JP2004063896A - Optical sensor - Google Patents

Optical sensor Download PDF

Info

Publication number
JP2004063896A
JP2004063896A JP2002221792A JP2002221792A JP2004063896A JP 2004063896 A JP2004063896 A JP 2004063896A JP 2002221792 A JP2002221792 A JP 2002221792A JP 2002221792 A JP2002221792 A JP 2002221792A JP 2004063896 A JP2004063896 A JP 2004063896A
Authority
JP
Japan
Prior art keywords
light
emitting element
optical sensor
window
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002221792A
Other languages
Japanese (ja)
Inventor
Hiroki Yamamoto
山本 裕記
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Tottori Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Tottori Sanyo Electric Co Ltd, Sanyo Electric Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP2002221792A priority Critical patent/JP2004063896A/en
Publication of JP2004063896A publication Critical patent/JP2004063896A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical sensor that can prevent increase in manufacturing cost and has stable characteristics. <P>SOLUTION: The optical sensor is provided with a light-emitting element 2 that is provided with a window for light emission in the central part of a surface electrode and a light-receiving element 3, wherein a plurality of light reception areas are arranged in one direction. The light-receiving element 3 receives light emitted from the light emission element 2, that is blocked by an object 6 to be detected or reflected thereon and is changed as a result, and the light-receiving areas detect the object by means of their outputs. In this case, a part of the surface electrode is arranged linearly in the window for light emission, and the linearly-arranged electrode is arranged in the same direction as the arrangement direction of the light-receiving areas. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、発光素子と受光素子とを備える光学センサーに関する。
【0002】
【従来の技術】
検出物の傾きを検出することができる光学センサーは、例えば特公平8−20233号公報に示されているように、受光素子が複数の受光領域を備えている。発光素子には、複数の受光領域に均一に光を与えることができるように、出力特性の均一性が要求される。
【0003】
このような要求を満たすため、エピタキシャル成長層を厚くした発光素子を用いることによって出力特性の均一性を図ることができる。また、図7に平面図を示すように、表面電極100に発光用の窓101を設けた発光素子を用いることによっても出力特性の均一性を図ることができる。
【0004】
【発明が解決しようとする課題】
上記のように、エピタキシャル成長層を厚くすると、コストの上昇を招く。また、図7に示すように、表面電極100に発光用の窓101を設けたのみの構成では、電極100に近い表示窓101の周辺部と電極100から離れた表示窓101の中央部とでは、図8に示すように発光強度に相違が生じやすい。
【0005】
そこで本発明は、製造コストの増加を抑えた光学センサーを提供することを課題の1つとする。また、特性の安定した光学センサーを提供することを課題の1つとする。
【0006】
【課題を解決するための手段】
本発明の光学センサーは、表面電極の中央部に発光用の窓を備えた発光素子と、受光素子とを備え、前記発光素子から発せられて検出物によって遮られ、もしくは検出物によって反射されることによって変化する前記発光素子の光を前記受光素子によって受光する光学センサーにおいて、前記発光用の窓に前記表面電極の一部を線状に配置したことを特徴とする。
【0007】
本発明の光学センサーは、表面電極の中央部に発光用の窓を備えた発光素子と、複数の受光領域を一方向に配列した受光素子とを備え、前記発光素子から発せられて検出物によって遮られ、もしくは検出物によって反射されることによって変化する前記発光素子の光を前記受光素子によって受光し、前記複数の受光領域の出力によって検出物の傾きを検出する光学センサーにおいて、前記発光用の窓に前記表面電極の一部を線状に配置し、この線状の電極は前記受光領域の配列方向と同方向に配置したことを特徴とする。
【0008】
【発明の実施の形態】
以下本発明の実施形態について光学センサーの一例であるフォトインタラプタを例に取り、図面を参照して説明する。このフォトインタラプタ1は、図1に示すように、発光素子2と、その光を受光する受光素子3を備えている。発光素子2と受光素子3は、ケース4に位置決めして固定されている。フォトインタラプタ1が反射型であるため、発光素子2と受光素子3は、ケース4の一面、この例では底面に一定間隔をおいて固定されている。ケース4の上面部には、レンズ5を取り付けている。レンズ5は、発光素子2から発せられる光を拡大して検出物6に導き、検出物によって反射された光を受光素子3に導くように作用する。
【0009】
発光素子2は、半導体発光素子、例えば、図2、図3(図3は、図2のA1−A2に沿った断面図)に示すような発光ダイオードによって構成している。発光素子2は、表と裏面に一対の電極7,8を備えている。表側の電極7は、素子2の表面全体を覆うように形成され遮光性の金属で構成され、その中央部に発光用の円窓9を備えている。この窓9には、表面電極7の一部を線状に残すことによって形成した補助電極10を配置している。補助電極10は、受光素子の後述する受光領域の配列方向と同方向に配置した補助電極10Xと、この補助電極と直行する方向の補助電極10Yを備えている。
【0010】
発光素子2は、一導電型半導体基板11の上に、一導電型半導体層12と逆導電型半導体層13をエピタキシャル成長して構成している。一導電型半導体層12と逆導電型半導体層13の間には、発光層14を形成している。発光層14は、ホモ接合、シングルへテロ接合、ダブルヘテロ接合等によって構成することができる。一導電型半導体層12の途中には、電流を狭搾するための電流ブロック層15を配置している。電流ブロック層15は、逆導電型の半導体層によって構成することができる。電流ブロック層15の平面形状は、表面電極7(補助電極10を除く)の平面形状と同等の平面形状に形成され、中央部に表面電極7の窓9と同等か、若干小さな窓が開くようにしている。
【0011】
発光素子の一対の電極7,8間に所定の駆動電圧を供給すると、一方の電極から他方の電極、例えば電極7から電極8に向かって電流が流れる。この電流が発光層14を通過する際、発光層14において電流が光に変換され、発光層の組成によって定まる所定波長の光が発生する。この光は、素子表面の電極7の窓9部分から外に取り出される。電極7の窓9がある部分は、本来なら電流が拡がりにくいが、補助電極10が窓10の内部にXY方向に延びているので、窓9の中心部に対応して位置する発光層14まで均一に電流を拡散することができる。また、電流は、電流ブロック層15によって中央部に集まるように狭搾されるので、窓9から出る光の発光強度分布を図5に示すように、平均化することができる。
【0012】
受光素子3は、図4に示すように、半導体基板の表面に受光部16を配置している。受光部16は、互いに独立した複数の矩形の受光領域17を一方向に配列した構成としている。
【0013】
発光素子2からでて検出物6によって反射される光は、図4に一点鎖線L9で示すように、受光素子3に投射される。補助電極10X、10Xによる輝度低下線L10X、L10Xは、受光部16を避けるように、受光部16の両側に位置している。補助電極10Yによる輝度低下線L10Yは、受光部16の中心(発光領域17の数を2分するような中心)を通るように位置している。
【0014】
補助電極10X、10X、10Yが存在する部分は、発光素子の光がそれらによって遮光されるので、輝度低下が生じる。しかしながら、輝度低下線L10X、L10Xが受光部16を避け受光部16の両側に位置するように、発光素子2の電極形状や、発光素子2と受光素子3の配置に工夫を施しているので、輝度低下の問題は回避することができる。また、補助電極10X、10X、10Yによって発光層14に供給される電流量が増大するので、補助電極10X、10X、10Yの近傍は、発光強度が増加する。したがって、この発光強度増加によっても輝度低下の問題は回避することができる。補助電極10Yによる輝度低下線L10Yが受光部16を通る場合においても、その影響が最も少ない個所、すなわち受光部16の中心(発光領域17の数を2分するような中心)を通るように、発光素子2の電極形状や、発光素子2と受光素子3の配置に工夫を施しているので、輝度低下の問題は回避することができる。
【0015】
検出物6の傾きや位置によって、投射光L9は、その形状が変化する。この光の変化状態によって、各受光領域17における受光量が変化し、それに応じて受光領域17から取り出される信号出力が変化する。そして、各受光領域17の信号出力を外部の信号処理回路に供給し、信号処理を行うことによって、検出物6の傾きや位置を判別することが可能となる。
【0016】
上記実施形態は、発光素子2の光を検出物6によって反射する反射型のフォトインタラプタを例にとったが、本発明はこれ以外にも適用することができ、例えば、図6に示すように発光素子2の光を検出物6によって遮蔽する透過型のフォトインタラプタにも適用することができる。透過型のフォトインタラプタにおいては、発光素子2と受光素子3が検出物6の通過可能な空間を隔てて対面するように配置される。
【0017】
【発明の効果】
以上のように本発明によれば、製造コストの増加を抑えた光学センサーを提供することができる。また、特性の安定した光学センサーを提供することができる。
【図面の簡単な説明】
【図1】本発明の実施形態を示すフォトインタラプタの断面図である。
【図2】同実施形態における発光素子の平面図である。
【図3】図2のA0−A1の断面図である。
【図4】同実施形態における受光素子の平面図である。
【図5】同実施形態における発光素子の発光強度特性を示す図である。
【図6】本発明の別の実施形態を示すフォトインタラプタの断面図である。
【図7】従来の発光素子の平面図である。
【図8】従来の発光素子の発光強度特性を示す図である。
【符号の説明】
1 フォトインタラプタ
2 発光素子
3 受光素子
7 表面電極
8 裏面電極
9 窓
10 補助電極
16 受光部
17 受光領域
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical sensor including a light emitting element and a light receiving element.
[0002]
[Prior art]
In an optical sensor capable of detecting the inclination of a detection object, a light receiving element has a plurality of light receiving areas, as disclosed in Japanese Patent Publication No. 8-20233, for example. A light emitting element is required to have uniform output characteristics so that light can be uniformly applied to a plurality of light receiving regions.
[0003]
In order to satisfy such requirements, uniformity of output characteristics can be achieved by using a light emitting element having a thick epitaxial growth layer. In addition, as shown in a plan view of FIG. 7, uniformity of output characteristics can be achieved by using a light emitting element in which a light emitting window 101 is provided in a surface electrode 100.
[0004]
[Problems to be solved by the invention]
As described above, increasing the thickness of the epitaxial growth layer causes an increase in cost. Further, as shown in FIG. 7, in the configuration in which only the light emitting window 101 is provided in the front electrode 100, the peripheral portion of the display window 101 close to the electrode 100 and the central portion of the display window 101 remote from the electrode 100 are different. As shown in FIG. 8, the emission intensity tends to differ.
[0005]
Therefore, an object of the present invention is to provide an optical sensor in which an increase in manufacturing cost is suppressed. Another object is to provide an optical sensor with stable characteristics.
[0006]
[Means for Solving the Problems]
The optical sensor of the present invention includes a light-emitting element having a light-emitting window at the center of the surface electrode, and a light-receiving element, and is emitted from the light-emitting element and blocked by a detection object or reflected by the detection object. In the optical sensor for receiving the light of the light-emitting element, which is changed by the light-receiving element, by the light-receiving element, a part of the surface electrode is linearly arranged in the light-emitting window.
[0007]
The optical sensor of the present invention includes a light-emitting element having a light-emitting window at the center of the surface electrode, and a light-receiving element in which a plurality of light-receiving regions are arranged in one direction. An optical sensor that receives the light of the light emitting element, which is changed by being blocked or reflected by the detection object, by the light receiving element and detects a tilt of the detection object by an output of the plurality of light receiving regions. A part of the surface electrode is linearly arranged in the window, and the linear electrode is arranged in the same direction as the arrangement direction of the light receiving regions.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings, taking a photo interrupter as an example of an optical sensor as an example. As shown in FIG. 1, the photo interrupter 1 includes a light emitting element 2 and a light receiving element 3 for receiving the light. The light emitting element 2 and the light receiving element 3 are positioned and fixed to the case 4. Since the photointerrupter 1 is a reflection type, the light emitting element 2 and the light receiving element 3 are fixed to one surface of the case 4, in this example, the bottom surface at a constant interval. A lens 5 is attached to the upper surface of the case 4. The lens 5 functions to expand the light emitted from the light emitting element 2 and guide the light to the detection object 6 and guide the light reflected by the detection object to the light receiving element 3.
[0009]
The light-emitting element 2 is constituted by a semiconductor light-emitting element, for example, a light-emitting diode as shown in FIGS. 2 and 3 (FIG. 3 is a cross-sectional view along A1-A2 in FIG. 2). The light emitting element 2 has a pair of electrodes 7 and 8 on the front and back surfaces. The front-side electrode 7 is formed so as to cover the entire surface of the element 2 and is made of a light-shielding metal, and has a circular window 9 for light emission at the center thereof. An auxiliary electrode 10 formed by leaving a part of the surface electrode 7 in a linear shape is arranged in the window 9. The auxiliary electrode 10 includes an auxiliary electrode 10X arranged in the same direction as an arrangement direction of a light receiving region of the light receiving element, which will be described later, and an auxiliary electrode 10Y in a direction orthogonal to the auxiliary electrode.
[0010]
The light emitting element 2 is configured by epitaxially growing a semiconductor layer 12 of one conductivity type and a semiconductor layer 13 of a reverse conductivity type on a semiconductor substrate 11 of one conductivity type. A light emitting layer 14 is formed between the one conductivity type semiconductor layer 12 and the opposite conductivity type semiconductor layer 13. The light emitting layer 14 can be formed by a homo junction, a single hetero junction, a double hetero junction, or the like. In the middle of the one conductivity type semiconductor layer 12, a current block layer 15 for narrowing a current is arranged. The current blocking layer 15 can be constituted by a semiconductor layer of the opposite conductivity type. The planar shape of the current blocking layer 15 is formed in a planar shape equivalent to the planar shape of the surface electrode 7 (excluding the auxiliary electrode 10), and a window similar to or slightly smaller than the window 9 of the surface electrode 7 is opened at the center. I have to.
[0011]
When a predetermined drive voltage is supplied between the pair of electrodes 7 and 8 of the light emitting element, a current flows from one electrode to the other electrode, for example, from the electrode 7 to the electrode 8. When the current passes through the light emitting layer 14, the current is converted into light in the light emitting layer 14, and light having a predetermined wavelength determined by the composition of the light emitting layer is generated. This light is extracted outside from the window 9 of the electrode 7 on the element surface. In the portion of the electrode 7 where the window 9 is located, the current is unlikely to spread normally. However, since the auxiliary electrode 10 extends in the XY directions inside the window 10, it extends to the light emitting layer 14 corresponding to the center of the window 9. The current can be spread uniformly. In addition, since the current is constricted by the current blocking layer 15 so as to gather at the center, the light emission intensity distribution of the light exiting from the window 9 can be averaged as shown in FIG.
[0012]
As shown in FIG. 4, the light receiving element 3 has a light receiving section 16 disposed on the surface of the semiconductor substrate. The light receiving section 16 has a configuration in which a plurality of mutually independent rectangular light receiving areas 17 are arranged in one direction.
[0013]
The light emitted from the light emitting element 2 and reflected by the detection object 6 is projected on the light receiving element 3 as shown by a dashed line L9 in FIG. The brightness reduction lines L10X, L10X formed by the auxiliary electrodes 10X, 10X are located on both sides of the light receiving unit 16 so as to avoid the light receiving unit 16. The brightness lowering line L10Y formed by the auxiliary electrode 10Y is located so as to pass through the center of the light receiving unit 16 (the center that divides the number of the light emitting areas 17 into two).
[0014]
In the portion where the auxiliary electrodes 10X, 10X, and 10Y exist, the light of the light emitting element is shielded by them, so that the brightness is reduced. However, the electrode shape of the light emitting element 2 and the arrangement of the light emitting element 2 and the light receiving element 3 have been devised so that the brightness reduction lines L10X and L10X are located on both sides of the light receiving section 16 avoiding the light receiving section 16. The problem of brightness reduction can be avoided. Further, since the amount of current supplied to the light emitting layer 14 by the auxiliary electrodes 10X, 10X, and 10Y increases, the light emission intensity increases near the auxiliary electrodes 10X, 10X, and 10Y. Therefore, the problem of a decrease in luminance can be avoided even by this increase in light emission intensity. Even when the luminance lowering line L10Y due to the auxiliary electrode 10Y passes through the light receiving unit 16, it passes through a location where the effect is least, that is, through the center of the light receiving unit 16 (the center that divides the number of the light emitting regions 17 into two). Since the shape of the electrodes of the light emitting element 2 and the arrangement of the light emitting element 2 and the light receiving element 3 are devised, the problem of luminance reduction can be avoided.
[0015]
The shape of the projection light L9 changes depending on the inclination and the position of the detection object 6. The amount of light received in each light receiving area 17 changes according to the change state of the light, and the signal output extracted from the light receiving area 17 changes accordingly. Then, the signal output of each light receiving area 17 is supplied to an external signal processing circuit, and the signal processing is performed, whereby the inclination and the position of the detection object 6 can be determined.
[0016]
In the above embodiment, the reflection type photo interrupter that reflects the light of the light emitting element 2 by the detection object 6 is taken as an example. However, the present invention can be applied to other than this. For example, as shown in FIG. The present invention can also be applied to a transmission type photo interrupter in which light from the light emitting element 2 is blocked by the detection object 6. In the transmission type photointerrupter, the light emitting element 2 and the light receiving element 3 are arranged so as to face each other with a space through which the detection object 6 can pass.
[0017]
【The invention's effect】
As described above, according to the present invention, it is possible to provide an optical sensor in which an increase in manufacturing cost is suppressed. Further, an optical sensor having stable characteristics can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a photo interrupter showing an embodiment of the present invention.
FIG. 2 is a plan view of the light emitting device in the same embodiment.
FIG. 3 is a sectional view taken along line A0-A1 of FIG. 2;
FIG. 4 is a plan view of a light receiving element in the same embodiment.
FIG. 5 is a diagram showing light emission intensity characteristics of the light emitting element in the same embodiment.
FIG. 6 is a cross-sectional view of a photointerrupter showing another embodiment of the present invention.
FIG. 7 is a plan view of a conventional light emitting device.
FIG. 8 is a diagram showing emission intensity characteristics of a conventional light emitting element.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 photo interrupter 2 light emitting element 3 light receiving element 7 front electrode 8 back electrode 9 window 10 auxiliary electrode 16 light receiving section 17 light receiving area

Claims (2)

表面電極の中央部に発光用の窓を備えた発光素子と、受光素子とを備え、前記発光素子から発せられて検出物によって遮られ、もしくは検出物によって反射されることによって変化する前記発光素子の光を前記受光素子によって受光する光学センサーにおいて、前記発光用の窓に前記表面電極の一部を線状に配置したことを特徴とする光学センサー。A light-emitting element having a light-emitting window in the center of the surface electrode; and a light-receiving element, wherein the light-emitting element is emitted from the light-emitting element and changed by being blocked by a detection object or reflected by the detection object. An optical sensor for receiving the light of the above-mentioned light by the light receiving element, wherein a part of the surface electrode is linearly arranged in the light emitting window. 表面電極の中央部に発光用の窓を備えた発光素子と、複数の受光領域を一方向に配列した受光素子とを備え、前記発光素子から発せられて検出物によって遮られ、もしくは検出物によって反射されることによって変化する前記発光素子の光を前記受光素子によって受光し、前記複数の受光領域の出力によって検出物の傾きを検出する光学センサーにおいて、前記発光用の窓に前記表面電極の一部を線状に配置し、この線状の電極は前記受光領域の配列方向と同方向に配置したことを特徴とする光学センサー。A light-emitting element having a light-emitting window at the center of the surface electrode, and a light-receiving element having a plurality of light-receiving regions arranged in one direction, which are emitted from the light-emitting element and blocked by a detection object, or by a detection object. In the optical sensor, which receives the light of the light emitting element that changes by being reflected by the light receiving element and detects the inclination of the detected object based on the outputs of the plurality of light receiving areas, the light emitting window has one side of the surface electrode. An optical sensor, wherein the portions are arranged linearly, and the linear electrodes are arranged in the same direction as the arrangement direction of the light receiving regions.
JP2002221792A 2002-07-30 2002-07-30 Optical sensor Pending JP2004063896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002221792A JP2004063896A (en) 2002-07-30 2002-07-30 Optical sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002221792A JP2004063896A (en) 2002-07-30 2002-07-30 Optical sensor

Publications (1)

Publication Number Publication Date
JP2004063896A true JP2004063896A (en) 2004-02-26

Family

ID=31942009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002221792A Pending JP2004063896A (en) 2002-07-30 2002-07-30 Optical sensor

Country Status (1)

Country Link
JP (1) JP2004063896A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007112655A1 (en) * 2006-03-30 2007-10-11 Hong Kong Applied Science And Technology Research Institute Co., Ltd Optical tilt sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007112655A1 (en) * 2006-03-30 2007-10-11 Hong Kong Applied Science And Technology Research Institute Co., Ltd Optical tilt sensor

Similar Documents

Publication Publication Date Title
KR101365494B1 (en) Backlight assembly and liquid crystal display device having the same
US6964500B2 (en) Planar light source device, liquid crystal display apparatus, and display apparatus
WO2006117956A1 (en) Liquid crystal display device
US20100060172A1 (en) Hollow Planar Illuminating Apparatus
JP4749418B2 (en) Liquid crystal display
JP6141347B2 (en) Light source device and display device
JP2009087538A (en) Light source unit, lighting device using it, and display device using it
JP2004021147A (en) Planar light source device, and liquid crystal display using the same
US8493516B2 (en) Light-emitting module, illumination device, display device, and television receiver
JP2009519568A (en) Lighting device
JP2006278368A (en) Light source device and display device
JP4160444B2 (en) Planar light source device and display device using the same
US8488081B2 (en) Plane light source and LCD backlight unit having the same
US20190354000A1 (en) Laser array, laser light source and laser projection device
WO2006107011A1 (en) Light-emitting unit, illuminating device using such light-emitting unit, and image scanner
US20110170018A1 (en) Lighting device, display device and television receiver
CN106568504A (en) Photoelectric switch
JP2004063896A (en) Optical sensor
JP2008102199A (en) Illuminator and imaging apparatus
KR20170038344A (en) Organic Light Emitting Diode Display Device
KR101429486B1 (en) Light Guiding Plate and Backlight unit
WO2010002840A2 (en) Two dimensional flatbed scanner with no moving parts
JP4464412B2 (en) Planar light source device and liquid crystal display device using the same
KR20230094843A (en) Flash led package with light sensors
JP2008270043A (en) Lighting device