JP2004064474A - Method and device for encoding and decoding image - Google Patents

Method and device for encoding and decoding image Download PDF

Info

Publication number
JP2004064474A
JP2004064474A JP2002220862A JP2002220862A JP2004064474A JP 2004064474 A JP2004064474 A JP 2004064474A JP 2002220862 A JP2002220862 A JP 2002220862A JP 2002220862 A JP2002220862 A JP 2002220862A JP 2004064474 A JP2004064474 A JP 2004064474A
Authority
JP
Japan
Prior art keywords
image
outer frame
key
frame
mapping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002220862A
Other languages
Japanese (ja)
Inventor
Giyouzo Akiyoshi
秋吉 仰三
Nobuo Akiyoshi
秋吉 信雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Monolith Co Ltd
Original Assignee
Monolith Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Monolith Co Ltd filed Critical Monolith Co Ltd
Priority to JP2002220862A priority Critical patent/JP2004064474A/en
Publication of JP2004064474A publication Critical patent/JP2004064474A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that an object part projected on only one of two key frames at the time of generating an intermediate image based on a key frame. <P>SOLUTION: A stream separating part 44 extracts a key frame KF, a separated external frame area FA and corresponding point information CP from an encoded data stream DS. The extracted key frame KF and the corresponding point information CP are transmitted to an intermediate image generating part 22, and an intermediate image is generated based on them. On the other hand, the external area FA is transmitted to an external frame changing part 48, and replaced with the external frame area of the generated intermediate image. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、画像データ処理技術に関する。この発明は特に、複数のフレームを含む画像データを符号化または復号する技術に関する。
【0002】
【従来の技術】
動画圧縮の事実上の世界標準であるMPEG(Motion Picture Expert Group)は、CDなどストレージメディアからネットワークや放送などの伝送メディアへとそのターゲットエリアが広がった。放送のデジタル化はMPEGを中心とする圧縮符号化技術なしに考えることはできない。放送と通信の垣根が崩れ、サービス事業者の多様化は必須になり、ブロードバンド時代にデジタル文化がいかなる進展を遂げるか、予測がつきにくい状況にある。
【0003】
【発明が解決しようとする課題】
そうした混沌の中でも、動画の圧縮技術に関する方向性について確かなことがある。すなわち、より高い圧縮率と画質の両立である。MPEGは周知のごとく高圧縮化をブロック歪みが阻むことがある。
【0004】
本発明はこうした現状に鑑みてなされたものであり、その目的は、画像データの効率的圧縮を実現する符号化および復号技術の提供にあり、特に高い圧縮率の実現に向けて新たな技術を提供することにある。
【0005】
【課題を解決するための手段】
本発明は、画像符号化及び画像復号技術に関する。この技術は、本出願人が先に特許第2927350号にて提案した技術(以下、「前提技術」という)を利用することができる。
【0006】
本発明のある態様は、画像符号化方法に関する。この方法は、動画像を構成する複数の画像フレームから、キーフレームを選定する工程と、キーフレームとして選定されなかった画像フレーム(以下、「非選定フレーム」ともいう)を外枠領域と内側領域とに分離する工程と、分離された外枠領域とキーフレームとを組み込んで符号化データストリームを生成する工程とを含む。
【0007】
外枠領域を利用する有意義なケースは、例えばキーフレームを撮影したカメラがパンしたり、ズームしたりするときである。この場合、キーフレーム間に対応しえない画素が生じ、マッチングで誤対応が生じる。この誤対応は一般に画像端部に集中しやすい。一方のキーフレームに映し出されながら、他方のキーフレームでは視野から外れる点が端部に集中するためである。そこで、画像端部である外枠領域は、中間画像を使用せず撮影した画像の外枠領域を利用する。例えば画像サイズが800×600画素であれば、600×400画素の内側領域には生成された中間画像が使用され、上下左右の外枠領域それぞれ100画素部分は実際に撮影された画像が使用される。
【0008】
また、キーフレーム間の対応点情報を画素単位の画像マッチングによって検出する工程とを更に含んでもよく、その場合、符号化データストリームを生成する工程は、検出した対応点情報も組み込んでもよい。また、非選定フレームと、それに対応し生成された中間画像との差分が算出され、その差分が符号化データストリームに組み込まれてもよい。
【0009】
また、外枠領域と内側領域を分離する工程は、外枠領域と内側領域の境界を非直線にしてもよい。一般に人間の目は、境界線が直線のように人工的であると、それを容易に認識する傾向がある。そこで、境界線を非直線、好ましくはランダムな形状にする。
【0010】
本発明の別の態様は、画像復号方法に関する。この方法は、複数のキーフレームと、キーフレーム間に挿入されるべき画像フレームの外枠領域の画像を取得する工程と、キーフレームをもとに中間画像を生成する工程と、生成された中間画像の外枠領域を、取得した外枠領域によって置換する工程と、を含む。
【0011】
また、キーフレーム間の対応点情報を取得する工程を更に含んでもよく、中間画像を生成する工程は、対応点情報を利用して画素を単位とするマッチングによって行われてもよい。
【0012】
なお、本発明は前提技術を必須としない。また、以上の各構成要素、工程を任意に入れ替えたり、方法と装置の間で表現を一部又は全部入れ替え、また追加したり、表現をコンピュータプログラム、記録媒体に変更したものもまた、本発明として有効である。
【0013】
また、以上の態様のうち、キーフレーム間の対応点情報を生成する部分、及びそれを利用して中間画像を生成する部分は、前提技術を利用することができる。ただし、本発明は前提技術を必須とはしない。また、動画像によらず、複数視点画像間の滑らかな中間画像の生成など、静止画を目的としてもよい。
【0014】
【発明の実施の形態】
はじめに、実施の形態で利用する多重解像度特異点フィルタ技術とそれを用いた画像マッチング処理を「前提技術」として詳述する。これらの技術は本出願人が既に特許第2927350号を得ている技術であり、本発明との組合せに最適である。図19以降、前提技術を利用した画像符号化および画像復号装置について説明する。
【0015】
本発明では、キーフレームをもとに中間画像を生成する際に、中間画像の外枠領域を、その中間画像の位置に本来挿入されていた画像の外枠領域と入れ替える。2枚のキーフレームをもとに中間画像を生成する場合、特にそれらキーフレームの一方にしか存在しない図形や被写体が存在すると、マッチングが適正に行われず、その部分が不自然となることがある。そこで、被写体が一方にしか存在しないことが多くみられる外枠領域には、中間画像ではなく実際に存在する画像フレームの外枠領域を埋め込む。
【0016】
[前提技術の実施の形態]
最初に[1]で前提技術の要素技術を詳述し、[2]で処理手順を具体的に説明する。さらに[3]で前提技術に基づき改良を施した点について述べる。
[1]要素技術の詳細
[1.1]イントロダクション
特異点フィルタと呼ばれる新たな多重解像度フィルタを導入し、画像間のマッチングを正確に計算する。オブジェクトに関する予備知識は一切不要である。画像間のマッチングの計算は、解像度の階層を進む間、各解像度において計算される。その際、粗いレベルから精細なレベルへと順に解像度の階層を辿っていく。計算に必要なパラメータは、人間の視覚システムに似た動的計算によって完全に自動設定される。画像間の対応点を人手で特定する必要はない。
【0017】
本前提技術は、例えば完全に自動的なモーフィング、物体認識、立体写真測量、ボリュームレンダリング、少ないフレームからの滑らかな動画像の生成などに応用できる。モーフィングに用いる場合、与えられた画像を自動的に変形することができる。ボリュームレンダリングに用いる場合、断面間の中間的な画像を正確に再構築することができる。断面間の距離が遠く、断面の形状が大きく変化する場合でも同様である。
【0018】
[1.2]特異点フィルタの階層
前提技術に係る多重解像度特異点フィルタは、画像の解像度を落としながら、しかも画像に含まれる各特異点の輝度及び位置を保存することができる。ここで画像の幅をN、高さをMとする。以下簡単のため、N=M=2(nは自然数)と仮定する。また、区間[0,N]⊂RをIと記述する。(i,j)における画像の画素をp(i,j)と記述する(i,j∈I)。
【0019】
ここで多重解像度の階層を導入する。階層化された画像群は多重解像度フィルタで生成される。多重解像度フィルタは、もとの画像に対して二次元的な探索を行って特異点を検出し、検出された特異点を抽出してもとの画像よりも解像度の低い別の画像を生成する。ここで第mレベルにおける各画像のサイズは2×2(0≦m≦n)とする。特異点フィルタは次の4種類の新たな階層画像をnから下がる方向で再帰的に構築する。
【数1】

Figure 2004064474
ただしここで、
【数2】
Figure 2004064474
とする。以降これら4つの画像を副画像(サブイメージ)と呼ぶ。minx≦t≦x+1、maxx≦t≦x+1をそれぞれα及びβと記述すると、副画像はそれぞれ以下のように記述できる。
【0020】
(m,0)=α(x)α(y)p(m+1,0)
(m,1)=α(x)β(y)p(m+1,1)
(m,2)=β(x)α(y)p(m+1,2
(m,3)=β(x)β(y)p(m+1,3)
すなわち、これらはαとβのテンソル積のようなものと考えられる。副画像はそれぞれ特異点に対応している。これらの式から明らかなように、特異点フィルタはもとの画像について2×2画素で構成されるブロックごとに特異点を検出する。その際、各ブロックのふたつの方向、つまり縦と横について、最大画素値または最小画素値をもつ点を探索する。画素値として、前提技術では輝度を採用するが、画像に関するいろいろな数値を採用することができる。ふたつの方向の両方について最大画素値となる画素は極大点、ふたつの方向の両方について最小画素値となる画素は極小点、ふたつの方向の一方について最大画素値となるとともに、他方について最小画素値となる画素は鞍点として検出される。
【0021】
特異点フィルタは、各ブロックの内部で検出された特異点の画像(ここでは1画素)でそのブロックの画像(ここでは4画素)を代表させることにより、画像の解像度を落とす。特異点の理論的な観点からすれば、α(x)α(y)は極小点を保存し、β(x)β(y)は極大点を保存し、α(x)β(y)及びβ(x)α(y)は鞍点を保存する。
【0022】
はじめに、マッチングをとるべき始点(ソース)画像と終点(デスティネーション)画像に対して別々に特異点フィルタ処理を施し、それぞれ一連の画像群、すなわち始点階層画像と終点階層画像を生成しておく。始点階層画像と終点階層画像は、特異点の種類に対応してそれぞれ4種類ずつ生成される。
【0023】
この後、一連の解像度レベルの中で始点階層画像と終点階層画像のマッチングがとれらていく。まずp(m,0)を用いて極小点のマッチングがとられる。次に、その結果に基づき、p(m,1)を用いて鞍点のマッチングがとられ、p(m,2)を用いて他の鞍点のマッチングがとられる。そして最後にp(m,3)を用いて極大点のマッチングがとられる。
【0024】
図1(c)と図1(d)はそれぞれ図1(a)と図1(b)の副画像p(5,0)を示している。同様に、図1(e)と図1(f)はp(5,1)、図1(g)と図1(h)はp(5,2)、図1(i)と図1(j)はp(5,3)をそれぞれ示している。これらの図からわかるとおり、副画像によれば画像の特徴部分のマッチングが容易になる。まずp(5,0)によって目が明確になる。目は顔の中で輝度の極小点だからである。p(5,1)によれば口が明確になる。口は横方向で輝度が低いためである。p(5,2)によれば首の両側の縦線が明確になる。最後に、p(5,3)によって耳や頬の最も明るい点が明確になる。これらは輝度の極大点だからである。
【0025】
特異点フィルタによれば画像の特徴が抽出できるため、例えばカメラで撮影された画像の特徴と、予め記録しておいたいくつかのオブジェクトの特徴を比較することにより、カメラに映った被写体を識別することができる。
【0026】
[1.3]画像間の写像の計算
始点画像の位置(i,j)の画素をp(n) (i,j)と書き、同じく終点画像の位置(k,l)の画素をq(n) (k,l)で記述する。i,j,k,l∈Iとする。画像間の写像のエネルギー(後述)を定義する。このエネルギーは、始点画像の画素の輝度と終点画像の対応する画素の輝度の差、及び写像の滑らかさによって決まる。最初に最小のエネルギーを持つp(m,0)とq(m,0)間の写像f(m,0):p(m,0)→q(m,0)が計算される。f(m,0)に基づき、最小エネルギーを持つp(m,1)、q(m,1)間の写像f(m,1)が計算される。この手続は、p(m,3)とq(m,3)の間の写像f(m,3)の計算が終了するまで続く。各写像f(m,i)(i=0,1,2,…)を副写像と呼ぶことにする。f(m,i)の計算の都合のために、iの順序は次式のように並べ替えることができる。並べ替えが必要な理由は後述する。
【0027】
【数3】
Figure 2004064474
ここでσ(i)∈{0,1,2,3}である。
【0028】
[1.3.1]全単射
始点画像と終点画像の間のマッチングを写像で表現する場合、その写像は両画像間で全単射条件を満たすべきである。両画像に概念上の優劣はなく、互いの画素が全射かつ単射で接続されるべきだからである。しかしながら通常の場合とは異なり、ここで構築すべき写像は全単射のディジタル版である。前提技術では、画素は格子点によって特定される。
【0029】
始点副画像(始点画像について設けられた副画像)から終点副画像(終点画像について設けられた副画像)への写像は、f(m,s):I/2n−m×I/2n−m→I/2n−m×I/2n−m(s=0,1,…)によって表される。ここで、f(m,s)(i,j)=(k,l)は、始点画像のp(m,s) (i,j)が終点画像のq(m,s) (k,l)に写像されることを意味する。簡単のために、f(i,j)=(k,l)が成り立つとき画素q(k,l)をqf(i,j)と記述する。
【0030】
前提技術で扱う画素(格子点)のようにデータが離散的な場合、全単射の定義は重要である。ここでは以下のように定義する(i,i’,j,j’,k,lは全て整数とする)。まず始めに、始点画像の平面においてRによって表記される各正方形領域、
【数4】
Figure 2004064474
を考える(i=0,…,2−1、j=0,…,2−1)。ここでRの各辺(エッジ)の方向を以下のように定める。
【数5】
Figure 2004064474
この正方形は写像fによって終点画像平面における四辺形に写像されなければならない。f(m,s)(R)によって示される四辺形、
【数6】
Figure 2004064474
は、以下の全単射条件を満たす必要がある。
【0031】
1.四辺形f(m,s)(R)のエッジは互いに交差しない。
2.f(m,s)(R)のエッジの方向はRのそれらに等しい(図2の場合、時計回り)。
3.緩和条件として収縮写像(リトラクション:retractions)を許す。
【0032】
何らかの緩和条件を設けないかぎり、全単射条件を完全に満たす写像は単位写像しかないためである。ここではf(m,s)(R)のひとつのエッジの長さが0、すなわちf(m,s)(R)は三角形になってもよい。しかし、面積が0となるような図形、すなわち1点または1本の線分になってはならない。図2(R)がもとの四辺形の場合、図2(A)と図2(D)は全単射条件を満たすが、図2(B)、図2(C)、図2(E)は満たさない。
【0033】
実際のインプリメンテーションでは、写像が全射であることを容易に保証すべく、さらに以下の条件を課してもよい。つまり始点画像の境界上の各画素は、終点画像において同じ位置を占める画素に写影されるというものである。すなわち、f(i,j)=(i,j)(ただしi=0,i=2−1,j=0,j=2−1の4本の線上)である。この条件を以下「付加条件」とも呼ぶ。
【0034】
[1.3.2]写像のエネルギー
[1.3.2.1]画素の輝度に関するコスト
写像fのエネルギーを定義する。エネルギーが最小になる写像を探すことが目的である。エネルギーは主に、始点画像の画素の輝度とそれに対応する終点画像の画素の輝度の差で決まる。すなわち、写像f(m,s)の点(i,j)におけるエネルギーC(m,s) (i,j)は次式によって定まる。
【数7】
Figure 2004064474
ここで、V(p(m,s) (i,j))及びV(q(m,s) f(i,j))はそれぞれ画素p(m,s) (i,j)及びq(m,s) f(i,j)の輝度である。fのトータルのエネルギーC(m,s)は、マッチングを評価するひとつの評価式であり、つぎに示すC(m,s) (i,j)の合計で定義できる。
【数8】
Figure 2004064474
[1.3.2.2]滑らかな写像のための画素の位置に関するコスト
滑らかな写像を得るために、写像に関する別のエネルギーDfを導入する。このエネルギーは画素の輝度とは関係なく、p(m,s) (i,j)およびq(m,s) f(i,j)の位置によって決まる(i=0,…,2−1,j=0,…,2−1)。点(i,j)における写像f(m,s)のエネルギーD(m,s) (i,j)は次式で定義される。
【数9】
Figure 2004064474
ただし、係数パラメータηは0以上の実数であり、また、
【数10】
Figure 2004064474
【数11】
Figure 2004064474
とする。ここで、
【数12】
Figure 2004064474
であり、i’<0およびj’<0に対してf(i’,j’)は0と決める。Eは(i,j)及びf(i,j)の距離で決まる。Eは画素があまりにも離れた画素へ写影されることを防ぐ。ただしEは、後に別のエネルギー関数で置き換える。Eは写像の滑らかさを保証する。Eは、p(i,j)の変位とその隣接点の変位の間の隔たりを表す。以上の考察をもとに、マッチングを評価する別の評価式であるエネルギーDは次式で定まる。
【数13】
Figure 2004064474
[1.3.2.3]写像の総エネルギー
写像の総エネルギー、すなわち複数の評価式の統合に係る総合評価式はλC(m,s) +D(m,s) で定義される。ここで係数パラメータλは0以上の実数である。目的は総合評価式が極値をとる状態を検出すること、すなわち次式で示す最小エネルギーを与える写像を見いだすことである。
【数14】
Figure 2004064474
λ=0及びη=0の場合、写像は単位写像になることに注意すべきである(すなわち、全てのi=0,…,2−1及びj=0,…,2−1に対してf(m,s)(i,j)=(i,j)となる)。後述のごとく、本前提技術では最初にλ=0及びη=0の場合を評価するため、写像を単位写像から徐々に変形していくことができる。仮に総合評価式のλの位置を変えてC(m,s) +λD(m,s) と定義したとすれば、λ=0及びη=0の場合に総合評価式がC(m,s) だけになり、本来何等関連のない画素どうしが単に輝度が近いというだけで対応づけられ、写像が無意味なものになる。そうした無意味な写像をもとに写像を変形していってもまったく意味をなさない。このため、単位写像が評価の開始時点で最良の写像として選択されるよう係数パラメータの与えかたが配慮されている。
【0035】
オプティカルフローもこの前提技術同様、画素の輝度の差と滑らかさを考慮する。しかし、オプティカルフローは画像の変換に用いることはできない。オブジェクトの局所的な動きしか考慮しないためである。前提技術に係る特異点フィルタを用いることによって大域的な対応関係を検出することができる。
【0036】
[1.3.3]多重解像度の導入による写像の決定
最小エネルギーを与え、全単射条件を満足する写像fminを多重解像度の階層を用いて求める。各解像度レベルにおいて始点副画像及び終点副画像間の写像を計算する。解像度の階層の最上位(最も粗いレベル)からスタートし、各解像度レベルの写像を、他のレベルの写像を考慮に入れながら決定する。各レベルにおける写像の候補の数は、より高い、つまりより粗いレベルの写像を用いることによって制限される。より具体的には、あるレベルにおける写像の決定に際し、それよりひとつ粗いレベルにおいて求められた写像が一種の拘束条件として課される。
【0037】
まず、
【数15】
Figure 2004064474
が成り立つとき、p(m−1,s) (i’,j’)、q(m−1,s) (i’,j’)をそれぞれp(m,s) (i,j)、q(m,s) (i,j)のparentと呼ぶことにする。[x]はxを越えない最大整数である。またp(m,s) (i,j)、q(m,s) (i,j)をそれぞれp(m−1,s) (i’,j’)、q(m−1,s) (i’,j’)のchildと呼ぶ。関数parent(i,j)は次式で定義される。
【数16】
Figure 2004064474
(m,s) (i,j)とq(m,s) (k,l)の間の写像f(m,s)は、エネルギー計算を行って最小になったものを見つけることで決定される。f m,s)(i,j)=(k,l)の値はf(m−1,s)(m=1,2,…,n)を用いることによって、以下のように決定される。まず、q(m,s) (k,l)は次の四辺形の内部になければならないという条件を課し、全単射条件を満たす写像のうち現実性の高いものを絞り込む。
【数17】
Figure 2004064474
ただしここで、
【数18】
Figure 2004064474
である。こうして定めた四辺形を、以下p(m,s) (i,j)の相続(inherited)四辺形と呼ぶことにする。相続四辺形の内部において、エネルギーを最小にする画素を求める。
【0038】
図3は以上の手順を示している。同図において、始点画像のA,B,C,Dの画素は、第m−1レベルにおいてそれぞれ終点画像のA’,B’,C’,D’へ写影される。画素p(m,s) (i,j)は、相続四辺形A’B’C’D’の内部に存在する画素q(m,s) f(m)(i,j)へ写影されなければならない。以上の配慮により、第m−1レベルの写像から第mレベルの写像への橋渡しがなされる。
【0039】
先に定義したエネルギーEは、第mレベルにおける副写像f(m,0)を計算するために、次式に置き換える。
【数19】
Figure 2004064474
また、副写像f(m,s)を計算するためには次式を用いる。
【数20】
Figure 2004064474
こうしてすべての副写像のエネルギーを低い値に保つ写像が得られる。式20により、異なる特異点に対応する副写像が、副写像どうしの類似度が高くなるように同一レベル内で関連づけられる。式19は、f(m,s)(i,j)と、第m−1レベルの画素の一部と考えた場合の(i,j)が射影されるべき点の位置との距離を示している。
【0040】
仮に、相続四辺形A’B’C’D’の内部に全単射条件を満たす画素が存在しない場合は以下の措置をとる。まず、A’B’C’D’の境界線からの距離がL(始めはL=1)である画素を調べる。それらのうち、エネルギーが最小になるものが全単射条件を満たせば、これをf(m,s)(i,j)の値として選択する。そのような点が発見されるか、またはLがその上限のL(m)maxに到達するまで、Lを大きくしていく。L(m)maxは各レベルmに対して固定である。そのような点が全く発見されない場合、全単射の第3の条件を一時的に無視して変換先の四辺形の面積がゼロになるような写像も認め、f(m,s)(i,j)を決定する。それでも条件を満たす点が見つからない場合、つぎに全単射の第1及び第2条件を外す。
【0041】
多重解像度を用いる近似法は、写像が画像の細部に影響されることを回避しつつ、画像間の大域的な対応関係を決定するために必須である。多重解像度による近似法を用いなければ、距離の遠い画素間の対応関係を見いだすことは不可能である。その場合、画像のサイズはきわめて小さなものに限定しなければならず、変化の小さな画像しか扱うことができない。さらに、通常写像に滑らかさを要求するため、そうした画素間の対応関係を見つけにくくしている。距離のある画素から画素への写像のエネルギーは高いためである。多重解像度を用いた近似法によれば、そうした画素間の適切な対応関係を見いだすことができる。それらの距離は、解像度の階層の上位レベル(粗いレベル)において小さいためである。
【0042】
[1.4]最適なパレメータ値の自動決定
既存のマッチング技術の主な欠点のひとつに、パレメータ調整の困難さがある。大抵の場合、パラメータの調整は人手作業によって行われ、最適な値を選択することはきわめて難しい。前提技術に係る方法によれば、最適なパラメータ値を完全に自動決定することができる。
【0043】
前提技術に係るシステムはふたつのパレメータ、λ及びηを含む。端的にいえば、λは画素の輝度の差の重みであり、ηは写像の剛性を示している。これらのパラメータの値は初期値が0であり、まずη=0に固定してλを0から徐々に増加させる。λの値を大きくしながら、しかも総合評価式(式14)の値を最小にする場合、各副写像に関するC(m,s) の値は一般に小さくなっていく。このことは基本的にふたつの画像がよりマッチしなければならないことを意味する。しかし、λが最適値を超えると以下の現象が発生する。
【0044】
1.本来対応すべきではない画素どうしが、単に輝度が近いというだけで誤って対応づけられる。
2.その結果、画素どうしの対応関係がおかしくなり、写像がくずれはじめる。
【0045】
3.その結果、式14においてD(m,s) が急激に増加しようとする。
4.その結果、式14の値が急激に増加しようとするため、D(m,s) の急激な増加を抑制するようf(m,s)が変化し、その結果C(m,s) が増加する。
【0046】
したがって、λを増加させながら式14が最小値をとるという状態を維持しつつC(m,s) が減少から増加に転じる閾値を検出し、そのλをη=0における最適値とする。つぎにηを少しづつ増やしてC(m,s) の挙動を検査し、後述の方法でηを自動決定する。そのηに対応してλも決まる。
【0047】
この方法は、人間の視覚システムの焦点機構の動作に似ている。人間の視覚システムでは、一方の目を動かしながら左右両目の画像のマッチングがとられる。オブジェクトがはっきりと認識できるとき、その目が固定される。
【0048】
[1.4.1]λの動的決定
λは0から所定の刻み幅で増加されていき、λの値が変わる度に副写像が評価される。式14のごとく、総エネルギーはλC(m,s) +D(m,s) によって定義される。式9のD(m,s) は滑らかさを表すもので、理論的には単位写像の場合に最小になり、写像が歪むほどEもEも増加していく。Eは整数であるから、D(m,s) の最小刻み幅は1である。このため、現在のλC(m,s) (i,j)の変化(減少量)が1以上でなければ、写像を変化させることによって総エネルギーを減らすことはできない。なぜなら、写像の変化に伴ってD(m,s) は1以上増加するため、λC(m,s) (i,j)が1以上減少しない限り総エネルギーは減らないためである。
【0049】
この条件のもと、λの増加に伴い、正常な場合にC(m,s) (i,j)が減少することを示す。C(m,s) (i,j)のヒストグラムをh(l)と記述する。h(l)はエネルギーC(m,s) (i,j)がlである画素の数である。λl≧1が成り立つために、例えばl=1/λの場合を考える。λがλからλまで微小量変化するとき、
【数21】
Figure 2004064474
で示されるA個の画素が、
【数22】
Figure 2004064474
のエネルギーを持つより安定的な状態に変化する。ここでは仮に、これらの画素のエネルギーがすべてゼロになると近似している。この式はC(m,s) の値が、
【数23】
Figure 2004064474
だけ変化することを示し、その結果、
【数24】
Figure 2004064474
が成立する。h(l)>0であるから、通常C(m,s) は減少する。しかし、λが最適値を越えようとするとき、上述の現象、つまりC(m,s) の増加が発生する。この現象を検出することにより、λの最適値を決定する。
【0050】
なお、H(h>0)及びkを定数とするとき、
【数25】
Figure 2004064474
と仮定すれば、
【数26】
Figure 2004064474
が成り立つ。このときk≠−3であれば、
【数27】
Figure 2004064474
となる。これがC(m,s) の一般式である(Cは定数)。
【0051】
λの最適値を検出する際、さらに安全を見て、全単射条件を破る画素の数を検査してもよい。ここで各画素の写像を決定する際、全単射条件を破る確率をpと仮定する。この場合、
【数28】
Figure 2004064474
が成立しているため、全単射条件を破る画素の数は次式の率で増加する。
【数29】
Figure 2004064474
従って、
【数30】
Figure 2004064474
は定数である。仮にh(l)=Hlを仮定するとき、例えば、
【数31】
Figure 2004064474
は定数になる。しかしλが最適値を越えると、上の値は急速に増加する。この現象を検出し、Bλ3/2+k/2/2の値が異常値B0thresを越えるかどうかを検査し、λの最適値を決定することができる。同様に、Bλ3/2+k/2/2の値が異常値B1thresを越えるかどうかを検査することにより、全単射の第3の条件を破る画素の増加率Bを確認する。ファクター2を導入する理由は後述する。このシステムはこれら2つの閾値に敏感ではない。これらの閾値は、エネルギーC(m,s) の観察では検出し損なった写像の過度の歪みを検出するために用いることができる。
【0052】
なお実験では、副写像f(m,s)を計算する際、もしλが0.1を越えたらf(m,s)の計算は止めてf(m,s+1)の計算に移行した。λ>0.1のとき、画素の輝度255レベル中のわずか「3」の違いが副写像の計算に影響したためであり、λ>0.1のとき正しい結果を得ることは困難だったためである。
【0053】
[1.4.2]ヒストグラムh(l)
(m,s) の検査はヒストグラムh(l)に依存しない。全単射及びその第3の条件の検査の際、h(l)に影響を受けうる。実際に(λ,C(m,s) )をプロットすると、kは通常1付近にある。実験ではk=1を用い、BλとBλを検査した。仮にkの本当の値が1未満であれば、BλとBλは定数にならず、ファクターλ(1−k)/2に従って徐々に増加する。h(l)が定数であれば、例えばファクターはλ1/2である。しかし、こうした差は閾値B0thresを正しく設定することによって吸収することができる。
【0054】
ここで次式のごとく始点画像を中心が(x,y)、半径rの円形のオブジェクトであると仮定する。
【数32】
Figure 2004064474
一方、終点画像は、次式のごとく中心(x,y)、半径がrのオブジェクトであるとする。
【数33】
Figure 2004064474
ここでc(x)はc(x)=xの形であるとする。中心(x,y)及び(x,y)が十分遠い場合、ヒストグラムh(l)は次式の形となる。
【数34】
Figure 2004064474
k=1のとき、画像は背景に埋め込まれた鮮明な境界線を持つオブジェクトを示す。このオブジェクトは中心が暗く、周囲にいくに従って明るくなる。k=−1のとき、画像は曖昧な境界線を持つオブジェクトを表す。このオブジェクトは中心が最も明るく、周囲にいくに従って暗くなる。一般のオブジェクトはこれらふたつのタイプのオブジェクトの中間にあると考えてもさして一般性を失わない。したがって、kは−1≦k≦1として大抵の場合をカバーでき、式27が一般に減少関数であることが保障される。
【0055】
なお、式34からわかるように、rは画像の解像度に影響されること、すなわちrは2mに比例することに注意すべきである。このために[1.4.1]においてファクター2mを導入した。
【0056】
[1.4.3]ηの動的決定
パラメータηも同様の方法で自動決定できる。はじめにη=0とし、最も細かい解像度における最終的な写像f(n)及びエネルギーC(n) を計算する。つづいて、ηをある値Δηだけ増加させ、再び最も細かい解像度における最終写像f(n)及びエネルギーC(n) を計算し直す。この過程を最適値が求まるまで続ける。ηは写像の剛性を示す。次式の重みだからである。
【数35】
Figure 2004064474
ηが0のとき、D(n) は直前の副写像と無関係に決定され、現在の副写像は弾性的に変形され、過度に歪むことになる。一方、ηが非常に大きな値のとき、D(n) は直前の副写像によってほぼ完全に決まる。このとき副写像は非常に剛性が高く、画素は同じ場所に射影される。その結果、写像は単位写像になる。ηの値が0から次第に増えるとき、後述のごとくC(n) は徐々に減少する。しかしηの値が最適値を越えると、図4に示すとおり、エネルギーは増加し始める。同図のX軸はη、Y軸はCである。
【0057】
この方法でC(n) を最小にする最適なηの値を得ることができる。しかし、λの場合に比べていろいろな要素が計算に影響する結果、C(n) は小さく揺らぎながら変化する。λの場合は、入力が微小量変化するたびに副写像を1回計算しなおすだけだが、ηの場合はすべての副写像が計算しなおされるためである。このため、得られたC(n) の値が最小であるかどうかを即座に判断することはできない。最小値の候補が見つかれば、さらに細かい区間を設定することによって真の最小値を探す必要がある。
【0058】
[1.5]スーパーサンプリング
画素間の対応関係を決定する際、自由度を増やすために、f(m,s)の値域をR×Rに拡張することができる(Rは実数の集合)。この場合、終点画像の画素の輝度が補間され、非整数点、
【数36】
Figure 2004064474
における輝度を持つf(m,s)が提供される。つまりスーパーサンプリングが行われる。実験では、f(m,s)は整数及び半整数値をとることが許され、
【数37】
Figure 2004064474
は、
【数38】
Figure 2004064474
によって与えられた。
【0059】
[1.6]各画像の画素の輝度の正規化
始点画像と終点画像がきわめて異なるオブジェクトを含んでいるとき、写像の計算に元の画素の輝度がそのままでは利用しにくい。輝度の差が大きいために輝度に関するエネルギーC(m,s) が大きくなりすぎ、正しい評価がしずらいためである。
【0060】
例えば、人の顔と猫の顔のマッチングをとる場合を考える。猫の顔は毛で覆われており、非常に明るい画素と非常に暗い画素が混じっている。この場合、ふたつの顔の間の副写像を計算するために、まず副画像を正規化する。すなわち、最も暗い画素の輝度を0、最も明るいそれを255に設定し、他の画素の輝度は線形補間によって求めておく。
【0061】
[1.7]インプリメンテーション
始点画像のスキャンに従って計算がリニアに進行する帰納的な方法を用いる。始めに、1番上の左端の画素(i,j)=(0,0)についてf(m,s)の値を決定する。次にiを1ずつ増やしながら各f(m,s)(i,j)の値を決定する。iの値が画像の幅に到達したとき、jの値を1増やし、iを0に戻す。以降、始点画像のスキャンに伴いf(m,s)(i,j)を決定していく。すべての点について画素の対応が決まれば、ひとつの写像f(m,s)が決まる。
あるp(i,j)について対応点qf(i,j)が決まれば、つぎにp(i,j+1)の対応点qf(i,j+1)が決められる。この際、qf(i,j+1)の位置は全単射条件を満たすために、qf(i,j)の位置によって制限される。したがって、先に対応点が決まる点ほどこのシステムでは優先度が高くなる。つねに(0,0)が最も優先される状態がつづくと、求められる最終の写像に余計な偏向が加わる。本前提技術ではこの状態を回避するために、f(m,s)を以下の方法で決めていく。
【0062】
まず(s mod 4)が0の場合、(0,0)を開始点としi及びjを徐々に増やしながら決めていく。(s mod 4)が1の場合、最上行の右端点を開始点とし、iを減少、jを増加させながら決めていく。(s mod 4)が2のとき、最下行の右端点を開始点とし、i及びjを減少させながら決めていく。(smod 4)が3の場合、最下行の左端点を開始点とし、iを増加、jを減少させながら決めていく。解像度が最も細かい第nレベルには副写像という概念、すなわちパラメータsが存在しないため、仮にs=0及びs=2であるとしてふたつの方向を連続的に計算した。
【0063】
実際のインプリメンテーションでは、全単射条件を破る候補に対してペナルティを与えることにより、候補(k,l)の中からできる限り全単射条件を満たすf(m,s)(i,j)(m=0,…,n)の値を選んだ。第3の条件を破る候補のエネルギーD(k、l)にはφを掛け、一方、第1または第2の条件を破る候補にはψを掛ける。今回はφ=2、ψ=100000を用いた。
【0064】
前述の全単射条件のチェックのために、実際の手続として(k,l)=f(m,s)(i,j)を決定する際に以下のテストを行った。すなわちf(m,s)(i,j)の相続四辺形に含まれる各格子点(k,l)に対し、次式の外積のz成分が0以上になるかどうかを確かめる。
【数39】
Figure 2004064474
ただしここで、
【数40】
Figure 2004064474
【数41】
Figure 2004064474
である(ここでベクトルは三次元ベクトルとし、z軸は直交右手座標系において定義される)。もしWが負であれば、その候補についてはD(m,s) (k,l)にψを掛けることによってペナルティを与え、できるかぎり選択しないようにする。
【0065】
図5(a)、図5(b)はこの条件を検査する理由を示している。図5(a)はペナルティのない候補、図5(b)はペナルティがある候補をそれぞれ表す。隣接画素(i,j+1)に対する写像f(m,s)(i,j+1)を決定する際、Wのz成分が負であれば始点画像平面上において全単射条件を満足する画素は存在しない。なぜなら、q(m,s) (k,l)は隣接する四辺形の境界線を越えるためである。
【0066】
[1.7.1]副写像の順序
インプリメンテーションでは、解像度レベルが偶数のときにはσ(0)=0、σ(1)=1、σ(2)=2、σ(3)=3、σ(4)=0を用い、奇数のときはσ(0)=3、σ(1)=2、σ(2)=1、σ(3)=0、σ(4)=3を用いた。このことで、副写像を適度にシャッフルした。なお、本来副写像は4種類であり、sは0〜3のいずれかである。しかし、実際にはs=4に相当する処理を行った。その理由は後述する。
【0067】
[1.8]補間計算
始点画像と終点画像の間の写像が決定された後、対応しあう画素の輝度が補間される。実験では、トライリニア補間を用いた。始点画像平面における正方形p(i,j)(i+1,j)(i,j+1)(i+1,j+1)が終点画像平面上の四辺形qf(i,j)f(i+1,j)f(i,j+1)f(i+1,j+1)に射影されると仮定する。簡単のため、画像間の距離を1とする。始点画像平面からの距離がt(0≦t≦1)である中間画像の画素r(x,y,t)(0≦x≦N−1,0≦y≦M−1)は以下の要領で求められる。まず画素r(x,y,t)の位置(ただしx,y,t∈R)を次式で求める。
【数42】
Figure 2004064474
つづいてr(x,y,t)における画素の輝度が次の式を用いて決定される。
【数43】
Figure 2004064474
ここでdx及びdyはパラメータであり、0から1まで変化する。
【0068】
[1.9]拘束条件を課したときの写像
いままでは拘束条件がいっさい存在しない場合の写像の決定を述べた。しかし、始点画像と終点画像の特定の画素間に予め対応関係が規定されているとき、これを拘束条件としたうえで写像を決定することができる。
【0069】
基本的な考えは、まず始点画像の特定の画素を終点画像の特定の画素に移す大まかな写像によって始点画像を大まかに変形し、しかる後、写像fを正確に計算する。
【0070】
まず始めに、始点画像の特定の画素を終点画像の特定の画素に射影し、始点画像の他の画素を適当な位置に射影する大まかな写像を決める。すなわち、特定の画素に近い画素は、その特定の画素が射影される場所の近くに射影されるような写像である。ここで第mレベルの大まかな写像をF(m)と記述する。
【0071】
大まかな写像Fは以下の要領で決める。まず、いくつかの画素について写像を特定する。始点画像についてn個の画素、
【数44】
Figure 2004064474
を特定するとき、以下の値を決める。
【数45】
Figure 2004064474
始点画像の他の画素の変位量は、p(ih,jh)(h=0,…,n−1)の変位に重み付けをして求められる平均である。すなわち画素p(i,j)は、終点画像の以下の画素に射影される。
【数46】
Figure 2004064474
ただしここで、
【数47】
Figure 2004064474
【数48】
Figure 2004064474
とする。
【0072】
つづいて、F(m)に近い候補写像fがより少ないエネルギーを持つように、その写像fのエネルギーD(m,s) (i,j)を変更する。正確には、D(m,s) (i,j)は、
【数49】
Figure 2004064474
である。ただし、
【数50】
Figure 2004064474
であり、κ,ρ≧0とする。最後に、前述の写像の自動計算プロセスにより、fを完全に決定する。
【0073】
ここで、f(m,s)(i,j)がF(m)(i,j)に十分近いとき、つまりそれらの距離が、
【数51】
Figure 2004064474
以内であるとき、E (m,s) (i,j)が0になることに注意すべきである。そのように定義した理由は、各f(m,s)(i,j)がF(m)(i,j)に十分近い限り、終点画像において適切な位置に落ち着くよう、その値を自動的に決めたいためである。この理由により、正確な対応関係を詳細に特定する必要がなく、始点画像は終点画像にマッチするように自動的にマッピングされる。
[2]具体的な処理手順
[1]の各要素技術による処理の流れを説明する。
図6は前提技術の全体手順を示すフローチャートである。同図のごとく、まず多重解像度特異点フィルタを用いた処理を行い(S1)、つづいて始点画像と終点画像のマッチングをとる(S2)。ただし、S2は必須ではなく、S1で得られた画像の特徴をもとに画像認識などの処理を行ってもよい。
【0074】
図7は図6のS1の詳細を示すフローチャートである。ここではS2で始点画像と終点画像のマッチングをとることを前提としている。そのため、まず特異点フィルタによって始点画像の階層化を行い(S10)、一連の始点階層画像を得る。つづいて同様の方法で終点画像の階層化を行い(S11)、一連の終点階層画像を得る。ただし、S10とS11の順序は任意であるし、始点階層画像と終点階層画像を並行して生成していくこともできる。
【0075】
図8は図7のS10の詳細を示すフローチャートである。もとの始点画像のサイズは2×2とする。始点階層画像は解像度が細かいほうから順に作られるため、処理の対象となる解像度レベルを示すパラメータmをnにセットする(S100)。つづいて第mレベルの画像p(m,0)、p(m,1)、p(m,2)、p(m,3)から特異点フィルタを用いて特異点を検出し(S101)、それぞれ第m−1レベルの画像p(m−1,0)、p(m−1,1)、p(m−1,2)、p(m−1,3)を生成する(S102)。ここではm=nであるため、p(m,0)=p(m,1)=p(m,2)=p(m,3)=p(n)であり、ひとつの始点画像から4種類の副画像が生成される。
【0076】
図9は第mレベルの画像の一部と、第m−1レベルの画像の一部の対応関係を示している。同図の数値は各画素の輝度を示す。同図のp(m,s)はp(m,0)〜p(m,3)の4つの画像を象徴するもので、p(m−1,0)を生成する場合には、p(m,s)はp(m,0)であると考える。[1.2]で示した規則により、p(m−1,0)は例えば同図で輝度を記入したブロックについて、そこに含まれる4画素のうち「3」、p(m−1,1)は「8」、p(m−1,2)は「6」、p(m−1,3)を「10」をそれぞれ取得し、このブロックをそれぞれ取得したひとつの画素で置き換える。したがって、第m−1レベルの副画像のサイズは2m−1×2m−1になる。
【0077】
つづいてmをデクリメントし(図8のS103)、mが負になっていないことを確認し(S104)、S101に戻ってつぎに解像度の粗い副画像を生成していく。この繰り返し処理の結果、m=0、すなわち第0レベルの副画像が生成された時点でS10が終了する。第0レベルの副画像のサイズは1×1である。
【0078】
図10はS10によって生成された始点階層画像をn=3の場合について例示している。最初の始点画像のみが4つの系列に共通であり、以降特異点の種類に応じてそれぞれ独立に副画像が生成されていく。なお、図8の処理は図7のS11にも共通であり、同様の手順を経て終点階層画像も生成される。以上で図6のS1による処理が完了する。
【0079】
前提技術では、図6のS2に進むためにマッチング評価の準備をする。図11はその手順を示している。同図のごとく、まず複数の評価式が設定される(S30)。[1.3.2.1]で導入した画素に関するエネルギーC(m,s) と[1.3.2.2]で導入した写像の滑らかさに関するエネルギーD(m,s) がそれである。つぎに、これらの評価式を統合して総合評価式を立てる(S31)。[1.3.2.3]で導入した総エネルギーλC(m,s) +D(m,s) がそれであり、[1.3.2.2]で導入したηを用いれば、
【数52】
Figure 2004064474
となる。ただし、総和はi、jについてそれぞれ0、1…、2−1で計算する。以上でマッチング評価の準備が整う。
【0080】
図12は図6のS2の詳細を示すフローチャートである。[1]で述べたごとく、始点階層画像と終点階層画像のマッチングは互いに同じ解像度レベルの画像どうしでとられる。画像間の大域的なマッチングを良好にとるために、解像度が粗いレベルから順にマッチングを計算する。特異点フィルタを用いて始点階層画像および終点階層画像を生成しているため、特異点の位置や輝度は解像度の粗いレベルでも明確に保存されており、大域的なマッチングの結果は従来に比べて非常に優れたものになる。
【0081】
図12のごとく、まず係数パラメータηを0、レベルパラメータmを0に設定する(S20)。つづいて、始点階層画像中の第mレベルの4つの副画像と終点階層画像中の第mレベルの4つの副画像のそれぞれの間でマッチングを計算し、それぞれ全単射条件を満たし、かつエネルギーを最小にするような4種類の副写像f(m,s)(s=0,1,2,3)を求める(S21)。全単射条件は[1.3.3]で述べた相続四辺形を用いて検査される。この際、式17、18が示すように、第mレベルにおける副写像は第m−1レベルのそれらに拘束されるため、より解像度の粗いレベルにおけるマッチングが順次利用されていく。これは異なるレベル間の垂直的参照である。なお、いまm=0であってそれより粗いレベルはないが、この例外的な処理は図13で後述する。
一方、同一レベル内における水平的参照も行われる。[1.3.3]の式20のごとく、f(m,3)はf(m,2)に、f(m,2)はf(m,1)に、f(m,1)はf(m,0)に、それぞれ類似するように決める。その理由は、特異点の種類が違っても、それらがもともと同じ始点画像と終点画像に含まれている以上、副写像がまったく異なるという状況は不自然だからである。式20からわかるように、副写像どうしが近いほどエネルギーは小さくなり、マッチングが良好とみなされる。
【0082】
なお、最初に決めるべきf(m,0)については同一のレベルで参照できる副写像がないため、式19に示すごとくひとつ粗いレベルを参照する。ただし、実験ではf(m,3)まで求まった後、これを拘束条件としてf(m,0)を一回更新するという手続をとった。これは式20にs=4を代入し、f(m,4)を新たなf(m,0)とすることに等しい。f(m,0)とf(m,3)の関連度が低くなり過ぎる傾向を回避するためであり、この措置によって実験結果がより良好になった。この措置に加え、実験では[1.7.1]に示す副写像のシャッフルも行った。これも本来特異点の種類ごとに決まる副写像どうしの関連度を密接に保つ趣旨である。また、処理の開始点に依存する偏向を回避するために、sの値にしたがって開始点の位置を変える点は[1.7]で述べたとおりである。
【0083】
図13は第0レベルにおいて副写像を決定する様子を示す図である。第0レベルでは各副画像がただひとつの画素で構成されるため、4つの副写像f(0,s)はすべて自動的に単位写像に決まる。図14は第1レベルにおいて副写像を決定する様子を示す図である。第1レベルでは副画像がそれぞれ4画素で構成される。同図ではこれら4画素が実線で示されている。いま、p(1,s)の点xの対応点をq(1,s)の中で探すとき、以下の手順を踏む。
【0084】
1.第1レベルの解像度で点xの左上点a、右上点b、左下点c、右下点dを求める。
2.点a〜dがひとつ粗いレベル、つまり第0レベルにおいて属する画素を探す。図14の場合、点a〜dはそれぞれ画素A〜Dに属する。ただし、画素A〜Cは本来存在しない仮想的な画素である。
3.第0レベルですでに求まっている画素A〜Dの対応点A’〜D’をq(1,s)の中にプロットする。画素A’〜C’は仮想的な画素であり、それぞれ画素A〜Cと同じ位置にあるものとする。
4.画素Aの中の点aの対応点a’が画素A’の中にあるとみなし、点a’をプロットする。このとき、点aが画素Aの中で占める位置(この場合、右下)と、点a’が画素A’の中で占める位置が同じであると仮定する。
5.4と同様の方法で対応点b’〜d’をプロットし、点a’〜d’で相続四辺形を作る。
6.相続四辺形の中でエネルギーが最小になるよう、点xの対応点x’を探す。対応点x’の候補として、例えば画素の中心が相続四辺形に含まれるものに限定してもよい。図14の場合、4つの画素がすべて候補になる。
【0085】
以上がある点xの対応点の決定手順である。同様の処理を他のすべての点について行い、副写像を決める。第2レベル以上のレベルでは、次第に相続四辺形の形が崩れていくと考えられるため、図3に示すように画素A’〜D’の間隔が空いていく状況が発生する。
【0086】
こうして、ある第mレベルの4つの副写像が決まれば、mをインクリメントし(図12のS22)、mがnを超えていないことを確かめて(S23)、S21に戻る。以下、S21に戻るたびに次第に細かい解像度のレベルの副写像を求め、最後にS21に戻ったときに第nレベルの写像f(n)を決める。この写像はη=0に関して定まったものであるから、f(n)(η=0)と書く。
【0087】
つぎに異なるηに関する写像も求めるべく、ηをΔηだけシフトし、mをゼロクリアする(S24)。新たなηが所定の探索打切り値ηmaxを超えていないことを確認し(S25)、S21に戻り、今回のηに関して写像f(n)(η=Δη)を求める。この処理を繰り返し、S21でf(n)(η=iΔη)(i=0,1,…)を求めていく。ηがηmaxを超えたときS26に進み、後述の方法で最適なη=ηoptを決定し、f(n)(η=ηopt)を最終的に写像f(n)とする。
【0088】
図15は図12のS21の詳細を示すフローチャートである。このフローチャートにより、ある定まったηについて、第mレベルにおける副写像が決まる。副写像を決める際、前提技術では副写像ごとに最適なλを独立して決める。
【0089】
同図のごとく、まずsとλをゼロクリアする(S210)。つぎに、そのときのλについて(および暗にηについて)エネルギーを最小にする副写像f(m,s)を求め(S211)、これをf(m,s)(λ=0)と書く。異なるλに関する写像も求めるべく、λをΔλだけシフトし、新たなλが所定の探索打切り値λmaxを超えていないことを確認し(S213)、S211に戻り、以降の繰り返し処理でf(m,s)(λ=iΔλ)(i=0,1,…)を求める。λがλmaxを超えたときS214に進み、最適なλ=λoptを決定し、f(m,s)(λ=λopt)を最終的に写像f(m,s)とする(S214)。
【0090】
つぎに、同一レベルにおける他の副写像を求めるべく、λをゼロクリアし、sをインクリメントする(S215)。sが4を超えていないことを確認し(S216)、S211に戻る。s=4になれば上述のごとくf(m,3)を利用してf(m,0)を更新し、そのレベルにおける副写像の決定を終了する。
【0091】
図16は、あるmとsについてλを変えながら求められたf(m,s)(λ=iΔλ)(i=0,1,…)に対応するエネルギーC(m,s) の挙動を示す図である。[1.4]で述べたとおり、λが増加すると通常C(m,s) は減少する。しかし、λが最適値を超えるとC(m,s) は増加に転じる。そこで本前提技術ではC(m,s) が極小値をとるときのλをλoptと決める。同図のようにλ>λoptの範囲で再度C(m,s) が小さくなっていっても、その時点ではすでに写像がくずれていて意味をなさないため、最初の極小点に注目すればよい。λoptは副写像ごとに独立して決めていき、最後にf(n)についてもひとつ定まる。
【0092】
一方、図17は、ηを変えながら求められたf(n)(η=iΔη)(i=0,1,…)に対応するエネルギーC(n) の挙動を示す図である。ここでもηが増加すると通常C(n) は減少するが、ηが最適値を超えるとC(n) は増加に転じる。そこでC(n) が極小値をとるときのηをηoptと決める。図17は図4の横軸のゼロ付近を拡大した図と考えてよい。ηoptが決まればf(n)を最終決定することができる。
【0093】
以上、本前提技術によれば種々のメリットが得られる。まずエッジを検出する必要がないため、エッジ検出タイプの従来技術の課題を解消できる。また、画像に含まれるオブジェクトに対する先験的な知識も不要であり、対応点の自動検出が実現する。特異点フィルタによれば、解像度の粗いレベルでも特異点の輝度や位置を維持することができ、オブジェクト認識、特徴抽出、画像マッチングに極めて有利である。その結果、人手作業を大幅に軽減する画像処理システムの構築が可能となる。
【0094】
なお、本前提技術について次のような変形技術も考えられる。
(1)前提技術では始点階層画像と終点階層画像の間でマッチングをとる際にパラメータの自動決定を行ったが、この方法は階層画像間ではなく、通常の2枚の画像間のマッチングをとる場合全般に利用できる。
【0095】
たとえば2枚の画像間で、画素の輝度の差に関するエネルギーEと画素の位置的なずれに関するエネルギーEのふたつを評価式とし、これらの線形和Etot=αE+Eを総合評価式とする。この総合評価式の極値付近に注目してαを自動決定する。つまり、いろいろなαについてEtotが最小になるような写像を求める。それらの写像のうち、αに関してEが極小値をとるときのαを最適パラメータと決める。そのパラメータに対応する写像を最終的に両画像間の最適マッチングとみなす。
【0096】
これ以外にも評価式の設定にはいろいろな方法があり、例えば1/Eと1/Eのように、評価結果が良好なほど大きな値をとるものを採用してもよい。総合評価式も必ずしも線形和である必要はなく、n乗和(n=2、1/2、−1、−2など)、多項式、任意の関数などを適宜選択すればよい。
【0097】
パラメータも、αのみ、前提技術のごとくηとλのふたつの場合、それ以上の場合など、いずれでもよい。パラメータが3以上の場合はひとつずつ変化させて決めていく。
(2)本前提技術では、総合評価式の値が最小になるよう写像を決めた後、総合評価式を構成するひとつの評価式であるC(m,s) が極小になる点を検出してパラメータを決定した。しかし、こうした二段回処理の代わりに、状況によっては単に総合評価式の最小値が最小になるようにパラメータを決めても効果的である。その場合、例えばαE+βEを総合評価式とし、α+β=1なる拘束条件を設けて各評価式を平等に扱うなどの措置を講じてもよい。パラメータの自動決定の本質は、エネルギーが最小になるようにパラメータを決めていく点にあるからである。
(3)前提技術では各解像度レベルで4種類の特異点に関する4種類の副画像を生成した。しかし、当然4種類のうち1、2、3種類を選択的に用いてもよい。例えば、画像中に明るい点がひとつだけ存在する状態であれば、極大点に関するf(m,3)だけで階層画像を生成しても相応の効果が得られるはずである。その場合、同一レベルで異なる副写像は不要になるため、sに関する計算量が減る効果がある。
(4)本前提技術では特異点フィルタによってレベルがひとつ進むと画素が1/4になった。例えば3×3で1ブロックとし、その中で特異点を探す構成も可能であり、その場合、レベルがひとつ進むと画素は1/9になる。
(5)始点画像と終点画像がカラーの場合、それらをまず白黒画像に変換し、写像を計算する。その結果求められた写像を用いて始点のカラー画像を変換する。それ以外の方法として、RGBの各成分について副写像を計算してもよい。
[3]前提技術の改良点
以上の前提技術を基本とし、マッチング精度を向上させるためのいくつかの改良がなされている。ここではその改良点を述べる。
【0098】
[3.1]色情報を考慮に入れた特異点フィルタおよび副画像
画像の色情報を有効に用いるために、特異点フィルタを以下のように変更した。まず色空間としては、人間の直感に最も合致するといわれているHISを用いた。但し色を輝度に変換する際は、輝度Iに代わり人間の目の感度に最も近いといわれている輝度Yを選択した。
【数53】
Figure 2004064474
ここで画素aにおけるY(輝度)をY(a)、S(彩度)をS(a)として、次のような記号を定義する。
【数54】
Figure 2004064474
上の定義を用いて以下のような5つのフィルタを用意する。
【数55】
Figure 2004064474
このうち上から4つのフィルタは改良前の前提技術におけるフィルタとほぼ同じで、輝度の特異点を色情報も残しながら保存する。最後のフィルタは色の彩度の特異点をこちらも色情報を残しながら保存する。
【0099】
これらのフィルタによって、各レベルにつき5種類の副画像(サブイメージ)が生成される。なお、最も高いレベルの副画像は元画像に一致する。
【数56】
Figure 2004064474
[3.2]エッジ画像およびその副画像
輝度微分(エッジ)の情報をマッチングに利用するため、さらに一次微分エッジ検出フィルタを用いる。このフィルタはあるオペレータGとの畳み込み積分で実現できる。第nレベルの画像の、水平方向、垂直方向の微分に対応した2種類のフィルタをそれぞれ以下のように表す。
【数57】
Figure 2004064474
ここでGは画像解析においてエッジ検出に用いられる一般的なオペレータを適用することが可能であるが、演算スピードなども考慮して以下のようなオペレータを選択した。
【数58】
Figure 2004064474
次にこの画像を多重解像度化する。フィルタにより0を中心とした輝度をもつ画像が生成されるため、次のような平均値画像が副画像としては最も適切である。
【数59】
Figure 2004064474
式59の画像は後述するForward Stage、すなわち初回副写像導出ステージの計算の際、エネルギー関数のうち新たに導入された輝度微分(エッジ)の差によるエネルギーに用いられる。
【0100】
エッジの大きさ、すなわち絶対値も計算に必要なため、以下のように表す。
【数60】
Figure 2004064474
この値は常に正であるため、多重解像度化には最大値フィルタを用いる。
【数61】
Figure 2004064474
式61の画像は後述するForward Stageの計算の際、計算する順序を決定するのに用いられる。
【0101】
[3.3]計算処理手順
計算は最も粗い解像度の副画像から順に行う。副画像は5つあるため、各レベルの解像度において計算は複数回行われる。これをターンと呼び、最大計算回数をtで表すことにする。各ターンは前記Forward Stageと、副写像再計算ステージであるRefinement Stageという二つのエネルギー最小化計算から構成される。図18は第mレベルにおける副写像を決める計算のうち改良点に係るフローチャートである。
【0102】
同図のごとく、sをゼロクリアする(S40)。つぎにForward Stage(S41)において始点画像pから終点画像qへの写像f m,s および、終点画像qから始点画像pへの写像g(m、s)を順次、エネルギー最小化によって求める。以下、写像f m,s の導出について記述する。ここで最小化するエネルギーは、改良後の前提技術においては、対応する画素値によるエネルギーCと、写像の滑らかさによるエネルギーDの和である。
【数62】
Figure 2004064474
エネルギーCは、輝度の差によるエネルギーC(前記改良前の前提技術におけるエネルギーCと等価)と、色相、彩度によるエネルギーC、輝度微分(エッジ)の差によるエネルギーCで構成され、以下のように表される。
【数63】
Figure 2004064474
ここでパラメータλ、ψおよびθは0以上の実数であり、本改良後の技術においては定数である。ここでこれらのパラメータを定数とできるのは、新たに導入されたRefinement Stageにより、パラメータに対する結果の安定性が向上したためである。また、エネルギーCは副写像f m,s の種類sに関わらず、座標と解像度のレベルによって決定する値である。
【0103】
エネルギーDは前記改良前の前提技術と同じものを用いる。ただし前記改良前の前提技術において、写像の滑らかさを保証するエネルギーEを導出する際、隣接する画素のみを考慮していたが、周囲の何画素を考慮するかをパラメータdで指定できるように改良した。
【数64】
Figure 2004064474
次のRefinement Stageに備えて、このステージでは終点画像qから始点画像pへの写像g(m,s)も同様に計算する。
【0104】
Refinement Stage(S42)ではForward Stageにおいて求めた双方向の写像f(m,s)およびg(m,s)を基に、より妥当な写像f’(m,s)を求める。ここでは新たに定義されるエネルギーMについてエネルギー最小化計算を行う。エネルギーMは終点画像から始点画像への写像gとの整合度Mと、もとの写像との差Mより構成され、Mを最小とするようなf’(m,s)が求められる。
【数65】
Figure 2004064474
対称性を損なわないように、終点画像qから始点画像pへの写像g’(m,s)も同様の方法で求めておく。
【0105】
その後、sをインクリメントし(S43)、sがtを超えていないことを確認し(S44)、次のターンのForward Stage(S41)に進む。その際前記Eを次のように置き換えてエネルギー最小化計算を行う。
【数66】
Figure 2004064474
[3.4]写像の計算順序
写像の滑らかさを表すエネルギーEを計算する際、周囲の点の写像を用いるため、それらの点がすでに計算されているかどうかがエネルギーに影響を与える。すなわち、どの点から順番に計算するかによって、全体の写像の精度が大きく変化する。そこでエッジの絶対値画像を用いる。エッジの部分は情報量を多く含むため、エッジの絶対値が大きいところから先に写像計算を行う。このことによって、特に二値画像のような画像に対して非常に精度の高い写像を求めることができるようになった。
【0106】
[画像符号化および画像復号技術]
以上の前提技術を利用した画像符号化および画像復号装置を説明する。前提技術ではキーフレーム間のマッチングを取って対応点情報を生成し、この対応点情報をもとに中間画像を生成した。従って、この技術は動画の圧縮に利用でき、現実に実験ではMPEGを超える画質と圧縮率が確認されている。
【0107】
図19および図20は、撮影された動画像を構成する画像フレームの例を示している。図20の画像フレームは、図19の画像フレームを撮影したカメラが右にパンして撮影されたものである。
【0108】
図19では、中央付近に家が、また右端に木が2本写っている。一方、図20では、中央付近に家が、両端に木が一本ずつ写っている。例えば、画像フレームの左端に着目した場合、図19では写っていない木が、図20では写っている。つまり、これらの画像をキーフレームとして画像マッチングが行われて中間画像が生成される場合、対応しない画素が現れているため、マッチングに誤対応が生じてしまい、生成される中間画像が不自然になる。そこで、生成される中間画像では、外枠領域FAの部分は使用せず、実際に撮影した画像フレームの外枠領域FAを使用する。
【0109】
また、外枠領域FAと内側領域IAの境界は直線でなく、図21に示すようにランダムな線であってもよい。一般に、境界が直線である場合、人間の目は、それを容易に認識する傾向がある。従って、図21に示すようにランダムな曲線の境界である方が好ましい。
【0110】
図22は、本実施の形態に係る画像符号化装置10の構成を示すブロック図である。画像符号化装置10は、キーフレーム選定部12と、マッチングプロセッサ14と、対応点情報保持部16と、符号化ストリーム生成部18と、画像分離部20と、ストリーム出力部30とを備える。
【0111】
キーフレーム選定部12は、ネットワークや記録媒体、撮影装置等から取得した動画像MPを構成する画像フレームからキーフレームKFを選定する。キーフレームKFの選定は、所定のタイミングで行われてもよいし、シーンチェンジが存在した際に行われてもよいし、ユーザから指定を受け付けてもよい。
【0112】
マッチングプロセッサ14は、2枚のキーフレームKF間で画素単位の画像マッチングを行い、対応点情報CPを生成する。対応点情報保持部16は、生成された対応点情報CPを保持する。
【0113】
画像分離部20は、キーフレーム選定部12で選定されなかった画像フレーム、つまり非選定フレームを外枠領域FAと内側領域IAに分離する。符号化ストリーム生成部18は、選定されたキーフレームKFと、分離された外枠領域FAと、対応点情報CPとを含む符号化データストリームDSを生成し、ストリーム出力部30は当該装置の外部や光記録媒体などに出力する。
【0114】
図23は、本実施の形態に係る画像復号装置40の構成を示すブロック図である。画像復号装置40は、ストリーム入力部42と、ストリーム分離部44と、マッチングプロセッサ14と、中間画像生成部22と、外枠変更部48と、表示部50とを備える。
【0115】
ストリーム入力部42は、光媒体やネットワークを介して符号化データストリームDSを受け付ける。ストリーム分離部44は、符号化データストリームDSから、キーフレームKFと、分離された外枠領域FAと、対応点情報CPとを抽出する。抽出されたキーフレームKFと対応点情報CPは中間画像生成部22に送られ、それらをもとに中間画像が生成される。一方、外枠領域FAは、外枠変更部48に送られる。
【0116】
外枠変更部48は、生成された中間画像の外枠領域を取得した外枠領域FAと入れ替える。表示部50は、キーフレームKFと生成された中間画像を動画像として表示する。
【0117】
以上、本発明をいくつかの実施の形態をもとに説明した。これらの実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。そうした変形例を挙げる。
【0118】
画像符号化装置10において、非選定フレームは外枠領域のみ利用されたがこれに限る趣旨ではない。例えば、内側領域については生成された中間画像との差分が算出されてもよい。この場合、画像符号化装置10は、キーフレームと対応点情報をもとに中間画像を生成する中間画像生成部と、中間画像と内側領域の差分を算出する差分算出部を備えればよい。更に、画像復号装置40は、取得した差分を生成した中間画像に反映させる差分反映部を備えればよい。
【0119】
【発明の効果】
以上、本発明によれば、キーフレームをもとに中間画像を生成する際、ふたつのキーフレームの一方のみに映っている被写体部分が不自然になる現象が回避される。
【図面の簡単な説明】
【図1】図1(a)と図1(b)は、ふたりの人物の顔に平均化フィルタを施して得られる画像、図1(c)と図1(d)は、ふたりの人物の顔に関して前提技術で求められるp(5,0)の画像、図1(e)と図1(f)は、ふたりの人物の顔に関して前提技術で求められるp(5,1)の画像、図1(g)と図1(h)は、ふたりの人物の顔に関して前提技術で求められるp(5,2)の画像、図1(i)と図1(j)は、ふたりの人物の顔に関して前提技術で求められるp(5,3)の画像をそれぞれディスプレイ上に表示した中間調画像の写真である。
【図2】図2(R)はもとの四辺形を示す図、図2(A)、図2(B)、図2(C)、図2(D)、図2(E)はそれぞれ相続四辺形を示す図である。
【図3】始点画像と終点画像の関係、および第mレベルと第m−1レベルの関係を相続四辺形を用いて示す図である。
【図4】パラメータηとエネルギーCの関係を示す図である。
【図5】図5(a)、図5(b)は、ある点に関する写像が全単射条件を満たすか否かを外積計算から求める様子を示す図である。
【図6】前提技術の全体手順を示すフローチャートである。
【図7】図6のS1の詳細を示すフローチャートである。
【図8】図7のS10の詳細を示すフローチャートである。
【図9】第mレベルの画像の一部と、第m−1レベルの画像の一部の対応関係を示す図である。
【図10】前提技術で生成された始点階層画像を示す図である。
【図11】図6のS2に進む前に、マッチング評価の準備の手順を示す図である。
【図12】図6のS2の詳細を示すフローチャートである。
【図13】第0レベルにおいて副写像を決定する様子を示す図である。
【図14】第1レベルにおいて副写像を決定する様子を示す図である。
【図15】図12のS21の詳細を示すフローチャートである。
【図16】あるf(m,s)についてλを変えながら求められたf(m,s)(λ=iΔλ)に対応するエネルギーC(m,s) の挙動を示す図である。
【図17】ηを変えながら求められたf(n)(η=iΔη)(i=0,1,…)に対応するエネルギーC(n) の挙動を示す図である。
【図18】改良後の前提技術において第mレベルにおける副写像を求めるフローチャートである。
【図19】撮影された動画像を構成する画像フレームの一例を示す図である。
【図20】撮影された動画像を構成する画像フレームの一例を示す図である。
【図21】キーフレームとして選択されなかった画像フレームにおいて、外枠領域と内側領域に分離する際の境界領域を示す図である。
【図22】実施の形態に係る画像符号化装置の構成を示すブロック図である。
【図23】実施の形態に係る画像復号装置の構成を示すブロック図である。
【符号の説明】
10 画像符号化装置、 12 キーフレーム選定部、 14 マッチングプロセッサ、 16 対応点情報保持部、 18 符号化ストリーム生成部、 20 画像分離部、 22 中間画像生成部、 30 ストリーム出力部、 40画像復号装置、 42 ストリーム入力部、 44 ストリーム分離部、 48 外枠変更部、 50 表示部。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an image data processing technique. The present invention particularly relates to a technique for encoding or decoding image data including a plurality of frames.
[0002]
[Prior art]
The target area of MPEG (Motion Picture Expert Group), which is the de facto global standard for moving picture compression, has expanded from storage media such as CDs to transmission media such as networks and broadcasts. Digitalization of broadcasting cannot be considered without compression coding technology centered on MPEG. The barriers between broadcasting and telecommunications are breaking down, diversification of service providers is essential, and it is difficult to predict what progress digital culture will make in the broadband era.
[0003]
[Problems to be solved by the invention]
Despite the chaos, there are certain directions for video compression technology. That is, higher compression ratio and higher image quality are compatible. As is well known, block distortion may prevent high compression in MPEG.
[0004]
The present invention has been made in view of such a situation, and an object thereof is to provide an encoding and decoding technique for realizing efficient compression of image data. In particular, a new technique for realizing a high compression ratio has been developed. To provide.
[0005]
[Means for Solving the Problems]
The present invention relates to an image encoding and decoding technique. For this technique, a technique previously proposed by the present applicant in Japanese Patent No. 2927350 (hereinafter referred to as “prerequisite technique”) can be used.
[0006]
One embodiment of the present invention relates to an image encoding method. In this method, a key frame is selected from a plurality of image frames constituting a moving image, and an image frame not selected as a key frame (hereinafter, also referred to as a “non-selected frame”) is defined as an outer frame region and an inner region. And generating a coded data stream by incorporating the separated outer frame area and the key frame.
[0007]
A meaningful case of using the outer frame area is, for example, when a camera that has captured a key frame pans or zooms. In this case, a pixel that cannot correspond between the key frames occurs, and an erroneous correspondence occurs in the matching. This erroneous response is generally liable to concentrate on the end of the image. This is because, while being projected on one key frame, points that deviate from the field of view are concentrated on the ends in the other key frame. Therefore, the outer frame area at the image end uses the outer frame area of the image captured without using the intermediate image. For example, if the image size is 800 × 600 pixels, the generated intermediate image is used for the inner area of 600 × 400 pixels, and the actually captured image is used for the upper, lower, left, and right outer frame areas of 100 pixels each. You.
[0008]
The method may further include a step of detecting corresponding point information between key frames by image matching on a pixel-by-pixel basis. In this case, the step of generating an encoded data stream may incorporate the detected corresponding point information. Further, a difference between the non-selected frame and the corresponding intermediate image generated may be calculated, and the difference may be incorporated in the encoded data stream.
[0009]
In the step of separating the outer frame area and the inner area, the boundary between the outer frame area and the inner area may be non-linear. In general, the human eye tends to easily recognize that a boundary is artificial, such as a straight line. Therefore, the boundary line is formed into a non-linear shape, preferably a random shape.
[0010]
Another embodiment of the present invention relates to an image decoding method. The method includes the steps of obtaining an image of a plurality of key frames, an outer frame area of an image frame to be inserted between the key frames, generating an intermediate image based on the key frames, Replacing the outer frame area of the image with the acquired outer frame area.
[0011]
In addition, the method may further include a step of acquiring corresponding point information between key frames, and the step of generating an intermediate image may be performed by matching on a pixel basis using the corresponding point information.
[0012]
Note that the present invention does not require the prerequisite technology. In addition, the present invention is also applicable to any of the above-described constituent elements and steps which are arbitrarily exchanged, a part or all of the expressions are replaced or added between the method and the device, and the expressions are changed to a computer program or a recording medium. Is effective as
[0013]
In addition, among the above aspects, a part that generates corresponding point information between key frames and a part that generates an intermediate image using the same can use the base technology. However, the present invention does not require the base technology. Still images may be used for still images, such as generation of smooth intermediate images between a plurality of viewpoint images without depending on moving images.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
First, a multi-resolution singularity filter technology used in the embodiment and an image matching process using the same will be described in detail as “prerequisite technology”. These techniques have already been obtained by the present applicant in Japanese Patent No. 2927350, and are optimal for combination with the present invention. The image coding and image decoding apparatus using the base technology will be described with reference to FIG.
[0015]
According to the present invention, when an intermediate image is generated based on a key frame, the outer frame area of the intermediate image is replaced with the outer frame area of the image originally inserted at the position of the intermediate image. When an intermediate image is generated based on two key frames, especially when there is a figure or a subject that exists only in one of the key frames, matching may not be performed properly and the portion may be unnatural. . Therefore, instead of the intermediate image, the outer frame area of the actually existing image frame is embedded in the outer frame area where the subject is often present on only one side.
[0016]
[Embodiment of the base technology]
First, the basic technology of the base technology is described in detail in [1], and the processing procedure is specifically described in [2]. Further, [3] describes improvements made based on the base technology.
[1] Details of elemental technology
[1.1] Introduction
A new multi-resolution filter called a singularity filter is introduced to accurately calculate matching between images. No prior knowledge of the object is required. The calculation of matching between images is calculated at each resolution while proceeding through the resolution hierarchy. At that time, the hierarchy of the resolution is sequentially traced from a coarse level to a fine level. The parameters required for the calculation are set completely automatically by dynamic calculations similar to the human visual system. It is not necessary to manually specify corresponding points between images.
[0017]
The base technology can be applied to, for example, completely automatic morphing, object recognition, stereoscopic photogrammetry, volume rendering, generation of a smooth moving image from a small number of frames, and the like. When used for morphing, a given image can be automatically transformed. When used for volume rendering, intermediate images between sections can be accurately reconstructed. The same applies to the case where the distance between sections is long and the shape of the section changes greatly.
[0018]
[1.2] Hierarchy of singularity filter
The multi-resolution singularity filter according to the base technology can save the luminance and the position of each singularity included in the image while reducing the resolution of the image. Here, the width of the image is N and the height is M. Hereinafter, for simplicity, N = M = 2n(N is a natural number). Also, the section [0, N] ⊂R is described as I. Let the pixel of the image at (i, j) be p(I, j)(I, j∈I).
[0019]
Here, a multi-resolution hierarchy is introduced. The hierarchized image group is generated by a multi-resolution filter. The multi-resolution filter performs a two-dimensional search on the original image to detect a singular point, and extracts the detected singular point to generate another image having a lower resolution than the original image. . Here, the size of each image at the m-th level is 2m× 2m(0 ≦ m ≦ n). The singularity filter recursively constructs the following four types of new hierarchical images in a direction descending from n.
(Equation 1)
Figure 2004064474
However, here
(Equation 2)
Figure 2004064474
And Hereinafter, these four images are called sub-images (sub-images). minx ≦ t ≦ x + 1, Maxx ≦ t ≦ x + 1Are described as α and β, respectively, the sub-images can be described as follows.
[0020]
P(M, 0)= Α (x) α (y) p(M + 1,0)
P(M, 1)= Α (x) β (y) p(M + 1,1)
P(M, 2)= Β (x) α (y) p(M + 1,2)
P(M, 3)= Β (x) β (y) p(M + 1,3)
That is, they are considered to be like the tensor product of α and β. Each sub-image corresponds to a singular point. As is apparent from these equations, the singularity filter detects a singularity for each block composed of 2 × 2 pixels in the original image. At this time, a point having a maximum pixel value or a minimum pixel value is searched for in two directions of each block, that is, in the vertical and horizontal directions. As the pixel value, the luminance is adopted in the base technology, but various numerical values relating to the image can be adopted. The pixel with the maximum pixel value in both directions is the local maximum point, the pixel with the minimum pixel value in both directions is the local minimum point, the maximum pixel value in one of the two directions, and the minimum pixel value in the other. Are detected as saddle points.
[0021]
The singularity filter reduces the resolution of the image by representing the image of the block (here, four pixels) with the image of the singularity (here, one pixel) detected inside each block. From a theoretical point of view of the singularity, α (x) α (y) preserves the minimum point, β (x) β (y) preserves the maximum point, α (x) β (y) and β (x) α (y) preserves the saddle point.
[0022]
First, a singular point filter process is separately performed on a start point (source) image and an end point (destination) image to be matched to generate a series of image groups, that is, a start point hierarchical image and an end point hierarchical image. The start point hierarchical image and the end point hierarchical image are respectively generated in four types corresponding to the types of singular points.
[0023]
Thereafter, matching between the start hierarchical image and the end hierarchical image in a series of resolution levels is performed. First p(M, 0)Is used to match the minimum point. Next, based on the result, p(M, 1)Is used to match the saddle point, and p(M, 2)Is used to match other saddle points. And finally p(M, 3)Is used to match the maximum point.
[0024]
FIGS. 1C and 1D show the sub-image p of FIGS. 1A and 1B, respectively.(5,0)Is shown. Similarly, FIGS. 1E and 1F show p(5,1), FIG. 1 (g) and FIG. 1 (h)(5,2), FIG. 1 (i) and FIG. 1 (j)(5,3)Are respectively shown. As can be seen from these figures, the matching of the characteristic portions of the image is facilitated by using the sub-image. First p(5,0)The eyes become clear. This is because the eyes are the minimum point of luminance in the face. p(5,1)According to the mouth becomes clear. This is because the mouth has low brightness in the horizontal direction. p(5,2)According to the vertical lines on both sides of the neck are clear. Finally, p(5,3)This clarifies the brightest spots on the ears and cheeks. This is because these are the maximum points of luminance.
[0025]
Since the features of the image can be extracted using the singularity filter, for example, by comparing the features of the image captured by the camera with the features of several objects recorded in advance, the subject shown in the camera can be identified. can do.
[0026]
[1.3] Calculation of mapping between images
Let the pixel at the position (i, j) of the starting image be p(N) (I, j)And the pixel at the position (k, l) of the end point image is q(N) (K, l)Described by i, j, k, l∈I. Defines the energy of mapping between images (described below). This energy is determined by the difference between the luminance of the pixel of the start image and the luminance of the corresponding pixel of the end image, and the smoothness of the mapping. P with the lowest energy first(M, 0)And q(M, 0)Mapping f(M, 0): P(M, 0)→ q(M, 0)Is calculated. f(M, 0)P with minimum energy(M, 1), Q(M, 1)Mapping f(M, 1)Is calculated. This procedure is p(M, 3)And q(M, 3)The mapping f between(M, 3)It continues until the calculation of is completed. Each mapping f(M, i)(I = 0, 1, 2,...) Is called a submapping. f(M, i)Can be rearranged as follows for the convenience of the calculation of The reason why the sorting is necessary will be described later.
[0027]
(Equation 3)
Figure 2004064474
Here, σ (i) {0, 1, 2, 3}.
[0028]
[1.3.1] Bijective
When the matching between the start image and the end image is expressed by a mapping, the mapping should satisfy the bijection condition between the two images. This is because there is no conceptual advantage between the two images, and each pixel should be connected in a bijective and injective manner. However, unlike the usual case, the mapping to be constructed here is a digital version of the bijection. In the base technology, pixels are specified by grid points.
[0029]
The mapping from the starting sub-image (the sub-image provided for the starting image) to the ending sub-image (the sub-image provided for the ending image) is f(M, s): I / 2nm× I / 2nm→ I / 2nm× I / 2nm(S = 0, 1,...). Where f(M, s)(I, j) = (k, l) is p of the starting image(M, s) (I, j)Is the q of the end point image(M, s) (K, l)Means to be mapped to For simplicity, when f (i, j) = (k, l) holds, pixel q(K, l)To qf (i, j)It is described.
[0030]
When data is discrete like pixels (grid points) handled in the base technology, the definition of bijection is important. Here, they are defined as follows (i, i ', j, j', k, and l are all integers). First, each square area represented by R in the plane of the starting image,
(Equation 4)
Figure 2004064474
(I = 0, ..., 2m-1, j = 0, ..., 2m-1). Here, the direction of each side (edge) of R is determined as follows.
(Equation 5)
Figure 2004064474
This square must be mapped by mapping f to a quadrilateral in the destination image plane. f(M, s)A quadrilateral indicated by (R),
(Equation 6)
Figure 2004064474
Must satisfy the following bijection conditions:
[0031]
1. Quadrilateral f(M, s)The edges of (R) do not cross each other.
2. f(M, s)The directions of the edges of (R) are equal to those of R (clockwise in FIG. 2).
3. As a relaxation condition, a contraction map (retractions) is allowed.
[0032]
This is because there is only a unit mapping that completely satisfies the bijection condition unless some relaxation condition is set. Where f(M, s)The length of one edge of (R) is 0, that is, f(M, s)(R) may be a triangle. However, it should not be a figure whose area is 0, that is, one point or one line segment. When FIG. 2 (R) is the original quadrilateral, FIGS. 2 (A) and 2 (D) satisfy the bijection condition, but FIGS. 2 (B), 2 (C), and 2 (E). ) Is not satisfied.
[0033]
In an actual implementation, the following conditions may be further imposed to easily guarantee that the mapping is surjective. That is, each pixel on the boundary of the start image is mapped to a pixel occupying the same position in the end image. That is, f (i, j) = (i, j) (where i = 0, i = 2m-1, j = 0, j = 2m-1 on four lines). This condition is hereinafter also referred to as “additional condition”.
[0034]
[1.3.2] Energy of mapping
[1.3.2.1] Cost related to pixel luminance
Define the energy of the mapping f. The goal is to find a mapping that minimizes energy. The energy is mainly determined by the difference between the luminance of the pixel of the start image and the luminance of the pixel of the corresponding end image. That is, the mapping f(M, s)Energy C at point (i, j)(M, s) (I, j)Is determined by the following equation.
(Equation 7)
Figure 2004064474
Here, V (p(M, s) (I, j)) And V (q(M, s) f (i, j)) Is the pixel p(M, s) (I, j)And q(M, s) f (i, j)Is the brightness of the image. f total energy C(M, s)Is one evaluation expression for evaluating the matching.(M, s) (I, j)Can be defined as the sum of
(Equation 8)
Figure 2004064474
[1.3.2.2] Cost related to pixel location for smooth mapping
In order to obtain a smooth mapping, another energy Df for the mapping is introduced. This energy is independent of the brightness of the pixel,(M, s) (I, j)And q(M, s) f (i, j)(I = 0, ..., 2m-1, j = 0, ..., 2m-1). Mapping f at point (i, j)(M, s)Energy D(M, s) (I, j)Is defined by the following equation.
(Equation 9)
Figure 2004064474
Here, the coefficient parameter η is a real number of 0 or more, and
(Equation 10)
Figure 2004064474
[Equation 11]
Figure 2004064474
And here,
(Equation 12)
Figure 2004064474
And f (i ′, j ′) is determined to be 0 for i ′ <0 and j ′ <0. E0Is determined by the distance between (i, j) and f (i, j). E0Prevents pixels from being mapped to pixels that are too far apart. Where E0Will later be replaced by another energy function. E1Guarantees the smoothness of the mapping. E1Is p(I, j)Represents the distance between the displacement of an adjacent point and the displacement of its adjacent point. Based on the above considerations, energy D which is another evaluation formula for evaluating matchingfIs determined by the following equation.
(Equation 13)
Figure 2004064474
[1.3.2.3] Total energy of mapping
The total energy of the mapping, that is, the comprehensive evaluation formula relating to the integration of multiple evaluation formulas is λC(M, s) f+ D(M, s) fIs defined by Here, the coefficient parameter λ is a real number of 0 or more. The purpose is to detect a state where the comprehensive evaluation expression takes an extreme value, that is, to find a mapping giving the minimum energy represented by the following expression.
[Equation 14]
Figure 2004064474
Note that for λ = 0 and η = 0, the mapping is a unitary mapping (ie, all i = 0,..., 2m-1 and j = 0, ..., 2mF for -1(M, s)(I, j) = (i, j)). As will be described later, in the base technology, since the case where λ = 0 and η = 0 are evaluated first, the mapping can be gradually deformed from the unit mapping. Suppose that the position of λ in the comprehensive evaluation formula is changed and C(M, s) f+ ΛD(M, s) fIf λ = 0 and η = 0, the overall evaluation formula is C(M, s) f, And pixels that have no relation at all are simply associated with each other simply because of their close luminance, and the mapping becomes meaningless. There is no point in transforming a mapping based on such a meaningless mapping. For this reason, consideration is given to how to give the coefficient parameters so that the unit mapping is selected as the best mapping at the start of the evaluation.
[0035]
Similarly to this base technology, the optical flow also takes into account the difference in brightness between pixels and the smoothness. However, optical flow cannot be used for image conversion. This is because only the local movement of the object is considered. A global correspondence can be detected by using the singularity filter according to the base technology.
[0036]
[1.3.3] Determination of mapping by introducing multiple resolutions
A mapping f that gives the minimum energy and satisfies the bijection conditionminIs obtained using a multi-resolution hierarchy. At each resolution level, the mapping between the starting sub-image and the ending sub-image is calculated. Starting from the highest level (the coarsest level) in the resolution hierarchy, the mapping at each resolution level is determined taking into account the mapping at other levels. The number of mapping candidates at each level is limited by using higher, or coarser, levels of mapping. More specifically, when determining a mapping at a certain level, a mapping obtained at a level one coarser than that is imposed as a kind of constraint condition.
[0037]
First,
(Equation 15)
Figure 2004064474
Holds, p(M-1, s) (I ', j'), Q(M-1, s) (I ', j')To p(M, s) (I, j), Q(M, s) (I, j)Will be referred to as "parent." [X] is the maximum integer not exceeding x. Also p(M, s) (I, j), Q(M, s) (I, j)To p(M-1, s) (I ', j'), Q(M-1, s) (I ', j')Child. The function parent (i, j) is defined by the following equation.
(Equation 16)
Figure 2004064474
p(M, s) (I, j)And q(M, s) (K, l)The mapping f between(M, s)Is determined by performing an energy calculation to find the minimum. f( m, s)The value of (i, j) = (k, l) is f(M-1, s)By using (m = 1, 2,..., N), it is determined as follows. First, q(M, s) (K, l)Imposes the condition that it must be inside the following quadrilateral, and narrows down those mappings that satisfy the bijection condition that are more realistic.
[Equation 17]
Figure 2004064474
However, here
(Equation 18)
Figure 2004064474
It is. The quadrilateral thus determined is referred to as p(M, s) (I, j)Is referred to as an inherited quadrilateral. The pixel that minimizes the energy inside the inherited quadrilateral is determined.
[0038]
FIG. 3 shows the above procedure. In the figure, pixels A, B, C, and D of the start image are mapped to A ', B', C ', and D' of the end image at the (m-1) th level, respectively. Pixel p(M, s) (I, j)Is a pixel q existing inside the inherited quadrilateral A'B'C'D '.(M, s) f (m) (i, j)Must be mapped to With the above considerations, the mapping from the (m-1) th level mapping to the mth level mapping is performed.
[0039]
Energy E defined earlier0Is the submap f at the m-th level(M, 0) Is replaced by the following equation.
[Equation 19]
Figure 2004064474
Also, the submap f(M, s)The following equation is used to calculate.
(Equation 20)
Figure 2004064474
In this way, a mapping is obtained that keeps the energy of all submappings at a low value. According to Equation 20, the submappings corresponding to different singularities are associated within the same level so that the submappings have a high degree of similarity. Equation 19 gives f(M, s)It shows the distance between (i, j) and the position of the point to be projected at (i, j) when considered as a part of the pixel at the (m-1) th level.
[0040]
If there is no pixel satisfying the bijection condition inside the inherited quadrilateral A'B'C'D ', the following measures are taken. First, a pixel whose distance from the boundary line of A'B'C'D 'is L (initially L = 1) is examined. If the one with the minimum energy satisfies the bijection condition,(M, s)Select as the value of (i, j). If such a point is found or L is its upper limit L(M)L is increased until it reaches max. L(M)max is fixed for each level m. If no such point is found, a mapping in which the area of the destination quadrilateral becomes zero by temporarily ignoring the third condition of bijection is recognized, and f(M, s)(I, j) is determined. If a point satisfying the condition is still not found, the first and second conditions for bijection are removed.
[0041]
An approximation using multiple resolutions is essential to determine the global correspondence between images while avoiding the mapping being affected by image details. Unless an approximation method based on multiple resolutions is used, it is impossible to find the correspondence between pixels at a long distance. In that case, the size of the image must be limited to a very small one, and only images with small changes can be handled. Furthermore, since the mapping is usually required to be smooth, it is difficult to find the correspondence between such pixels. This is because the energy of mapping from a pixel at a distance to the pixel is high. According to the approximation method using multiple resolutions, an appropriate correspondence between such pixels can be found. This is because those distances are small at the upper level (coarse level) of the resolution hierarchy.
[0042]
[1.4] Automatic determination of optimal parameter values
One of the major drawbacks of existing matching techniques is the difficulty of parameter adjustment. In most cases, parameter adjustments are made manually and it is extremely difficult to choose the optimal value. According to the method according to the base technology, the optimal parameter value can be completely automatically determined.
[0043]
The system according to the base technology includes two parameters, λ and η. In short, λ is the weight of the difference in luminance between pixels, and η indicates the rigidity of the mapping. The initial values of these parameters are 0. First, λ is fixed to 0 and λ is gradually increased from 0. When increasing the value of λ and minimizing the value of the overall evaluation expression (Equation 14), C(M, s) fGenerally decreases. This basically means that the two images have to match better. However, when λ exceeds the optimum value, the following phenomenon occurs.
[0044]
1. Pixels that should not correspond to each other are incorrectly associated simply because the luminance is close.
2. As a result, the correspondence between the pixels becomes incorrect, and the mapping starts to be lost.
[0045]
3. As a result, in equation 14, D(M, s) fTries to increase sharply.
4. As a result, the value of equation (14) tends to increase rapidly, so that D(M, s) fF to suppress the rapid increase of(M, s)Changes, and as a result, C(M, s) fIncrease.
[0046]
Therefore, while maintaining the state where Equation 14 takes the minimum value while increasing λ, C(M, s) fIs detected, and λ is set as an optimum value at η = 0. Next, increase η little by little and C(M, s) fIs automatically determined by the method described later. Λ is also determined corresponding to the η.
[0047]
This method is similar to the operation of the focus mechanism of the human visual system. In the human visual system, matching of the images of the left and right eyes is performed while moving one eye. When an object is clearly recognizable, its eyes are fixed.
[0048]
[1.4.1] Dynamic determination of λ
λ is increased from 0 at a predetermined interval, and the submapping is evaluated each time the value of λ changes. As in Equation 14, the total energy is λC(M, s) f+ D(M, s) fDefined by D in equation 9(M, s) fRepresents smoothness, and theoretically becomes minimum in the case of unit mapping, and the more distorted the mapping, the more E0Also E1Will also increase. E1Is an integer, so D(M, s) fHas a minimum step size of 1. Therefore, the current λC(M, s) (I, j)If the change (decrease amount) is not more than 1, the total energy cannot be reduced by changing the mapping. Because, as the mapping changes, D(M, s) fIncreases by one or more, so that λC(M, s) (I, j)This is because the total energy does not decrease unless the value decreases by one or more.
[0049]
Under these conditions, as λ increases, C(M, s) (I, j)Decrease. C(M, s) (I, j)Is described as h (l). h (l) is the energy C(M, s) (I, j)Is l2Is the number of pixels. λl2To satisfy ≧ 1, for example, l2Consider the case of = 1 / λ. λ is λ1To λ2When it changes by a very small amount
(Equation 21)
Figure 2004064474
A pixels represented by
(Equation 22)
Figure 2004064474
Changes to a more stable state with the energy of Here, it is assumed that the energy of these pixels is all zero. This equation is C(M, s) fIs the value of
[Equation 23]
Figure 2004064474
Only change, so that
(Equation 24)
Figure 2004064474
Holds. Since h (l)> 0, C(M, s) fDecreases. However, when λ is going to exceed the optimum value, the above phenomenon, ie, C(M, s) fIncrease occurs. By detecting this phenomenon, the optimum value of λ is determined.
[0050]
When H (h> 0) and k are constants,
(Equation 25)
Figure 2004064474
Assuming that
(Equation 26)
Figure 2004064474
Holds. At this time, if k ≠ -3,
[Equation 27]
Figure 2004064474
It becomes. This is C(M, s) f(C is a constant).
[0051]
When detecting the optimal value of λ, the number of pixels that violates the bijection condition may be examined for safety. Here, when determining the mapping of each pixel, the probability of violating the bijection condition is p0Assume that in this case,
[Equation 28]
Figure 2004064474
Holds, the number of pixels that violate the bijection condition increases at the following rate.
(Equation 29)
Figure 2004064474
Therefore,
[Equation 30]
Figure 2004064474
Is a constant. Assuming that h (l) = HlkWhen assuming, for example,
(Equation 31)
Figure 2004064474
Becomes a constant. However, when λ exceeds the optimal value, the above value increases rapidly. When this phenomenon is detected, B0λ3/2 + k / 2/ 2mIs abnormal value B0thresTo determine the optimal value of λ. Similarly, B1λ3/2 + k / 2/ 2mIs abnormal value B1thres, The rate of increase B in pixels that violates the third condition of bijection1Check. Factor 2mThe reason for introducing is described later. This system is not sensitive to these two thresholds. These thresholds are determined by the energy C(M, s) fCan be used to detect over-distortion of the missed mapping.
[0052]
In the experiment, the submap f(M, s)When calculating λ, if λ exceeds 0.1, f(M, s)Stop calculating f(M, s + 1)Was moved to the calculation. This is because when λ> 0.1, only a difference of “3” in the luminance level 255 of the pixel affected the calculation of the submapping, and when λ> 0.1, it was difficult to obtain a correct result. .
[0053]
[1.4.2] Histogram h (l)
C(M, s) fDoes not depend on the histogram h (l). In testing for bijection and its third condition, it may be affected by h (l). Actually (λ, C(M, s) f), K is usually around 1. In the experiment, k = 1 was used, and B0λ2And B1λ2Was inspected. If the true value of k is less than 1, then B0λ2And B1λ2Is not a constant and the factor λ(1-k) / 2Gradually increase according to. If h (l) is a constant, for example, the factor is λ1/2It is. However, the difference is equal to the threshold B0thresCan be absorbed by setting it correctly.
[0054]
Here, the center of the starting point image is (x0, Y0), Assume a circular object of radius r.
(Equation 32)
Figure 2004064474
On the other hand, the end point image has the center (x1, Y1), Assume that the object has a radius of r.
[Equation 33]
Figure 2004064474
Where c (x) is c (x) = xkIt is assumed that Center (x0, Y0) And (x1, Y1) Is sufficiently far, the histogram h (l) has the form:
(Equation 34)
Figure 2004064474
When k = 1, the image shows objects with sharp boundaries embedded in the background. This object is darker in the center and brighter as you go around. When k = -1, the image represents an object with ambiguous boundaries. This object is brightest in the center and gets darker as it goes around. The generality of objects can be considered to be intermediate between these two types of objects without loss of generality. Therefore, k can cover most cases as −1 ≦ k ≦ 1, and it is guaranteed that Equation 27 is generally a decreasing function.
[0055]
Note that, as can be seen from Equation 34, r is affected by the resolution of the image, that is, r is proportional to 2m. For this purpose, a factor of 2 m was introduced in [1.4.1].
[0056]
[1.4.3] Dynamic determination of η
The parameter η can be automatically determined in the same manner. First, η = 0, and the final mapping f at the finest resolution(N)And energy C(N) fIs calculated. Then, η is increased by a certain value Δη, and again the final mapping f at the finest resolution(N)And energy C(N) fIs recalculated. This process is continued until an optimum value is obtained. η indicates the rigidity of the mapping. This is because the weight of the following equation is used.
(Equation 35)
Figure 2004064474
When η is 0, D(N) fIs determined independently of the immediately preceding submapping, and the current submapping is elastically deformed and excessively distorted. On the other hand, when η is a very large value, D(N) fIs almost completely determined by the immediately preceding submap. At this time, the submapping is very rigid, and the pixels are projected to the same place. As a result, the mapping becomes a unit mapping. When the value of η gradually increases from 0, C(N) fGradually decreases. However, when the value of η exceeds the optimum value, the energy starts increasing as shown in FIG. In the figure, the X axis is η and the Y axis is CfIt is.
[0057]
In this way C(N) fTo obtain the optimal value of η. However, as compared with the case of λ, various factors affect the calculation.(N) fChanges with small fluctuations. This is because in the case of λ, the submapping is only recalculated once each time the input changes by a small amount, but in the case of η, all the submappings are recalculated. Therefore, the obtained C(N) fIt cannot be immediately determined whether the value of is minimum. If a candidate for the minimum value is found, it is necessary to search for the true minimum value by setting a finer section.
[0058]
[1.5] Super sampling
When determining the correspondence between pixels, to increase the degree of freedom, f(M, s)Can be extended to R × R (R is a set of real numbers). In this case, the brightness of the pixel of the end point image is interpolated, and the non-integer point,
[Equation 36]
Figure 2004064474
F with luminance at(M, s)Is provided. That is, super sampling is performed. In the experiment, f(M, s)Is allowed to take integer and half-integer values,
(37)
Figure 2004064474
Is
[Equation 38]
Figure 2004064474
Given by.
[0059]
[1.6] Normalization of pixel luminance of each image
When the start-point image and the end-point image include extremely different objects, it is difficult to directly use the luminance of the original pixel for calculating the mapping. Energy C related to luminance due to large difference in luminance(M, s) fIs too large and correct evaluation is difficult.
[0060]
For example, consider a case where a human face and a cat face are matched. The cat's face is covered with hair and contains very bright and very dark pixels. In this case, the sub-image is first normalized in order to calculate the sub-map between the two faces. That is, the brightness of the darkest pixel is set to 0, the brightness of the brightest pixel is set to 255, and the brightness of the other pixels is obtained by linear interpolation.
[0061]
[1.7] Implementation
A recursive method is used in which the calculation proceeds linearly according to the scanning of the starting image. First, for the leftmost pixel (i, j) = (0,0) at the top, f(M, s)Determine the value of. Next, while increasing i by 1, each f(M, s)Determine the value of (i, j). When the value of i reaches the width of the image, the value of j is increased by 1 and i is returned to 0. After that, f(M, s)(I, j) is determined. If pixel correspondence is determined for all points, one mapping f(M, s)Is determined.
Some p(I, j)Corresponding point qf (i, j)Is determined, then p(I, j + 1)Corresponding point qf (i, j + 1)Is determined. At this time, qf (i, j + 1)Is q to satisfy the bijection conditionf (i, j)Is limited by the position of Therefore, the priority of the system becomes higher as the corresponding point is determined first. If the state where (0,0) always has the highest priority continues, an extra deflection is added to the final mapping required. In the base technology, in order to avoid this state, f(M, s)Is determined by the following method.
[0062]
First, when (s mod 4) is 0, the values are determined while gradually increasing i and j starting from (0, 0). When (s mod 4) is 1, the right end point of the uppermost line is set as a start point, and i is decreased and j is increased. When (s mod 4) is 2, the rightmost point in the bottom row is set as a starting point, and the values are determined while decreasing i and j. When (smod @ 4) is 3, the left end point of the bottom row is set as a starting point, and i is increased and j is decreased while being determined. Since the concept of the submapping, that is, the parameter s does not exist at the n-th level having the finest resolution, the two directions are continuously calculated assuming that s = 0 and s = 2.
[0063]
In an actual implementation, a penalty is given to a candidate that violates the bijection condition, so that the f(M, s)(I, j) (m = 0,..., N) were selected. The energy D (k, l) of a candidate that violates the third condition is multiplied by φ, while a candidate that violates the first or second condition is multiplied by ψ. In this case, φ = 2 and ψ = 100000 were used.
[0064]
In order to check the bijection condition described above, (k, l) = f(M, s)The following tests were performed in determining (i, j). That is, f(M, s)For each lattice point (k, l) included in the inherited quadrilateral of (i, j), it is checked whether or not the z component of the outer product of the following equation is 0 or more.
[Equation 39]
Figure 2004064474
However, here
(Equation 40)
Figure 2004064474
(Equation 41)
Figure 2004064474
(Where the vector is a three-dimensional vector and the z-axis is defined in an orthogonal right-handed coordinate system). If W is negative then D for that candidate(M, s) (K, l)Give a penalty by multiplying by ψ, and try to make as few choices as possible.
[0065]
FIGS. 5A and 5B show the reason for checking this condition. FIG. 5A shows a candidate without a penalty, and FIG. 5B shows a candidate with a penalty. Mapping f for adjacent pixel (i, j + 1)(M, s)When determining (i, j + 1), if the z component of W is negative, no pixel satisfies the bijection condition on the source image plane. Because q(M, s) (K, l)Is to cross the boundary of an adjacent quadrilateral.
[0066]
[1.7.1] Order of submapping
The implementation uses σ (0) = 0, σ (1) = 1, σ (2) = 2, σ (3) = 3, σ (4) = 0 when the resolution level is even, In this case, σ (0) = 3, σ (1) = 2, σ (2) = 1, σ (3) = 0, and σ (4) = 3 were used. As a result, the sub-mapping was shuffled appropriately. Note that there are originally four types of submappings, and s is one of 0 to 3. However, processing corresponding to s = 4 was actually performed. The reason will be described later.
[0067]
[1.8] Interpolation calculation
After the mapping between the start image and the end image is determined, the brightness of the corresponding pixels is interpolated. In the experiment, trilinear interpolation was used. Square p in the source image plane(I, j)p(I + 1, j)p(I, j + 1)p(I + 1, j + 1)Is a quadrangle q on the destination image planef (i, j)qf (i + 1, j)qf (i, j + 1)qf (i + 1, j + 1)Assume that it is projected to For simplicity, the distance between images is set to 1. The pixel r (x, y, t) (0 ≦ x ≦ N−1, 0 ≦ y ≦ M−1) of the intermediate image whose distance from the starting image plane is t (0 ≦ t ≦ 1) is as follows. Is required. First, the position of the pixel r (x, y, t) (where x, y, t , R) is obtained by the following equation.
(Equation 42)
Figure 2004064474
Subsequently, the luminance of the pixel at r (x, y, t) is determined using the following equation.
[Equation 43]
Figure 2004064474
Here, dx and dy are parameters and change from 0 to 1.
[0068]
[1.9] Mapping when constraints are imposed
He described the determination of the mapping when no constraints existed. However, when the correspondence between the specific pixels of the start point image and the end point image is defined in advance, the mapping can be determined based on this as a constraint.
[0069]
The basic idea is to roughly deform the start-point image by a rough mapping that moves a specific pixel of the start-point image to a specific pixel of the end-point image, and then calculate the mapping f accurately.
[0070]
First, a rough mapping that projects a specific pixel of the start image to a specific pixel of the end image and projects other pixels of the start image to an appropriate position is determined. That is, a pixel that is close to a particular pixel is a mapping that is projected near where the particular pixel is projected. Here, the rough mapping of the m-th level is F(M)It is described.
[0071]
The rough mapping F is determined in the following manner. First, mappings are specified for some pixels. N for the starting imagesPixels,
[Equation 44]
Figure 2004064474
When specifying, determine the following values:
[Equation 45]
Figure 2004064474
The displacement amount of the other pixels of the starting image is p(Ih, jh)(H = 0, ..., nsThis is an average obtained by weighting the displacement of -1). That is, the pixel p(I, j)Is projected to the following pixels of the end point image.
[Equation 46]
Figure 2004064474
However, here
[Equation 47]
Figure 2004064474
[Equation 48]
Figure 2004064474
And
[0072]
Then, F(M), So that the candidate map f close to has less energy,(M, s) (I, j)To change. To be precise, D(M, s) (I, j)Is
[Equation 49]
Figure 2004064474
It is. However,
[Equation 50]
Figure 2004064474
And κ, ρ ≧ 0. Finally, f is completely determined by the automatic mapping process described above.
[0073]
Where f(M, s)(I, j) is F(M)When they are close enough to (i, j), that is, their distance is
(Equation 51)
Figure 2004064474
Within E2 (M, s) (I, j)Should be zero. The reason for such definition is that each f(M, s)(I, j) is F(M)This is because, as long as the value is sufficiently close to (i, j), it is desired to automatically determine the value so as to settle to an appropriate position in the end point image. For this reason, the exact correspondence need not be specified in detail, and the start image is automatically mapped to match the end image.
[2] Specific processing procedure
The flow of processing by each element technology of [1] will be described.
FIG. 6 is a flowchart showing the overall procedure of the base technology. As shown in the figure, first, processing using a multi-resolution singularity filter is performed (S1), and then matching between the start point image and the end point image is performed (S2). However, S2 is not essential, and processing such as image recognition may be performed based on the features of the image obtained in S1.
[0074]
FIG. 7 is a flowchart showing details of S1 in FIG. Here, it is assumed that the start image and the end image are matched in S2. Therefore, the starting point image is first hierarchized by the singular point filter (S10), and a series of starting point hierarchical images is obtained. Subsequently, the end image is hierarchized by the same method (S11) to obtain a series of end hierarchical images. However, the order of S10 and S11 is arbitrary, and the start hierarchical image and the end hierarchical image can be generated in parallel.
[0075]
FIG. 8 is a flowchart showing details of S10 in FIG. Original source image size is 2n× 2nAnd Since the starting hierarchical image is created in order from the one with the smallest resolution, the parameter m indicating the resolution level to be processed is set to n (S100). Next, the m-th level image p(M, 0), P(M, 1), P(M, 2), P(M, 3), A singular point is detected using a singular point filter (S101), and the m-th level image p(M-1,0), P(M-1, 1), P(M-1, 2), P(M-1, 3)Is generated (S102). Here, since m = n, p(M, 0)= P(M, 1)= P(M, 2)= P(M, 3)= P(N)Thus, four types of sub-images are generated from one start-point image.
[0076]
FIG. 9 shows the correspondence between a part of the m-th level image and a part of the (m-1) th level image. Numerical values in the figure indicate the luminance of each pixel. P in FIG.(M, s)Is p(M, 0)~ P(M, 3)Symbolizes the four images of(M-1,0)To generate(M, s)Is p(M, 0)I believe that. According to the rule shown in [1.2], p(M-1,0)Is, for example, “3”, p among the four pixels included in the block in which the luminance is written in FIG.(M-1, 1)Is "8", p(M-1, 2)Is "6", p(M-1, 3)Is obtained, and this block is replaced with one obtained pixel. Therefore, the size of the sub-image at the (m-1) th level is 2m-1× 2m-1become.
[0077]
Subsequently, m is decremented (S103 in FIG. 8), it is confirmed that m is not negative (S104), and the process returns to S101 to generate a sub-image having a coarse resolution. As a result of this repetitive processing, S = 0 ends when m = 0, that is, when the 0th level sub-image is generated. The size of the 0th level sub-image is 1 × 1.
[0078]
FIG. 10 illustrates the starting hierarchical image generated in S10 in a case where n = 3. Only the first start point image is common to the four series, and the sub-images are generated independently thereafter depending on the type of the singular point. Note that the processing in FIG. 8 is common to S11 in FIG. 7, and the destination hierarchical image is also generated through the same procedure. Thus, the process in S1 of FIG. 6 is completed.
[0079]
In the base technology, a preparation for matching evaluation is made in order to proceed to S2 in FIG. FIG. 11 shows the procedure. As shown in the figure, first, a plurality of evaluation expressions are set (S30). Energy C for the pixel introduced in [1.3.2.1](M, s) fAnd the energy D related to the smoothness of the mapping introduced in [1.3.2.2](M, s) fThat is it. Next, these evaluation expressions are integrated to form a comprehensive evaluation expression (S31). Total energy λC introduced in [1.3.2.3](M, s) f+ D(M, s) fThat is, using the η introduced in [1.3.2.2],
(Equation 52)
Figure 2004064474
It becomes. Here, the sum is 0, 1, ..., 2 for i and j, respectively.mCalculate with -1. The preparation for the matching evaluation is now completed.
[0080]
FIG. 12 is a flowchart showing details of S2 of FIG. As described in [1], matching between the start hierarchical image and the end hierarchical image is performed between images having the same resolution level. In order to obtain good global matching between images, matching is calculated in order from the level with the lowest resolution. Since the start point hierarchical image and the end point hierarchical image are generated using the singular point filter, the position and luminance of the singular point are clearly preserved even at the coarse resolution level, and the result of global matching is lower than in the past. It will be very good.
[0081]
As shown in FIG. 12, first, the coefficient parameter η is set to 0 and the level parameter m is set to 0 (S20). Subsequently, matching is calculated between each of the four m-level sub-images in the start hierarchical image and each of the m-th four sub-images in the destination hierarchical image, and the bijection condition is satisfied and the energy is satisfied. Four kinds of submappings f that minimize(M, s)(S = 0, 1, 2, 3) is obtained (S21). The bijection condition is checked using the inheritance quadrilateral described in [1.3.3]. At this time, as shown in Expressions 17 and 18, the sub-mappings at the m-th level are constrained by those at the (m-1) -th level, so that matching at a lower resolution level is sequentially used. This is a vertical reference between different levels. It should be noted that although m = 0 now and there is no coarser level, this exceptional processing will be described later with reference to FIG.
On the other hand, horizontal reference within the same level is also performed. As in Equation 20 of [1.3.3], f(M, 3)Is f(M, 2)And f(M, 2)Is f(M, 1)And f(M, 1)Is f(M, 0)To be similar to each other. The reason is that even if the types of singularities are different, it is unnatural that the submappings are completely different as long as they are originally included in the same start image and end image. As can be seen from Expression 20, the closer the submappings are, the smaller the energy is, and the matching is considered to be good.
[0082]
Note that f to be determined first(M, 0)Since there is no sub-mapping that can be referred to at the same level, one coarse level is referred to as shown in Expression 19. However, in the experiment, f(M, 3)After this is obtained, f(M, 0)Was updated once. This substitutes s = 4 into equation 20, and f(M, 4)The new f(M, 0)Is equivalent to f(M, 0)And f(M, 3)In order to avoid the tendency of the relevance of the to be too low, this measure improved the experimental results. In addition to this measure, the experiment also shuffled the submap shown in [1.7.1]. This is also intended to keep the degree of relevance between submappings originally determined for each type of singularity closely. The point at which the position of the start point is changed according to the value of s in order to avoid the deflection depending on the start point of the processing is as described in [1.7].
[0083]
FIG. 13 is a diagram showing how the sub-mapping is determined at the 0th level. At level 0, each sub-image consists of only one pixel, so four sub-mapsf (0, s)Are automatically determined to be unit maps. FIG. 14 is a diagram showing how the sub-mapping is determined at the first level. At the first level, each sub-image is composed of four pixels. In the figure, these four pixels are indicated by solid lines. Now p(1, s)The corresponding point of point x of q(1, s)Take the following steps when searching for
[0084]
1. An upper left point a, an upper right point b, a lower left point c, and a lower right point d of the point x are obtained at the first level of resolution.
2. A pixel to which the points a to d belong at one coarse level, that is, the 0th level, is searched. In the case of FIG. 14, points a to d belong to pixels A to D, respectively. However, the pixels A to C are virtual pixels that do not originally exist.
3. The corresponding points A 'to D' of the pixels A to D already determined at the 0th level are q(1, s)Plot in. Pixels A 'to C' are virtual pixels and are assumed to be at the same positions as pixels A to C, respectively.
4. Assuming that the corresponding point a 'of the point a in the pixel A is in the pixel A', the point a 'is plotted. At this time, it is assumed that the position occupied by the point a in the pixel A (in this case, the lower right) is the same as the position occupied by the point a 'in the pixel A'.
The corresponding points b 'to d' are plotted in the same manner as in 5.4, and an inherited quadrilateral is formed at points a 'to d'.
6. The corresponding point x 'of the point x is searched so as to minimize the energy in the inherited quadrilateral. The candidates for the corresponding point x 'may be limited to, for example, those in which the center of the pixel is included in an inherited quadrilateral. In the case of FIG. 14, all four pixels are candidates.
[0085]
The above is the procedure for determining the corresponding point of the point x. The same processing is performed for all other points to determine a submapping. At the second and higher levels, the shape of the inherited quadrilateral is considered to gradually collapse, so that a situation occurs in which the pixels A 'to D' are spaced apart as shown in FIG.
[0086]
When the four sub-maps of the m-th level are determined in this way, m is incremented (S22 in FIG. 12), it is confirmed that m does not exceed n (S23), and the process returns to S21. Hereinafter, each time the process returns to S21, a sub-mapping of a finer resolution level is obtained, and when the process returns to S21, the mapping f of the n-th level is obtained.(N)Decide. Since this mapping is fixed with respect to η = 0, f(N)(Η = 0).
[0087]
Next, η is shifted by Δη and m is cleared to zero in order to obtain mappings for different η (S24). The new η is the predetermined search censoring value ηmaxIs not exceeded (S25), the process returns to S21, and the mapping f(N)(Η = Δη) is obtained. This processing is repeated, and in S21, f(N)(Η = iΔη) (i = 0, 1,...) Is obtained. η is ηmaxIs exceeded, the process proceeds to S26, and the optimum η = η is determined by the method described later.optAnd f(N)(Η = ηopt) Is finally mapped f(N)And
[0088]
FIG. 15 is a flowchart showing details of S21 in FIG. According to this flowchart, a submapping at the m-th level is determined for a certain fixed η. When determining the submapping, the base technology determines the optimum λ independently for each submapping.
[0089]
As shown in the figure, first, s and λ are cleared to zero (S210). Next, the submap f that minimizes the energy for λ at that time (and implicitly for η)(M, s)(S211), and this is(M, s)Write (λ = 0). To find the mappings for different λ, λ is shifted by Δλ and the new λ ismaxIs not exceeded (S213), the process returns to S211 and f(M, s)(Λ = iΔλ) (i = 0, 1,...) Is obtained. λ is λmaxIs exceeded, the process proceeds to S214, and the optimal λ = λoptAnd f(M, s)(Λ = λopt) Is finally mapped f(M, s)(S214).
[0090]
Next, to obtain another submapping at the same level, λ is cleared to zero and s is incremented (S215). Confirm that s does not exceed 4 (S216), and return to S211. If s = 4, then f(M, 3)Using f(M, 0)Is updated, and the determination of the sub-mapping at that level is completed.
[0091]
FIG. 16 shows f obtained by changing λ for certain m and s.(M, s)(Λ = iΔλ) (i = 0, 1,...) Energy C(M, s) fIt is a figure showing the behavior of. As described in [1.4], when λ increases, usually C(M, s) fDecreases. However, when λ exceeds the optimum value, C(M, s) fTurns to increase. Therefore, in this base technology, C(M, s) fIs the minimum value of λoptDecide. As shown in FIG.optAgain in the range of(M, s) fEven if is small, the mapping is already distorted at that point and it is meaningless, so it is sufficient to pay attention to the first minimum point. λoptIs determined independently for each submap, and finally f(N)One is also determined.
[0092]
On the other hand, FIG. 17 shows f obtained while changing η.(N)Energy corresponding to (η = iΔη) (i = 0, 1,...)(N) fIt is a figure showing the behavior of. Again, if η increases, usually C(N) fDecreases, but when η exceeds the optimal value, C(N) fTurns to increase. So C(N) fIs the minimum value of ηoptDecide. FIG. 17 may be considered as an enlarged view of the vicinity of zero on the horizontal axis in FIG. ηoptF is decided(N)Can be finally determined.
[0093]
As described above, according to the base technology, various advantages can be obtained. First, since there is no need to detect an edge, the problem of the conventional edge detection type technology can be solved. Also, a priori knowledge of the objects included in the image is not required, and automatic detection of corresponding points is realized. According to the singular point filter, the luminance and position of the singular point can be maintained even at a coarse resolution level, which is extremely advantageous for object recognition, feature extraction, and image matching. As a result, it is possible to construct an image processing system that significantly reduces manual work.
[0094]
In addition, the following modified technologies are also conceivable for the base technology.
(1) In the base technology, parameters are automatically determined when matching is performed between the start hierarchical image and the end hierarchical image, but this method performs matching between two normal images, not between hierarchical images. Available for all cases.
[0095]
For example, the energy E related to the difference in pixel brightness between two images0And the energy E related to the positional deviation of the pixel1Are the evaluation expressions, and their linear sum Etot= ΑE0+ E1Is defined as a comprehensive evaluation formula. Attention is paid to the vicinity of the extreme value of this comprehensive evaluation formula, and α is automatically determined. That is, for various α, EtotFind a mapping that minimizes Of those mappings, E1Is determined as an optimal parameter when the value of the minimum takes a minimum value. The mapping corresponding to the parameter is finally regarded as the optimal matching between the two images.
[0096]
There are various other methods for setting the evaluation formula, for example, 1 / E1And 1 / E2For example, the larger the evaluation result is, the larger the evaluation result becomes. The comprehensive evaluation formula does not necessarily need to be a linear sum, and an n-th sum (n = 2, 、, −1, −2, etc.), a polynomial, an arbitrary function, or the like may be appropriately selected.
[0097]
The parameter may be any parameter such as only α, two cases of η and λ as in the base technology, and more cases. If the parameter is 3 or more, it is determined by changing it one by one.
(2) In the base technology, after determining the mapping so that the value of the comprehensive evaluation formula is minimized, C is one evaluation formula that constitutes the comprehensive evaluation formula.(M, s) fThe parameter at which the minimum value was detected was determined. However, in place of such a two-stage process, depending on the situation, it is effective to simply determine the parameters so that the minimum value of the comprehensive evaluation formula is minimized. In that case, for example, αE0+ ΒE1May be taken as a comprehensive evaluation formula, and a constraint condition of α + β = 1 may be provided to take measures such as treating each evaluation formula equally. This is because the essence of automatic parameter determination is to determine parameters so that energy is minimized.
(3) In the base technology, four types of sub-images related to four types of singular points are generated at each resolution level. However, of course, one, two, and three of the four types may be selectively used. For example, if there is only one bright point in the image, f(M, 3)Even if a hierarchical image is generated only by itself, an appropriate effect should be obtained. In that case, different sub-mappings at the same level are not required, so that there is an effect that the calculation amount regarding s is reduced.
(4) In the base technology, when the level is advanced by one by the singular point filter, the number of pixels is reduced to 1/4. For example, a configuration in which one block is 3 × 3 and a singular point is searched in the block is possible. In this case, if the level advances by one, the pixel becomes 1/9.
(5) If the start image and the end image are color, they are first converted to black and white images, and the mapping is calculated. The color image at the starting point is converted using the mapping obtained as a result. As another method, a submap may be calculated for each of the RGB components.
[3] Improvements of the underlying technology
Based on the above prerequisite technology, some improvements have been made to improve matching accuracy. Here we describe the improvements.
[0098]
[3.1] Singularity filter and sub-image considering color information
In order to use the color information of the image effectively, the singularity filter was changed as follows. First, as the color space, HIS, which is said to best match human intuition, was used. However, when converting color to luminance, luminance Y, which is said to be closest to the sensitivity of human eyes, was selected instead of luminance I.
[Equation 53]
Figure 2004064474
Here, the following symbols are defined assuming that Y (luminance) and Y (saturation) in pixel a are Y (a) and S (a), respectively.
(Equation 54)
Figure 2004064474
Using the above definition, the following five filters are prepared.
[Equation 55]
Figure 2004064474
Of these, the top four filters are almost the same as the filters in the base technology before the improvement, and store the luminance singularities while retaining the color information. The last filter stores the singularities of the color saturation, again leaving the color information.
[0099]
With these filters, five types of sub-images (sub-images) are generated for each level. Note that the highest level sub-image matches the original image.
[Equation 56]
Figure 2004064474
[3.2] Edge image and its sub-image
In order to use the information of the luminance derivative (edge) for matching, a primary differential edge detection filter is further used. This filter can be realized by convolution with a certain operator G. Two types of filters corresponding to the horizontal and vertical differentiation of the n-th level image are represented as follows.
[Equation 57]
Figure 2004064474
Here, for G, a general operator used for edge detection in image analysis can be applied, but the following operator is selected in consideration of the calculation speed and the like.
[Equation 58]
Figure 2004064474
Next, this image is multi-resolutionized. Since an image having a luminance centered at 0 is generated by the filter, the following average image is most appropriate as the sub-image.
[Equation 59]
Figure 2004064474
The image of Expression 59 is used for the energy due to the difference of the newly introduced luminance derivative (edge) in the energy function at the time of Forward @ Stage described later, that is, in the calculation of the first submapping derivation stage.
[0100]
Since the size of the edge, that is, the absolute value is also required for the calculation, it is expressed as follows.
[Equation 60]
Figure 2004064474
Since this value is always positive, a maximum value filter is used for multi-resolution processing.
[Equation 61]
Figure 2004064474
The image of Expression 61 is used to determine the order of calculation when calculating Forward @ Stage described later.
[0101]
[3.3] Calculation processing procedure
The calculation is performed in order from the sub-image having the coarsest resolution. Since there are five sub-images, the calculation is performed a plurality of times at each level of resolution. This is called a turn, and the maximum number of calculations is represented by t. Each turn is composed of two energy minimization calculations, namely, Forward @ Stage and Refinement @ Stage, which is a submapping recalculation stage. FIG. 18 is a flowchart relating to an improvement in the calculation for determining the sub-mapping at the m-th level.
[0102]
As shown in the figure, s is cleared to zero (S40). Next, in Forward @ Stage (S41), a mapping f from the start image p to the end image q( m, s )And a mapping g from the end point image q to the start point image p(M, s)Are sequentially obtained by energy minimization. Hereinafter, the mapping f( m, s )The derivation of is described. Here, the energy to be minimized is the sum of the energy C based on the corresponding pixel value and the energy D based on the smoothness of the mapping in the improved base technology.
(Equation 62)
Figure 2004064474
Energy C is energy C due to the difference in luminance.I(Equivalent to the energy C in the base technology before the improvement), and the energy C based on hue and saturation.C, Energy C due to difference in luminance derivative (edge)EAnd is expressed as follows.
[Equation 63]
Figure 2004064474
Here, the parameters λ, ψ, and θ are real numbers equal to or greater than 0, and are constants in the improved technique. The reason why these parameters can be constants is that the stability of the results with respect to the parameters is improved by the newly introduced Refinement @ Stage. Energy CEIs the submap f( m, s )Is a value determined by the coordinates and the resolution level regardless of the type s.
[0103]
Energy D is the same as the prerequisite technology before the improvement. However, in the base technology before the improvement, the energy E that guarantees the smoothness of the mapping is obtained.1When deriving, only adjacent pixels were considered, but the number of surrounding pixels to be considered has been improved so that the parameter d can be specified.
[Equation 64]
Figure 2004064474
In preparation for the next Refinement @ Stage, this stage maps the end point image q to the start point image p.(M, s)Is similarly calculated.
[0104]
In Refinement @ Stage (S42), bidirectional mapping f obtained in Forward @ Stage(M, s)And g(M, s), A more appropriate mapping f ′(M, s)Ask for. Here, energy minimization calculation is performed for the newly defined energy M. The energy M is the degree of matching M with the mapping g from the end image to the start image.0And the difference M from the original mapping1F ′ that minimizes M(M, s)Is required.
[Equation 65]
Figure 2004064474
A mapping g ′ from the end image q to the start image p so as not to lose the symmetry(M, s)Is obtained in a similar manner.
[0105]
Thereafter, s is incremented (S43), it is confirmed that s does not exceed t (S44), and the process proceeds to Forward @ Stage (S41) in the next turn. At this time, the E0Is replaced as follows to perform the energy minimization calculation.
[Equation 66]
Figure 2004064474
[3.4] Mapping calculation order
Energy E representing the smoothness of the mapping1Is calculated using the mapping of surrounding points, so whether or not those points have already been calculated affects the energy. In other words, the accuracy of the whole mapping greatly changes depending on from which point the calculation is performed in order. Therefore, the absolute value image of the edge is used. Since the edge portion contains a large amount of information, the mapping calculation is performed first from the position where the absolute value of the edge is large. This makes it possible to obtain a very accurate mapping, especially for an image such as a binary image.
[0106]
[Image coding and image decoding technology]
An image coding and image decoding apparatus using the above prerequisite technology will be described. In the base technology, matching is performed between key frames to generate corresponding point information, and an intermediate image is generated based on the corresponding point information. Therefore, this technique can be used for compression of moving images, and in actual experiments, image quality and compression ratio exceeding MPEG have been confirmed.
[0107]
FIG. 19 and FIG. 20 show examples of image frames constituting a captured moving image. The image frame shown in FIG. 20 is obtained by panning rightward by the camera that has captured the image frame shown in FIG.
[0108]
In FIG. 19, a house is shown near the center, and two trees are shown at the right end. On the other hand, in FIG. 20, a house is shown near the center, and a tree is shown at each end. For example, when focusing on the left end of the image frame, a tree that is not shown in FIG. 19 is shown in FIG. In other words, when image matching is performed using these images as key frames and an intermediate image is generated, uncorresponding pixels appear, so that erroneous matching occurs and the generated intermediate image is unnatural. Become. Therefore, the generated intermediate image does not use the outer frame area FA, but uses the outer frame area FA of the actually shot image frame.
[0109]
The boundary between the outer frame area FA and the inner area IA is not a straight line, but may be a random line as shown in FIG. In general, if the boundary is a straight line, the human eye tends to recognize it easily. Therefore, it is preferable that the boundary is a boundary of a random curve as shown in FIG.
[0110]
FIG. 22 is a block diagram illustrating a configuration of the image encoding device 10 according to the present embodiment. The image encoding device 10 includes a key frame selection unit 12, a matching processor 14, a corresponding point information holding unit 16, an encoded stream generation unit 18, an image separation unit 20, and a stream output unit 30.
[0111]
The key frame selection unit 12 selects a key frame KF from the image frames constituting the moving image MP obtained from a network, a recording medium, a photographing device, or the like. The selection of the key frame KF may be performed at a predetermined timing, may be performed when a scene change exists, or may be specified by a user.
[0112]
The matching processor 14 performs image matching in pixel units between the two key frames KF, and generates corresponding point information CP. The corresponding point information holding unit 16 holds the generated corresponding point information CP.
[0113]
The image separation unit 20 separates an image frame not selected by the key frame selection unit 12, that is, a non-selected frame into an outer frame area FA and an inner area IA. The coded stream generation unit 18 generates a coded data stream DS including the selected key frame KF, the separated outer frame area FA, and the corresponding point information CP. Or to an optical recording medium.
[0114]
FIG. 23 is a block diagram illustrating a configuration of the image decoding device 40 according to the present embodiment. The image decoding device 40 includes a stream input unit 42, a stream separation unit 44, a matching processor 14, an intermediate image generation unit 22, an outer frame changing unit 48, and a display unit 50.
[0115]
The stream input unit 42 receives the encoded data stream DS via an optical medium or a network. The stream separation unit 44 extracts the key frame KF, the separated outer frame area FA, and the corresponding point information CP from the encoded data stream DS. The extracted key frame KF and the corresponding point information CP are sent to the intermediate image generation unit 22, and an intermediate image is generated based on them. On the other hand, the outer frame area FA is sent to the outer frame changing unit 48.
[0116]
The outer frame changing unit 48 replaces the outer frame region of the generated intermediate image with the acquired outer frame region FA. The display unit 50 displays the key frame KF and the generated intermediate image as a moving image.
[0117]
The present invention has been described based on some embodiments. These embodiments are exemplifications, and it is understood by those skilled in the art that various modifications can be made to the combination of each component and each processing process, and that such modifications are also within the scope of the present invention. By the way. Such modified examples will be described.
[0118]
In the image encoding device 10, only the outer frame area is used as the non-selected frame, but the present invention is not limited to this. For example, a difference from the generated intermediate image may be calculated for the inner region. In this case, the image encoding device 10 may include an intermediate image generation unit that generates an intermediate image based on the key frame and the corresponding point information, and a difference calculation unit that calculates a difference between the intermediate image and the inner area. Further, the image decoding device 40 may include a difference reflecting unit that reflects the obtained difference on the generated intermediate image.
[0119]
【The invention's effect】
As described above, according to the present invention, when an intermediate image is generated based on a key frame, it is possible to avoid a phenomenon in which a subject portion shown in only one of the two key frames becomes unnatural.
[Brief description of the drawings]
FIGS. 1 (a) and 1 (b) are images obtained by applying an averaging filter to the faces of two persons, and FIGS. 1 (c) and 1 (d) are images of the two persons. P required by face technology for face(5,0)The images of FIGS. 1 (e) and 1 (f) show the p obtained by the base technology for the faces of two persons.(5,1)The images of FIGS. 1 (g) and 1 (h) show p obtained by the base technology for the faces of two persons.(5,2)FIGS. 1 (i) and 1 (j) show the images of p obtained by the base technology for the faces of two persons.(5,3)2 is a photograph of a halftone image in which each of the images is displayed on a display.
2 (R) is a diagram showing an original quadrilateral, and FIGS. 2 (A), 2 (B), 2 (C), 2 (D), and 2 (E) are respectively It is a figure which shows an inheritance quadrilateral.
FIG. 3 is a diagram illustrating a relationship between a start point image and an end point image, and a relationship between an m-th level and an (m-1) th level, using an inherited quadrilateral.
FIG. 4 shows parameter η and energy CfFIG.
5 (a) and 5 (b) are diagrams showing how a mapping for a certain point satisfies a bijection condition from an outer product calculation.
FIG. 6 is a flowchart illustrating an overall procedure of a base technology.
FIG. 7 is a flowchart showing details of S1 in FIG. 6;
FIG. 8 is a flowchart showing details of S10 in FIG. 7;
FIG. 9 is a diagram illustrating a correspondence relationship between a part of an m-th level image and a part of an (m−1) -th level image;
FIG. 10 is a diagram showing a starting hierarchical image generated by the base technology.
FIG. 11 is a diagram showing a procedure for preparing a matching evaluation before proceeding to S2 of FIG. 6;
FIG. 12 is a flowchart showing details of S2 in FIG. 6;
FIG. 13 is a diagram showing how a sub-mapping is determined at the 0th level.
FIG. 14 is a diagram showing how a sub-mapping is determined at the first level.
FIG. 15 is a flowchart illustrating details of S21 in FIG. 12;
FIG. 16 shows an f(M, s)F obtained while changing λ(M, s)Energy C corresponding to (λ = iΔλ)(M, s) fIt is a figure showing the behavior of.
FIG. 17 shows f obtained while changing η.(N)Energy corresponding to (η = iΔη) (i = 0, 1,...)(N) fIt is a figure showing the behavior of.
FIG. 18 is a flowchart for obtaining a sub-mapping at the m-th level in the base technology after improvement.
FIG. 19 is a diagram illustrating an example of an image frame forming a captured moving image.
FIG. 20 is a diagram illustrating an example of an image frame forming a captured moving image.
FIG. 21 is a diagram illustrating a boundary region when an image frame not selected as a key frame is separated into an outer frame region and an inner region.
FIG. 22 is a block diagram illustrating a configuration of an image encoding device according to an embodiment.
FIG. 23 is a block diagram illustrating a configuration of an image decoding device according to an embodiment.
[Explanation of symbols]
10 image encoding device, {12} key frame selection unit, {14} matching processor, {16} corresponding point information holding unit, {18} encoded stream generation unit, {20} image separation unit, {22} intermediate image generation unit, {30} stream output unit, {40 image decoding device , {42} stream input unit, {44} stream separation unit, {48} outer frame change unit, {50} display unit.

Claims (11)

動画像を構成する複数の画像フレームから、キーフレームを選定する工程と、
キーフレームとして選定されなかった画像フレームを外枠領域と内側領域とに分離する工程と、
前記分離された外枠領域と前記キーフレームとを組み込んで符号化データストリームを生成する工程と、
を、含むことを特徴とする画像符号化方法。
A step of selecting a key frame from a plurality of image frames constituting the moving image;
Separating the image frame not selected as a key frame into an outer frame area and an inner area,
Generating an encoded data stream by incorporating the separated outer frame area and the key frame;
An image encoding method comprising:
前記キーフレーム間の対応点情報を画素単位の画像マッチングによって検出する工程を更に含み、
前記符号化データストリームを生成する工程は、前記検出した対応点情報も組み込むことを特徴とする請求項1に記載の画像符号化方法。
The method further includes detecting corresponding point information between the key frames by pixel-based image matching,
The image encoding method according to claim 1, wherein the step of generating the encoded data stream also incorporates the detected corresponding point information.
前記外枠領域と内側領域とに分離する工程は、前記外枠領域と内側領域の境界を非直線にすることを特徴とする請求項1または2に記載の画像符号化方法。3. The image encoding method according to claim 1, wherein the step of separating the outer frame area and the inner area makes a boundary between the outer frame area and the inner area non-linear. 複数のキーフレームと、前記キーフレーム間に挿入されるべき画像フレームの外枠領域の画像を取得する工程と、
前記キーフレームをもとに中間画像を生成する工程と、
前記生成された中間画像の外枠領域を、前記取得した外枠領域によって置換する工程と、
を含むことを特徴とする画像復号方法。
A plurality of key frames and a step of acquiring an image of an outer frame area of an image frame to be inserted between the key frames;
Generating an intermediate image based on the key frame;
Replacing the outer frame area of the generated intermediate image with the obtained outer frame area,
An image decoding method comprising:
前記キーフレーム間の対応点情報を取得する工程を更に含み、
前記中間画像を生成する工程は、前記対応点情報を利用して画素を単位とするマッチングによって行われることを特徴とする請求項4に記載の画像復号方法。
Further comprising a step of obtaining corresponding point information between the key frames,
The image decoding method according to claim 4, wherein the step of generating the intermediate image is performed by matching on a pixel-by-pixel basis using the corresponding point information.
動画像を構成する複数の画像フレームから、キーフレームを選定するキーフレーム選定部と、
キーフレームとして選定されなかった画像フレームを外枠領域と内側領域とに分離する画像分離部と、
前記分離された外枠領域と前記キーフレームとを含む符号化データストリームを生成するストリーム生成部と、
を含むことを特徴とする画像符号化装置。
A key frame selecting unit for selecting a key frame from a plurality of image frames constituting a moving image;
An image separation unit that separates an image frame not selected as a key frame into an outer frame area and an inner area,
A stream generation unit that generates an encoded data stream including the separated outer frame area and the key frame,
An image encoding device comprising:
当該画像符号化装置は、更にキーフレーム間の対応点情報を画素を単位とするマッチングによって検出するマッチングプロセッサを含み、
前記ストリーム生成部は、更に前記対応点情報を含む符号化データストリームを生成することを特徴とする請求項6に記載の画像符号化装置。
The image encoding device further includes a matching processor that detects corresponding point information between key frames by pixel-by-pixel matching,
The image encoding device according to claim 6, wherein the stream generation unit further generates an encoded data stream including the corresponding point information.
複数のキーフレームと、前記キーフレーム間に挿入されるべき画像フレームの外枠領域の画像とを取得する符号化データストリーム取得部と、
前記キーフレームをもとに中間画像を生成する中間画像生成部と、
前記中間画像の外枠領域を、前記取得した画像フレームの外枠領域によって置換する外枠変更部と、
を含むことを特徴とする画像復号装置。
A plurality of key frames, an encoded data stream acquisition unit that acquires an image of an outer frame area of an image frame to be inserted between the key frames,
An intermediate image generation unit that generates an intermediate image based on the key frame,
An outer frame changing unit that replaces an outer frame region of the intermediate image with an outer frame region of the obtained image frame,
An image decoding device comprising:
前記符号化データストリーム取得部は、更に前記キーフレーム間の対応点情報を取得し、
前記中間画像生成部は、前記キーフレームと前記対応点情報をもとに画素を単位とする画像マッチングにより中間画像を生成することを特徴とする請求項8に記載の画像復号装置。
The encoded data stream acquisition unit further acquires corresponding point information between the key frames,
The image decoding apparatus according to claim 8, wherein the intermediate image generation unit generates an intermediate image by performing image matching on a pixel-by-pixel basis based on the key frame and the corresponding point information.
動画像を構成する複数の画像フレームから、キーフレームを選定し、キーフレームとして選定されなかった画像フレームを外枠領域と内側領域とに分離し、前記分離された外枠領域と前記キーフレームとを組み込んで符号化データストリームを生成する処理をコンピュータに実行させることを特徴とするコンピュータプログラム。From a plurality of image frames constituting a moving image, a key frame is selected, and an image frame not selected as a key frame is separated into an outer frame region and an inner region, and the separated outer frame region and the key frame are separated. A computer program for causing a computer to execute a process of generating an encoded data stream by incorporating a program. 複数のキーフレームと、前記キーフレーム間に挿入されるべき画像フレームの外枠領域の画像を取得し、前記キーフレームをもとに中間画像を生成し、前記生成された中間画像の外枠領域を、前記取得した外枠領域によって置換する処理をコンピュータに実行させることを特徴とするコンピュータプログラム。A plurality of key frames and an image of an outer frame area of an image frame to be inserted between the key frames are obtained, an intermediate image is generated based on the key frames, and an outer frame area of the generated intermediate image is obtained. A computer program for causing the computer to execute a process of replacing with the acquired outer frame area.
JP2002220862A 2002-07-30 2002-07-30 Method and device for encoding and decoding image Pending JP2004064474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002220862A JP2004064474A (en) 2002-07-30 2002-07-30 Method and device for encoding and decoding image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002220862A JP2004064474A (en) 2002-07-30 2002-07-30 Method and device for encoding and decoding image

Publications (1)

Publication Number Publication Date
JP2004064474A true JP2004064474A (en) 2004-02-26

Family

ID=31941338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002220862A Pending JP2004064474A (en) 2002-07-30 2002-07-30 Method and device for encoding and decoding image

Country Status (1)

Country Link
JP (1) JP2004064474A (en)

Similar Documents

Publication Publication Date Title
JP3889233B2 (en) Image encoding method and apparatus, and image decoding method and apparatus
JP2008282377A (en) Image processing method and apparatus
JP2008252860A (en) Image processing method and image processing apparatus
JP2008282376A (en) Image processing method and apparatus
JP2002271788A (en) Image coding method and device and image decoding method and device
JP3877651B2 (en) Image processing method and apparatus
JPWO2005122593A1 (en) Video encoding method and video decoding method
JP4157686B2 (en) Method and apparatus for image encoding and decoding
JP4039858B2 (en) Image matching method and apparatus, and image encoding method and apparatus
JP2003037842A (en) Picture coding method, decoding method, picture coder and decoder
JP2007122751A (en) Method, device and program for image processing
JP3839353B2 (en) Image encoding method and apparatus, and image decoding method and apparatus
JP2002190020A (en) Method and device for image effect
JP2004048116A (en) Method and apparatus for encoding and decoding image data
JP2002230575A (en) Method and device for image effect
JP4524412B2 (en) Image encoding method, decoding method, image encoding device, and decoding device
JP2004064474A (en) Method and device for encoding and decoding image
JP2004023487A (en) Monitor and monitoring method
JP2004048595A (en) Method and device of image encoding
JP2002359842A (en) Method and device for encoding image, and method and device for decoding image
JP2004040340A (en) Image encoding method and apparatus
JP2007288614A (en) Image compression method and device, and moving image encoding method
JP2004048496A (en) Image encoding method and device, image decoding method and device, and image distributing device
JP3828048B2 (en) Image encoding method and apparatus, and image decoding method and apparatus
JP2004048627A (en) Image encoding method and device, image decoding method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090310