JP3700841B2 - Sound field control device - Google Patents

Sound field control device Download PDF

Info

Publication number
JP3700841B2
JP3700841B2 JP2001354299A JP2001354299A JP3700841B2 JP 3700841 B2 JP3700841 B2 JP 3700841B2 JP 2001354299 A JP2001354299 A JP 2001354299A JP 2001354299 A JP2001354299 A JP 2001354299A JP 3700841 B2 JP3700841 B2 JP 3700841B2
Authority
JP
Japan
Prior art keywords
ultrasonic
sound
frequency
audible
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001354299A
Other languages
Japanese (ja)
Other versions
JP2003158788A (en
Inventor
健司 清原
正人 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2001354299A priority Critical patent/JP3700841B2/en
Publication of JP2003158788A publication Critical patent/JP2003158788A/en
Application granted granted Critical
Publication of JP3700841B2 publication Critical patent/JP3700841B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Transducers For Ultrasonic Waves (AREA)
  • Circuit For Audible Band Transducer (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、所望の領域のみに再生音が聞こえるように限定させるための音場制御装置に関する。
【0002】
【従来の技術】
近年、IT革命の波によってパーソナルコンピュータを用いたテレビ会議システム(以下デスクトップ会議システム;Desk Top Conferen−ce(DTC)システムと呼ぶ)が普及しつつある。これらの会議システムで相手の音声を再生する手段には通常のスピーカを使用していた。
【0003】
【発明が解決しようとする課題】
しかし通常のスピーカは一般に指向性が広く、TV会議システムを使用している人だけではなく、その周囲にも相手の音声(再生音)が聞こえ、周囲に不要な騒音となって聞こえてしまうという問題点があった。これを解決する一つの方法としてパラメトリックスピーカを用いる方法が考えられる。以下、パラメトリックスピーカの原理とその超指向性について簡単に説明する。パラメトリックスピーカとは超音波信号を可聴周波数を持つ変調信号で振幅変調し、この振幅変調された超音波信号により強力な超音波(約100dB以上)を放射し、空気の非線形性を利用して変調信号に対応した可聴音を生成するものである。通常の音声のレベル(約70dB)で伝播先における音波の強度を駆動源における強度の関数で示すと駆動源の強度の2次以上の成分は無視できる程小さい。
【0004】
しかし、100dB以上もの音波の伝播を考察する場合は上記2次以上の成分は無視できなくなる。この2次以上の成分の音圧は超音波の音圧が100dBのとき約60〜70dBとなり、この音圧レベルに達すると可聴音として聞こえるようになる。この空気の非線形性を利用して可聴音を生成するのがパラメトリックスピーカである。
空気の非線形性に基づく自己復調作用によって、空気を伝播するうちに自然に可聴音を生成する技術は、例えば特公平1−15198号広報、或いは(鎌倉友男「非線形音響学の基礎」(愛智出版)1996pp.107−110)等により良く知られている。100dB以上もの超音波を出力するためには単一の超音波素子では困難で、超音波素子を、例えばマトリックス状或いは円状に多数(数百〜千個)配置する。このとき可聴音は平面の中心から平面に垂直に伸びる音軸上にかなり遠方(数百m)まで伝播し、上記したTV会議システムには利用できない。
【0005】
これを解決するには超音波をパラボラなどの集音手段で集音させその集音位置に高音圧部を生成することにより、高音圧部を仮想的な音源(受聴可能エリア)にするという方法がある(米沢正道「パラメトリックアレービームによる空中音源」電子情報通信学会技術報告EA94−37)。しかし、この場合も仮想的音源位置は集音手段の集音位置で決定されるが、単に集音手段による集音だけでは先に説明した60〜70dBの音圧に達することがなく充分に聴き取ることができる音圧を得ることができない不都合がある。
この発明の目的は集音手段で集音して限られた範囲で可聴音が聞こえる領域を形成する音場制御装置において、再生される可聴音の音圧を従来より大きい音圧で再生することができる音場制御装置を提案するものである。
【0006】
【課題を解決するための手段】
この発明では、更に可聴周波数帯の周波数より高い周波数を持つ超音波信号を発生する超音波信号源と、この超音波信号源で発生した超音波信号を可聴周波数帯の周波数を持つ変調信号により振幅変調する振幅変調器と、この振幅変調器で振幅変調された超音波信号により駆動される電気音響変換部と、この電気音響変換部が発射する超音波により再生される可聴音を集音させ音場を形成する集音手段と、超音波信号源で発生する超音波信号の周波数を集音手段の集音位置と超音波の衝撃波面形成位置とを一致させる周波数に設定する周波数設定手段とによって構成した音場制御装置を提案する。
【0007】
この発明では、更に上記した音場制御装置において、周波数設定手段は、互に発振周波数を異にする複数の超音波発振器によって構成した超音波信号源と、この超音波信号源を構成する複数の発振器のいずれかの超音波発振器を選択して振幅変調器に印加する切替手段とによって構成した音場制御装置を提案する。
この発明では、更に上記した音場制御装置のいずれかにおいて、集音手段は電気音響変換部が発射する超音波を凹面で反射させ、その反射された超音波を凹面の曲率に従って集音位置を規定するパラボラ反射器で構成した音場制御装置を提案する。
【0008】
この発明では、更に上記した音場制御装置のいずれかにおいて、集音手段は凹面を持つ超音波素子支持体と、この超音波素子支持体の凹面に装着した複数の超音波素子とによって構成した音場制御装置を提案する。
作用
この発明による音場制御装置によれば、振幅変調された超音波により再生される可聴音を集音手段により定められる集音位置に集音し、高音圧部を形成するのと同時に超音波の衝撃波面形成距離を集音手段の集音位置に合致するように、超音波の発振周波数を設定するから、衝撃波面形成により更に音圧が加算され、集音手段の集音位置に従来より音圧の高い可聴音を再生することができる。
【0009】
ここで衝撃波面形成距離xsは次式で与えられる。
s=ρc3/(β2πfP) ………(1)
で与えられる。
但し、ρは空気の密度、Cは空気中の音速である。一般にρc=415[N・S/m3]、c≒340[m/s]、βは非線形パラメータでβ=1.2、fは超音波の周波数、Pは超音波の振幅である。音圧のレベルが約130dBで、f=40KHzのときxs≒1.6[m]、f=80KHzのとき、xs≒0.8[m]、f=400KHzのときxs≒0.16[m]となる。
【0010】
このように、超音波信号の周波数fを変えることにより衝撃波面形成距離xsを変化させることができるから、集音手段の集音位置と衝撃波面形成位置とを合致させることにより、その合致位置に集音による可聴音の音圧と、衝撃波面形成による可聴音の音圧との相乗効果により従来の集音のみによる音圧より大きい音圧の可聴音を再生することができることになる。
更に、この発明では超音波周波数を変化させることができる周波数設定手段を設けたから、利用状況に応じて受聴エリアの位置が決まれば、その希望する受聴エリアの位置に衝撃波面形成距離を設定し、更に、この設定距離に合致した集音距離を持つ集音手段を利用することにより希望する位置に充分音圧の高い受聴可能エリアを形成することができる。
【0011】
【発明の実施の形態】
図1にこの発明による音場制御装置の一実施例を示す。図中10は電気音響変換部を示す。この電気音響変換部10は複数の超音波素子を平面状に多数配置して構成することができる。
電気音響変換部10には例えば200Hz〜20KHzの可聴周波数帯の周波数を持つ変調信号で振幅変調した超音波信号を印加する。図1に示す例では振幅変調器13で振幅変調した超音波信号を増幅器14で増幅して電気音響変換部10に印加する構成とした場合を示す。
【0012】
電気音響変換部10から放射された超音波は例えばパラボラ型の反射面を持つ集音手段11で集音され、電気音響変換部10から所定の距離(集音手段11の集音位置で決まる距離)の位置に高音圧部12Aを形成する。
この高音圧部12Aは振幅変調された超音波信号により再生される可聴音が集音手段11によって集音されて形成されるものであるから、超音波の放射エネルギーを100dB程度としても従来と同様に音圧レベルとしては60dB程度で充分な音圧を得ることができない。
このために、この発明では集音手段11の集音位置と超音波の衝撃波面形成位置とを一致させるように構成する。このためには超音波信号源15に複数の発振器15A、15B…15Nを設け、この複数の発振器15A、15B…15Nの発振周波数の中から、集音手段11の集音位置と、衝撃波面形成距離xsとがほぼ等しい状態になる発振周波数を切替手段16で選択し、この周波数の超音波信号を振幅変調器13に与えて、可聴信号で振幅変調し、その変調出力信号を増幅器14で増幅し、その増幅出力で電気音響変換部10を駆動すれば、集音手段11の集音位置に集音効果による高音部12Aに加えて、衝撃波面形成によって再生される可聴音の高音圧部12Bが加算されるため、これら高音圧部12Aと12Bの相乗効果によって、高音レベルが60〜70dB以上の音圧を得ることができる。従って、明瞭に受聴することができる受聴可能エリア12を形成することができる。
【0013】
一方、上述したように超音波信号の周波数fを変えることにより衝撃波面形成距離xsを変化させることができるから、衝撃波面形成距離xsの変更に伴って衝撃波面形成距離xsに一致する集音距離を持つ集音手段11に交換すれば、図1に示した受聴可能エリア12の位置を、超音波周波数fの変更と集音手段11の交換によって図2に示すように超音波放射軸の軸芯18に沿って12−1,12−2,12−3,12−4のように変更することができる。特に超音波の周波数fを高く採れば採るほど、受聴可能エリア12の位置を電気音響変換部10の位置に近づけることができる。その位置に一致した集音距離を持つ集音手段に交換すれば電気音響変換部10の極めて近い位置に受聴可能エリア12を設定することができる。超音波は一般に良く知られているように高い周波数の超音波程減衰が顕著であるため、高い周波数の超音波程遠方に到達する率は少ない。このため受聴可能エリア12の位置を近距離の状態、例えば12−4に設定した場合は後方に音が漏れる率を小さくできる利点が得られる。
【0014】
図3に電気音響変換部10と、その駆動系の構造の一例を示す。電気音響変換部10は超音波信号源15に設けた発振器15A〜15Nの発振周波数f1〜fNに一致した共振周波数を持つ複数の超音波素子で構成した超音波素子群10A、10B、10C…10Nを具備し、これら複数の超音波素子群10A、10B、10C…10Nをそれぞれ発振器15A、15B…15Nで発振した超音波信号を振幅変調器13A〜13nで振幅変調して駆動する構成とした場合を示す。従って、この場合も、周波数設定手段17を構成する切替手段16のスイッチ16A〜16Nで選択した周波数の超音波信号が、その超音波信号の周波数に合致した共振周波数を持つ超音波素子群に与えられ、その周波数の超音波を放出させる。
【0015】
図4は電気音響変換部10と集音手段11の変形実施例を示す。この実施例ではパラボラ型の凹面を持つ超音波素子支持体19に超音波素子群10A、10B…10Nを装着し、この超音波素子支持体19と超音波素子群10A、10B…10Nを装着し、この超音波素子支持体19と超音波素子群10A、10B…10Nとによって集音手段11を構成した場合を示す。
この構成とした場合も、各超音波素子群10A、10B…10Nから放射された超音波は超音波素子支持体19が具備した凹面の曲率で定められる集音位置に集音には高音圧部を形成すると共に、その高音圧部の位置に超音波の衝撃波面形成位置を合致させることにより、音圧の高い受聴可能エリア12を形成することができる。また、この場合も、受聴可能エリア12の形成位置を変更するには、受聴可能エリア12を形成することを希望する位置が集音位置となる凹面の曲率を持つ超音波素子群が装着されている超音波素子支持体19を用意し、更に、その新たに設定した受聴可能エリア12の位置に超音波の衝撃波面が形成される超音波の周波数を設定すればよい。
【0016】
【発明の効果】
以上説明したように、この発明によれば超音波の空間復調作用で復調される可聴音の受聴可能エリア12の位置を設定し、変更することができる。よって例えばTV会議システムに適用した場合、話者を映出する表示器と、受聴者との間の最適距離が決定されれば、その最適距離に受聴可能エリアの位置を設定することができる。従って、その設定によって常に最適状態で利用することができる利点が得られる。また、電気音響変換部10の近傍に受聴可能エリア12を設定する場合は、振幅変調される超音波の周波数を、例えば400KHzのように高く選定するため、このような高い周波数の超音波信号は電気音響変換部10から離れるに従って減衰が著しいため、受聴可能エリア12の形成位置より更に遠方に音が漏れる率を少なくすることができるため、会議が他の邪魔になることはない。
【図面の簡単な説明】
【図1】この発明の一実施例を説明するためのブロック図。
【図2】この発明の動作を説明するための平面図。
【図3】図1に示した実施例の電気系の構成を詳細に説明するためのブロック図。
【図4】集音手段の変形実施例を説明するためのブロック図。
【符号の説明】
10 電気音響変換部 15 超音波信号源
11 集音手段 16 切替手段
12 受聴可能エリア 18 軸芯
13 振幅変調器 19 超音波素子支持体
14 増幅器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sound field control device for limiting reproduction sound to be heard only in a desired region.
[0002]
[Prior art]
In recent years, a video conference system using a personal computer (hereinafter referred to as a desktop conference system; referred to as a Desk Top Conference-ce (DTC) system) is becoming widespread due to the wave of the IT revolution. In these conference systems, a normal speaker is used as means for reproducing the voice of the other party.
[0003]
[Problems to be solved by the invention]
However, ordinary speakers generally have a wide directivity, and not only the person using the TV conference system but also the other party's voice (reproduced sound) can be heard around them, and it can be heard as unnecessary noise around them. There was a problem. As a method for solving this, a method using a parametric speaker is conceivable. Hereinafter, the principle of the parametric speaker and its superdirectivity will be briefly described. A parametric speaker modulates the amplitude of an ultrasonic signal with a modulation signal having an audible frequency, radiates strong ultrasonic waves (approximately 100 dB or more) by the amplitude-modulated ultrasonic signal, and modulates using the nonlinearity of air. An audible sound corresponding to the signal is generated. When the intensity of the sound wave at the propagation destination is expressed as a function of the intensity at the driving source at a normal sound level (about 70 dB), the second and higher order components of the driving source intensity are negligibly small.
[0004]
However, when considering the propagation of sound waves of 100 dB or more, the second and higher order components cannot be ignored. The sound pressure of the second and higher components is about 60 to 70 dB when the ultrasonic sound pressure is 100 dB. When this sound pressure level is reached, it can be heard as an audible sound. It is a parametric speaker that generates audible sound using the nonlinearity of air.
The technology for generating audible sound naturally while propagating air by self-demodulation based on the non-linearity of air is, for example, the publicity of Japanese Patent Publication No. 1-15198, or (Tomoo Kamakura “Basics of Nonlinear Acoustics” (Ai Satoshi Publishing) 1996 pp. 107-110). In order to output ultrasonic waves of 100 dB or more, it is difficult to use a single ultrasonic element, and a large number (several hundred to thousands) of ultrasonic elements are arranged in a matrix or a circle, for example. At this time, the audible sound propagates to a far distance (several hundred meters) on the sound axis extending perpendicularly to the plane from the center of the plane and cannot be used in the above-described TV conference system.
[0005]
In order to solve this, a method of making a high sound pressure part a virtual sound source (listening area) by collecting ultrasonic waves by a sound collecting means such as a parabola and generating a high sound pressure part at the sound collecting position. (Masayuki Yonezawa “Airborne sound source with parametric array beam” IEICE Technical Report EA94-37). However, in this case as well, the virtual sound source position is determined by the sound collecting position of the sound collecting means, but the sound pressure of 60 to 70 dB described above cannot be reached by simply collecting the sound by the sound collecting means. There is an inconvenience that a sound pressure that can be taken cannot be obtained.
An object of the present invention is to reproduce a sound pressure of an audible sound to be reproduced with a sound pressure higher than a conventional one in a sound field control device that forms a region where an audible sound can be heard within a limited range after collecting by a sound collecting means We propose a sound field control device that can
[0006]
[Means for Solving the Problems]
In the present invention, an ultrasonic signal source that generates an ultrasonic signal having a higher frequency than the frequency of the audible frequency band, and an amplitude of the ultrasonic signal generated by the ultrasonic signal source by a modulation signal having a frequency of the audible frequency band. An amplitude modulator to be modulated, an electroacoustic converter driven by an ultrasonic signal modulated by the amplitude modulator, and an audible sound reproduced by the ultrasonic wave emitted by the electroacoustic converter, A sound collecting means for forming a field, and a frequency setting means for setting the frequency of the ultrasonic signal generated by the ultrasonic signal source to a frequency that matches the sound collecting position of the sound collecting means and the shock wave front forming position of the ultrasonic wave. Proposed sound field control device is proposed.
[0007]
According to the present invention, in the above-described sound field control device, the frequency setting means includes an ultrasonic signal source configured by a plurality of ultrasonic oscillators having different oscillation frequencies, and a plurality of components constituting the ultrasonic signal source. Proposed is a sound field control device constituted by switching means for selecting one of the oscillators and applying it to the amplitude modulator.
In the present invention, in any one of the above-described sound field control devices, the sound collecting means reflects the ultrasonic wave emitted by the electroacoustic conversion unit on the concave surface, and the reflected ultrasonic wave has a sound collection position according to the curvature of the concave surface. A sound field control device composed of parabolic reflectors is proposed.
[0008]
In this invention, in any one of the above-described sound field control apparatuses, the sound collecting means is constituted by an ultrasonic element support having a concave surface and a plurality of ultrasonic elements mounted on the concave surface of the ultrasonic element support. A sound field control device is proposed.
According to the sound field controller by the action <br/> this invention, by collecting the sound collection position determined by the sound collecting means audible tone played by the ultrasonic amplitude modulated, to form a high sound pressure part At the same time, since the ultrasonic oscillation frequency is set so that the ultrasonic shock wave front forming distance matches the sound collecting position of the sound collecting means, sound pressure is further added by the formation of the shock wave front, and the sound collecting means collects the sound. An audible sound having a higher sound pressure than the conventional one can be reproduced at the position.
[0009]
Here, the shock wave front forming distance x s is given by the following equation.
x s = ρc 3 / (β2πfP) (1)
Given in.
Where ρ is the density of air and C is the speed of sound in the air. In general, ρc = 415 [N · S / m 3 ], c≈340 [m / s], β is a nonlinear parameter, β = 1.2, f is an ultrasonic frequency, and P is an ultrasonic amplitude. At a level of about 130dB sound pressure, x s ≒ 1.6 [m] when f = 40 KHz, when f = 80KHz, x s ≒ 0.8 [m], when f = 400KHz x s ≒ 0. 16 [m].
[0010]
Thus, since the shock wave front forming distance x s can be changed by changing the frequency f of the ultrasonic signal, the matching position can be obtained by matching the sound collecting position of the sound collecting means with the shock wave front forming position. In addition, an audible sound having a sound pressure larger than that of the conventional sound collection alone can be reproduced by a synergistic effect between the sound pressure of the audible sound due to the sound collection and the sound pressure of the audible sound due to the shock wave formation.
Furthermore, in the present invention, since the frequency setting means that can change the ultrasonic frequency is provided, if the position of the listening area is determined according to the use situation, the shock wave front forming distance is set to the position of the desired listening area, Furthermore, by using a sound collecting means having a sound collecting distance that matches the set distance, it is possible to form a receivable area having a sufficiently high sound pressure at a desired position.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an embodiment of a sound field control apparatus according to the present invention. In the figure, reference numeral 10 denotes an electroacoustic conversion unit. The electroacoustic conversion unit 10 can be configured by arranging a plurality of ultrasonic elements in a planar shape.
For example, an ultrasonic signal that is amplitude-modulated with a modulation signal having a frequency in an audible frequency band of 200 Hz to 20 KHz is applied to the electroacoustic conversion unit 10. The example shown in FIG. 1 shows a case where the ultrasonic signal amplitude-modulated by the amplitude modulator 13 is amplified by the amplifier 14 and applied to the electroacoustic transducer 10.
[0012]
The ultrasonic waves radiated from the electroacoustic conversion unit 10 are collected by, for example, the sound collection unit 11 having a parabolic reflection surface, and are separated from the electroacoustic conversion unit 10 by a predetermined distance (a distance determined by the sound collection position of the sound collection unit 11). The high sound pressure portion 12A is formed at the position).
Since the high sound pressure portion 12A is formed by collecting audible sound reproduced by an amplitude-modulated ultrasonic signal by the sound collecting means 11, even if the ultrasonic radiation energy is about 100 dB, it is the same as in the past. However, if the sound pressure level is about 60 dB, sufficient sound pressure cannot be obtained.
Therefore, in the present invention, the sound collecting position of the sound collecting means 11 and the shock wave front forming position of the ultrasonic wave are configured to coincide with each other. For this purpose, the ultrasonic signal source 15 is provided with a plurality of oscillators 15A, 15B... 15N, and the sound collection position of the sound collection means 11 and the shock wave front formation from the oscillation frequencies of the plurality of oscillators 15A, 15B. The switching unit 16 selects an oscillation frequency at which the distance x s is substantially equal, and an ultrasonic signal having this frequency is supplied to the amplitude modulator 13 to perform amplitude modulation with an audible signal, and the modulation output signal is output by the amplifier 14. Amplifying and driving the electroacoustic converter 10 with the amplified output, in addition to the high sound part 12A due to the sound collecting effect at the sound collecting position of the sound collecting means 11, in addition to the high sound pressure part of the audible sound reproduced by the formation of the shock wave front Since 12B is added, a high sound level of 60 to 70 dB or more can be obtained by the synergistic effect of these high sound pressure units 12A and 12B. Therefore, the audible area 12 that can be heard clearly can be formed.
[0013]
On the other hand, since it is possible to change the shock front formed distance x s by changing the frequency f of the ultrasonic signal as described above, to match the shock front formed distance x s following a change in the shock front formed distance x s If the sound collecting means 11 having a sound collecting distance is exchanged, the position of the audible area 12 shown in FIG. 1 is changed to the ultrasonic radiation as shown in FIG. 2 by changing the ultrasonic frequency f and exchanging the sound collecting means 11. Along the shaft axis 18 of the shaft, it can be changed to 12-1, 12-2, 12-3, 12-4. In particular, the higher the ultrasonic frequency f is, the closer the position of the audible area 12 can be to the position of the electroacoustic conversion unit 10. If the sound collecting means having the sound collecting distance corresponding to the position is exchanged, the audible area 12 can be set at a position very close to the electroacoustic conversion unit 10. As is generally well-known, the attenuation of higher frequency ultrasonic waves is more prominent, so the higher the frequency of ultrasonic waves, the lower the rate of reaching far. For this reason, when the position of the audible area 12 is set to a short distance state, for example, 12-4, there is an advantage that the rate of sound leaking backward can be reduced.
[0014]
FIG. 3 shows an example of the structure of the electroacoustic transducer 10 and its drive system. The electroacoustic conversion unit 10 includes ultrasonic element groups 10A, 10B, 10C, which include a plurality of ultrasonic elements having resonance frequencies that match the oscillation frequencies f 1 to fN of the oscillators 15A to 15N provided in the ultrasonic signal source 15. 10N, and a plurality of ultrasonic element groups 10A, 10B, 10C... 10N are driven by amplitude-modulating ultrasonic signals generated by the oscillators 15A, 15B. Show the case. Therefore, also in this case, the ultrasonic signal having the frequency selected by the switches 16A to 16N of the switching unit 16 constituting the frequency setting unit 17 is given to the ultrasonic element group having the resonance frequency that matches the frequency of the ultrasonic signal. And emits ultrasonic waves of that frequency.
[0015]
FIG. 4 shows a modified embodiment of the electroacoustic transducer 10 and the sound collecting means 11. In this embodiment, an ultrasonic element group 10A, 10B,... 10N is mounted on an ultrasonic element support 19 having a parabolic concave surface, and the ultrasonic element support 19 and the ultrasonic element groups 10A, 10B,. A case where the sound collecting means 11 is constituted by the ultrasonic element support 19 and the ultrasonic element groups 10A, 10B,.
Even in this configuration, the ultrasonic wave radiated from each of the ultrasonic element groups 10A, 10B,... 10N is collected at a sound collecting position determined by the concave curvature of the ultrasonic element support 19 and the high sound pressure portion is collected. In addition, by making the position of the ultrasonic shock wave front formation coincide with the position of the high sound pressure portion, the audible area 12 having a high sound pressure can be formed. Also in this case, in order to change the formation position of the audible area 12, an ultrasonic element group having a concave curvature in which the position where the audible area 12 is desired is the sound collection position is mounted. The ultrasonic element support 19 may be prepared, and the ultrasonic frequency at which the ultrasonic shock wave front is formed at the newly set listening area 12 may be set.
[0016]
【The invention's effect】
As described above, according to the present invention, it is possible to set and change the position of the audible sound audible area 12 demodulated by the spatial demodulation of ultrasonic waves. Therefore, for example, when the present invention is applied to a TV conference system, if the optimum distance between the display device that displays the speaker and the listener is determined, the position of the audible area can be set to the optimum distance. Therefore, there is an advantage that the setting can always be used in the optimum state. Further, when the audible area 12 is set in the vicinity of the electroacoustic transducer 10, the ultrasonic frequency to be amplitude-modulated is selected as high as, for example, 400 KHz. Since the attenuation is significant as the distance from the electroacoustic transducer 10 increases, the rate of sound leakage further away from the position where the audible area 12 is formed can be reduced, so that the conference does not become another obstacle.
[Brief description of the drawings]
FIG. 1 is a block diagram for explaining an embodiment of the present invention.
FIG. 2 is a plan view for explaining the operation of the present invention.
FIG. 3 is a block diagram for explaining in detail the configuration of the electrical system of the embodiment shown in FIG. 1;
FIG. 4 is a block diagram for explaining a modified embodiment of the sound collecting means.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Electroacoustic conversion part 15 Ultrasonic signal source 11 Sound collection means 16 Switching means 12 Hearable area 18 Axle core 13 Amplitude modulator 19 Ultrasonic element support body 14 Amplifier

Claims (2)

可聴周波数帯の周波数より高い周波数を持つ超音波信号を発生し、互に周波数を異にする複数の超音波発振器によって構成される超音波信号源と、
この超音波信号源で発生した超音波信号を可聴周波数帯の周波数を持つ変調信号により振幅変調する振幅変調器と、
この振幅変調器で振幅変調された超音波信号により駆動される電気音響変換部と、
この電気音響変換部が発射する超音波を凹面で反射させ、その反射された超音波を上記凹面の曲率に従って集音位置を規定するパラボラ反射器で構成させる集音手段と
記集音手段の集音位置と超音波の衝撃波面形成位置とを一致させる周波数をもつ超音波発信器を選択して上記振幅変調器に印加する周波数設定手段と、
によって構成したことを特徴とする音場制御装置。
An ultrasonic signal source configured by a plurality of ultrasonic oscillators that generate an ultrasonic signal having a frequency higher than a frequency in an audible frequency band and have different frequencies from each other ;
An amplitude modulator that modulates the amplitude of the ultrasonic signal generated by the ultrasonic signal source using a modulation signal having a frequency in the audible frequency band;
An electroacoustic transducer driven by an ultrasonic signal amplitude-modulated by the amplitude modulator;
Sound collection means for reflecting the ultrasonic wave emitted by the electroacoustic conversion unit on the concave surface and configuring the reflected ultrasonic wave with a parabolic reflector that defines the sound collection position according to the curvature of the concave surface ;
And frequency setting means to be applied to the amplitude modulator by selecting the ultrasonic transmitter having a frequency to match the sound collecting position and ultrasonic shock front formation positions of the upper Kishuoto means,
A sound field control device characterized by comprising:
請求項1記載の音場制御装置において、
上記集音手段は凹面を持つ超音波素子支持体と、この超音波素子支持体の凹面に装着した上記電気音響変換部を構成する複数の超音波素子とによって構成したことを特徴とする音場制御装置。
Oite the sound field control equipment of claim 1 Symbol placement,
The sound collecting means is constituted by an ultrasonic element support having a concave surface and a plurality of ultrasonic elements constituting the electroacoustic transducer mounted on the concave surface of the ultrasonic element support. Control device.
JP2001354299A 2001-11-20 2001-11-20 Sound field control device Expired - Fee Related JP3700841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001354299A JP3700841B2 (en) 2001-11-20 2001-11-20 Sound field control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001354299A JP3700841B2 (en) 2001-11-20 2001-11-20 Sound field control device

Publications (2)

Publication Number Publication Date
JP2003158788A JP2003158788A (en) 2003-05-30
JP3700841B2 true JP3700841B2 (en) 2005-09-28

Family

ID=19166179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001354299A Expired - Fee Related JP3700841B2 (en) 2001-11-20 2001-11-20 Sound field control device

Country Status (1)

Country Link
JP (1) JP3700841B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4214961B2 (en) 2004-06-28 2009-01-28 セイコーエプソン株式会社 Superdirective sound system and projector

Also Published As

Publication number Publication date
JP2003158788A (en) 2003-05-30

Similar Documents

Publication Publication Date Title
JP3267231B2 (en) Super directional speaker
JPH11164384A (en) Super directional speaker and speaker drive method
US8199931B1 (en) Parametric loudspeaker with improved phase characteristics
US5889870A (en) Acoustic heterodyne device and method
JP3000982B2 (en) Super directional speaker system and method of driving speaker system
US20050207590A1 (en) Method of reproducing audio sound with ultrasonic loudspeakers
US7747029B2 (en) Screen for playing audible signals by demodulating ultrasonic signals having the audible signals
JP6274497B2 (en) Parametric speaker
US20050286346A1 (en) High intensity directional electroacoustic sound generating system for communications targeting
JP2006245731A (en) Directional speaker
JP5030863B2 (en) Parametric speaker
JP2006081117A (en) Super-directivity speaker system
JP2002315088A (en) Parametric loudspeaker system based on ultrasound
JP2002354575A (en) Parametric multiway speaker system based on ultrasonic wave
JP3668180B2 (en) Ultrasonic reproduction method / Ultrasonic reproduction device
JP3700841B2 (en) Sound field control device
KR100689876B1 (en) Sound reproducing system by transfering and reproducing acoustc signal with ultrasonic
Olszewski et al. 3g-3 optimum array configuration for parametric ultrasound loudspeakers using standard emitters
JP2022089801A (en) Glasses with parametric audio unit
JPH08149592A (en) Parametric speaker controller
JPH07107588A (en) Method for constructing sound source
JP2006197539A (en) Hybrid ultrasonic speaker and broadcasting system
Olszewski et al. Highly directional multi-beam audio loudspeaker
CN219761308U (en) Sounding system
JP2012119842A (en) Flat speaker

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050706

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080722

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees