JP2004064374A - Acoustic reproducing apparatus - Google Patents

Acoustic reproducing apparatus Download PDF

Info

Publication number
JP2004064374A
JP2004064374A JP2002219200A JP2002219200A JP2004064374A JP 2004064374 A JP2004064374 A JP 2004064374A JP 2002219200 A JP2002219200 A JP 2002219200A JP 2002219200 A JP2002219200 A JP 2002219200A JP 2004064374 A JP2004064374 A JP 2004064374A
Authority
JP
Japan
Prior art keywords
sound
ultrasonic
ultrasonic wave
amplitude
reproducing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002219200A
Other languages
Japanese (ja)
Other versions
JP3888941B2 (en
Inventor
Kenji Kiyohara
清原 健司
Manabu Okamoto
岡本 学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2002219200A priority Critical patent/JP3888941B2/en
Publication of JP2004064374A publication Critical patent/JP2004064374A/en
Application granted granted Critical
Publication of JP3888941B2 publication Critical patent/JP3888941B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an acoustic reproducing apparatus that reproduces sound by amplitude-modulating an ultrasonic wave with an audible signal and that reflects a sound wave emitted in an undesired direction through spatial aliasing in a front direction so as to prevent sound leakage in the undesired direction. <P>SOLUTION: The acoustic reproducing apparatus comprises: an ultrasonic wave signal generating means; an audible signal input means, an amplitude modulation means for amplitude-modulating the ultrasonic wave signal generated by the ultrasonic wave signal generating means with the audible signal received from the audible signal input means; an amplifier means for amplifying the ultrasonic wave signal amplitude-modulated by the amplitude modulation means; and a plurality of ultrasonic wave sound generating elements arranged by orienting sounding faces in a single direction, receiving an output of the amplifier means and emitting ultrasonic waves in the same direction. A reflecting plane 17 is placed at an acute angle with respect to an axis extending in the normal direction of a sounding plane around the circumferential edge of a region in which the ultrasonic wave sound generating elements are placed in order to orient the directivity, which is formed as a function of the interval d of the ultrasonic wave sound generating elements and sound velocity c and the frequency of the ultrasonic signal f in other directions than the front direction through spatial aliasing to the front direction. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、所望の方向にのみ音を放射する音響再生装置に係わり、特に空間的エイリアジングによって所望の方向以外に生じる指向性を防ぎ卓上の用途に供することを可能とした音響再生装置に関する。
【0002】
【従来の技術】
近年、パーソナルコンピュータを用いたテレビ会議システム(デスクトップ会議システム)が普及しつつある。これらの会議システムで相手の音声を再生する手段には通常のスピーカを使用していた。
【0003】
【発明が解決しようとする課題】
しかし、通常のスピーカは一般に指向性が広く、TV会議システムを使用している人だけではなく、その周囲にも相手の音声(再生音)が聞こえ、周囲に不要な騒音となって聞こえてしまうという問題点があった。これを解決する一つの方法としては再生音信号で超音波信号を振幅変調した後に放射するというパラメトリックスピーカを用いる方法が考えられる。以下、パラメトリックスピーカの原理とその超指向性について簡単に説明する。
図4にパラメトリックスピーカの電気的な回路構成を示す。超音波信号発生手段11は例えば40kHz程度の周波数の超音波信号を発生する。この超音波信号は振幅変調手段13に入力され、この振幅変調手段13において、可聴信号入力手段12から入力された可聴信号により振幅変調される。
【0004】
振幅変調された超音波信号は増幅手段14で増幅されその増幅出力で超音波発音装置15を駆動する。超音波発音装置15は例えば40kHzを共振周波数に持つ複数の超音波発音素子15−1、15−2、15−3、…、15−nが並列接続されて構成される。これらの複数の超音波発音素子15−1〜15−nを並列駆動することにより強力な超音波を発生させることができる。
複数の超音波発音素子15−1〜15−nは図5に示すように互いに接近してほぼ円形のプリント配線基板16に実装され、プリント配線基板16に形成されたプリント配線により全てが並列接続される。
【0005】
このような構造によりパラメトリックスピーカは強力な超音波(約100dB以上)を放射し、空気の非線形性を利用して可聴音を生成するものである。正弦波の超音波(sin(ωt):キャリア)を可聴波s(t)で変調し(式(1))空気中に放射すると、空気の非線形項は式(1)の2乗に比例するため、式(2)のように可聴波s(t)が復調される。
(1+s(t))sin(ωt)                        (1)
(1+s(t))sin(ωt)=(1+s(t))(1−cos(2ωt))/2
=1/2+s(t)+s(t)/2−(1+s(t))cos(2ωt)/2           (2)
この可聴波の強度は距離とともに次第に増加し、超音波を放射する超音波素子が図5に示すように円盤状に配置された場合、その半径をaとすると、次式(3)で定義されるレーリー長Rまで増加し、その後球面状に拡散して可聴波は減衰すると言われている(鎌倉友男“非線形音響学の基礎”愛智出版(1996)p.201)。
R=πa/λ                                               (3)
(λ=f/c,fはキャリア周波数、cは音速(約340[m/s])
充分な強度を持つ超音波を放射させるために図5に示したように複数の超音波発音素子15−1、15−2、…、15−nで構成する場合、各超音波発音素子15−1、15−2、…、15−nが発生する超音波の波長より各超音波発音素子15−1、15−2、…、15−nの径が大きいと、以下に述べる空間的エイリアジングにより正面以外の方向に不要な指向性を発生し、目的以外の領域に音が漏れるという問題がある。
【0006】
空間的エイリアジングとは図6に示すように、正面方向j以外の方向で音の行路差が波長の整数倍となってこの方向で音が強めあい、不要な指向性が生じる現象である。例えば超音波発音素子の素子間隔dがd=10[mm]、超音波の周波数fがf=40,000[Hz]の場合、音の波長λはλ=8.5[mm]となりd>λになるため空間的エイリアジングが発生する。
図6ではd・sinθが音の波長λと同じ長さになる方向θに不要な指向性が生じる。超音波の周波数f=40,000[Hz]、超音波発音素子の直径が10[mm]の場合、d・sinθ=λ=c/fであるから、arcsin(c/(fd))≒60°となる。つまり、正面の方向jからθ=60°の方向に不要な超音波が放射される。この不要な放射は正面方向jを軸として周方向に360°の全周にわたって発生する。従って超音波発音素子の発音面からθ=60°の方向に音響が再生され、その方向に音が漏れることになる。この漏れた音が周囲の人々に騒音として聞こえることになる。更に、不要な方向に音が漏れた分、目標方向に到達する超音波の量が減少するから、目標方向で再生される音響のレベルが低下する不都合も生じる。
【0007】
これらの不都合を解消するには超音波発音素子の直径を発音する超音波の波長λより小さくする必要があるが、現況の技術ではその実現は難しく、空間的エイリアジングの発生は容認せざるを得ない状況にある。
この発明の第1の目的は空間的エイリアジングで発生する不要方向の指向性を解消し、目的とする場所以外に音が漏れない音響再生装置を提供しようとするものである。
この発明の第2の目的は超音波発生装置から放射された超音波は全て目標方向に伝搬され、目標位置で強度の強い音響を再生することができる音響再生装置を提供しようとするものである。
【0008】
【課題を解決するための手段】
この発明では、超音波信号発生手段と、可聴信号入力手段と、超音波信号発生手段で発生された超音波信号を可聴信号入力手段から入力された可聴信号で振幅変調する振幅変調手段と、振幅変調手段で振幅変調された超音波信号を増幅する増幅手段と、増幅手段の出力を放音面が揃えられて配置され、超音波を同一方向に放射する複数の超音波発音素子とによって構成される音響再生装置において、超音波発音素子の間隔dと、音速cと、超音波信号の周波数fにより、空間的エイリアジングによって正面に対しθ=arcsin(c/(fd))の方向に生じる指向性を正面に反射させるために超音波発音素子が配置された領域の周縁に放音面の法線方向に伸びる軸まわりに鋭角な反射面を設けた音響再生装置を提案する。
【0009】
この発明では更に、音響再生装置において、超音波発音素子の放音面からレーリー長相当位置までの間に振幅変調された超音波を反射させて所望方向に音響を再生させる反射板を設けた音響再生装置を提案する。
作用
この発明の音響再生装置によれば、超音波発音素子を配置した領域を取り囲んで、放音面の法線方向に伸びる軸まわりに鋭角な反射面を設けたから、超音波発音素子の配置間隔dが超音波の波長λより大きいd>λの関係により空間エイリアジングによる不要方向の指向性が発生しても、この不要方向の指向性は反射面によって反射されて正面方向に向けられる。
【0010】
従って、この発明によれば目的とする場所以外に音が漏れることはなく、このために周囲の人々に騒音を発生することがない音響再生装置を提供することができる。また、不要な方向に音が漏れないため目標位置には放射された音波の全てが伝搬し、強度の強い音響を再生することができる。
更に、この発明によれば超音波発音素子の放音面からレーリー長に至るまでの間に反射板を設け、この反射板により超音波を目標方向に反射させる構成としたから、空間的エイリアジングによって不要方向に放射された超音波も含めて全ての超音波を目標方向に反射させることができ、これにより目標位置で強度の強い音響を再生することができる。
【0011】
【発明の実施の形態】
図1にこの発明の要部の構成を示す。図1に示す16は図5で説明した円形のプリント配線基板を示す。このプリント配線基板16の一方の面に図5と同様に複数の超音波発音素子15−11、15−2、15−3、…、15−nが装着され、図4に示した電気回路によって駆動される。超音波発音素子15−1、15−2、15−3、…、15−nの配列間隔(超音波発音素子の直径と同じ意味)dがd=10[mm]、超音波周波数fがf=40kHzの場合、波長λはλ=8.5[mm]となるからd>λの関係となる。従って、この条件の場合にはd・sinθ=λ=c/fからθ=arcsin(c/(fd))≒60°の方向に不要指向性Kが発生する。
【0012】
この発明ではこの不要指向性Kを正面方向に反射させて音の漏れを除去するために、超音波発音素子15−1〜15−nを装着した領域を取り囲んで放音面の法線方向(正面方向jと同じ)に伸びる軸まわりに鋭角な反射面17を設けた構造を特徴とするものである。
反射面17は超音波発音素子の放音面から離れるに従って、徐々に直径が大きくなるホーン形状とされる。ホーンの傾斜角(放音面からの角度)は不要指向性の向く角度θと同じ角度に採ればよい。ホーンの深さは放音面の最も遠くの位置からの不要指向性Kを反射させるために必要な深さが条件とされ、その深さDは超音波発音素子の装着領域の直径(プリント基板16の直径)をLとした場合D=L・sinθとすることができる。反射面17は例えば金属板或はプラスチックで構成することができる。反射面17に要求される要件としてはその形状を保持し、且つ超音波に共振しない強度を有し、反射面は反射させるべき超音波の波長λより深い凹凸を持つことなく平滑面である必要がある。
【0013】
このような反射面17を設けることによって超音波発音素子15−1〜15−nの各直径が発音する超音波の波長λより小さくすることができないことによって生じる空間的エイリアジングの影響を除去することができる。
図2にこの発明の請求項2で提案する音響再生装置の一実施例を示す。この発明の請求項2では超音波発音素子の放射面からレーリー長Rd相当分離れた位置までの間に反射板18を設け、この反射板18の角度を任意の角度に設定させて目標とする方向に超音波を反射させ、目標位置で音響を再生させる音響再生装置を提案するものである。
【0014】
図2に示す実施例では超音波発生装置15を上向きに配置し、超音波を上向きに放音させ、超音波発生装置15の上部に設けた反射板18で超音波を反射させる構成とした場合を示す。
反射板18は反射面17と同様に金属板又はプラスチックによって構成することができる。反射板18の長さ(回動支点から回動遊端までの距離)Sは超音波発音装置15の直径をLとした場合、約2L程度とすればよい。また、幅WはW=(1+2cosθ)L程度に選定すればよい。19は反射板18を支持する柱を示す。この実施例では反射板18を2本の柱19で支持した例を示すが必ずしもこの構造に限定されるものではない。柱19の長さは上記したようにレーリー長Rdより短い寸法に選定する。レーリー長Rdの一例としては上述の条件超音波の周波数が40kHzの場合、波長λは約8.5[mm]、超音波発音装置15の半径aをa=50mmとした場合Rd≒92[cm]となる。従って、柱19はそれより短い、例えば20〜70cm程度に選定すればレーリー長に至る手前で超音波を反射させることができる。超音波をレーリー長Rdより手前で反射させることにより超音波のビーム形状が崩れていないため、全ての超音波を目標方向に反射させることができる。
【0015】
図3に反射板18の角度を自由に変更し、その角度を維持する手段の一例を示す。図3に示す例では反射板18と一体に円盤20が回転する。円盤20の周縁にはほぼ等角間隔に凹欠21が形成される。一方柱19には板バネ22が装着され、板バネ22の遊端にローラ23が装着され、このローラ23が板バネ22の偏倚力によって円盤20の周縁に押し付けられる。
この構造により反射板18は角度を変更することが可能であり、更に、その変更した角度の位置でローラ23が凹欠21に係合して反射板18の角度を維持する。
【0016】
【発明の効果】
以上説明したように、この発明によれば超音波発音素子の直径が発音する超音波の波長λより大きく、これにより空間的エイリアジングが発生し、不要な方向に指向性を持つ音波が発生しても、その不要波は反射面17により正面方向に反射される。この結果、目的以外の場所に音が漏れることを阻止することができる音響再生装置を提供することができる。また、目標方向以外に超音波が漏れないから、目標方向に伝搬する音波の量が減少することはない。従って、目標位置で再生される音響のレベルが不要方向の漏れた音波成分だけ低下することはない。
【0017】
更に、この発明によれば超音波発音素子の放音面からレーリー長に至る間の任意の位置に反射板18を設置したからレーリー長に至る手前、つまり超音波のビームの形状が崩れる手前で反射させるから、全ての超音波を目標方向に反射させることができる。
【図面の簡単な説明】
【図1】この発明の請求項1で提案する音響再生装置の要部の構成を説明するための断面図。
【図2】この発明の請求項2で提案する音響再生装置の一実施例を説明するための斜視図。
【図3】図2に示した実施例に用いる角度調整機構の一例を説明するための側面図。
【図4】音響再生装置の全体を説明するためのブロック図。
【図5】超音波発音装置の一例を説明するための平面図。
【図6】図5に示した超音波発音装置で発生する空間的エイリアジングを説明するための拡大図。
【符号の説明】
11  超音波信号発生手段    19  柱
12  可聴信号入力手段     20  円盤
13  振幅変調手段       21  凹欠
14  増幅手段         22  板バネ
15  超音波発音装置      23  ローラ
16  プリン配線基板       K  不要指向性
17  反射面           J  正面方向
18  反射板
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a sound reproducing device that emits sound only in a desired direction, and more particularly to a sound reproducing device capable of preventing directivity generated in a direction other than a desired direction due to spatial aliasing and enabling use in a desktop application.
[0002]
[Prior art]
In recent years, a video conference system (desktop conference system) using a personal computer has been widely used. A normal speaker is used as a means for reproducing the voice of the other party in these conference systems.
[0003]
[Problems to be solved by the invention]
However, a normal speaker generally has a wide directivity, so that not only a person using the TV conference system but also the other party's voice (reproduced sound) can be heard around the speaker and unnecessary noise can be heard around. There was a problem. One method for solving this problem is to use a parametric speaker that radiates an ultrasonic signal after amplitude modulation with a reproduced sound signal. Hereinafter, the principle of the parametric speaker and its super-directivity will be briefly described.
FIG. 4 shows an electrical circuit configuration of the parametric speaker. The ultrasonic signal generating means 11 generates an ultrasonic signal having a frequency of, for example, about 40 kHz. The ultrasonic signal is input to the amplitude modulating means 13, where the amplitude is modulated by the audible signal input from the audible signal input means 12.
[0004]
The amplitude-modulated ultrasonic signal is amplified by the amplification means 14, and the amplified output drives the ultrasonic sound generating device 15. The ultrasonic sound generating device 15 is configured by connecting a plurality of ultrasonic sound generating elements 15-1, 15-2, 15-3,..., 15-n having a resonance frequency of 40 kHz, for example. Powerful ultrasonic waves can be generated by driving these plural ultrasonic sound generating elements 15-1 to 15-n in parallel.
As shown in FIG. 5, the plurality of ultrasonic sound-generating elements 15-1 to 15-n are mounted on a substantially circular printed wiring board 16 close to each other, and all are connected in parallel by the printed wiring formed on the printed wiring board 16. Is done.
[0005]
With such a structure, the parametric speaker emits a powerful ultrasonic wave (about 100 dB or more) and generates an audible sound by utilizing the nonlinearity of air. Sine wave of the ultrasonic (sin (ω c t): carrier) when modulating the audible wave s (t) radiating (Equation (1)) in air, non-linear terms of the air to the square of the formula (1) Since it is proportional, the audible wave s (t) is demodulated as in equation (2).
(1 + s (t)) sin (ω c t) (1)
(1 + s (t)) 2 sin 2 (ω c t) = (1 + s (t)) 2 (1-cos (2ω c t)) / 2
= 1/2 + s (t ) + s 2 (t) / 2- (1 + s (t)) 2 cos (2ω c t) / 2 (2)
The intensity of this audible wave gradually increases with distance, and when the ultrasonic elements that emit ultrasonic waves are arranged in a disk shape as shown in FIG. 5, if the radius is a, it is defined by the following equation (3). It is said that the audible wave increases to the Rayleigh length R, and then spreads spherically to attenuate the audible wave (Tomoo Kamakura, "Basics of Nonlinear Acoustics", Aichi Shuppan (1996) p. 201).
R = πa 2 / λ (3)
(Λ = f / c, where f is the carrier frequency and c is the sound speed (about 340 [m / s])
When a plurality of ultrasonic sound emitting elements 15-1, 15-2,..., 15-n are used as shown in FIG. If the diameter of each of the ultrasonic sound generating elements 15-1, 15-2,..., 15-n is larger than the wavelength of the ultrasonic waves generated by 1, 15-2,..., 15-n, spatial aliasing described below is performed. As a result, unnecessary directivity is generated in a direction other than the front, and there is a problem that sound leaks to an area other than the intended area.
[0006]
Spatial aliasing, as shown in FIG. 6, is a phenomenon in which the path difference of a sound becomes an integral multiple of the wavelength in a direction other than the front direction j, and the sound reinforces in this direction, causing unnecessary directivity. For example, when the element interval d of the ultrasonic sound generating element is d = 10 [mm] and the frequency f of the ultrasonic wave is f = 40,000 [Hz], the wavelength λ of the sound is λ = 8.5 [mm], and d> λ causes spatial aliasing.
In FIG. 6, unnecessary directivity occurs in a direction θ in which d · sin θ has the same length as the wavelength λ of the sound. When the frequency f of the ultrasonic wave is 40,000 [Hz] and the diameter of the ultrasonic sound generating element is 10 [mm], since d · sin θ = λ = c / f, arcsin (c / (fd)) ≒ 60. °. That is, unnecessary ultrasonic waves are radiated in the direction of θ = 60 ° from the front direction j. This unnecessary radiation is generated over the entire circumference of 360 ° around the front direction j. Therefore, sound is reproduced from the sound generating surface of the ultrasonic sound generating element in the direction of θ = 60 °, and the sound leaks in that direction. This leaked sound will be heard as noise by the surrounding people. Further, since the amount of ultrasonic waves reaching the target direction is reduced by the amount of sound leaking in unnecessary directions, there is a disadvantage that the level of sound reproduced in the target direction is reduced.
[0007]
In order to eliminate these inconveniences, it is necessary to make the diameter of the ultrasonic sounding element smaller than the wavelength λ of the ultrasonic wave that generates the sound. However, it is difficult to achieve this with the current technology, and the occurrence of spatial aliasing cannot be tolerated I can't get it.
A first object of the present invention is to eliminate the directivity in unnecessary directions generated by spatial aliasing and to provide a sound reproducing apparatus in which sound does not leak to a place other than a target place.
A second object of the present invention is to provide a sound reproducing apparatus capable of reproducing all the ultrasonic waves emitted from the ultrasonic wave generating apparatus in a target direction and reproducing a strong sound at a target position. .
[0008]
[Means for Solving the Problems]
In the present invention, an ultrasonic signal generating means, an audible signal input means, an amplitude modulating means for amplitude-modulating an ultrasonic signal generated by the ultrasonic signal generating means with an audible signal input from the audible signal input means, Amplifying means for amplifying the ultrasonic signal amplitude-modulated by the modulating means, and a plurality of ultrasonic sound emitting elements arranged so that the outputs of the amplifying means are arranged so that the sound emitting surfaces thereof are aligned and emit ultrasonic waves in the same direction. In the sound reproducing apparatus, the directivity generated in the direction of θ = arcsin (c / (fd)) with respect to the front due to spatial aliasing due to the distance d between the ultrasonic sound generating elements, the sound velocity c, and the frequency f of the ultrasonic signal. In order to reflect the sound to the front, a sound reproducing apparatus is proposed in which an acute reflecting surface is provided around an axis extending in a direction normal to the sound emitting surface on a periphery of a region where the ultrasonic sound generating element is arranged.
[0009]
According to the present invention, the sound reproducing apparatus further includes a reflector provided with a reflector for reproducing the sound in a desired direction by reflecting the ultrasonic wave whose amplitude is modulated between the sound emitting surface of the ultrasonic sound generating element and the position corresponding to the Rayleigh length. A playback device is proposed.
According to the sound reproducing apparatus of the working <br/> the present invention, surrounding the region of arranging the ultrasonic sound device, because provided a sharp reflective surface about the axis extending in the normal direction of the sound emitting surface, ultrasonic sound Even if directivity in an unnecessary direction occurs due to spatial aliasing due to the relationship of d> λ where the arrangement interval d of the elements is larger than the wavelength λ of the ultrasonic wave, the directivity in the unnecessary direction is reflected by the reflecting surface and becomes Pointed.
[0010]
Therefore, according to the present invention, it is possible to provide a sound reproducing apparatus in which sound does not leak to a place other than a target place, and therefore does not generate noise to surrounding people. In addition, since no sound leaks in unnecessary directions, all of the radiated sound waves propagate to the target position, and a strong sound can be reproduced.
Further, according to the present invention, a reflector is provided between the sound emitting surface of the ultrasonic sound generating element and the Rayleigh length, and the ultrasonic wave is reflected by the reflector in a target direction. As a result, all the ultrasonic waves including the ultrasonic waves radiated in unnecessary directions can be reflected in the target direction, and thereby, a strong sound can be reproduced at the target position.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows a configuration of a main part of the present invention. Reference numeral 16 shown in FIG. 1 indicates the circular printed wiring board described with reference to FIG. A plurality of ultrasonic sound generating elements 15-11, 15-2, 15-3,..., 15-n are mounted on one surface of the printed wiring board 16 in the same manner as in FIG. 5, and the electric circuit shown in FIG. Driven. .., 15-n (the same meaning as the diameter of the ultrasonic sounding element) d is d = 10 [mm], and the ultrasonic frequency f is f. In the case of = 40 kHz, the wavelength λ becomes 8.5 [mm], so that d> λ. Therefore, under this condition, the unnecessary directivity K is generated in the direction of θ = arcsin (c / (fd)) ≒ 60 ° from d · sin θ = λ = c / f.
[0012]
In the present invention, in order to reflect the unnecessary directivity K in the front direction to remove sound leakage, the normal direction of the sound emitting surface (around the area where the ultrasonic sound generating elements 15-1 to 15-n are mounted) is defined. It is characterized by a structure in which an acute-angle reflecting surface 17 is provided around an axis extending in the front direction j).
The reflecting surface 17 has a horn shape whose diameter gradually increases as it goes away from the sound emitting surface of the ultrasonic sound generating element. The angle of inclination of the horn (the angle from the sound emitting surface) may be the same as the angle θ at which the unnecessary directivity is directed. The depth of the horn is a condition necessary depth for reflecting unwanted directional K 0 from the furthest position of the sound emitting surface, a depth D the diameter of the mounting region of the ultrasonic sound device (print When the diameter of the substrate 16 is L, D = L · sin θ. The reflection surface 17 can be made of, for example, a metal plate or plastic. The requirements for the reflecting surface 17 are that the shape must be maintained, the intensity should not resonate with the ultrasonic waves, and the reflecting surface should be smooth without any irregularities deeper than the wavelength λ of the ultrasonic waves to be reflected. There is.
[0013]
By providing such a reflection surface 17, the effect of spatial aliasing caused by the fact that the diameter of each of the ultrasonic sound generating elements 15-1 to 15-n cannot be made smaller than the wavelength λ of the generated ultrasonic wave is eliminated. be able to.
FIG. 2 shows an embodiment of the sound reproducing apparatus proposed in claim 2 of the present invention. According to the second aspect of the present invention, the reflector 18 is provided between the radiation surface of the ultrasonic sound generating element and a position separated by the Rayleigh length Rd, and the angle of the reflector 18 is set to an arbitrary angle to be a target. A sound reproducing device that reflects ultrasonic waves in a direction and reproduces sound at a target position is proposed.
[0014]
In the embodiment shown in FIG. 2, the ultrasonic generator 15 is arranged upward, the ultrasonic wave is emitted upward, and the ultrasonic wave is reflected by the reflector 18 provided on the upper part of the ultrasonic generator 15. Is shown.
The reflection plate 18 can be made of a metal plate or plastic like the reflection surface 17. The length S (distance from the pivot point to the pivot free end) S of the reflecting plate 18 may be about 2 L when the diameter of the ultrasonic sound generator 15 is L. Further, the width W may be selected to be about W = (1 + 2 cos θ) L. Reference numeral 19 denotes a column supporting the reflection plate 18. In this embodiment, an example in which the reflection plate 18 is supported by two columns 19 is shown, but the invention is not necessarily limited to this structure. The length of the column 19 is selected to be shorter than the Rayleigh length Rd as described above. As an example of the Rayleigh length Rd, the above conditions are as follows: when the frequency of the ultrasonic wave is 40 kHz, the wavelength λ is about 8.5 [mm], and when the radius a of the ultrasonic sound generator 15 is a = 50 mm, Rd ≒ 92 [cm]. ]. Therefore, if the column 19 is selected to be shorter, for example, about 20 to 70 cm, the ultrasonic wave can be reflected just before reaching the Rayleigh length. By reflecting the ultrasonic waves before the Rayleigh length Rd, the beam shape of the ultrasonic waves does not collapse, so that all the ultrasonic waves can be reflected in the target direction.
[0015]
FIG. 3 shows an example of a means for freely changing the angle of the reflector 18 and maintaining the angle. In the example shown in FIG. 3, the disk 20 rotates integrally with the reflector 18. Recesses 21 are formed on the periphery of the disk 20 at substantially equal angular intervals. On the other hand, a leaf spring 22 is mounted on the pillar 19, and a roller 23 is mounted on the free end of the leaf spring 22. The roller 23 is pressed against the periphery of the disk 20 by the biasing force of the leaf spring 22.
With this structure, the angle of the reflection plate 18 can be changed, and the roller 23 is engaged with the concave portion 21 at the position of the changed angle to maintain the angle of the reflection plate 18.
[0016]
【The invention's effect】
As described above, according to the present invention, the diameter of the ultrasonic sound generating element is larger than the wavelength λ of the generated ultrasonic wave, thereby causing spatial aliasing and generating sound waves having directivity in unnecessary directions. However, the unnecessary waves are reflected by the reflection surface 17 in the front direction. As a result, it is possible to provide a sound reproducing apparatus that can prevent sound from leaking to a place other than the intended place. Further, since the ultrasonic waves do not leak in directions other than the target direction, the amount of sound waves propagating in the target direction does not decrease. Therefore, the level of the sound reproduced at the target position is not reduced by the leaked sound wave component in the unnecessary direction.
[0017]
Furthermore, according to the present invention, since the reflector 18 is provided at an arbitrary position between the sound emitting surface of the ultrasonic sound generating element and the Rayleigh length, the reflector 18 is provided before the Rayleigh length, that is, before the shape of the ultrasonic beam collapses. Since it is reflected, all ultrasonic waves can be reflected in the target direction.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view for explaining a configuration of a main part of a sound reproducing device proposed in claim 1 of the present invention.
FIG. 2 is a perspective view for explaining an embodiment of the sound reproducing apparatus proposed in claim 2 of the present invention.
FIG. 3 is a side view for explaining an example of an angle adjusting mechanism used in the embodiment shown in FIG. 2;
FIG. 4 is a block diagram for explaining the entire sound reproducing apparatus.
FIG. 5 is a plan view illustrating an example of an ultrasonic sound generating device.
6 is an enlarged view for explaining spatial aliasing generated in the ultrasonic sound generating device shown in FIG. 5;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Ultrasonic signal generation means 19 Pillar 12 Audible signal input means 20 Disk 13 Amplitude modulation means 21 Depression 14 Amplification means 22 Leaf spring 15 Ultrasonic sound generator 23 Roller 16 Pudding wiring board K Unnecessary directivity 17 Reflection surface J Front direction 18 reflector

Claims (2)

超音波信号発生手段と、可聴信号入力手段と、上記超音波信号発生手段で発生された超音波信号を上記可聴信号入力手段から入力された可聴信号で振幅変調する振幅変調手段と、該振幅変調手段で振幅変調された超音波信号を増幅する増幅手段と、該増幅手段の出力を放音面が揃えられて配置され、超音波を同一方向に放射する複数の超音波発音素子とによって構成される音響再生装置において、
上記超音波発音素子の間隔dと、音速cと、超音波信号の周波数fにより、空間的エイリアジングによって正面に対しθ=arcsin(c/(fd))の方向に生じる指向性を正面に反射させるために上記超音波発音素子が配置された領域の周縁に放音面の法線方向に伸びる軸まわりに鋭角な反射面を設けたことを特徴とする音響再生装置。
Ultrasonic signal generating means, audible signal input means, amplitude modulation means for amplitude-modulating an ultrasonic signal generated by the ultrasonic signal generating means with an audible signal input from the audible signal input means, and the amplitude modulation means Amplifying means for amplifying the ultrasonic signal amplitude-modulated by the means, and a plurality of ultrasonic sound emitting elements arranged so that the sound emitting surfaces of the outputs of the amplifying means are aligned and emit ultrasonic waves in the same direction. Sound reproduction device,
The directivity generated in the direction of θ = arcsin (c / (fd)) with respect to the front due to spatial aliasing is reflected toward the front by the distance d between the ultrasonic sound generating elements, the sound velocity c, and the frequency f of the ultrasonic signal. A sound reproducing apparatus characterized in that a sharp reflecting surface is provided around an axis extending in a direction normal to a sound emitting surface on a periphery of a region where the ultrasonic sound generating element is arranged.
請求項1記載の音響再生装置において、上記超音波発音素子の放音面からレーリー長相当位置までの間に上記振幅変調された超音波を反射させて所望方向に音響を再生させる反射板を設けたことを特徴とする音響再生装置。2. The sound reproducing apparatus according to claim 1, further comprising a reflector for reflecting the amplitude-modulated ultrasonic wave from the sound emitting surface of the ultrasonic sound generating element to a position corresponding to the Rayleigh length to reproduce sound in a desired direction. A sound reproducing apparatus characterized in that:
JP2002219200A 2002-07-29 2002-07-29 Sound playback device Expired - Fee Related JP3888941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002219200A JP3888941B2 (en) 2002-07-29 2002-07-29 Sound playback device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002219200A JP3888941B2 (en) 2002-07-29 2002-07-29 Sound playback device

Publications (2)

Publication Number Publication Date
JP2004064374A true JP2004064374A (en) 2004-02-26
JP3888941B2 JP3888941B2 (en) 2007-03-07

Family

ID=31940159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002219200A Expired - Fee Related JP3888941B2 (en) 2002-07-29 2002-07-29 Sound playback device

Country Status (1)

Country Link
JP (1) JP3888941B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008258760A (en) * 2007-04-02 2008-10-23 Mitsubishi Electric Engineering Co Ltd Drive-through system
JP2012029108A (en) * 2010-07-23 2012-02-09 Nec Casio Mobile Communications Ltd Oscillation device and electronic apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008258760A (en) * 2007-04-02 2008-10-23 Mitsubishi Electric Engineering Co Ltd Drive-through system
JP2012029108A (en) * 2010-07-23 2012-02-09 Nec Casio Mobile Communications Ltd Oscillation device and electronic apparatus

Also Published As

Publication number Publication date
JP3888941B2 (en) 2007-03-07

Similar Documents

Publication Publication Date Title
JP3267231B2 (en) Super directional speaker
US5859915A (en) Lighted enhanced bullhorn
JP2007184900A5 (en)
US7564986B2 (en) Ultrasonic speaker and projector
JP4035208B2 (en) Parametric speaker
KR20070040762A (en) Superdirectional acoustic system and projector
JP2008244964A (en) Electrostatic type ultrasonic transducer, electrostatic type transducer, ultrasonic speaker, speaker arrangement, audio signal playback method using electrostatic type ultrasonic transducer, directional acoustic system, and display device
US20070154039A1 (en) Screen for playing audible signals by demodulating ultrasonic signals having the audible signals
US7909466B2 (en) Project equipped with ultrasonic speaker, and method for displaying sound reproduction range in projector
JPWO2018138876A1 (en) Super directional acoustic device
KR20050075021A (en) A high intensity directional electroacoustic sound generating system for communications targeting
JP3888941B2 (en) Sound playback device
JP3668180B2 (en) Ultrasonic reproduction method / Ultrasonic reproduction device
KR100774516B1 (en) Ultrasonic waves speaker system
Olszewski et al. 3g-3 optimum array configuration for parametric ultrasound loudspeakers using standard emitters
JP2022089801A (en) Glasses with parametric audio unit
JP2004064373A (en) Acoustic reproducing apparatus
JPH03296399A (en) Parametric speaker
JP3700841B2 (en) Sound field control device
JP2005223410A (en) Super-directional speaker, projector, and mobile information terminal
JP2002300688A (en) Sound source constituting apparatus
JP7344085B2 (en) Electronic devices and ultrasonic transmission/reception methods in electronic devices
JPH1198592A (en) Audio-visual device
JP5486390B2 (en) Sound generator and speaker
Olszewski et al. Highly directional multi-beam audio loudspeaker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040716

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Effective date: 20061128

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20101208

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20111208

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20111208

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20121208

LAPS Cancellation because of no payment of annual fees