463628A (en) Electrode jig for electropolishing
JP2003001561A (en) Lapping apparatus and lapping method
JPH10142824A (en) Production of aluminum tube for photoreceptor drum base body
EP0750968A1 (en) Improvements in or relating to the processing of semiconductor devices
JP3785402B2 (en) Deburring method for resin-encapsulated parts
JPH06275758A (en) Manufacture of semiconductor device
JP2001092157A (en) Method for regnerative working of organic photoreceptor substrate
JP4359439B2 (en) High frequency coil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071113