JP2004065376A - Hypoxic training facility and method of controlling hypoxic environment - Google Patents

Hypoxic training facility and method of controlling hypoxic environment Download PDF

Info

Publication number
JP2004065376A
JP2004065376A JP2002225991A JP2002225991A JP2004065376A JP 2004065376 A JP2004065376 A JP 2004065376A JP 2002225991 A JP2002225991 A JP 2002225991A JP 2002225991 A JP2002225991 A JP 2002225991A JP 2004065376 A JP2004065376 A JP 2004065376A
Authority
JP
Japan
Prior art keywords
facility
low
air
oxygen
environment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002225991A
Other languages
Japanese (ja)
Other versions
JP4062601B2 (en
Inventor
Kozo Kimura
木村 興造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2002225991A priority Critical patent/JP4062601B2/en
Publication of JP2004065376A publication Critical patent/JP2004065376A/en
Application granted granted Critical
Publication of JP4062601B2 publication Critical patent/JP4062601B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a large-sized hypoxic training facility for providing a hypoxic environment and maintaining the environment at low cost and a method of controlling the hypoxic environment with the technological purpose of efficiently making the environment of a large-sized facility hypoxic. <P>SOLUTION: The hypoxic training facility has a fixed wall 5 inside the large-sized facility, a movable wall 6 with a moving means to move along a side wall 4 of the large-sized facility 1, a hypoxia generator device 10 for feeding hypoxic air at a prescribed concentration, and an air stream forming means 9 for forming an air stream inside the large-sized facility 1. The movable wall 6 is moved while hypoxic air at the prescribed concentration is fed from the hypoxia generator device 10 into a section divided by the fixed wall 5, moving movable wall 6 and side wall 4 to make the area of the section gradually larger, so that the whole environment of the large-sized facility 1 is hypoxic. Then, air in the large-sized facility 1 is returned to the hypoxia generator device 10 and carbon dioxide in the large-sized facility 1 is removed. The hypoxic training facility is provided in this way, and the method of controlling the environment is also provided. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、大型施設内全体を効率的に低酸素環境とする低酸素トレーニング施設および低酸素環境の制御方法に関する。
【0002】
【従来の技術】
近年において、各種のスポーツで低酸素トレーニングが取り入れられており、肺胞内の酸素分圧が低下した環境下において、選手が日常生活や各種のトレーニングを行い、酸素運搬能力を高める、低酸素トレーニングが盛んになっている。
【0003】
このような低酸素トレーニングは、標高の高い高地に滞在するか、若しくは人工的な低酸素環境下で行われている。高地で行うトレーニングは、トレーニングを行う環境が整った場所がほとんど海外であり、交通費や滞在費等を要する、と云う問題があり、また、高地は低圧環境になっているため、選手の聴覚機能や呼吸循環機能に大きな負担がかかり、質の高いトレーニングを行うことができない等の制約がある。
【0004】
一方、人工的に低酸素環境を作り出す技術は、特開平2000−27472号公報、特開平2000−70654号公報に記載のように窒素ガスと酸素ガスとの供給量を調整し、構築物内を低酸素環境とする技術が提案されている。
【0005】
このような低酸素トレーニング施設は、施設内で選手が運動や生活することにより増えた炭酸ガスを排気する排気手段、および施設内の酸素濃度を検出し、酸素濃度が危険値とならないように制御する酸素濃度センサーや制御手段が設けられている。
【0006】
【発明が解決しようとする課題】
しかしながら、大型施設全体を低酸素環境とすることは低酸素発生装置自体を大型化する必要があり、これらの大型化した装置を設置するために建設費及び大型の低酸素発生装置を駆動するための設備費が高騰するとともに、この大型化した低酸素発生装置によって生成された低酸素濃度の空気に通常空気を混合して、標高2000mや3000m程度の所望の低酸素濃度となるように調整を行わなければならず、大容量の送風機が必要となって、コストアップにつながる、という問題がある。
【0007】
また、従来においては低酸素環境室等の施設内に選手等が在室したまま、低酸素空気を供給し、施設内を低酸素環境としていたため、在室者が吐き出す炭酸ガスを除去しつつ、施設内を低酸素環境とする必要があり、施設内の炭酸ガス希釈化のための大容量の外部空気の供給及び施設内空気の排気が必要となり、換気駆動力が増大するとともに、施設内を換気しつつ低酸素環境とするために、膨大な量の低酸素空気の供給が必要となり、益々装置が大型化し、コストアップの要因となる、と云う問題があった。
【0008】
一方、通常のトレーニングルーム程度の狭い区域内を低酸素環境とするのでは、エルゴメーターやトレッドミル等の機械による一定のトレーニングしか行うことができず、トレーニングの種類が制約され、マラソンやアイススケートのように長距離走行する競技においては、競技会と同様に、長距離を走行するトラックでトレーニングを行うことができない、と云う問題がある。
【0009】
そこで、本発明は、従来技術における問題点を解消すべく創案されたもので、大規模な大型施設を効率良く低酸素環境にすることを技術的課題とし、もって、長距離の走行等が可能となる大型施設を、低酸素発生装置を設置するために更に面積を拡大することなく、低コストで効率良く、低酸素環境とすることの可能な、低酸素トレーニング施設および低酸素環境の制御方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記技術的課題を解決する本発明のうち、
請求項1に記載した発明の手段は、大型施設内を低酸素環境とする低酸素トレーニング施設であること、
大型施設内の固定壁と、該大型施設の側壁に沿って移動する移動手段を備え、前記固定壁との間で大型施設内の一部を区画する移動壁と、所定濃度の低酸素空気を発生する低酸素空気発生手段、低酸素空気発生手段から分離された通常酸素濃度の空気および高酸素濃度の空気を循環する循環手段、および環境中の炭酸ガスを除去する炭酸ガス除去手段を備えた低酸素発生装置と、施設内に空気流を形成する空気流形成手段とを設けたこと、
固定壁、移動する移動壁及び側壁で仕切られた区画内に、低酸素発生装置から所望濃度の低酸素空気を供給しつつ、移動壁を移動して、大型施設内全体を低酸素環境としたこと、にある。
【0011】
請求項1記載の発明にあっては、大型施設の一部が固定壁と、側壁と、移動手段を備えた移動壁とで区画されるため、該区画された一部に低酸素発生装置から所望濃度の低酸素空気を供給し、該区画された一部のみを所望の低酸素環境とし、順次、移動壁を移動しつつ区画区域を拡大して一区画ずつ、施設内全体を低酸素環境とすることができる。
【0012】
このため、低酸素空気発生装置は、大型の施設全体を一度に低酸素環境とする能力を必要せず、固定壁、側壁及び移動壁で区画された一区画のみを低酸素環境とする能力を備えていればよく、低酸素発生装置を大型化することなく、小型の低酸素発生装置で、効率良く、大型施設全体を低酸素環境とすることができる。
【0013】
低酸素発生装置から所望濃度の低酸素の空気を供給する際に、大型施設内の初期環境雰囲気を排気する必要があるが、低酸素環境とする区域が固定壁、側壁及び移動壁で仕切られた一定区画に限られているため、初期環境雰囲気を排気するために必要な稼動力、例えば、空気流形成手段によって外部に初期環境雰囲気を排気するための、空気流形成手段の稼動力も低減することができる。
【0014】
請求項2記載に記載した発明の手段は、請求項1記載の発明に加え、大型施設内の空気を低酸素発生装置に還気送風し、前記大型施設内の炭酸ガスを前記低酸素発生装置に設けた炭酸ガス除去手段にて除去してなること、にある。
【0015】
請求項2記載の発明にあっては、大型施設内を低酸素環境とした後、大型施設内でトレーニングを行う際には、低酸素発生装置に設けた炭酸ガス除去手段を用いて、選手達が吐き出した炭酸ガスを除去し、循環手段によって、炭酸ガスを除去した低酸素空気を再び大型施設内に循環させることができる。
【0016】
このため、従来のように大型施設内の炭酸ガスを希釈化のために必要な大容量の外部空気を大型施設内に供給する必要はなく、更に、循環手段で循環させた低酸素空気を用いることができるため、外部空気供給のために必要な稼動力を低減することができる。
【0017】
請求項3に記載した発明の手段は、請求項1又は2記載の発明において、大型施設を環状の構造としたこと、を加えたものである。
【0018】
請求項3記載の発明にあっては、大型施設を、マラソン用トラックや環状のアイススケートリンクの周囲に形成した環状の構造とし、該環状の施設内を横断する固定壁を設け、該固定壁に対して環状の側壁に沿って移動する移動壁を設け、該固定壁、移動壁および側壁で仕切られた一部の区画内に低酸素空気を供給し、該区画内が所望の低酸素環境となった後、該側壁に沿って移動壁を順次移動させて、一定区画ごとに拡大する区画域を順次低酸素環境とし、移動壁が側壁に沿って一周した際に、環状の施設内全体を低酸素環境とする。環状の施設内全体を低酸素環境とした後は、固定壁および移動壁を撤去することにより、環状の施設をマラソン用等の長距離用トレーニングに適した施設として使用することができる。
【0019】
例えば、環状施設のトラック下部に冷媒を通流する複数のチューブを設け、該チューブ部冷媒を通流して、冷凍装置を構成する冷凍器、散水機等によって、トラック上に散水した水を凍らせて、アイススケートリンクを形成し、長距離アイススケート用のトレーニング施設として用いることも可能である。
【0020】
請求項4記載の発明は、請求項1、2または3記載の発明の構成に加え、大型施設内の酸素濃度、炭酸ガス濃度及び温度を測定する測定手段を設けたこと、にある。
【0021】
請求項4記載の発明にあっては、大型施設内の酸素濃度、炭酸ガス濃度及び温度を測定する測定手段によって測定した測定値に基づいて、低酸素発生装置若しくは冷凍装置を駆動し、大型施設内を所定の低酸素環境に維持する。例えば、大型施設内の酸素濃度が安全レベル以下に低下している場合は、大型施設内の環境が危険値レベルに達しないように低酸素発生装置から大容量の通常空気を供給して施設内の酸素濃度レベルを上げるとともに、空気流形成手段にて、大型施設内の空気を外部に排出し、素早く大型施設内を安全レベルに復帰することができる。その他、大型施設内の温度が高温となった場合は、駆動切替え手段により低酸素発生装置の駆動から冷凍装置の駆動に切替えて、アイススケートリンクの氷層が溶け出さないように、大型施設内を冷却することができる。
【0022】
請求項5記載の発明は、請求項1、2、3または4記載の発明において、空気流形成手段に、大型施設内で運動する運動選手の運動方向に対向する対向流を形成する手段を設けたこと、にある。
【0023】
請求項5記載の発明にあっては、環状の大型施設内のアイススケートリンク等を走行する選手の運動方向に対向する対向流を空気流形成手段にて形成し、選手に空気抵抗の過負荷を与え、より高度なトレーニングを可能とする。例えば、空気流形成手段としてファン等を用いる場合、ファンの回転方向および回転速度の設定を可能とし、所望の風向、風速の対向流を形成する。
【0024】
請求項6記載の発明は、大型施設内を低酸素環境とする低酸素環境制御方法であること、
大型施設内の固定壁と、該大型施設の側壁に沿って移動する移動手段を備え、該固定壁との間で大型施設内の一部を区画する移動壁と、所定濃度の低酸素空気を発生する低酸素空気発生手段、前記低酸素空気発生手段から分離された通常酸素濃度の空気および高酸素濃度の空気を循環する循環手段、および環境中の炭酸ガスを除去する炭酸ガス除去手段を備えた低酸素発生装置と、大型施設内に空気流を形成する空気流形成手段を設けたこと、
前記固定壁、移動壁及び側壁で仕切られた区画内に、所望濃度の低酸素空気を低酸素発生装置にて供給し、前記区画内が所望の低酸素環境となった後、移動手段により移動壁を一定区画ごとに順次移動して、前記固定壁、移動壁および側壁で仕切られた区画を一定区画ごとに拡大し、拡大した区画内に所望濃度の低酸素空気を供給して、大型施設内全体を順次、所望濃度の低酸素環境とすること、にある。
【0025】
請求項6記載の発明にあっては、大型施設を低酸素環境とする場合に、低酸素発生装置の能力に応じて、大型施設内を固定壁、側壁及び移動壁で区画した一区画ずつ順次低酸素濃度とすることができ、大型施設を低酸素環境とする立ち上がり時間を短くし、効率良く大型施設全体を所望の低酸素環境とすることができる。
【0026】
このため、低酸素発生装置の大型化を避け、大型施設の初期環境を排気するために必要であった大規模な換気手段を必要とすることなく、稼動コストを低減して、大型施設を低酸素環境とすることができる。
【0027】
請求項7記載の発明の手段は、請求項6記載の発明において、大型施設内を低酸素環境とする低酸素環境制御時には、低酸素発生装置の低酸素発生手段を駆動して、所望濃度の低酸素空気を生成し、大型施設内で運動を行う施設使用時には、大型施設内の環境雰囲気を低酸素発生装置に還気送風し、低酸素発生装置の炭酸ガス除去手段にて炭酸ガスを分離し、炭酸ガスを分離した低酸素空気を再び施設内に循環する、ことを加えたものである。
【0028】
請求項7記載の発明にあっては、低酸素環境制御時と施設使用時とに分けて低酸素発生装置を駆動する。従来においては、低酸素環境制御時と施設使用時とを分けずに、低酸素発生装置を駆動していたため、施設内の炭酸ガスを希釈化するために、大容量の空気を送風機を用いて施設内に送風する必要があり、この空気供給のためのエネルギーが過大となっていた。本発明の制御方法において、低酸素環境制御時には、施設内を使用していない状態であるため、施設内の環境雰囲気を外部に排出するだけでよく、炭酸ガス希釈化のために大容量の外部空気の供給を必要としない。
【0029】
また、施設使用時にあっては、空気流形成手段によって施設内の汚染された空気を低酸素発生装置に送風し、低酸素発生装置の炭酸ガス除去手段にて、空気中から炭酸ガスを除去し、再び清浄な低酸素濃度の空気を循環して施設内に還気送風するため、施設内の炭酸ガスを希釈化のための大容量の空気を送風する必要なくなり、送風のために必要となっていたエネルギーを低減し、低コストで効率良く大型施設の低酸素環境を維持することができる。
【0030】
請求項8記載の発明の手段は、請求項6または7記載の発明おいて、施設内に、施設内の酸素濃度、炭酸ガス濃度を測定する測定手段を設けたこと、該測定手段の測定結果により、空気流形成手段および低酸素発生装置の駆動を調整して、一定の低酸素環境を維持すること、を加えたものである。
【0031】
請求項8記載の発明にあっては、施設内の酸素濃度及び炭酸ガス濃度を測定し、酸素濃度が安全レベルよりも低くなった場合は、低酸素発生装置から過剰量の通常空気を施設内に送風するとともに、空気流形成手段により、施設内の環境雰囲気の排気量を多くし、施設内の低酸素環境を素早く安全なレベルまで復帰することができる。
【0032】
また、施設内の酸素濃度が高くなりすぎた場合は、低酸素発生装置から所望濃度の低酸素空気を施設内に供給し、素早く所望の低酸素環境とすることができる。
【0033】
【発明の実施の形態】
以下、本発明の実施例を、図面を参照にしながら説明する。
図1は、本発明の低酸素トレーニング施設の概略構成を示す説明図である。
【0034】
図1に示すように、低酸素トレーニング施設は、環状のトラック2上に複数の円弧状柱材3を設け、該柱材3間をガラスや透明膜等の側壁4で覆い環状の大型施設1を構成している。
【0035】
大型施設1には、環状の大型施設1を横断して仕切る固定壁5と、移動壁6とが設けられている。固定壁5は、円弧状柱材3の形状に合わせて、円弧状の折り畳み可能なアルミフレーム5aと、該アルミフレーム5a間に張った膜材5bとで形成されている。固定壁5は、大型施設1内に取り外し可能に固定されている。
【0036】
大型施設1内の天井部には、移動壁6を移動するモノレール7を設け、大型施設1の床面には、環状のトラック2の内周および外周に沿って二本の走行レール8を敷設している。
【0037】
移動壁6は、固定壁5と同様に、円弧状柱材3の形状に合わせた折り畳み可能なアルミフレーム6aと、該アルミフレーム6a間に張った膜材6bとから構成されている。アルミフレーム6aの最上部には、移動壁6を駆動するモータ6cが設けられており、別途設けた操作部の操作によりモータ6cを駆動させ、移動壁6を、モノレール7及び走行レール8に沿って、側壁4に摺接した状態で、所定距離移動させる。
【0038】
大型施設1内の天井部の要所には、大型施設1内に空気流を形成し、大型施設1内の換気を行う空気流形成ファン9を設けている。
【0039】
空気流形成ファン9は、トラック2上を走行する選手達の走行方向に対して対向する対向流を形成することが可能であり、空気流形成ファン9による対向流によって、走行する選手達に過負荷を与え、高度なトレーニングを行うことが可能である。
【0040】
低酸素発生装置10は、該低酸素発生装置10から所望濃度の低酸素空気を供給する供給配管11と、大型施設1内の環境雰囲気を排気循環する排気循環配管12とを設けている。これらの供給配管11及び排気循環配管12は、例えば、フレキシブルダクト等によって構成し、固定壁5、側壁4及び移動壁6により区画した一区画内に連結している。
【0041】
低酸素発生装置10から供給配管11を通じて、大型施設1の固定壁5、側壁4及び移動壁6で仕切られた一区画内に、所望の低酸素濃度の空気が供給される。固定壁5、側壁4及び移動壁6で仕切った一区画が所定の低酸素環境となった後、移動壁6を所定距離移動させ、区画域が2倍となった一区画内に、再び供給配管11を通じて、低酸素濃度の空気を供給し、低酸素環境とする。
【0042】
このように、移動壁6を順次移動させて、環状の大型施設1内を一区画分ずつ低酸素環境とし、移動壁6が環状の大型施設1を一周して固定壁5の背面に密着すると、環状の大型施設1内を全て低酸素環境にしたことになる。このとき、大型施設1を一周した最端部に設けられた差圧ダンパー46によって、移動壁6が環状の大型施設1を一周することによって押し出された大型施設1の内部空気が排出される。差圧ダンパーとは、大型施設1内の圧力差を感知して、大型施設1内を一定圧とする排気用のダンパーをいう。
【0043】
環状の大型施設1に限らず、矩形状の大型施設等においても、固定壁5、側壁4及び移動壁6で仕切られた一区画分ずつ大型施設1を低酸素環境としていくことができるため、低酸素発生装置10を大型化することなく、設置スペースを取らない小型の低酸素発生装置10にて、大型施設1を効率良く低酸素環境とすることができる。
【0044】
また、一度に大型施設1全体を低酸素環境とする必要がないため、大型施設1内の初期環境雰囲気を排気するために必要な大容量の換気を必要とせず、換気に必要な稼動コストを低減して、省エネルギーで効率良く大型施設1を低酸素環境とすることができる。
【0045】
大型施設1のトラック2をアイススケートリンクとして用いる場合は、冷凍装置30及び図示を省略した散水機等の冷凍設備を設ける。冷凍装置30は、トラック2の下面に冷媒循環用の複数の循環チューブ31を敷設し、該冷媒循環チューブ31にブライン等の冷媒を循環する循環パイプ32を冷凍機30から延ばしている。その他、図示を省略した散水機を設け、トラック2上に散水した水を、循環チューブ31から発散する冷気で凍結し、トラック2上に氷層を形成する。なお、図示を省略したが、循環チューブ31は、トラック2の全周にわたって、トラック2の下面に敷設されている。
【0046】
低酸素発生装置10のコンプレッサー13を駆動する駆動源は、冷凍装置30のコンプレッサー33を駆動する駆動源として共用している。図2は、環状の大型施設1内を低酸素環境とする低酸素発生装置10を駆動する駆動モータ40と、大型施設1内にアイススケートリンクを形成する冷凍装置30を駆動する駆動モータ40を共用した状態を表わす説明図である。
【0047】
図2に示すように、駆動モータ40の駆動を低酸素発生装置10のコンプレッサー13に連動する駆動軸41と、駆動モータ40の駆動を冷凍装置30のコンプレッサー33に連動する駆動軸42のそれぞれに、切替えクラッチ43、44を設け、該切替えクラッチ43、44のON、OFFにより、低酸素発生装置10と冷凍装置30の駆動切替えを行う。
【0048】
図3は、低酸素発生装置10及び冷凍装置30の回路図である。低酸素発生装置10には、通常空気供給系統Aと、膜分離装置14で低酸素空気は発生する低酸素空気供給系統Bとが並列に接続されている。
【0049】
通常空気供給系統Aには、外部空気を導入する送風機21と、該送風機21から伸びる空気配管22と、該空気配管22の途中に設けた流量自動制御弁23とからなっている。流量自動制御弁23は、大型施設1内の酸素濃度を測定するセンサー25の測定値が入力されるコントローラ24により、流量自動制御弁23の開放が調整され、大型施設1内の酸素濃度が安全レベルの設定値となるように、膜分離装置14から発生する低酸素濃度の空気と混合する通常空気の流量を制御している。
【0050】
一方、低酸素空気供給系統Bは、大気中の空気を膜分離装置14に供給するコンプレッサー13と、膜分離装置14から連続する低酸素空気配管15と、低酸素空気配管15に設けた開閉弁17、及び自動切換え弁18とを備えている。自動切換え弁18は、大型施設1内の酸素濃度および炭酸ガス濃度を検出する安全センサー19の測定値に基づいて制御されている。
【0051】
低酸素環境制御時にあっては、低酸素空気供給系統Bにおいて、中空糸膜を用いた膜分離装置14にて、空気中の酸素を選択的に透過させて、低酸素空気と高酸素空気を分離して、低酸素空気を発生させ、開閉弁17および自動切換え弁18を開放して、大型施設1内に低酸素空気を供給する。なお、膜分離装置14の代わりに、圧力変動吸着(PSA法)方式のものを用いてもよい。
【0052】
低酸素空気供給系統Bから供給される低酸素空気は、安全センサー19及びセンサー25の測定値に基づいて、混合室26において、通常空気供給系統Aから供給された通常空気と混合し、所定濃度となるように調整して、送風ファン27により大型施設1内に送風される。
【0053】
低酸素制御時において、膜分離装置14で分離した高酸素空気は、切替え弁16によって循環配管12に流通し、通常空気供給系統Aに合流する。このため、送風機21にて送風する通常空気の量を少なくすることができ、送風機21の負担が軽くなり、送風機21の稼動コストを低減することができる。
【0054】
施設使用時にあっては、大型施設1内の空気流形成ファン9によって形成された空気流が排気循環配管12を通流して、排気ファン28から外部に排出される。あるいは、排気循環配管12を通じて、再び低酸素発生装置10に還気送風される。
【0055】
大型施設1内の炭酸ガス濃度レベルが増加した環境雰囲気の排出若しくは炭酸ガスの除去は、排気循環配管12に設けた切替えダンパー29の切替えによって、排気ファン28のガスの排出、若しくは低酸素発生装置10への還気送風を選択的に行う。
【0056】
低酸素発生装置10まで還気送風された大型施設1内の環境雰囲気は、膜分離装置14にて、炭酸ガスが除去される。すなわち、膜分離装置14は、低酸素空気発生手段と炭酸ガス除去手段の二つの機能を有し、炭酸ガスが除去された環境雰囲気は、排気循環配管12の流通して通常空気供給系統Aに合流させ、若しくは低酸素配管15から、再び大型施設1内に循環する。なお、PSA方式を用いる場合、自動切替え弁18の切替えによって閉鎖区域1内から排出されてきた環境雰囲気から炭酸ガスを除去する炭酸ガス吸着装置を別途設ける。
【0057】
施設使用時に、大型施設1内の炭酸ガス濃度が高くなった場合であっても、大型施設1内の環境雰囲気を低酸素発生装置10に還気送風して循環して使用することが可能であるため、送風機21で大容量の通常空気を送風して、大型施設1内の炭酸ガス濃度を希釈化する必要がなく、送風機21の負担が軽くなり、送風機21の稼動コストを低減することができる。
【0058】
低酸素発生装置10のコンプレッサー13を駆動する駆動モータ40は、冷凍装置30のコンプレッサー33を駆動する駆動源として、低酸素発生装置10と共用している。冷凍装置30は、コンプレッサー33と、ブライン等の冷媒を凝集する凝集機35と、冷媒を膨張する膨張機36と、大型施設1内に設けた循環チューブ31及び循環パイプ32に冷媒を循環させ、冷気を発してアイススケートリンクを形成する蒸発機37とから構成され、各装置は冷媒配管34で連結されている。
【0059】
低酸素発生装置10のコンプレッサー13を駆動する駆動軸41と、冷凍装置30のコンプレッサー33を駆動する駆動軸42には、それぞれ駆動切替えクラッチ43、44が設けられ、大型施設1内の酸素濃度および温度を測定するクラッチ切替えセンサー45の測定値に基づいて、駆動切替えクラッチ43、44の切替えが行われる。
【0060】
大型施設1内を低酸素環境とする低酸素環境制御時にあっては、駆動切替えクラッチ43に切替えて、低酸素発生装置10のコンプレッサー13を駆動し、低酸素空気を発生させて、大型施設1内を固定壁、側壁および移動壁で区画された一定区域ごとに順次低酸素環境とする。
【0061】
一方、選手達がアイススケートリンクを使用する施設使用時にあっては、大型施設1内の酸素濃度及び温度等をクラッチ切替えセンサー45で測定し、大型施設1内の温度が高い場合は、駆動切替えクラッチ44を切替えて冷凍装置30を駆動し、アイススケートリンクの氷層の溶融を防止する。
【0062】
大型施設1内の酸素濃度が安全レベルよりも低下した場合は、駆動切替えクラッチ43を切替えて低酸素発生装置10を駆動して、大型施設1内の炭酸ガスを除去し、通常空気を大型施設1内に供給し、大型施設1内の酸素濃度を素早く安全なレベルまで復帰し、大型施設1内を一定の環境に維持する。
【0063】
このように、大型施設1内にアイススケートリンクを形成する冷凍装置30を設けたため、大型施設1をアイススケート用のトレーニング施設として用いることができる。特に、5000mや10000mを走行する長距離スピードスケートにおいては、環状のアイススケートリンクを形成した低酸素トレーニング施設により、選手の持久力を強化するため高地まで赴くことなく、低酸素環境下で長距離トレーニングを行うことができる。
【0064】
冷凍装置30と低酸素発生装置10は、一つの駆動モータ40を共用し、低酸素環境制御時や閉鎖区域使用時に時間帯を分けて、駆動モータ40を選択的に切替えて用いることができ、稼動設備を小型化し、設置スペースを狭小化することができる。
【0065】
例えば、夜間において、低酸素発生装置10を駆動して大型施設1内を効率良く低酸素環境とし、温度が上昇する日中においてはアイススケートリンクの氷が融け出さないように、冷凍装置30を駆動して、大型施設1内の環境を維持することができる。
【0066】
また、日中においても、アイススケートリンクを過剰に冷却することのないように、冷凍装置30の駆動から低酸素発生装置10の駆動に切替えて、炭酸ガスの増加した大型施設1内の環境雰囲気を低酸素発生装置10に還気送風し、低酸素発生装置10の炭酸ガス除去手段である膜分離装置14にて炭酸ガスを除去して、低酸素空気を再び大型施設1内に循環し、大型施設1内の環境雰囲気を維持することができる。なお、冷凍装置30の駆動時であっても、空気流形成ファン9にて、大型施設1内の空気を外部に放出することができるため、大型施設1内の低酸素環境は、安全に維持される。
【0067】
【発明の効果】
本発明は、上記した構成となっているので、以下に示す効果を奏する。
請求項1記載の発明にあっては、大型のトレーニング施設において、大型施設の一部を固定壁と、側壁と移動手段を備えた移動壁で区画し、該区画された一区画ずつ低酸素濃度の空気を供給して、順次大型施設全体を低酸素環境としていくため、低酸素環境とするための立ち上がり時間が少なくなり、低酸素発生装置を大型化することなく、設置スペースのとらない小型の低酸素発生装置を用いて、大型施設全体を、効率良く低酸素環境とすることができ、大型装置設置のための面積拡大による建設費を低減し、設備費のコストダウンを行うことができる。
【0068】
大型施設内を一度に低酸素環境する必要がないため、大型施設内の初期炭酸ガスの希釈化のために大容量の外部空気を導入する必要がなく、固定壁、側壁及び移動壁で区画された一区画のみを排気すればよいため、外部空気の導入や排気のための送風に必要となっていた送風機等の稼動力を低減することができ、省エネルギー化により大幅に稼動コストを低減することができる。
【0069】
請求項2記載の発明にあっては、施設使用時に、大型施設内の炭酸ガスを低酸素発生装置にて除去し、再び低酸素濃度の空気を大型施設内に循環して、大型施設内の低酸素環境を維持することができるため、設備維持費を低減することができる。
【0070】
請求項3記載の発明にあっては、大型施設を環状としたため、該環状の大型施設内で、移動壁を移動させつつ順次一定区画ずつ低酸素環境とすることができ、移動壁を一周させた時点で、効率良く大型施設全体を低酸素環境とすることができる。大型施設を環状とすると、マラソンや長距離アイススケート等の長距離トレーニングに好適な低酸素トレーニング施設として用いることができる。
【0071】
請求項4記載の発明にあっては、大型施設内の酸素濃度、炭酸ガス濃度および温度を測定する測定手段を設けたため、測定手段の各測定値に基づいて、大型施設内の低酸素環境を安全レベルに維持することができる。
【0072】
請求項5記載の発明にあっては、空気流形成手段を用いて、大型施設内で運動する運動選手の運動方向に対向する対向流を形成し、選手に空気抵抗の過負荷を与え、より高度なトレーニングを行うことができる。
【0073】
請求項6記載の発明の方法にあっては、大型施設を低酸素環境とする場合に、低酸素発生装置の能力に応じて、大型施設内の環境雰囲気を順次一区画ずつ低酸素濃度とすることができるため、大型施設全体を一挙に低酸素環境にする場合と比較して、低酸素環境とする立ち上がり時間を短くし、効率良く大型施設を低酸素環境とすることができ、低酸素発生装置の大型化を避けて、稼動コストおよび設備維持費を低減することができる。
【0074】
請求項7記載の発明にあっては、低酸素環境制御時と、閉鎖区域使用時とに分けて低酸素発生装置を駆動し、大型施設内を効率良く低酸素環境とするとともに、大型施設内の低酸素環境を効率良く維持する。
【0075】
請求項8記載の発明にあっては、大型施設内の酸素濃度および炭酸ガス濃度を測定する測定手段にて、大型施設内の環境雰囲気を測定し、該測定値に基づいて、低酸素発生装置の駆動を調整して、閉鎖区域内の低酸素環境を常に安全なレベルに保つことができる。
【図面の簡単な説明】
【図1】本発明の一実施例である、低酸素トレーニング施設の概略構成を示す説明図。
【図2】本発明の一実施例である、低酸素トレーニング施設および低酸素発生装置、冷凍装置を模式的に表わした説明図。
【図3】本発明の一実施例である、低酸素発生装置及び冷凍装置の回路図。
【符号の説明】
1  ; 大型施設
2  ; トラック
3  ; 円弧状柱材
4  ; 側壁
5  ; 固定壁
5a ; アルミフレーム
5b ; 膜材
6  ; 移動壁
6a ; アルミフレーム
6b ; 膜材
6c ; モータ
7  ; モノレール
8  ; 走行レール
9  ; 空気流形成ファン
10 ; 低酸素空気発生装置
11 ; 供給配管
12 ; 排気循環配管
13 ; コンプレッサー
14 ; 膜分離装置
15 ; 低酸素空気配管
16 ; 切替え弁
17 ; 開閉弁
18 ; 自動切換え弁
19 ; 安全センサー
21 ; 送風機
22 ; 空気配管
23 ; 流量自動制御弁
24 ; コントローラ
25 ; センサー
26 ; 混合室
27 ; 送風ファン
28 ; 排気ファン
29 ; 切替えダンパー
30 ; 冷凍装置
31 ; 循環チューブ
32 ; 循環パイプ
33 ; コンプレッサー
34 ; 冷媒配管
35 ; 凝集機
36 ; 膨張機
37 ; 蒸発機
40 ; 駆動モータ
41 ; 駆動軸
42 ; 駆動軸
43 ; 駆動切替えクラッチ
44 ; 駆動切替えクラッチ
45 ; クラッチ切替えセンサー
46 ; 差圧ダンパー
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hypoxic training facility and a method for controlling a hypoxic environment in which the entire large facility is efficiently made to have a low oxygen environment.
[0002]
[Prior art]
In recent years, hypoxic training has been adopted in various sports, and in an environment where the oxygen partial pressure in the alveoli has decreased, the athlete performs daily life and various types of training to enhance oxygen carrying ability, Is flourishing.
[0003]
Such hypoxic training is performed at a high altitude or in an artificial hypoxic environment. Training at high altitudes has the problem that most of the places where the training environment is set up are abroad, and transportation and staying expenses are required. In addition, the high altitude is in a low pressure environment, so the athlete's hearing There is a restriction that the function and respiratory circulatory function are greatly burdened and high-quality training cannot be performed.
[0004]
On the other hand, a technique for artificially creating a low oxygen environment is disclosed in JP-A-2000-27472 and JP-A-2000-70654, in which the supply amounts of nitrogen gas and oxygen gas are adjusted to reduce the inside of the building. Techniques for providing an oxygen environment have been proposed.
[0005]
Such a hypoxic training facility detects the exhaust means that exhausts the carbon dioxide gas increased by athletes exercising and living in the facility, and detects the oxygen concentration in the facility so that the oxygen concentration does not become a dangerous value An oxygen concentration sensor and control means are provided.
[0006]
[Problems to be solved by the invention]
However, making the entire large facility a low-oxygen environment requires increasing the size of the low-oxygen generator itself, and the construction costs and the driving of the large-scale low-oxygen generator to install these larger devices are required. As the equipment cost rises, ordinary air is mixed with the low-oxygen-concentration air generated by this large-sized low-oxygen generator, and adjustment is performed so that the desired low-oxygen concentration of about 2000 m or 3000 m is obtained. This requires a large-capacity blower, which leads to an increase in cost.
[0007]
Conventionally, low-oxygen air was supplied while athletes and the like were present in a facility such as a low-oxygen environment room, and the facility was in a low-oxygen environment. In addition, it is necessary to provide a low oxygen environment in the facility, and it is necessary to supply a large volume of external air and exhaust the air in the facility to dilute carbon dioxide in the facility. In order to provide a low oxygen environment while ventilating the air, there is a problem that an enormous amount of low oxygen air needs to be supplied, which increases the size of the apparatus and causes an increase in cost.
[0008]
On the other hand, in a low oxygen environment in a small area such as a normal training room, only a certain amount of training using machines such as ergometers and treadmills can be performed, the type of training is restricted, and marathons and ice skating As described above, in a long-distance running competition, there is a problem that training cannot be performed on a long-distance running track as in the competition.
[0009]
Therefore, the present invention has been made to solve the problems in the prior art, and the technical problem is to efficiently convert a large-scale large facility into a low-oxygen environment, thereby enabling long-distance traveling and the like. A low-oxygen training facility and a method for controlling a low-oxygen environment, which can efficiently and at a low cost be reduced to a low-oxygen environment without further increasing the area for installing a low-oxygen generator in a large facility to be used The purpose is to provide.
[0010]
[Means for Solving the Problems]
Among the present invention that solves the above technical problems,
The means of the invention described in claim 1 is a hypoxic training facility in which a large facility has a hypoxic environment.
A fixed wall in a large facility, a moving means for moving along a side wall of the large facility, a moving wall for partitioning a part of the large facility between the fixed wall and a low-oxygen air having a predetermined concentration. A low-oxygen air generating means, a circulating means for circulating air having a normal oxygen concentration and a high-oxygen concentration air separated from the low-oxygen air generating means, and a carbon dioxide gas removing means for removing carbon dioxide from the environment. Provision of a low oxygen generator and air flow forming means for forming an air flow in the facility,
Moving the moving wall while supplying the low-concentration air of a desired concentration from the low-oxygen generator into the section partitioned by the fixed wall, the moving moving wall, and the side wall, the entire large facility becomes a low-oxygen environment. That is in.
[0011]
In the invention described in claim 1, a part of the large facility is divided by the fixed wall, the side wall, and the moving wall provided with the moving means. A low-oxygen air of a desired concentration is supplied, and only a part of the section is set to a desired low-oxygen environment. It can be.
[0012]
For this reason, the low-oxygen air generator does not require the ability to make the entire large facility a low-oxygen environment at a time, but only the one section defined by the fixed wall, the side wall, and the moving wall. A small-sized low-oxygen generator can be provided efficiently and a large-scale facility as a whole can have a low-oxygen environment without increasing the size of the low-oxygen generator.
[0013]
When supplying low-oxygen air at the desired concentration from the low-oxygen generator, it is necessary to exhaust the initial environmental atmosphere in the large facility, but the area with the low-oxygen environment is partitioned by fixed walls, side walls and moving walls. Operating space required for exhausting the initial environmental atmosphere, for example, the operating force of the air flow forming means for exhausting the initial environmental atmosphere to the outside by the air flow forming means is also reduced. be able to.
[0014]
The means of the invention described in claim 2 is the same as the invention described in claim 1, wherein the air in the large facility is returned to the low-oxygen generator and blown back to the low-oxygen generator, and the carbon dioxide in the large facility is converted into the low-oxygen generator. In the carbon dioxide gas removing means provided in the above.
[0015]
According to the invention described in claim 2, when training is performed in the large facility after the large facility is set in a low oxygen environment, the players can use the carbon dioxide removing means provided in the low oxygen generator to give the players The low oxygen air from which the carbon dioxide gas has been removed can be circulated again into the large facility by the circulating means.
[0016]
For this reason, there is no need to supply a large volume of external air required for diluting carbon dioxide gas in a large facility to a large facility as in the related art, and further, use low-oxygen air circulated by circulation means. Therefore, the operating force required for supplying the external air can be reduced.
[0017]
The means of the invention described in claim 3 is the same as the invention of claim 1 or 2, except that the large facility has an annular structure.
[0018]
According to the third aspect of the present invention, the large-scale facility has an annular structure formed around a marathon track or an annular ice skating rink, and a fixed wall that traverses the annular facility is provided. A moving wall moving along an annular side wall, and supplying low-oxygen air to some sections partitioned by the fixed wall, the moving wall, and the side wall, and the inside of the section has a desired low-oxygen environment. After that, the moving wall is sequentially moved along the side wall, and the section area expanding for each fixed section is sequentially made to have a low oxygen environment, and when the moving wall makes a round along the side wall, the entire inside of the annular facility is Is a low oxygen environment. After the entire inside of the annular facility has a low oxygen environment, by removing the fixed wall and the moving wall, the annular facility can be used as a facility suitable for long distance training such as a marathon.
[0019]
For example, a plurality of tubes through which a refrigerant flows are provided at the lower part of the truck of the annular facility, and the refrigerant flowing through the tube portion is allowed to freeze water sprinkled on the truck by a refrigerator, a water sprinkler, or the like that constitutes a refrigeration system. Thus, an ice skating rink can be formed and used as a training facility for long-distance ice skating.
[0020]
According to a fourth aspect of the present invention, in addition to the configuration of the first, second or third aspect of the present invention, a measuring means for measuring an oxygen concentration, a carbon dioxide concentration and a temperature in a large facility is provided.
[0021]
According to the invention described in claim 4, the hypoxic generator or the refrigeration system is driven based on the measurement values measured by the measuring means for measuring the oxygen concentration, carbon dioxide concentration and temperature in the large facility, The inside is maintained in a predetermined hypoxic environment. For example, if the oxygen concentration in a large facility is lower than the safe level, supply a large volume of normal air from a low oxygen generator to prevent the environment in the large facility from reaching a dangerous level. In addition to increasing the oxygen concentration level, the air in the large facility can be discharged to the outside by the air flow forming means, and the inside of the large facility can be quickly returned to the safe level. In addition, when the temperature in the large facility becomes high, the drive switching means switches the drive of the low oxygen generator to the drive of the refrigerating apparatus, so that the ice layer of the ice skating rink does not melt out. Can be cooled.
[0022]
According to a fifth aspect of the present invention, in the first, second, third or fourth aspect of the present invention, the airflow forming means is provided with a means for forming a counterflow in the direction of movement of the athlete exercising in the large facility. It is in that.
[0023]
According to the fifth aspect of the present invention, the airflow forming means forms an opposing flow in the direction of movement of the athlete running on the ice skating rink or the like in the annular large facility, thereby overloading the athlete with air resistance. To enable more advanced training. For example, when a fan or the like is used as the airflow forming means, the rotation direction and the rotation speed of the fan can be set, and a counterflow with a desired wind direction and wind speed is formed.
[0024]
The invention according to claim 6 is a low oxygen environment control method for setting a large facility to a low oxygen environment,
A fixed wall in a large facility, a moving means for moving along a side wall of the large facility, a moving wall defining a part of the large facility between the fixed wall, and a low-oxygen air having a predetermined concentration. A low-oxygen air generating unit that generates, a circulating unit that circulates air having a normal oxygen concentration and a high-oxygen concentration separated from the low-oxygen air generating unit, and a carbon dioxide gas removing unit that removes carbon dioxide from the environment. Provided a low oxygen generator and an air flow forming means for forming an air flow in a large facility,
A low-oxygen air having a desired concentration is supplied to the section partitioned by the fixed wall, the moving wall, and the side wall by a low-oxygen generator, and after the inside of the section has a desired low-oxygen environment, the section is moved by moving means. The wall is sequentially moved for each fixed section, the section partitioned by the fixed wall, the moving wall and the side wall is expanded for each fixed section, and a desired concentration of low-oxygen air is supplied into the expanded section to obtain a large facility. The entire interior is sequentially set to a low-oxygen environment of a desired concentration.
[0025]
In the invention according to claim 6, when the large facility is in a low oxygen environment, one section of the large facility is sequentially partitioned by fixed walls, side walls, and moving walls according to the capacity of the low oxygen generator. The low oxygen concentration can be set, the rise time for setting the large facility to the low oxygen environment can be shortened, and the entire large facility can be efficiently set to the desired low oxygen environment.
[0026]
For this reason, it is possible to reduce the operating cost and reduce the size of the large facility by avoiding the increase in the size of the low oxygen generator and eliminating the need for the large-scale ventilation means required to exhaust the initial environment of the large facility. An oxygen environment can be provided.
[0027]
According to a seventh aspect of the present invention, in the low-oxygen environment control in which the inside of the large facility is a low-oxygen environment, the low-oxygen generating device of the low-oxygen generating device is driven so that the desired concentration is obtained. When using a facility that generates low oxygen air and exercises in a large facility, the atmosphere in the large facility is returned and blown to the low oxygen generator, and the carbon dioxide gas is separated by the carbon dioxide removal means of the low oxygen generator. Then, the low oxygen air from which the carbon dioxide gas has been separated is circulated again in the facility.
[0028]
According to the seventh aspect of the present invention, the low oxygen generator is driven separately when the low oxygen environment is controlled and when the facility is used. In the past, since the low oxygen generator was driven without separating the low oxygen environment control and the use of the facility, a large volume air was blown using a blower to dilute the carbon dioxide gas in the facility. It was necessary to blow air into the facility, and the energy for this air supply was excessive. In the control method of the present invention, since the inside of the facility is not used during the control of the low oxygen environment, it is only necessary to discharge the environmental atmosphere in the facility to the outside. No air supply is required.
[0029]
When the facility is used, the air contaminated air in the facility is blown to the low oxygen generator by the air flow forming means, and the carbon dioxide gas is removed from the air by the carbon dioxide gas removing means of the low oxygen generator. In order to recirculate clean low-oxygen air and return air into the facility, it is no longer necessary to blow large-volume air to dilute carbon dioxide in the facility. Energy can be reduced, and the low oxygen environment of large facilities can be efficiently maintained at low cost.
[0030]
The means of the invention described in claim 8 is the invention according to claim 6 or 7, wherein a measuring means for measuring the oxygen concentration and the carbon dioxide concentration in the facility is provided in the facility, and the measurement result of the measuring means is provided. By adjusting the driving of the air flow forming means and the low oxygen generating apparatus, a constant low oxygen environment is maintained.
[0031]
In the invention according to claim 8, the oxygen concentration and the carbon dioxide concentration in the facility are measured, and when the oxygen concentration becomes lower than the safe level, an excessive amount of normal air is supplied from the low oxygen generator into the facility. And the air flow forming means can increase the amount of exhaust of the environmental atmosphere in the facility and quickly restore the low oxygen environment in the facility to a safe level.
[0032]
Further, when the oxygen concentration in the facility becomes too high, a low-oxygen air having a desired concentration is supplied from the low-oxygen generator into the facility, so that a desired low-oxygen environment can be quickly established.
[0033]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory diagram showing a schematic configuration of a hypoxic training facility of the present invention.
[0034]
As shown in FIG. 1, the hypoxic training facility is provided with a plurality of arc-shaped pillars 3 on an annular track 2, and the space between the pillars 3 is covered with a side wall 4 such as glass or a transparent film. Is composed.
[0035]
The large facility 1 is provided with a fixed wall 5 that divides the large facility 1 across the ring, and a movable wall 6. The fixed wall 5 is formed of an arc-shaped foldable aluminum frame 5a and a film material 5b stretched between the aluminum frames 5a according to the shape of the arc-shaped column member 3. The fixed wall 5 is detachably fixed in the large facility 1.
[0036]
A monorail 7 for moving a moving wall 6 is provided on the ceiling of the large facility 1, and two traveling rails 8 are laid on the floor of the large facility 1 along the inner circumference and the outer circumference of the annular truck 2. are doing.
[0037]
The moving wall 6, like the fixed wall 5, is composed of a foldable aluminum frame 6a conforming to the shape of the arc-shaped column member 3, and a film material 6b stretched between the aluminum frames 6a. A motor 6c for driving the moving wall 6 is provided on the uppermost part of the aluminum frame 6a. The motor 6c is driven by operating a separately provided operation unit, and the moving wall 6 is moved along the monorail 7 and the running rail 8. Then, while being in sliding contact with the side wall 4, it is moved a predetermined distance.
[0038]
An airflow forming fan 9 that forms an airflow in the large facility 1 and ventilates the large facility 1 is provided at a key point on the ceiling in the large facility 1.
[0039]
The airflow forming fan 9 can form an opposing flow opposing the running direction of the players running on the track 2, and the airflow forming fan 9 causes an overflow to the running players. It is possible to apply load and perform advanced training.
[0040]
The low-oxygen generator 10 is provided with a supply pipe 11 for supplying low-oxygen air of a desired concentration from the low-oxygen generator 10 and an exhaust circulation pipe 12 for exhausting and circulating the environmental atmosphere in the large facility 1. The supply pipe 11 and the exhaust circulation pipe 12 are configured by, for example, a flexible duct or the like, and are connected to one section defined by the fixed wall 5, the side wall 4, and the moving wall 6.
[0041]
Air having a desired low oxygen concentration is supplied from the low-oxygen generator 10 to one section of the large facility 1 divided by the fixed wall 5, the side wall 4, and the moving wall 6 through the supply pipe 11. After one section partitioned by the fixed wall 5, the side wall 4, and the moving wall 6 has a predetermined low oxygen environment, the moving wall 6 is moved a predetermined distance, and the supply is re-supplied into one section having a doubled area. Low-oxygen-concentration air is supplied through the pipe 11 to create a low-oxygen environment.
[0042]
As described above, the moving wall 6 is sequentially moved to make the inside of the large annular facility 1 a low oxygen environment by one section, and the moving wall 6 makes a round around the large annular facility 1 and adheres to the back of the fixed wall 5. This means that the entire inside of the large annular facility 1 is in a low oxygen environment. At this time, the internal air of the large facility 1 that is pushed out by the moving wall 6 making a round of the annular large facility 1 is discharged by the differential pressure damper 46 provided at the end portion of the large facility 1 that has made one round. The differential pressure damper is an exhaust damper that detects a pressure difference in the large facility 1 and maintains the inside of the large facility 1 at a constant pressure.
[0043]
Not only in the large-sized facility 1 having a ring shape, but also in a large-sized facility having a rectangular shape, the large-sized facility 1 can be brought into a low-oxygen environment by a section divided by the fixed wall 5, the side wall 4, and the moving wall 6, The large facility 1 can be efficiently put into a low-oxygen environment with the small-sized low-oxygen generator 10 that does not take up installation space without increasing the size of the low-oxygen generator 10.
[0044]
Further, since it is not necessary to put the entire large facility 1 in a low-oxygen environment at once, the large-capacity ventilation required for exhausting the initial environmental atmosphere in the large facility 1 is not required, and the operating cost required for ventilation is reduced. It is possible to reduce the energy consumption and efficiently set the large facility 1 in a low oxygen environment with energy saving.
[0045]
When the truck 2 of the large facility 1 is used as an ice skating rink, a refrigerating device 30 and a refrigerating facility such as a sprinkler (not shown) are provided. In the refrigeration apparatus 30, a plurality of circulation tubes 31 for circulating refrigerant are laid on the lower surface of the truck 2, and a circulation pipe 32 for circulating refrigerant such as brine in the refrigerant circulation tubes 31 extends from the refrigerator 30. In addition, a sprinkler (not shown) is provided, and the water sprinkled on the truck 2 is frozen by cold air diverging from the circulation tube 31 to form an ice layer on the truck 2. Although not shown, the circulation tube 31 is laid on the lower surface of the truck 2 over the entire circumference of the truck 2.
[0046]
The drive source for driving the compressor 13 of the low oxygen generator 10 is shared as the drive source for driving the compressor 33 of the refrigerating device 30. FIG. 2 shows a drive motor 40 for driving the hypoxic generator 10 in which the inside of the large-scale facility 1 has a low oxygen environment, and a drive motor 40 for driving the refrigerating apparatus 30 that forms an ice skating rink in the large facility 1. It is explanatory drawing showing the state shared.
[0047]
As shown in FIG. 2, the drive of the drive motor 40 is provided to a drive shaft 41 that is linked to the compressor 13 of the low oxygen generator 10, and the drive of the drive motor 40 is set to a drive shaft 42 that is linked to the compressor 33 of the refrigerator 30. The switching clutches 43 and 44 are provided, and the switching of the low oxygen generator 10 and the refrigerating device 30 is performed by turning on and off the switching clutches 43 and 44.
[0048]
FIG. 3 is a circuit diagram of the low oxygen generator 10 and the refrigeration apparatus 30. The low oxygen generator 10 is connected in parallel with a normal air supply system A and a low oxygen air supply system B in which low oxygen air is generated in the membrane separator 14.
[0049]
The normal air supply system A includes a blower 21 for introducing external air, an air pipe 22 extending from the blower 21, and an automatic flow control valve 23 provided in the middle of the air pipe 22. The opening of the automatic flow rate control valve 23 is adjusted by the controller 24 to which the measurement value of the sensor 25 for measuring the oxygen concentration in the large facility 1 is input, and the oxygen concentration in the large facility 1 is safe. The flow rate of the normal air mixed with the low-oxygen-concentration air generated from the membrane separation device 14 is controlled so as to be the set value of the level.
[0050]
On the other hand, the low-oxygen air supply system B includes a compressor 13 for supplying atmospheric air to the membrane separator 14, a low-oxygen air pipe 15 continuous from the membrane separator 14, and an on-off valve provided in the low-oxygen air pipe 15. 17 and an automatic switching valve 18. The automatic switching valve 18 is controlled based on a measurement value of a safety sensor 19 that detects an oxygen concentration and a carbon dioxide concentration in the large facility 1.
[0051]
At the time of the low oxygen environment control, in the low oxygen air supply system B, the oxygen in the air is selectively permeated by the membrane separation device 14 using the hollow fiber membrane, and the low oxygen air and the high oxygen air are separated. Separately, low oxygen air is generated, and the open / close valve 17 and the automatic switching valve 18 are opened to supply the low oxygen air into the large facility 1. Instead of the membrane separation device 14, a pressure fluctuation adsorption (PSA method) type may be used.
[0052]
The low-oxygen air supplied from the low-oxygen air supply system B is mixed with the normal air supplied from the normal air supply system A in the mixing chamber 26 based on the measurement values of the safety sensor 19 and the sensor 25, and has a predetermined concentration. The air is blown into the large facility 1 by the blower fan 27.
[0053]
During the low oxygen control, the high oxygen air separated by the membrane separation device 14 flows to the circulation pipe 12 by the switching valve 16 and joins the normal air supply system A. Therefore, the amount of normal air blown by the blower 21 can be reduced, the load on the blower 21 is reduced, and the operating cost of the blower 21 can be reduced.
[0054]
When the facility is used, the airflow formed by the airflow forming fan 9 in the large facility 1 flows through the exhaust circulation pipe 12 and is discharged from the exhaust fan 28 to the outside. Alternatively, return air is blown back to the low oxygen generator 10 through the exhaust circulation pipe 12.
[0055]
The discharge of the environmental atmosphere in which the carbon dioxide gas concentration level has increased or the removal of the carbon dioxide gas in the large facility 1 is performed by switching the switching damper 29 provided in the exhaust circulation pipe 12 by discharging the gas from the exhaust fan 28 or the low oxygen generator. The return air blowing to 10 is selectively performed.
[0056]
The environmental atmosphere in the large facility 1 to which the return air has been blown to the low oxygen generator 10 is subjected to removal of carbon dioxide by the membrane separation device 14. That is, the membrane separation device 14 has two functions of a low oxygen air generating unit and a carbon dioxide gas removing unit, and the environmental atmosphere from which the carbon dioxide gas has been removed flows through the exhaust circulation pipe 12 to the normal air supply system A. It merges or circulates again from the low oxygen pipe 15 into the large facility 1. In the case of using the PSA method, a carbon dioxide adsorption device for removing carbon dioxide from the environmental atmosphere discharged from the closed area 1 by switching the automatic switching valve 18 is separately provided.
[0057]
When the facility is used, even if the concentration of carbon dioxide in the large facility 1 becomes high, the environment atmosphere in the large facility 1 can be returned to the low-oxygen generator 10 and returned to the low-oxygen generator 10 for circulation. Therefore, there is no need to blow large-volume normal air with the blower 21 to dilute the concentration of carbon dioxide in the large-scale facility 1, so that the load on the blower 21 is reduced and the operating cost of the blower 21 can be reduced. it can.
[0058]
The drive motor 40 for driving the compressor 13 of the low oxygen generator 10 is shared with the low oxygen generator 10 as a drive source for driving the compressor 33 of the refrigerating device 30. The refrigeration apparatus 30 circulates the refrigerant through a compressor 33, an aggregator 35 for aggregating the refrigerant such as brine, an expander 36 for expanding the refrigerant, and a circulation tube 31 and a circulation pipe 32 provided in the large facility 1. And an evaporator 37 that forms an ice skating rink by emitting cool air, and each device is connected by a refrigerant pipe 34.
[0059]
Drive switching clutches 43 and 44 are provided on a drive shaft 41 that drives the compressor 13 of the low oxygen generator 10 and a drive shaft 42 that drives the compressor 33 of the refrigerating device 30, respectively. The drive switching clutches 43 and 44 are switched based on the measured value of the clutch switching sensor 45 for measuring the temperature.
[0060]
At the time of the low oxygen environment control in which the inside of the large facility 1 is in a low oxygen environment, the drive switching clutch 43 is switched to drive the compressor 13 of the low oxygen generator 10 to generate the low oxygen air, and the large facility 1 A low oxygen environment is sequentially established for each fixed area defined by the fixed wall, the side wall, and the moving wall.
[0061]
On the other hand, when the players use the facility using the ice skating rink, the oxygen concentration and the temperature in the large facility 1 are measured by the clutch switching sensor 45, and when the temperature in the large facility 1 is high, the driving is switched. The refrigerating device 30 is driven by switching the clutch 44 to prevent the ice layer of the ice skating rink from melting.
[0062]
When the oxygen concentration in the large facility 1 is lower than the safe level, the drive switching clutch 43 is switched to drive the low oxygen generator 10 to remove carbon dioxide in the large facility 1 and to remove normal air from the large facility. 1 to quickly restore the oxygen concentration in the large facility 1 to a safe level, and maintain a constant environment in the large facility 1.
[0063]
As described above, since the refrigerating device 30 that forms the ice skating rink is provided in the large facility 1, the large facility 1 can be used as a training facility for ice skating. In particular, for long-distance speed skating traveling 5000 m or 10000 m, a low-oxygen training facility that forms a ring-shaped ice skating rink enhances the endurance of the athlete without going to high altitudes and in a long distance in a low oxygen environment. You can do training.
[0064]
The refrigerating device 30 and the low oxygen generating device 10 can share one drive motor 40, divide the time zone when controlling the low oxygen environment or use the closed area, and selectively switch and use the drive motor 40. The working equipment can be reduced in size, and the installation space can be reduced.
[0065]
For example, at night, the low-oxygen generator 10 is driven to efficiently set the inside of the large facility 1 in a low-oxygen environment, and the refrigeration apparatus 30 is controlled so that the ice of the ice skating rink does not melt during the day when the temperature rises. By driving, the environment in the large facility 1 can be maintained.
[0066]
In order to prevent the ice skating rink from being excessively cooled even during the daytime, the driving of the refrigerating device 30 is switched to the driving of the low-oxygen generator 10, and the environmental atmosphere in the large facility 1 in which the carbon dioxide gas has increased is increased. Is returned to the low-oxygen generator 10, the carbon dioxide is removed by the membrane separation device 14, which is a means for removing carbon dioxide from the low-oxygen generator 10, and the low-oxygen air is circulated again in the large-scale facility 1. The environmental atmosphere in the large facility 1 can be maintained. In addition, even when the refrigeration apparatus 30 is driven, the air in the large facility 1 can be released to the outside by the airflow forming fan 9, so that the low oxygen environment in the large facility 1 is safely maintained. Is done.
[0067]
【The invention's effect】
The present invention has the above-described configuration, and has the following effects.
According to the first aspect of the present invention, in a large training facility, a part of the large facility is partitioned by a fixed wall and a moving wall provided with a side wall and a moving means, and each of the partitioned sections has a low oxygen concentration. Supply of air to the entire large facility in a low-oxygen environment sequentially, so the rise time for the low-oxygen environment is reduced, and the size of the low-oxygen generator can be reduced without requiring a large installation space. By using the low-oxygen generator, the entire large facility can be efficiently put into a low-oxygen environment, the construction cost due to an increase in the area for installing the large-scale device can be reduced, and the cost of equipment can be reduced.
[0068]
Since it is not necessary to create a low-oxygen environment at once in the large facility, there is no need to introduce a large volume of external air to dilute the initial carbon dioxide gas in the large facility, and it is divided by fixed walls, side walls and moving walls. Since only one section needs to be exhausted, it is possible to reduce the operating power of the blower, etc., which was necessary for introducing external air and blowing air for exhausting, greatly reducing operating costs by saving energy. Can be.
[0069]
According to the second aspect of the present invention, when the facility is used, carbon dioxide in the large facility is removed by the low oxygen generator, and air having a low oxygen concentration is circulated again in the large facility, and Since a low oxygen environment can be maintained, facility maintenance costs can be reduced.
[0070]
According to the third aspect of the present invention, since the large facility is annular, the moving wall can be moved in the annular large facility and a low-oxygen environment can be sequentially set for each fixed section while moving the movable wall. At this point, the entire large facility can be efficiently put into a low oxygen environment. If the large facility is annular, it can be used as a low oxygen training facility suitable for long distance training such as marathon and long distance ice skating.
[0071]
In the invention according to claim 4, since the measuring means for measuring the oxygen concentration, the carbon dioxide concentration and the temperature in the large facility is provided, the low oxygen environment in the large facility is reduced based on the measured values of the measuring means. It can be maintained at a safe level.
[0072]
According to the fifth aspect of the present invention, an airflow forming means is used to form an opposing flow in the direction of movement of an athlete exercising in a large facility, thereby giving an overload of air resistance to the athlete. Can perform advanced training.
[0073]
According to the method of the invention described in claim 6, when the large facility is in a low oxygen environment, the environmental atmosphere in the large facility is sequentially set to have a low oxygen concentration by one section according to the capacity of the low oxygen generator. Therefore, compared to the case where the entire large facility is put into a low oxygen environment at once, the rise time of the low oxygen environment can be shortened, and the large facility can be efficiently put into the low oxygen environment, and the low oxygen generation The operation cost and the equipment maintenance cost can be reduced without increasing the size of the device.
[0074]
In the invention according to claim 7, the low-oxygen generator is driven separately when the low-oxygen environment is controlled and when the closed area is used, so that the large-scale facility is efficiently converted to the low-oxygen environment, and the large-scale facility is controlled. Efficiently maintain a low oxygen environment.
[0075]
According to the invention of claim 8, the environmental atmosphere in the large facility is measured by the measuring means for measuring the oxygen concentration and the carbon dioxide concentration in the large facility, and based on the measured values, the low oxygen generator Can be adjusted to keep the hypoxic environment in the enclosed area at a safe level at all times.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a schematic configuration of a hypoxic training facility, which is one embodiment of the present invention.
FIG. 2 is an explanatory view schematically showing a hypoxic training facility, a hypoxic generator, and a refrigeration apparatus according to one embodiment of the present invention.
FIG. 3 is a circuit diagram of a low oxygen generator and a refrigeration apparatus according to one embodiment of the present invention.
[Explanation of symbols]
1; Large facility
2; truck
3; Arc-shaped column material
4; side wall
5; fixed wall
5a; Aluminum frame
5b; membrane material
6; moving wall
6a; aluminum frame
6b; membrane material
6c; motor
7; Monorail
8; running rail
9; Air flow forming fan
10; Low oxygen air generator
11; supply piping
12; Exhaust circulation pipe
13 Compressor
14; Membrane separation device
15; Low oxygen air piping
16; switching valve
17; On-off valve
18; Automatic switching valve
19; Safety sensor
21; blower
22; Air piping
23; Flow control valve
24; controller
25; sensor
26; mixing chamber
27; blower fan
28; exhaust fan
29; Switching damper
30; Refrigeration equipment
31; circulation tube
32; Circulation pipe
33; compressor
34; refrigerant piping
35; Coagulator
36; expander
37; Evaporator
40; drive motor
41; drive shaft
42; drive shaft
43; drive switching clutch
44; drive switching clutch
45; Clutch switching sensor
46; differential pressure damper

Claims (8)

大型施設内を低酸素環境とする低酸素トレーニング施設において、大型施設内の固定壁と、該大型施設の側壁に沿って移動する移動手段を備え、前記固定壁との間で大型施設内の一部を区画する移動壁と、所定濃度の低酸素空気を発生する低酸素空気発生手段、前記低酸素空気発生手段から分離された通常酸素濃度の空気および高酸素濃度の空気を循環する循環手段、および環境中の炭酸ガスを除去する炭酸ガス除去手段を備えた低酸素空気発生装置と、前記大型施設内に空気流形成手段とを設け、前記固定壁、移動する移動壁及び側壁で仕切られた区画内に、前記低酸素発生装置から所望濃度の低酸素空気を供給しつつ、前記移動壁を移動して、前記大型施設内全体を低酸素環境とした低酸素トレーニング施設。In a hypoxic training facility where a large facility has a low oxygen environment, a fixed wall in the large facility and moving means for moving along a side wall of the large facility are provided, and one of the large facility is located between the fixed wall and the fixed wall. A moving wall defining the section, a low oxygen air generating means for generating a predetermined concentration of low oxygen air, a circulating means for circulating normal oxygen concentration air and high oxygen concentration air separated from the low oxygen air generating means, And a low-oxygen air generator provided with carbon dioxide removing means for removing carbon dioxide in the environment, and an air flow forming means in the large facility, which are separated by the fixed wall, the moving movable wall and the side wall. A hypoxic training facility in which the moving wall is moved while the hypoxic air of a desired concentration is supplied from the hypoxic generator into the compartment, and the entire large facility is in a hypoxic environment. 大型施設内の空気を低酸素発生装置に還気送風し、前記大型施設内の炭酸ガスを前記低酸素発生装置の炭酸ガス除去手段にて除去してなる請求項1記載の低酸素トレーニング施設。2. The hypoxic training facility according to claim 1, wherein the air in the large facility is returned and blown to the low oxygen generator, and the carbon dioxide in the large facility is removed by the carbon dioxide removing means of the low oxygen generator. 大型施設を環状の構造とした請求項1または2記載の低酸素トレーニング施設。The hypoxic training facility according to claim 1 or 2, wherein the large facility has an annular structure. 大型施設内の酸素濃度、炭酸ガス濃度及び温度を測定する測定手段を設けた請求項1、2または3記載の低酸素トレーニング施設。4. The hypoxic training facility according to claim 1, further comprising measuring means for measuring oxygen concentration, carbon dioxide concentration and temperature in the large facility. 空気流形成手段に、大型施設内で運動する人の運動方向に対向する対向流を形成する手段を設けた請求項1、2、3または4記載の低酸素トレーニング施設。5. The hypoxic training facility according to claim 1, wherein the airflow forming means is provided with means for forming a counterflow in a moving direction of a person exercising in the large facility. 大型施設内を低酸素環境とする低酸素環境の制御方法であって、前記施設内の固定壁と、該大型施設の側壁に沿って移動する移動手段を備え、該固定壁との間で前記大型施設内の一部を区画する移動壁と、前記低酸素空気発生手段から分離された通常酸素濃度の空気および高酸素濃度の空気を循環する循環手段、および環境中の炭酸ガスを除去する炭酸ガス除去手段を備えた低酸素発生装置と、前記大型施設内に空気流を形成する空気流形成手段を設け、前記固定壁、移動壁及び側壁で仕切られた区画内に所望濃度の低酸素空気を前記低酸素発生装置にて供給し、前記区画内が所望の低酸素環境となった後、移動手段により前記移動壁を一定区画ごとに順次移動して、前記固定壁、移動壁および側壁で仕切られた区画を拡大し、拡大した区画内に所望濃度の低酸素空気を供給して、前記大型施設内全体を所望濃度の低酸素環境とする低酸素環境の制御方法。A method for controlling a low oxygen environment in which a large facility has a low oxygen environment, comprising a fixed wall in the facility, and a moving unit that moves along a side wall of the large facility, and A moving wall for partitioning a part of a large facility, a circulating means for circulating normal oxygen concentration air and high oxygen concentration air separated from the low oxygen air generating means, and carbon dioxide for removing carbon dioxide gas from the environment A low-oxygen generator provided with gas removing means, and an air flow forming means for forming an air flow in the large facility, wherein a low-oxygen air having a desired concentration is provided in a section partitioned by the fixed wall, the moving wall and the side wall. Is supplied by the low oxygen generator, and after the inside of the section becomes a desired low oxygen environment, the moving wall is sequentially moved for each fixed section by a moving means, and the fixed wall, the moving wall and the side wall are used. Enlarge a partitioned section and expand the section The desired concentration by supplying low-oxygen air, the control method of a low-oxygen environment for the entire large facility and the desired concentration of the low oxygen environment. 大型施設内を低酸素環境とする低酸素環境制御時には、低酸素空気発生装置を駆動して、所望濃度の低酸素空気を生成し、施設を使用する使用時には、前記大型施設内の環境雰囲気を低酸素発生装置に還気送風し、低酸素発生装置の炭酸ガス除去手段にて炭酸ガスを分離し、炭酸ガスを分離した低酸素空気を再び施設内に循環する、請求項6記載の低酸素環境の制御方法。At the time of the low oxygen environment control where the large facility is in a low oxygen environment, the low oxygen air generator is driven to generate the low concentration air of the desired concentration, and when the facility is used, the environmental atmosphere in the large facility is reduced. The low oxygen according to claim 6, wherein return air is blown to the low oxygen generator, carbon dioxide is separated by the carbon dioxide removing means of the low oxygen generator, and the low oxygen air from which the carbon dioxide is separated is circulated again in the facility. How to control the environment. 大型施設内に、該大型施設内の酸素濃度、炭酸ガス濃度を測定する測定手段を設け、該測定手段の測定結果により、空気流形成手段および低酸素発生装置の駆動を調整して、一定の低酸素環境を維持する請求項6または7記載の低酸素環境の制御方法。In a large facility, a measuring means for measuring the oxygen concentration and the carbon dioxide concentration in the large facility is provided, and the driving of the air flow forming means and the low oxygen generating device is adjusted based on the measurement result of the measuring means, and the constant The method for controlling a low oxygen environment according to claim 6 or 7, wherein the low oxygen environment is maintained.
JP2002225991A 2002-08-02 2002-08-02 Hypoxic training facility and control method of hypoxic environment Expired - Fee Related JP4062601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002225991A JP4062601B2 (en) 2002-08-02 2002-08-02 Hypoxic training facility and control method of hypoxic environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002225991A JP4062601B2 (en) 2002-08-02 2002-08-02 Hypoxic training facility and control method of hypoxic environment

Publications (2)

Publication Number Publication Date
JP2004065376A true JP2004065376A (en) 2004-03-04
JP4062601B2 JP4062601B2 (en) 2008-03-19

Family

ID=32013474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002225991A Expired - Fee Related JP4062601B2 (en) 2002-08-02 2002-08-02 Hypoxic training facility and control method of hypoxic environment

Country Status (1)

Country Link
JP (1) JP4062601B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015184000A (en) * 2014-03-20 2015-10-22 株式会社竹中工務店 Experimental installation
JP2018117728A (en) * 2017-01-23 2018-08-02 Gmoインターネット株式会社 Environment simulation device
CN111589066A (en) * 2019-02-20 2020-08-28 爱斯佩克株式会社 Low-oxygen air supply device and training device
JP2020180449A (en) * 2019-04-24 2020-11-05 協同組合福祉・環境ラボ Low oxygen environmental control system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015184000A (en) * 2014-03-20 2015-10-22 株式会社竹中工務店 Experimental installation
JP2018117728A (en) * 2017-01-23 2018-08-02 Gmoインターネット株式会社 Environment simulation device
CN111589066A (en) * 2019-02-20 2020-08-28 爱斯佩克株式会社 Low-oxygen air supply device and training device
JP2020131121A (en) * 2019-02-20 2020-08-31 エスペック株式会社 Low oxygen air supply device and training device
JP2023011599A (en) * 2019-02-20 2023-01-24 エスペック株式会社 Training device
JP7493004B2 (en) 2019-02-20 2024-05-30 エスペック株式会社 Training Equipment
JP2020180449A (en) * 2019-04-24 2020-11-05 協同組合福祉・環境ラボ Low oxygen environmental control system

Also Published As

Publication number Publication date
JP4062601B2 (en) 2008-03-19

Similar Documents

Publication Publication Date Title
US11058914B2 (en) Cooling methods for exercise equipment
CN104884871B (en) Air-conditioning equipment and control loop
CN102176949B (en) Inerting method for fire prevention and/or fire extinguishing and inerting system for carrying out the method
WO2006042286A9 (en) Cooling assembly
JP4062601B2 (en) Hypoxic training facility and control method of hypoxic environment
KR101666183B1 (en) Oxygen discharging cooling apparatus
CN109908566B (en) Low-oxygen chamber, air pressure adjusting method and system
FI124362B (en) Building
CN107631426A (en) Dehumidification system control method
CN207741255U (en) The chilled air fan of semiconductor refrigerating
CN105180269B (en) Air-out control method in indoor apparatus of air conditioner and air conditioning chamber
CN201621803U (en) Refrigerating device for cooling in carriage of electric automobile
JP2005023516A (en) Building
JP2546765B2 (en) Ice making equipment for ice facilities
JP3273076B2 (en) Subway station air conditioning
CN209369412U (en) A kind of class ice training court comprising safety device
CN207167827U (en) A kind of refrigerating plant for air-conditioned clothes
RU2016122506A (en) ENERGY ACTIVE CITY METRO WITH ZERO CONSUMPTION OF HEAT ENERGY FROM EXTERNAL SOURCES
CN101926380A (en) Split fruit and vegetable high-humidity differential pressure precooling device
ES2534522T3 (en) Process to recover helium using an ejector nozzle
JPH0573478U (en) Snowfall
CN212253319U (en) Clean freezer with extremely fast cooling function and automatic defrosting
CN220348864U (en) Cooling device for PVC decorative film processing
US20240008422A1 (en) Climate cell for cultivating plants in multiple layers having a space-saving and energy-saving climate system
JPH08299515A (en) Free fall simulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees