JP2004064820A - Winding method and winder for multipole armature - Google Patents

Winding method and winder for multipole armature Download PDF

Info

Publication number
JP2004064820A
JP2004064820A JP2002216283A JP2002216283A JP2004064820A JP 2004064820 A JP2004064820 A JP 2004064820A JP 2002216283 A JP2002216283 A JP 2002216283A JP 2002216283 A JP2002216283 A JP 2002216283A JP 2004064820 A JP2004064820 A JP 2004064820A
Authority
JP
Japan
Prior art keywords
nozzle
wire
layer
wires
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002216283A
Other languages
Japanese (ja)
Other versions
JP3621079B2 (en
Inventor
Kaoru Noji
野地 薫
Takahiro Sato
佐藤 隆広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nittoku Engineering Co Ltd
Original Assignee
Nittoku Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittoku Engineering Co Ltd filed Critical Nittoku Engineering Co Ltd
Priority to JP2002216283A priority Critical patent/JP3621079B2/en
Publication of JP2004064820A publication Critical patent/JP2004064820A/en
Application granted granted Critical
Publication of JP3621079B2 publication Critical patent/JP3621079B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Motors, Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a winding method and a winder for a multipole armature which equalize the resistance values of each layer. <P>SOLUTION: The winder 1 for a stator(multipole armature) forms a plurality of layers different in length of wire rods 5 by winding a plurality of wire rods 5, in a bundle on a core 8 where slots 6 are open between each tooth 9 and the next. The total values of the diameters of the wire rods 5 in each layer are varied so as to reduce the difference of resistance values corresponding to the length of the wire rods 5 in each layer. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、多極電機子の巻線方法及び巻線装置の改良に関するものである。
【0002】
【従来の技術】
従来、ステータ等の多極電機子の各ティースに複数本の線材を束にして巻回する巻線方法があった。複数本の細い線材を巻回することにより、1本の 太い線材を巻くことに比べて、交流電流が導体の表面近くを流れようとする表皮効果による抵抗の増加を抑えられるとともに、巻線の占積率(密度)を高めてモータの性能向上がはかられる。
【0003】
この巻線方法については、本出願人により特願2001−325903号として既に出願されている。
【0004】
【発明が解決しようとする課題】
しかしながら、各ティースに複数本の線材を束にして巻回し、この線材の長さが相違する複数の層を備える多極電機子にあっては、径方向について内側に巻回される層と、径方向について外側に巻回される層との間で巻線の長さが相違し、抵抗値に差ができてしまい、モータの特性等に影響するという問題点があった。
【0005】
本発明は上記の問題点を鑑みてなされたものであり、各層の抵抗値を均一化する多極電機子の巻線方法及び巻線装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
第1の発明は、各ティースの間にスロットが開口するコアに対して複数本の線材を束にして巻回し、この線材の長さが相違する複数の層を形成する多極電機子の巻線方法に適用する。
【0007】
そして、各層の線材の長さに応じた抵抗値の差を減らすように各層の線材の線径の合計値を相違させることを特徴とするものとした。
【0008】
第2の発明は、各ティースの間にスロットが開口するコアに対して複数本の線材を束にして巻回し、この線材の長さが相違する複数の層を形成する多極電機子の巻線装置に適用する。
【0009】
そして、各層の線材の長さに応じた抵抗値の差を減らすように各層の線材の線径の合計値を相違させる構成としたことを特徴とするものとした。
【0010】
第3の発明は、第2の発明において、複数本の線材を繰り出すノズルと、このノズルを移動するノズル移動機構と、このノズル移動機構にノズルを交換可能に支持するチャック機構とを備え、ノズルをこれに供給される線材とともに交換する構成としたことを特徴とするものとした。
【0011】
第4の発明は、第2の発明において、複数本の線材を繰り出すノズルと、各線材をノズルへ送るローラとを備え、このローラを個別に駆動してノズルに送られる線材の本数を変える構成としたことを特徴とするものとした。
【0012】
【発明の作用および効果】
第1、第2の発明によると、スロットにて各層の線材の束が径方向に並ぶため、各層の間で巻線の長さが相違するが、これに応じて各層の線材の線径の合計値を相違させることにより、各層の抵抗値を均一化することができ、例えばモータの性能向上がはかられる。
【0013】
第3の発明によると、ノズルをこれに供給される線材とともに交換することにより、各層の線材の線径の合計値を相違させられる。
【0014】
第4の発明によると、ローラを個別に駆動してノズルに送られる線材の本数を変えることにより、各層の線材の線径の合計値を相違させられる。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面に基づいて説明する。
【0016】
図1において、1は3相交流モータのステータ(多極電機子)を構成するコア8に巻線を自動的に行う巻線装置である。
【0017】
このコア8は複数(例えば24個)のティース(磁極)9が円環状のヨークの内側に突出し、各ティース9の間に同数のスロット6が内側に向けて開口するインナロータ式モータのステータを構成するものである。各ティース9はヨークと分割されており、図1に示すように巻線治具3にコの字形固定具4を介して保持された状態で巻線が行われる。この巻線時、各ティース9は周方向に所定の間隔をもって並び、各ティース9間のスロット6がコア8の外側に向いて開口している。そして各ティース9に巻線が終了した後に、各ティース9の外周に環状のヨークが嵌められる。
【0018】
以下、巻線装置1の構成について説明する。ここで、互いに直交するX、Y、Zの3軸を設定し、X軸が略水平前後方向、Y軸が略水平横方向、Z軸が略垂直方向に延びるものとして説明する。
【0019】
巻線装置1は、架台2に対してコア8をその中心軸回りに回動させるインデックス機構11と、U相、V相、W相の各線材5をそれぞれ繰り出す3つのノズル10と、各ノズル10を三次元方向に動かす3つのノズル移動機構35と、ティース9に巻かれた線材5をスロット6に押し込む押し込み装置16とを備え、各ノズル10を各ティース9の回りを移動させて各ティース9に巻線を行うようになっている。
【0020】
インデックス機構11は、架台2に対してZ軸回りに回転可能に支持されるインデックス台12と、このインデックス台12を回転駆動するサーボモータ(図示せず)とを備える。巻線治具3は駆動シリンダ29によって押圧部材28を介してインデックス台12上に押し付け固定され、インデックス台12と共に同軸上で回転する。
【0021】
ノズル移動機構35は、架台2に対してサーボモータ36によりX軸方向に移動する縦移動台37と、この縦移動台37に対してサーボモータ33によりY軸方向に移動する横移動台34と、この横移動台34に対してサーボモータ38によりZ軸方向に移動するベース39とを備え、このベース39にチャック機構40を介してノズル10が取り付けられている。
【0022】
図2にも示すように、ノズル10はティース9間のスロット6を挿通する板状に形成され、各線材5が挿通する複数のガイド穴14が形成される。各ガイド穴14は所定の間隔をもって一列に並んで開口している。複数本の線材5はノズル10から互いに所定の間隔を持って繰り出されるため、線材5どうしが互いに接することなく円滑に繰り出され、摩擦によって絡み合うことが防止される。
【0023】
なお、ノズル10を2個の部材に分割し、各部材の接合面に各ガイド穴14を構成する溝をそれぞれ形成しても良い。
【0024】
各ノズル10には図示しない線材供給装置から複数本の線材5が供給され、各ノズル10が複数本の線材5を繰り出しながらティース9の回りを移動することにより、複数本の線材5が束となってティース9に巻回される。
【0025】
このように、複数本の細い線材5を巻回することにより、1本の太い線材を巻くことに比べて、交流電流が導体の表面近くを流れようとする表皮効果による抵抗の増加を抑えられるとともに、巻線の占積率(密度)を高めてモータの性能向上がはかられる。
【0026】
ノズル移動機構35が各ノズル10を線材5を繰り出しながらスロット6を通って上下動させるとともに、インデックス機構11がコア8を回動させることにより、各ノズル10が各ティース9のまわりに回動し、各ティース9に巻線が行われる。
【0027】
本実施の形態では、コア8にはU相、V相、W相の各線材5が内層、中層、外層と3層に分けて巻回される。内層、中層、外層の線材5はそれぞれコア8を1周して巻回され、各スロット6には内層、中層、外層の線材5が径方向内側から外側へと順に並ぶ。
【0028】
内層、中層、外層の各線材5は、複数のティース9を縫うようにして波状に巻回されてコア8を1周する。なお、内層、中層、外層の各線材5はコア8を2周以上に渡って巻回しても良い。また、内層、中層、外層の各線材5は、複数のティース9のまわりに周回しながらコア8を1周するように巻回しても良い。
【0029】
内層、中層、外層の線材5はそれぞれの両端部を束ねて引き出し、リード端子とする。これらのリード端子を介して内層、中層、外層の線材5が並列に接続される。
【0030】
ところで、各スロット6には内層、中層、外層の各線材5が径方向について内側から外側へと並ぶ構成としたため、径方向について内側に巻回される層と、径方向について外側に巻回される層との間で巻線の長さが相違し、抵抗値に差ができてしまう。
【0031】
本発明はこれに対処して、内層、中層、外層の線材5の長さに応じた抵抗値の差を減らすように、内層、中層、外層の線材5の線径の合計値を相違させる構成とする。
【0032】
本実施の形態では、図2の(a),(b),(c)図に示すように、内層、中層、外層の線材5を繰り出すノズル10が個別に用意される。図2の(a)図に示すように、内層の巻線に用いられるノズル10には、大きい線径R1の線材5が2本、小さい線径R2の線材5が4本供給される。図2の(b)図に示すように、中層の巻線に用いられるノズル10には、大きい線径R1の線材5が3本、小さい線径R2の線材5が3本供給される。図2の(c)図に示すように、外層の巻線に用いられるノズル10には、大きい線径R1の線材5が4本、小さい線径R2の線材5が2本供給される。
【0033】
巻線装置1は、架台2上に待機中のノズル10が置かれるストック台21と、このストック台21の前方に各ノズル10から延びる線材5の先端部を係止するクランプ22を備える。
【0034】
ノズル移動機構35は、ベース39にノズル10を交換可能に支持するチャック機構40を備える。各層の巻線時にベース39に取り付けられるノズル10がチャック機構40を介して交換される構成とする。
【0035】
次に、コア8に巻線を行う動作について説明する。
【0036】
▲1▼内層の各ノズル10がU相、V相、W相毎に各チャック機構40を介してノズル移動機構35に取り付けられる。ノズル移動機構15が各ノズル10をそれぞれのガイド穴14から複数本の線材5を繰り出しながら移動することにより、各線材5を束にして図示しない所定の絡げ棒に巻き付け、複数のティース9を縫うようにして波状に巻回してコア8を1周させ、別の絡げ棒に巻き付け、図示しないカッタを介して切断する。その後、各ノズル10が各チャック機構40を介してノズル移動機構35から外され、ストック台21に置かれる。
【0037】
▲2▼同様に、中層の各ノズル10が各チャック機構40を介してノズル移動機構35に取り付けられ、各ノズル10から繰り出される複数本の線材5を束にしてコア8に巻回した後、各ノズル10が各チャック機構40を介してノズル移動機構35から外され、ストック台21に置かれる。
【0038】
▲3▼同様に、外層の各ノズル10が各チャック機構40を介してノズル移動機構35に取り付けられ、各ノズル10から繰り出される複数本の線材5を束にしてコア8に巻回した後、各ノズル10が各チャック機構40を介してノズル移動機構35から外され、ストック台21に置かれる。
【0039】
以上のように構成され、各スロット6にて内層、中層、外層の各線材5が径方向について内側から外側へと並んで巻回されるため、これらの間で巻線の長さが相違するが、これに応じて内層、中層、外層の線材5の線径の合計値を相違させることにより、内層、中層、外層の抵抗値を均一化してモータの性能向上がはかられる。
【0040】
他の実施の形態として、図3に示すように、ノズル移動機構35は、各線材5をノズル10へと送るローラ50を備える。ローラ50はモータ51によって個別に駆動される。ローラ50を選択的に作動させてノズル10に送られる線材5の本数を制御することにより、内層、中層、外層を構成する線材5の本数を相違させてそれぞれの抵抗値を均一化する。
【0041】
図4の(a)図に示すように、内層の巻線時、2個のローラ50が停止され、4個のローラ50が作動し、4本の線材5が各ローラ50を介してノズル10に供給される。図4の(b)図に示すように、中層の巻線時、1個のローラ50が停止され、5個のローラ50が作動し、5本の線材5が各ローラ50を介してノズル10に供給される。図4の(c)図に示すように、外層の巻線時、全てのローラ50が作動し、6本の線材5が各ローラ50を介してノズル10に供給される。
【0042】
この場合も、内層、中層、外層の間で巻線の長さが相違することに応じて内層、中層、外層を構成する線材5の本数を相違させることにより、内層、中層、外層の抵抗値を均一化してモータの性能向上がはかられる。
【0043】
線材5はローラ50に送られることにより、太い線材5でもノズル10に円滑に供給される。
【0044】
ノズル10に供給される各線材5の線径を全て等しくしているが、異なる線径の線材5を用いるとともに、ノズル10に供給される各線材5の本数を変えて、内層、中層、外層の抵抗値を均一化しても良い。
【0045】
また、本発明は上記インナロータ式のモータを構成するステータに限らず、アウタロータ式のモータを構成するステータの巻線に適用することもできる。
【0046】
本発明は上記の実施の形態に限定されずに、その技術的な思想の範囲内において種々の変更がなしうることは明白である。
【図面の簡単な説明】
【図1】本発明の実施の形態を示す巻線装置の斜視図。
【図2】同じくノズルに供給される線材等の斜視図。
【図3】他の実施の形態を示す巻線装置の斜視図。
【図4】同じくノズルに供給される線材及びローラ等の斜視図。
【符号の説明】
1 巻線装置
5 線材
6 スロット
8 コア
9 ティース
10 ノズル
11 インデックス機構
21 ストック台
35 ノズル移動機構
40 チャック機構
50 ローラ
51 モータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in a winding method and a winding apparatus for a multipole armature.
[0002]
[Prior art]
Conventionally, there has been a winding method in which a plurality of wires are wound around each tooth of a multipolar armature such as a stator. By winding a plurality of thin wires, it is possible to suppress an increase in resistance due to the skin effect that an alternating current tends to flow near the surface of the conductor as compared to winding a single thick wire. The performance of the motor can be improved by increasing the space factor (density).
[0003]
This winding method has already been filed by the present applicant as Japanese Patent Application No. 2001-325903.
[0004]
[Problems to be solved by the invention]
However, in a multi-pole armature comprising a plurality of layers in which a plurality of wires are wound around each tooth and having a plurality of layers having different lengths of the wires, layers wound inward in the radial direction; There is a problem in that the length of the winding is different from the layer wound outward in the radial direction, the resistance value is different, and the characteristics of the motor are affected.
[0005]
The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a winding method and a winding device for a multipole armature that make the resistance values of the respective layers uniform.
[0006]
[Means for Solving the Problems]
A first invention is a winding of a multi-pole armature in which a plurality of wires are wound around a core having a slot opened between teeth and a plurality of layers having different lengths of the wires are formed. Applies to line method.
[0007]
And the total value of the wire diameter of the wire of each layer was made to differ so that the difference of the resistance value according to the length of the wire of each layer might be reduced.
[0008]
A second invention is a winding of a multi-pole armature in which a plurality of wires are wound around a core having a slot opened between teeth, and a plurality of layers having different lengths of the wires are formed. Applies to line equipment.
[0009]
And it was set as the structure which made it the structure which made the total value of the wire diameter of the wire of each layer differ so that the difference of the resistance value according to the length of the wire of each layer might be reduced.
[0010]
According to a third invention, in the second invention, the nozzle comprises a nozzle for feeding out a plurality of wires, a nozzle moving mechanism for moving the nozzle, and a chuck mechanism for supporting the nozzle in a replaceable manner on the nozzle moving mechanism. It was set as the structure exchanged with the wire supplied to this.
[0011]
4th invention is the structure which changes the number of the wire materials which drive the roller separately and drive this roller separately in the 2nd invention which has a nozzle which pays out a plurality of wire rods, and a roller which sends each wire rod to a nozzle It was characterized by that.
[0012]
Operation and effect of the invention
According to the first and second inventions, since the bundle of wire rods of each layer is arranged in the radial direction in the slot, the lengths of the windings are different between the layers. By making the total value different, the resistance value of each layer can be made uniform, and for example, the performance of the motor can be improved.
[0013]
According to the third aspect of the present invention, the total value of the wire diameters of the wires of each layer can be made different by exchanging the nozzle together with the wire supplied to the nozzle.
[0014]
According to the fourth aspect of the invention, the total value of the wire diameters of the wires of each layer can be made different by driving the rollers individually and changing the number of wires sent to the nozzle.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0016]
In FIG. 1, reference numeral 1 denotes a winding device that automatically performs winding on a core 8 constituting a stator (multi-pole armature) of a three-phase AC motor.
[0017]
The core 8 constitutes a stator of an inner rotor type motor in which a plurality of (for example, 24) teeth (magnetic poles) 9 project inside the annular yoke, and the same number of slots 6 open inwardly between the teeth 9. To do. Each tooth 9 is divided into a yoke, and winding is performed in a state where the teeth 9 are held by a winding jig 3 via a U-shaped fixture 4 as shown in FIG. At the time of winding, the teeth 9 are arranged at a predetermined interval in the circumferential direction, and the slots 6 between the teeth 9 are open toward the outside of the core 8. Then, after the winding of each tooth 9 is completed, an annular yoke is fitted to the outer periphery of each tooth 9.
[0018]
Hereinafter, the configuration of the winding device 1 will be described. Here, it is assumed that three axes X, Y, and Z that are orthogonal to each other are set, the X axis extends in a substantially horizontal front-rear direction, the Y axis extends in a substantially horizontal lateral direction, and the Z axis extends in a substantially vertical direction.
[0019]
The winding device 1 includes an index mechanism 11 that rotates the core 8 about its central axis with respect to the gantry 2, three nozzles 10 that respectively feed out the U-phase, V-phase, and W-phase wires 5, and each nozzle Three nozzle moving mechanisms 35 that move the three-dimensional direction 10 and a pushing device 16 that pushes the wire 5 wound around the teeth 9 into the slots 6. 9 is wound.
[0020]
The index mechanism 11 includes an index base 12 that is rotatably supported around the Z axis with respect to the gantry 2 and a servo motor (not shown) that rotationally drives the index base 12. The winding jig 3 is pressed and fixed on the index base 12 by the drive cylinder 29 via the pressing member 28, and rotates coaxially with the index base 12.
[0021]
The nozzle moving mechanism 35 includes a vertical moving table 37 that moves in the X axis direction by the servo motor 36 with respect to the gantry 2, and a horizontal moving table 34 that moves in the Y axis direction by the servo motor 33 with respect to the vertical moving table 37. A base 39 that moves in the Z-axis direction by a servo motor 38 with respect to the lateral movement table 34 is provided, and the nozzle 10 is attached to the base 39 via a chuck mechanism 40.
[0022]
As shown in FIG. 2, the nozzle 10 is formed in a plate shape through which the slot 6 between the teeth 9 is inserted, and a plurality of guide holes 14 through which each wire 5 is inserted are formed. Each guide hole 14 is opened in a line at a predetermined interval. Since the plurality of wires 5 are fed out from the nozzle 10 at a predetermined interval, the wires 5 are drawn out smoothly without contacting each other, and are prevented from being entangled by friction.
[0023]
In addition, the nozzle 10 may be divided into two members, and a groove constituting each guide hole 14 may be formed on the joint surface of each member.
[0024]
A plurality of wire rods 5 are supplied to each nozzle 10 from a wire rod feeder (not shown), and each nozzle 10 moves around the teeth 9 while feeding out the plurality of wire rods 5 so that the plurality of wire rods 5 are bundled together. It is wound around the teeth 9.
[0025]
In this way, by winding a plurality of thin wires 5, it is possible to suppress an increase in resistance due to a skin effect in which an alternating current tends to flow near the surface of the conductor, compared to winding a single thick wire. At the same time, the space factor (density) of the winding is increased to improve the performance of the motor.
[0026]
The nozzle moving mechanism 35 moves each nozzle 10 up and down through the slot 6 while feeding the wire 5, and the index mechanism 11 rotates the core 8 so that each nozzle 10 rotates around each tooth 9. Winding is performed on each tooth 9.
[0027]
In the present embodiment, the U-phase, V-phase, and W-phase wires 5 are wound around the core 8 in three layers, an inner layer, an intermediate layer, and an outer layer. The inner layer, the middle layer, and the outer layer of the wire 5 are wound around the core 8 one by one, and the inner layer, the middle layer, and the outer layer of the wire 5 are arranged in order from the radially inner side to the outer side in each slot 6.
[0028]
Each of the inner layer, the middle layer, and the outer layer of the wire 5 is wound in a wave shape so as to sew a plurality of teeth 9 and makes one round of the core 8. The inner layer, the middle layer, and the outer layer of the wire 5 may be wound around the core 8 over two or more rounds. Further, the inner layer, the middle layer, and the outer layer of the wire 5 may be wound around the core 8 while making a round around the plurality of teeth 9.
[0029]
The inner layer, the middle layer, and the outer layer of the wire 5 are bundled at both ends and drawn out to form lead terminals. The inner layer, middle layer, and outer layer wires 5 are connected in parallel through these lead terminals.
[0030]
By the way, each slot 6 has the inner layer, the middle layer, and the outer layer of the wire 5 arranged in the radial direction from the inner side to the outer side, so that the layer wound inward in the radial direction and the outer side in the radial direction are wound. The lengths of the windings differ from one layer to another, resulting in a difference in resistance value.
[0031]
The present invention copes with this, and the total value of the wire diameters of the inner layer, the middle layer, and the outer layer wire 5 is made different so as to reduce the difference in resistance value according to the length of the inner layer, middle layer, and outer layer wire 5. And
[0032]
In this embodiment, as shown in FIGS. 2A, 2B, and 2C, nozzles 10 for feeding out the inner layer, middle layer, and outer layer wire 5 are individually prepared. As shown in FIG. 2A, the nozzle 10 used for the inner layer winding is supplied with two wires 5 having a large wire diameter R1 and four wires 5 having a small wire diameter R2. As shown in FIG. 2B, three wires 5 having a large wire diameter R1 and three wires 5 having a small wire diameter R2 are supplied to the nozzle 10 used for the middle layer winding. As shown in FIG. 2C, four wires 5 having a large wire diameter R1 and two wires 5 having a small wire diameter R2 are supplied to the nozzle 10 used for the outer layer winding.
[0033]
The winding device 1 includes a stock table 21 on which a stand-by nozzle 10 is placed on a gantry 2, and a clamp 22 that locks the front end of the wire 5 extending from each nozzle 10 in front of the stock table 21.
[0034]
The nozzle moving mechanism 35 includes a chuck mechanism 40 that supports the nozzle 10 on the base 39 in a replaceable manner. The nozzle 10 attached to the base 39 during the winding of each layer is configured to be exchanged via the chuck mechanism 40.
[0035]
Next, an operation for winding the core 8 will be described.
[0036]
(1) Each nozzle 10 in the inner layer is attached to the nozzle moving mechanism 35 via each chuck mechanism 40 for each of the U phase, the V phase, and the W phase. The nozzle moving mechanism 15 moves each nozzle 10 while feeding a plurality of wires 5 from the respective guide holes 14, so that each wire 5 is bundled and wound around a predetermined binding rod (not shown). The core 8 is wound around in a wavy manner as if it is sewn, wound around another tie rod, and cut through a cutter (not shown). Thereafter, each nozzle 10 is removed from the nozzle moving mechanism 35 via each chuck mechanism 40 and placed on the stock table 21.
[0037]
(2) Similarly, after each nozzle 10 in the middle layer is attached to the nozzle moving mechanism 35 via each chuck mechanism 40, a plurality of wires 5 fed out from each nozzle 10 are bundled and wound around the core 8, Each nozzle 10 is removed from the nozzle moving mechanism 35 via each chuck mechanism 40 and placed on the stock table 21.
[0038]
(3) Similarly, after each nozzle 10 in the outer layer is attached to the nozzle moving mechanism 35 via each chuck mechanism 40, a plurality of wires 5 fed out from each nozzle 10 are bundled and wound around the core 8, Each nozzle 10 is removed from the nozzle moving mechanism 35 via each chuck mechanism 40 and placed on the stock table 21.
[0039]
Since it is configured as described above, the inner layer, the middle layer, and the outer layer of the wire 5 are wound side by side from the inner side to the outer side in the radial direction, and therefore the lengths of the windings are different between them. However, according to this, by making the total values of the wire diameters of the inner layer, middle layer, and outer layer wire 5 different from each other, the resistance values of the inner layer, middle layer, and outer layer are made uniform to improve the performance of the motor.
[0040]
As another embodiment, as shown in FIG. 3, the nozzle moving mechanism 35 includes a roller 50 that feeds each wire 5 to the nozzle 10. The rollers 50 are individually driven by a motor 51. By selectively operating the roller 50 and controlling the number of the wire 5 sent to the nozzle 10, the number of the wires 5 constituting the inner layer, the middle layer, and the outer layer is made different to equalize the respective resistance values.
[0041]
As shown in FIG. 4A, when the inner layer is wound, the two rollers 50 are stopped, the four rollers 50 are operated, and the four wires 5 are connected to the nozzles 10 via the rollers 50, respectively. To be supplied. As shown in FIG. 4B, when the intermediate layer is wound, one roller 50 is stopped, five rollers 50 are operated, and five wires 5 are connected to the nozzles 10 via the rollers 50. To be supplied. As shown in FIG. 4C, when the outer layer is wound, all the rollers 50 are operated, and the six wires 5 are supplied to the nozzles 10 through the respective rollers 50.
[0042]
Also in this case, the resistance values of the inner layer, the middle layer, and the outer layer are made different by changing the number of wires 5 constituting the inner layer, the middle layer, and the outer layer in accordance with the difference in winding length among the inner layer, the middle layer, and the outer layer. To improve the performance of the motor.
[0043]
By sending the wire 5 to the roller 50, even the thick wire 5 is smoothly supplied to the nozzle 10.
[0044]
The wire diameters of the respective wire rods 5 supplied to the nozzle 10 are all equal, but the wire rods 5 having different wire diameters are used, and the number of the wire rods 5 supplied to the nozzle 10 is changed to change the inner layer, the middle layer, and the outer layer These resistance values may be made uniform.
[0045]
Further, the present invention is not limited to the stator constituting the inner rotor type motor, but can be applied to the winding of the stator constituting the outer rotor type motor.
[0046]
The present invention is not limited to the above-described embodiment, and it is obvious that various modifications can be made within the scope of the technical idea.
[Brief description of the drawings]
FIG. 1 is a perspective view of a winding device showing an embodiment of the present invention.
FIG. 2 is a perspective view of a wire rod or the like supplied to the nozzle.
FIG. 3 is a perspective view of a winding device showing another embodiment.
FIG. 4 is a perspective view of wire rods, rollers and the like supplied to the nozzle.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Winding apparatus 5 Wire 6 Slot 8 Core 9 Teeth 10 Nozzle 11 Index mechanism 21 Stock stand 35 Nozzle moving mechanism 40 Chuck mechanism 50 Roller 51 Motor

Claims (4)

各ティースの間にスロットが開口するコアに対して複数本の線材を束にして巻回し、この線材の長さが相違する複数の層を形成する多極電機子の巻線方法において、
各層の線材の長さに応じた抵抗値の差を減らすように各層の線材の線径の合計値を相違させることを特徴とする多極電機子の巻線方法。
In a winding method of a multi-pole armature in which a plurality of wires are wound around a core having a slot between each tooth and a plurality of layers having different lengths of the wires are formed.
A winding method for a multi-pole armature, characterized in that the total value of the wire diameters of the wire rods of each layer is made different so as to reduce the difference in resistance value according to the length of the wire rod of each layer.
各ティースの間にスロットが開口するコアに対して複数本の線材を束にして巻回し、この線材の長さが相違する複数の層を形成する多極電機子の巻線装置において、
各層の線材の長さに応じた抵抗値の差を減らすように各層の線材の線径の合計値を相違させる構成としたことを特徴とする多極電機子の巻線装置。
In a winding apparatus for a multi-pole armature, in which a plurality of wires are wound in a bundle around a core having a slot open between each tooth, and a plurality of layers having different lengths of the wires are formed.
A winding device for a multi-pole armature, characterized in that the total value of the wire diameters of the wires of each layer is made different so as to reduce the difference in resistance value according to the length of the wire of each layer.
複数本の線材を繰り出すノズルと、このノズルを移動するノズル移動機構と、このノズル移動機構にノズルを交換可能に支持するチャック機構とを備え、ノズルをこれに供給される線材とともに交換する構成としたことを特徴とする請求項2に記載の多極電機子の巻線装置。A nozzle that feeds a plurality of wires, a nozzle moving mechanism that moves the nozzle, and a chuck mechanism that supports the nozzle in a replaceable manner in the nozzle moving mechanism, and a configuration that replaces the nozzle together with the wire supplied to the nozzle The winding apparatus for a multipole armature according to claim 2, wherein 複数本の線材を繰り出すノズルと、各線材をノズルへ送るローラとを備え、このローラを個別に駆動してノズルに送られる線材の本数を変える構成としたことを特徴とする請求項2に記載の多極電機子の巻線装置。The nozzle according to claim 2, further comprising: a nozzle that feeds a plurality of wire rods and a roller that feeds each wire rod to the nozzle, and the rollers are individually driven to change the number of wire rods fed to the nozzle. Multipole armature winding device.
JP2002216283A 2002-07-25 2002-07-25 Multi-pole armature winding method and winding device Expired - Fee Related JP3621079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002216283A JP3621079B2 (en) 2002-07-25 2002-07-25 Multi-pole armature winding method and winding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002216283A JP3621079B2 (en) 2002-07-25 2002-07-25 Multi-pole armature winding method and winding device

Publications (2)

Publication Number Publication Date
JP2004064820A true JP2004064820A (en) 2004-02-26
JP3621079B2 JP3621079B2 (en) 2005-02-16

Family

ID=31938083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002216283A Expired - Fee Related JP3621079B2 (en) 2002-07-25 2002-07-25 Multi-pole armature winding method and winding device

Country Status (1)

Country Link
JP (1) JP3621079B2 (en)

Also Published As

Publication number Publication date
JP3621079B2 (en) 2005-02-16

Similar Documents

Publication Publication Date Title
JP4622517B2 (en) Coil forming method and coil forming apparatus
JP3669966B2 (en) Winding method and winding device
US8875381B2 (en) Method of manufacturing rotary electric machine
US20070143983A1 (en) Method and apparatus of producing stator
JPWO2003012963A1 (en) Motor manufacturing method
GB2437716A (en) Method of forming single-layer coils
JP4514171B2 (en) Stator manufacturing method and manufacturing apparatus
JPH08163837A (en) Method and machine for manufacturing winding of stator coil
JP3930419B2 (en) Rotating electrical machine manufacturing method
JP2017046373A (en) Method of inserting coil into slot, and coil insertion device
JP3621079B2 (en) Multi-pole armature winding method and winding device
JP5168078B2 (en) Coil winding apparatus and coil winding method
US7467648B2 (en) Coil forming and inserting device and coil forming and inserting method
JP5768305B1 (en) Stator manufacturing method and apparatus
JP4084083B2 (en) Method and apparatus for winding stator core
JP4401093B2 (en) Winding device
JP4611684B2 (en) Coil winding method and coil winding apparatus
JP2003333809A5 (en)
JP2012080610A (en) Stator for 3-phase rotary electric machine and method of manufacturing the same
JP5628095B2 (en) Coil conductor winding method and winding device
JP2011125143A (en) Winding apparatus of split core
JP3708516B2 (en) Multipole armature winding method and winding apparatus
JP2012080609A (en) Method of manufacturing stator for 3-phase rotary electric machine
JP4158973B2 (en) Method and apparatus for winding stator core
JP2001054265A5 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3621079

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees