JP2004063196A - Induction cooker - Google Patents

Induction cooker Download PDF

Info

Publication number
JP2004063196A
JP2004063196A JP2002218096A JP2002218096A JP2004063196A JP 2004063196 A JP2004063196 A JP 2004063196A JP 2002218096 A JP2002218096 A JP 2002218096A JP 2002218096 A JP2002218096 A JP 2002218096A JP 2004063196 A JP2004063196 A JP 2004063196A
Authority
JP
Japan
Prior art keywords
heating coil
top plate
radius
temperature sensor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002218096A
Other languages
Japanese (ja)
Other versions
JP2004063196A5 (en
JP3962646B2 (en
Inventor
Masao Morita
守田 正夫
Kunihiko Kaga
加賀 邦彦
Koichi Kinoshita
木下 広一
Yoshihiro Osano
小佐野 義博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Home Appliance Co Ltd
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Home Appliance Co Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Home Appliance Co Ltd, Mitsubishi Electric Corp filed Critical Mitsubishi Electric Home Appliance Co Ltd
Priority to JP2002218096A priority Critical patent/JP3962646B2/en
Publication of JP2004063196A publication Critical patent/JP2004063196A/en
Publication of JP2004063196A5 publication Critical patent/JP2004063196A5/ja
Application granted granted Critical
Publication of JP3962646B2 publication Critical patent/JP3962646B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Induction Heating Cooking Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To arrange a temperature sensor effectively detecting temperature of a loading pan even in the case where the bottom of the loading pan is bent or a placing position is applied in an induction cooker. <P>SOLUTION: The induction cooker is equipped with a top plate 4 on which the loading pan 16 is placed; a heating coil 10 for induction heating the loading pan 16; a means 12 for applying current to the heating coil 10; and first and second temperature sensors 20a, 20b installed between the top plate 14 and the heating coil 10. As viewed from almost the vertical direction to the top plate 4, the first temperature sensor 20a is arranged in a region of a radius of about 15% to about 50% to the outermost radius of the heating coil 10 and the second temperature sensor 20b is arranged in a region of a radius of about 50% to about 90% to the outermost radius of the heating coil 10. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は電磁調理器に関し、特に負荷鍋の温度を検出するための温度センサを備えた電磁調理器に関する。
【0002】
【従来の技術】
従来、負荷鍋を載置するトッププレートと、トッププレートの下側に配置され負荷鍋を誘導加熱する電磁誘導コイルまたは加熱コイルとを備えた電磁調理器において、負荷鍋の温度を検出して、負荷鍋の加熱温度を制御したり空焚き等による負荷鍋の過熱を防止したりするために、トッププレートの下面に温度センサを取付けたものが多数知られている。
【0003】
例えば、特開平4−248290号公報や特開平11−87041号公報に開示されている電磁調理器では、トッププレートに略垂直な方向から見て温度センサを加熱コイルの巻回中心またはその近傍に配置している。
【0004】
【発明が解決しようとする課題】
このような電磁調理器では、空焚き等により負荷鍋の底部が傘状に反り上がる場合がある。このように底部が反り上がった負荷鍋の場合、負荷鍋の底部とトッププレートとの間に隙間(熱伝導率の低い空気層)が生じるため、加熱コイルの巻回中心またはその近傍に配置された温度センサは、負荷鍋の実際の温度よりも低い温度を検出することになり、検出温度に基づいた制御を行うことができず、また、負荷鍋の過熱の危険性がある。これを解決するために、温度センサを加熱コイルの巻回中心またはその近傍以外に配置することが考えられる。
【0005】
ところで、従来の電磁調理器では、負荷鍋を載置する位置を示すマークとして、トッププレートの上面に加熱コイルの最外半径位置に対応して円が印刷されている。しかしながら、負荷鍋を円に合わせてトッププレートに置かれずに、ずれた状態で置かれる可能性がある。そのため、温度センサを加熱コイルの巻回中心またはその近傍以外に配置した場合であっても、温度センサが負荷鍋の温度を有効に検出できない可能性がある。
【0006】
本発明者らは、負荷鍋の底部が反った場合や載置位置がずれた場合であっても、負荷鍋の温度を有効に検出することのできる温度センサの配置位置を種々検討し本発明に到った。
【0007】
【課題を解決するための手段】
本発明に係る電磁調理器の第1の態様は、
負荷鍋を載置するためのトッププレートと、
トッププレートの下方に配設され、負荷鍋を誘導加熱するための加熱コイルと、
加熱コイルに電流を印加する手段と、
トッププレートと加熱コイルとの間に配設された第1及び第2の温度センサとを備えた電磁調理器において、
トッププレートに略垂直な方向から見て、第1の温度センサを加熱コイルの最外半径に対し半径約15〜約50%の領域に配置するとともに、第2の温度センサを加熱コイルの最外半径に対し半径約50〜約90%の領域に配置することを特徴とする。
【0008】
一実施形態では、第1及び第2の温度センサは、トッププレートに略垂直な方向から見て、加熱コイルの周方向に関して互いに約180度ずらして配置する。
【0009】
本発明に係る電磁調理器の第2の態様は、
負荷鍋を載置するためのトッププレートと、
トッププレートの下方に配設され、負荷鍋を誘導加熱するための加熱コイルと、
加熱コイルに電流を印加する手段と、
トッププレートと加熱コイルとの間に配設されたn個(n:3以上の整数)の温度センサとを備えた電磁調理器において、
n個の温度センサは、トッププレートに略垂直な方向から見て、加熱コイルの最外半径に対し半径約15〜約90%の領域に、加熱コイルの周方向に関して略等ピッチで配置されることを特徴とする。
【0010】
本発明に係る電磁調理器の第3の態様は、
負荷鍋を載置するためのトッププレートと、
トッププレートの下方に配設され、負荷鍋を誘導加熱するための加熱コイルと、
加熱コイルに電流を印加する手段と、
トッププレートと加熱コイルとの間に配設された第1〜第5の温度センサとを備えた電磁調理器において、
トッププレートに略垂直な方向から見て、第1〜第3の温度センサは、加熱コイルの最外半径に対し半径約15〜約90%の領域に、加熱コイルの周方向に関して略等ピッチで配置され、第4の温度センサは、加熱コイルの最外半径に対し半径約15〜約50%の領域に配置され、第5の温度センサは、加熱コイルの最外半径に対し半径約50〜約90%の領域に配置されることを特徴とする。
【0011】
温度センサはトッププレート下面の温度を検出する。トッププレートとしてはガラスなどが用いられる。
【0012】
温度センサをトッププレート下面に接して配置し、各温度センサに対し、該センサの周囲を囲むように断熱部材を設けてもよい。
【0013】
【発明の実施の形態】
以下、添付図面を参照して本発明に係る電磁調理器の実施の形態を説明する。なお、本願明細書では、方向を表す用語(例えば、「上」、「下」、「右」、「左」、およびこれらの用語を含む別の用語)を適宜用いるが、説明に用いる図面中の方向を示すだけのものであって、これらの用語によって本発明が限定的に解釈されるべきでない。
【0014】
実施の形態1.
図1〜図7を参照して、本発明に係る電磁調理器の実施の形態1について説明する。図1において、全体を符号2で示す電磁調理器は、箱状のハウジング3と、ハウジング3の上部を覆うガラスなどで形成されたトッププレート4とを備える。ハウジング3の外面には、温度調整つまみ6及び温度表示部8が設けてある。
【0015】
図2に示すように、ハウジング3内部には、概略、トッププレート4の下側に配置された電磁誘導コイルまたは加熱コイル10と、加熱コイル10に高周波電流を供給するための電源12と、電源12を制御するための制御装置14とが設けてある。トッププレート4の上面には、負荷鍋16(図1では図示を省略)を載置するために、加熱コイル10の最外半径に略一致する半径を有する円18(図1)が印刷されている。トッププレート4の下面には、トッププレート4に略垂直な方向から見て加熱コイル10中心から外側に向かう仮想線上の所定の位置に2つの温度センサ(例えばサーミスタ)20a、20bが設置され、トッププレート4を介して負荷鍋16の温度を検出するようになっている。温度センサ20a、20bの設置位置については後で詳述する。温度センサ20a、20bからの検出信号は制御装置14に送られ、必要に応じて加熱コイル10に供給する電流が調整されるようにしてある。
【0016】
図3(a),(b)を参照して、加熱コイル10の周辺部分をさらに詳しく説明する。加熱コイル10の中央には中心フェライト24が配置されるとともに、加熱コイル10の下側には棒状のフェライト26が放射状に配置されている。これらフェライト24、26は、加熱コイル10が作る磁束を負荷鍋16に高効率に導くためのものである。これらフェライト24、26の形状や配置位置が変わると、負荷鍋16の発熱分布も変わる。
【0017】
図4に示すような加熱コイル10a、底部が平坦の負荷鍋16、中心フェライト24(図3参照)、及び棒フェライト26(図3参照)を備えた電磁調理器モデルを用い、加熱コイル10aと負荷鍋16の中心軸が一致している場合に、中心フェライト24及び棒フェライト26の配置や形状を変えた場合に負荷鍋16の発熱分布がどのように変化するかを、三次元電磁界解析により求めた。すなわち、電磁界解析を行うことにより、加熱コイル10aの作る磁束を打ち消そうとして負荷鍋16に流れる誘導電流に起因するジュール損失を求めた。このジュール損失の半径方向の分布が負荷鍋16の発熱分布となる。解析に用いた加熱コイル10aは、中心側と外径側にそれぞれ一定の割合でコイルが巻回され、中心側のコイル部分と外径側のコイル部分の間に隙間を設けた形状を有するものである。
【0018】
電磁界解析により得られた、加熱コイル10aにより誘導加熱される負荷鍋16の発熱密度(単位体積当たりの発熱量)の代表数例をまとめて図5に示す。図5は、加熱コイルの最外直径が200mm、負荷鍋5の外径が200mmのものを用いて電磁界解析を行った結果である。図5において、横軸は、加熱コイル10の最外半径に対する負荷鍋16の発熱位置の径の比である。例えば、横軸の50%は、鍋の半径50mmの部分の径の比を表す。縦軸は、負荷鍋16の発熱密度比であり、発熱密度が所定の高い値を示す箇所を100%として示している。
【0019】
以下では、電磁界解析から求めた発熱密度比の分布に基づいて、温度センサの最適な配置位置を考察する。
【0020】
図4から明らかなように、負荷鍋16の中心部と最外周部の発熱密度は実質的にゼロである。仮に発熱密度が実質的にゼロである半径位置に温度センサを設置すると、鍋内で熱が移動した後の温度を温度センサで測定することになるので、温度センサの応答性が良くない。
【0021】
発熱密度比が高い箇所と見なせ、したがって負荷鍋の温度を有効に検出できるように温度センサを配置できる領域としては、実用的には最大発熱密度の50%程度より大きい領域と考えられる。50%程度より小さい領域に温度センサを配置した場合、温度センサの検出温度と負荷鍋16の最高温度の差が大きいために、制御装置14による温度制御が的確に行われないこと、及び負荷鍋16の過熱の危険性があることが実験により確かめられている。図5から発熱密度比が50%となる加熱コイル10の最外半径に対する負荷鍋16の発熱位置の半径の比を求めると、約15%〜約90%となる。
【0022】
以上より、底部が反っていない負荷鍋16に対しては、温度センサは、加熱コイル10の最外半径に対し半径約15〜約90%の領域に少なくとも1つ配置することで、負荷鍋16の温度を有効に検出することができる。
【0023】
一方、負荷鍋16が反っている場合、特に図6に示すように傘状に反っている場合には、負荷鍋16とトッププレート4とが接している箇所以外は、熱伝導率が小さい空気の層を介してトッププレート4に熱が伝わるので、特に空気層が厚い箇所に相当するトッププレート4の下面に温度センサを設置した場合応答性が悪くなる。したがって、なるべく空気の層の薄い箇所に相当するトッププレート4の下面に温度センサを設置する必要がある。
【0024】
例えば、負荷鍋16が傘状に反っている場合には、最外周(端部)がトッププレート4と接する。負荷鍋16の中心部の空気層は厚く、端部側になるほど薄くなる。負荷鍋16の端部はトッププレート4と接しているので、なるべく負荷鍋16の端部に近い箇所で温度を検知すると、負荷鍋16の中心部に近い位置(例えば外径200mmの負荷鍋に対し半径20mm付近)で検知した場合に比べて格段に温度センサの応答性がよい。
【0025】
以上より、温度センサは、加熱コイル10の最外半径に対し半径約15〜約90%の領域であって、特に加熱コイル10の最外半径位置に近い領域に配置することで、底部が反っている負荷鍋16及び平坦な負荷鍋16の両方に対して温度を有効に検出することができる。
【0026】
以上の考察では、負荷鍋16が加熱コイル10の真上に配置された場合を想定していたが、以下では、図7に示すように負荷鍋16が加熱コイル10の真上の位置からずれて配置された場合(言い換えれば、負荷鍋16の中心が載置用の円18(図1)の中心からずれた場合)であっても、負荷鍋16の温度を有効に検出できる温度センサの最適な配置位置を考察する。
【0027】
図7の例は、温度センサ20a、20bを、外径200mmの加熱コイル10の半径位置約30mmと約80mmにそれぞれ設置したものである。図では、加熱コイル10、負荷鍋16、温度センサ20a、20bを上側から透かした図であり、種々の位置に置いた負荷鍋16を同時に示している。図から明らかなように、一方の温度センサ20aを加熱コイル10の半径の小さな領域に設置するとともに、他方の温度センサ20bを加熱コイル10の半径の大きな領域に設置することにより、多少負荷鍋16の位置がずれた場合でも、温度センサ20bは、負荷鍋16の端部近傍の温度を検出できる。負荷鍋16の位置が大きくずれた場合、加熱コイル10の半径の小さな領域に設けた温度センサ20aが負荷鍋16の端部近傍の温度を検出できる場合がある。
【0028】
なお、負荷鍋16の外径が加熱コイル10の最大直径に比べて小さく、例えば、加熱コイル10の最外直径が200mmに対し負荷鍋16の外径が100mmの場合、加熱コイル10と負荷鍋16の中心軸が略一致するように負荷鍋16をトッププレート上に置いても、加熱コイル10の外径側に設けた温度センサ20bは、鍋16の底部から外れてしまうので、加熱コイル10の半径の小さな領域には必ず温度センサ20aが必要となる。
【0029】
以上より、温度センサは、加熱コイル10の半径の小さな領域、すなわち加熱コイル10の最外半径に対し半径約15〜約50%の領域と、加熱コイル10の半径の大きな領域、すなわち加熱コイル10の最外半径に対し半径約50〜約90%の領域にそれぞれ少なくとも1つ配置することで、負荷鍋16がずれた場合及び負荷鍋16が反った場合でも負荷鍋16の温度を有効に検出できる。
【0030】
実施の形態2.
図8〜10を参照して、本発明に係る電磁調理器の実施の形態2について説明する。本実施形態に係る電磁調理器は、温度センサの位置が異なる点を除いて実施の形態1と同様の構成を有するので重複する内容については説明を省略する。実施の形態1では、図9に示すように、2つの温度センサ20a、20bは、加熱コイル10の周方向に関して同一の位置(言い換えれば、トッププレートに略垂直な方向から見てコイル中心から半径方向外側に伸びる一本の仮想線上)に配置している。これに対し、本実施形態に係る電磁調理器は、図10に示すように、温度センサ20aを加熱コイル10の最外半径に対し半径約15〜約50%の領域に、温度センサ20bを加熱コイル10の最外半径に対し半径約50〜約90%の領域に配置するとともに、これら温度センサ20a,20bを加熱コイル10の周方向に関して約180度ずらした位置に配置したものである。
【0031】
実施の形態1では、図9に示すように、負荷鍋16が載置位置から大きくずれた場合に、温度センサ20a,20bが負荷鍋16から外れてしまう場合があるが、実施の形態2では、図10に示すように、負荷鍋16が載置位置から大きくずれた場合でも、加熱コイル10の中心側に位置する温度センサ20aが負荷鍋16の温度を検出できる可能性が高い。
【0032】
実施の形態3.
本実施形態では、例えば図11(a),(b)に示すように、3つの温度センサ20c,20d,20eはそれぞれ、加熱コイル10の中心から半径方向外側に伸び且つ互いになす角が略120度の3つの仮想線30c,30d,30e上に(言い換えれば、加熱コイル10の周方向に関して略等ピッチに)配置されている。温度センサ20c,20d,20eはまた、加熱コイル10の最外半径に対し半径約15〜約90%の領域に配置されている。この場合、負荷鍋が載置位置からどの方向にずれたとしても負荷鍋16の温度を有効に検出することができる。図11(a)は、加熱コイル10の最外直径と等しい外径を有する負荷鍋16がずれて置かれた例を示し、図11(b)は、加熱コイル10の最外直径に比べて外径が小さい又は大きい負荷鍋16がずれて置かれた例を示している。
【0033】
図11の例では、3つの温度センサ20c,20d,20eは、加熱コイル10の中心からの距離が等しい位置に配置されているが、異なる位置に配置しても同様の効果を有する。
【0034】
温度センサは4つ以上配置してもよく、この場合、温度センサの個数と同じ本数であって互いのなす角度が略等しい仮想線上に、各温度センサを配置する。
【0035】
実施の形態4.
実施の形態3での温度センサの配置位置は、底部が平坦な負荷鍋の場合に鍋の温度を有効に検出できるが、底部が反った負荷鍋をトッププレート上に置く場合に、温度センサの上方に鍋底部とトッププレート間の空気層が比較的厚い部分がくる可能性がある。この場合、負荷鍋の温度を有効に検出することができない。そこで、本実施形態では、例えば図12に示すように、実施の形態3と同様に温度センサ20c,20d,20eを加熱コイル10の最外半径に対し半径約15〜約90%の領域にコイル周方向に関して略等ピッチに配置するとともに、実施の形態1、2と同様に温度センサ20aを加熱コイル10の最外半径に対し半径約15〜約50%の領域に、温度センサ20bを加熱コイル10の最外半径に対し半径約50〜約90%の領域に配置する。図12(a)は、加熱コイル10の最外直径と等しい外径を有する負荷鍋16がずれて置かれた例を示し、図12(b)は、加熱コイル10の最外直径に比べて外径が小さい又は大きい負荷鍋16がずれて置かれた例を示している。
【0036】
かかる構成では、底部が反った負荷鍋が載置位置からいずれの方向にずれた場合であっても、負荷鍋の温度を有効に検出できる。
【0037】
図の例では、温度センサ20a,20bを、温度センサ20cを配置する仮想線30c上に配置しているが、温度センサ20a,20bを仮想線上に配置する必要はなく、また、温度センサ20a,20bを加熱コイル10の周方向に関して同一の位置に配置する必要はない。
【0038】
実施の形態5.
電磁調理器は、一般に、トッププレート及び加熱コイルを冷却するために冷却ファンを備えている。冷却ファンからの冷風は、トッププレートと加熱コイルの間の隙間を通って供給されるため、トッププレート下面に取付けた温度センサ(例えばサーミスタ)に冷風が当たると検知温度に誤差が生じる場合がある。
【0039】
そこで、本実施形態では、温度センサの周囲を断熱材で囲むことで冷却風が温度センサに直接当たらないようにしている。
【0040】
より詳しくは、図13〜15を参照して、温度センサ(例えばサーミスタ)20は、例えば断熱ウールなど柔らかくある程度クッション性のある断熱部材32上に配置されている。断熱部材32は、例えば加熱コイル10上に設置された支持台34上に固定されている。この構成では、温度センサ20は、トッププレート4の下面に接する部分以外が断熱部材32で覆われるため、冷却ファンからの冷風36が温度センサ20に当たることはない。また、断熱部材32及び支持台34は、トッププレート4と加熱コイル10との隙間の一部を占めているだけであるため、冷風36は、トッププレート4及び加熱コイル10の略全体にわたって冷却することができる。
【0041】
なお、加熱コイルとして、図4に示すように、中心側と外径側にそれぞれ一定の割合でコイルが巻回され、中心側のコイル部分と外径側のコイル部分の間に隙間を設けたものを用いる場合、該隙間に断熱部材を支持するための支持台を配置してもよい。
【0042】
温度センサの周囲に断熱部材を設けた場合と設けない場合それぞれに対し、加熱コイルに電流を印加して負荷鍋を加熱し、その後冷却ファンを作動させる実験を行った。印加電流の大きさは、断熱部材を設けた場合と設けない場合で異ならせた。図16は、電流印加開始からの経過時間に対する温度センサの指示温度を示すグラフである。断熱部材を設けない場合には、冷却ファンが作動すると温度センサの指示温度に変曲点が見られたが、断熱部材を設けた場合には、冷却ファンが作動しても変曲点が見られなかった。これは、断熱部材を設けない場合に冷却ファンが作動すると、冷風が温度センサに当たり検出温度誤差が大きくなるが、断熱部材を設けた場合に、温度センサの指示温度は冷風の影響を受けず、負荷鍋の温度を有効に検出していることを示している。
【0043】
【発明の効果】
本発明に係る電磁調理器によれば、負荷鍋の底部が反った場合や載置位置からずれた場合であっても、負荷鍋の温度を有効に検出できる。
【図面の簡単な説明】
【図1】本発明に係る電磁調理器の実施の形態1を示す概略斜視図。
【図2】図1のII−II線に沿った概略断面図。
【図3】(a)図1の加熱コイルの周辺部分の詳細な断面図。(b)図1の加熱コイルの上面図。
【図4】負荷鍋の発熱分布を求めるための電磁調理器モデルを示す概略断面図。
【図5】図4の電磁調理器モデルを用いて求めた負荷鍋の発熱分布を示すグラフ。
【図6】底部が反った負荷鍋を示す図。
【図7】実施の形態1における、加熱コイルと2つの温度センサの位置関係を示す図。
【図8】本発明に係る電磁調理器の実施の形態2を示す、図2に類似した概略断面図。
【図9】実施の形態1に係る電磁調理器において、負荷鍋が載置位置からずれて置かれた状態を示す図。
【図10】実施の形態2に係る電磁調理器において、負荷鍋が載置位置からずれて置かれた状態を示す図。
【図11】実施の形態3に係る電磁調理器において、負荷鍋が載置位置からずれて置かれた状態を示す図。
【図12】実施の形態4に係る電磁調理器において、負荷鍋が載置位置からずれて置かれた状態を示す図。
【図13】実施の形態5において、温度センサの周辺部分を詳しく示す断面図。
【図14】実施の形態5において、温度センサを覆うための断熱部材及び該部材を支持するための支持台を示す斜視図。
【図15】実施の形態5において、温度センサと加熱コイルの位置関係を示す上面図であって、温度センサ及び断熱部材が透視して示してある。
【図16】温度センサの周囲に断熱部材を設けた場合と設けない場合それぞれについて、加熱コイルに電流を印加したときの温度センサの指示温度を示したグラフ。
【符号の説明】
2:電磁調理器、4:トッププレート、10:加熱コイル、12:電源、14:制御装置、16:負荷鍋、20a:温度センサ、20b:温度センサ。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electromagnetic cooker, and more particularly to an electromagnetic cooker provided with a temperature sensor for detecting a temperature of a load pan.
[0002]
[Prior art]
Conventionally, in an electromagnetic cooker equipped with a top plate on which a load pan is placed and an electromagnetic induction coil or a heating coil disposed below the top plate and induction heating the load pan, the temperature of the load pan is detected, In order to control the heating temperature of the load pan and to prevent the load pan from overheating due to empty boiling or the like, many types are known in which a temperature sensor is attached to the lower surface of a top plate.
[0003]
For example, in an electromagnetic cooker disclosed in JP-A-4-248290 or JP-A-11-87041, a temperature sensor is placed at or near a winding center of a heating coil when viewed from a direction substantially perpendicular to a top plate. Are placed.
[0004]
[Problems to be solved by the invention]
In such an electromagnetic cooker, the bottom of the load pan may be warped in an umbrella shape due to idle heating or the like. In the case of the load pan having a warped bottom as described above, a gap (air layer having low thermal conductivity) is generated between the bottom of the load pan and the top plate, so that the load pan is disposed at or near the winding center of the heating coil. The temperature sensor detects a temperature lower than the actual temperature of the load pan, and cannot perform control based on the detected temperature, and there is a risk of overheating of the load pan. In order to solve this, it is conceivable to dispose the temperature sensor at a position other than the winding center of the heating coil or in the vicinity thereof.
[0005]
By the way, in the conventional electromagnetic cooker, a circle corresponding to the outermost radius position of the heating coil is printed on the upper surface of the top plate as a mark indicating the position where the load pan is placed. However, there is a possibility that the loading pot is not placed on the top plate in a circle, but is placed in a shifted state. Therefore, even when the temperature sensor is disposed at a position other than the winding center of the heating coil or in the vicinity thereof, there is a possibility that the temperature sensor cannot effectively detect the temperature of the load pan.
[0006]
The present inventors have studied various arrangement positions of a temperature sensor capable of effectively detecting the temperature of the load pan even when the bottom portion of the load pan is warped or the mounting position is shifted. Reached.
[0007]
[Means for Solving the Problems]
A first aspect of the electromagnetic cooker according to the present invention is:
A top plate for placing the loading pan,
A heating coil disposed below the top plate for induction heating the load pan,
Means for applying a current to the heating coil;
An electromagnetic cooker including first and second temperature sensors disposed between a top plate and a heating coil,
When viewed from a direction substantially perpendicular to the top plate, the first temperature sensor is disposed in a region having a radius of about 15 to about 50% of the outermost radius of the heating coil, and the second temperature sensor is disposed at the outermost position of the heating coil. It is characterized in that it is arranged in an area having a radius of about 50 to about 90% of the radius.
[0008]
In one embodiment, the first and second temperature sensors are offset from each other by approximately 180 degrees with respect to the circumferential direction of the heating coil when viewed from a direction substantially perpendicular to the top plate.
[0009]
A second aspect of the electromagnetic cooker according to the present invention is:
A top plate for placing the loading pan,
A heating coil disposed below the top plate for induction heating the load pan,
Means for applying a current to the heating coil;
In an electromagnetic cooker provided with n (n: an integer of 3 or more) temperature sensors disposed between a top plate and a heating coil,
The n temperature sensors are arranged in a region having a radius of about 15 to about 90% with respect to the outermost radius of the heating coil when viewed from a direction substantially perpendicular to the top plate, at a substantially equal pitch in the circumferential direction of the heating coil. It is characterized by the following.
[0010]
A third aspect of the electromagnetic cooker according to the present invention is:
A top plate for placing the loading pan,
A heating coil disposed below the top plate for induction heating the load pan,
Means for applying a current to the heating coil;
In an electromagnetic cooker including first to fifth temperature sensors disposed between a top plate and a heating coil,
When viewed from a direction substantially perpendicular to the top plate, the first to third temperature sensors are arranged in a region having a radius of about 15 to about 90% with respect to the outermost radius of the heating coil at a substantially equal pitch in the circumferential direction of the heating coil. The fourth temperature sensor is disposed in a region having a radius of about 15 to about 50% with respect to the outermost radius of the heating coil, and the fifth temperature sensor is disposed with a radius of about 50 to about 50% with respect to the outermost radius of the heating coil. It is characterized by being arranged in an area of about 90%.
[0011]
The temperature sensor detects the temperature of the lower surface of the top plate. Glass or the like is used as the top plate.
[0012]
A temperature sensor may be arranged in contact with the lower surface of the top plate, and a heat insulating member may be provided for each temperature sensor so as to surround the sensor.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of an electromagnetic cooker according to the present invention will be described with reference to the accompanying drawings. In the specification of the present application, terms indicating directions (for example, “up”, “down”, “right”, “left”, and other terms including these terms) are used as appropriate. , And these terms should not be construed as limiting the invention.
[0014]
Embodiment 1 FIG.
The first embodiment of the electromagnetic cooker according to the present invention will be described with reference to FIGS. In FIG. 1, an electromagnetic cooker generally denoted by reference numeral 2 includes a box-shaped housing 3 and a top plate 4 formed of glass or the like that covers an upper portion of the housing 3. A temperature adjustment knob 6 and a temperature display section 8 are provided on an outer surface of the housing 3.
[0015]
As shown in FIG. 2, inside the housing 3, an electromagnetic induction coil or a heating coil 10 arranged generally below the top plate 4, a power supply 12 for supplying a high-frequency current to the heating coil 10, and a power supply There is provided a control device 14 for controlling the power supply 12. On the upper surface of the top plate 4, a circle 18 (FIG. 1) having a radius substantially corresponding to the outermost radius of the heating coil 10 is printed in order to place the load pan 16 (not shown in FIG. 1). I have. On the lower surface of the top plate 4, two temperature sensors (for example, thermistors) 20 a and 20 b are installed at predetermined positions on a virtual line extending outward from the center of the heating coil 10 when viewed from a direction substantially perpendicular to the top plate 4. The temperature of the load pan 16 is detected via the plate 4. The installation positions of the temperature sensors 20a and 20b will be described later in detail. The detection signals from the temperature sensors 20a and 20b are sent to the control device 14, and the current supplied to the heating coil 10 is adjusted as necessary.
[0016]
The peripheral portion of the heating coil 10 will be described in more detail with reference to FIGS. A central ferrite 24 is arranged at the center of the heating coil 10, and a rod-shaped ferrite 26 is radially arranged below the heating coil 10. These ferrites 24 and 26 are for guiding the magnetic flux generated by the heating coil 10 to the load pan 16 with high efficiency. When the shapes and arrangement positions of the ferrites 24 and 26 change, the heat generation distribution of the load pan 16 also changes.
[0017]
Using an electromagnetic cooker model having a heating coil 10a as shown in FIG. 4, a load pan 16 having a flat bottom, a center ferrite 24 (see FIG. 3), and a bar ferrite 26 (see FIG. 3), the heating coil 10a When the center axes of the load pan 16 coincide with each other, a three-dimensional electromagnetic field analysis is performed to determine how the heat distribution of the load pan 16 changes when the arrangement and shape of the center ferrite 24 and the bar ferrite 26 are changed. Determined by That is, by performing an electromagnetic field analysis, a Joule loss caused by an induced current flowing through the load pan 16 in an attempt to cancel the magnetic flux generated by the heating coil 10a was obtained. The radial distribution of the Joule loss is the heat generation distribution of the load pan 16. The heating coil 10a used for the analysis has a shape in which a coil is wound around the center side and the outer diameter side at a fixed ratio, and a gap is provided between the center side coil part and the outer diameter side coil part. It is.
[0018]
FIG. 5 shows several representative examples of the heat generation density (heat generation amount per unit volume) of the load pan 16 that is induction-heated by the heating coil 10a and obtained by the electromagnetic field analysis. FIG. 5 shows the results of an electromagnetic field analysis performed using a heating coil having an outermost diameter of 200 mm and a loading pan 5 having an outer diameter of 200 mm. In FIG. 5, the horizontal axis represents the ratio of the diameter of the heat generating position of the load pan 16 to the outermost radius of the heating coil 10. For example, 50% of the abscissa represents the ratio of the diameter of the pot with a radius of 50 mm. The vertical axis represents the heat generation density ratio of the load pan 16, and a portion where the heat generation density shows a predetermined high value is shown as 100%.
[0019]
In the following, based on the distribution of the heat generation density ratio obtained from the electromagnetic field analysis, the optimum arrangement position of the temperature sensor will be considered.
[0020]
As is clear from FIG. 4, the heat generation density at the center portion and the outermost peripheral portion of the load pan 16 is substantially zero. If the temperature sensor is installed at a radial position where the heat generation density is substantially zero, the temperature after the heat has moved in the pot is measured by the temperature sensor, and the response of the temperature sensor is not good.
[0021]
It can be considered that the heat generation density ratio is high, and therefore, the area where the temperature sensor can be disposed so that the temperature of the load pan can be effectively detected is practically an area larger than about 50% of the maximum heat generation density. When the temperature sensor is arranged in an area smaller than about 50%, the difference between the detected temperature of the temperature sensor and the maximum temperature of the load pan 16 is large, so that the temperature control by the control device 14 is not performed accurately, and Experiments have shown that there is a danger of overheating. The ratio of the radius of the heat generating position of the load pan 16 to the outermost radius of the heating coil 10 at which the heat generation density ratio becomes 50% from FIG. 5 is about 15% to about 90%.
[0022]
As described above, with respect to the load pan 16 whose bottom is not warped, at least one temperature sensor is disposed in an area having a radius of about 15 to about 90% with respect to the outermost radius of the heating coil 10 so that the load pan 16 Can be effectively detected.
[0023]
On the other hand, when the load pan 16 is warped, particularly when it is warped in an umbrella shape as shown in FIG. Since the heat is transmitted to the top plate 4 through the layer of, the responsiveness deteriorates particularly when the temperature sensor is installed on the lower surface of the top plate 4 corresponding to a portion where the air layer is thick. Therefore, it is necessary to install a temperature sensor on the lower surface of the top plate 4 corresponding to a portion where the air layer is as thin as possible.
[0024]
For example, when the load pan 16 is warped in an umbrella shape, the outermost periphery (end) contacts the top plate 4. The air layer at the center of the load pan 16 is thicker, and becomes thinner toward the end. Since the end of the load pan 16 is in contact with the top plate 4, if the temperature is detected as close to the end of the load pan 16 as possible, a position close to the center of the load pan 16 (for example, a load pan having an outer diameter of 200 mm) may be used. The response of the temperature sensor is much better than when the detection is performed at a radius of about 20 mm.
[0025]
As described above, the bottom of the temperature sensor is warped by arranging the temperature sensor in an area having a radius of about 15 to about 90% with respect to the outermost radius of the heating coil 10, particularly near the outermost radius position of the heating coil 10. The temperature can be effectively detected for both the loaded pan 16 and the flat loaded pan 16.
[0026]
In the above discussion, it was assumed that the load pan 16 was disposed directly above the heating coil 10, but in the following, the load pan 16 is shifted from the position directly above the heating coil 10 as shown in FIG. Position (in other words, when the center of the load pan 16 is deviated from the center of the placing circle 18 (FIG. 1)), a temperature sensor capable of effectively detecting the temperature of the load pan 16 is used. Consider the optimal placement position.
[0027]
In the example of FIG. 7, the temperature sensors 20a and 20b are installed at radial positions of about 30 mm and about 80 mm of the heating coil 10 having an outer diameter of 200 mm, respectively. In the figure, the heating coil 10, the load pan 16, and the temperature sensors 20a and 20b are viewed from above, and the load pans 16 placed at various positions are also shown. As is clear from the figure, by placing one of the temperature sensors 20a in a region with a small radius of the heating coil 10 and installing the other temperature sensor 20b in a region with a large radius of the heating coil 10, the load Temperature sensor 20b can detect the temperature in the vicinity of the end of the load pan 16 even if the position is shifted. When the position of the load pan 16 is largely displaced, the temperature sensor 20a provided in an area where the radius of the heating coil 10 is small may detect the temperature near the end of the load pan 16 in some cases.
[0028]
In addition, when the outer diameter of the loading pan 16 is smaller than the maximum diameter of the heating coil 10, for example, when the outer diameter of the heating coil 10 is 200 mm and the outer diameter of the loading pan 16 is 100 mm, the heating coil 10 and the loading pan Even if the load pan 16 is placed on the top plate such that the central axes of the pans 16 are substantially coincident with each other, the temperature sensor 20b provided on the outer diameter side of the heating coil 10 will come off from the bottom of the pan 16 so that the heating coil 10 The temperature sensor 20a is always required in a region with a small radius of.
[0029]
As described above, the temperature sensor has a region with a small radius of the heating coil 10, that is, a region with a radius of about 15 to about 50% of the outermost radius of the heating coil 10, and a region with a large radius of the heating coil 10, that is, the heating coil 10. By arranging at least one in each of the regions having a radius of about 50 to about 90% of the outermost radius of the load pan, the temperature of the load pan 16 can be effectively detected even when the load pan 16 is displaced or the load pan 16 warps. it can.
[0030]
Embodiment 2 FIG.
Embodiment 2 An electromagnetic cooker according to Embodiment 2 of the present invention will be described with reference to FIGS. The electromagnetic cooker according to the present embodiment has the same configuration as that of the first embodiment except that the position of the temperature sensor is different, and the description of the same contents will not be repeated. In the first embodiment, as shown in FIG. 9, the two temperature sensors 20a and 20b are located at the same position in the circumferential direction of the heating coil 10 (in other words, the radius from the coil center when viewed from a direction substantially perpendicular to the top plate). (On one virtual line extending outward in the direction). On the other hand, in the electromagnetic cooker according to the present embodiment, as shown in FIG. 10, the temperature sensor 20a heats the temperature sensor 20b to a region having a radius of about 15 to about 50% of the outermost radius of the heating coil 10. The temperature sensors 20a and 20b are arranged at positions shifted by about 180 degrees with respect to the circumferential direction of the heating coil 10 while being arranged in a region having a radius of about 50 to about 90% of the outermost radius of the coil 10.
[0031]
In the first embodiment, as shown in FIG. 9, when the load pan 16 is greatly displaced from the mounting position, the temperature sensors 20a and 20b may come off the load pan 16, but in the second embodiment, As shown in FIG. 10, even when the load pan 16 is greatly displaced from the mounting position, there is a high possibility that the temperature sensor 20a located at the center side of the heating coil 10 can detect the temperature of the load pan 16.
[0032]
Embodiment 3 FIG.
In the present embodiment, for example, as shown in FIGS. 11A and 11B, each of the three temperature sensors 20c, 20d, and 20e extends radially outward from the center of the heating coil 10 and has an angle of approximately 120 with each other. The three imaginary lines 30c, 30d, and 30e are arranged (in other words, at substantially equal pitches in the circumferential direction of the heating coil 10). The temperature sensors 20c, 20d, and 20e are also arranged in a region having a radius of about 15 to about 90% of the outermost radius of the heating coil 10. In this case, the temperature of the load pan 16 can be effectively detected regardless of the direction in which the load pan deviates from the mounting position. FIG. 11A shows an example in which a load pan 16 having an outer diameter equal to the outermost diameter of the heating coil 10 is shifted, and FIG. An example is shown in which the load pan 16 having a small or large outside diameter is shifted.
[0033]
In the example of FIG. 11, the three temperature sensors 20c, 20d, and 20e are arranged at positions where the distance from the center of the heating coil 10 is equal, but the same effect can be obtained even if they are arranged at different positions.
[0034]
Four or more temperature sensors may be arranged. In this case, each temperature sensor is arranged on an imaginary line having the same number of temperature sensors and substantially equal angles to each other.
[0035]
Embodiment 4 FIG.
The arrangement position of the temperature sensor in the third embodiment can effectively detect the temperature of the pan in the case of a load pan having a flat bottom, but when the load pan with the bent bottom is placed on the top plate, There may be a portion where the air layer between the pot bottom and the top plate is relatively thick upward. In this case, the temperature of the load pan cannot be effectively detected. Therefore, in the present embodiment, as shown in FIG. 12, for example, similarly to the third embodiment, the temperature sensors 20c, 20d, and 20e are placed in a region having a radius of about 15 to about 90% of the outermost radius of the heating coil 10. The temperature sensors 20a are arranged at substantially equal pitches in the circumferential direction, and the temperature sensor 20a is disposed in a region having a radius of about 15 to about 50% of the outermost radius of the heating coil 10 as in the first and second embodiments. It is arranged in a region having a radius of about 50 to about 90% of the outermost radius of 10. FIG. 12A shows an example in which the load pan 16 having an outer diameter equal to the outermost diameter of the heating coil 10 is shifted, and FIG. An example is shown in which the load pan 16 having a small or large outside diameter is shifted.
[0036]
With this configuration, the temperature of the load pan can be effectively detected even when the load pan whose bottom is warped is displaced in any direction from the mounting position.
[0037]
In the illustrated example, the temperature sensors 20a and 20b are arranged on a virtual line 30c on which the temperature sensor 20c is arranged. However, it is not necessary to arrange the temperature sensors 20a and 20b on the virtual line. It is not necessary to arrange the 20b at the same position in the circumferential direction of the heating coil 10.
[0038]
Embodiment 5 FIG.
The electromagnetic cooker generally includes a cooling fan for cooling the top plate and the heating coil. Since the cool air from the cooling fan is supplied through the gap between the top plate and the heating coil, an error may occur in the detected temperature when the cool air hits a temperature sensor (for example, a thermistor) mounted on the lower surface of the top plate. .
[0039]
Therefore, in the present embodiment, by surrounding the temperature sensor with a heat insulating material, the cooling air is prevented from directly hitting the temperature sensor.
[0040]
More specifically, referring to FIGS. 13 to 15, a temperature sensor (for example, a thermistor) 20 is disposed on a soft and somewhat cushioning heat insulating member 32 such as heat insulating wool. The heat insulating member 32 is fixed, for example, on a support table 34 installed on the heating coil 10. In this configuration, since the temperature sensor 20 is covered with the heat insulating member 32 except for the portion in contact with the lower surface of the top plate 4, the cool air 36 from the cooling fan does not hit the temperature sensor 20. Further, since the heat insulating member 32 and the support base 34 occupy only a part of the gap between the top plate 4 and the heating coil 10, the cool air 36 cools substantially the entirety of the top plate 4 and the heating coil 10. be able to.
[0041]
As shown in FIG. 4, as the heating coil, a coil was wound around the center side and the outer diameter side at a fixed ratio, and a gap was provided between the center side coil part and the outer diameter side coil part. When using a support, a support for supporting the heat insulating member may be disposed in the gap.
[0042]
An experiment was conducted in which a current was applied to the heating coil to heat the load pan, and then the cooling fan was operated, in each of the case where the heat insulating member was provided around the temperature sensor and the case where the heat insulating member was not provided. The magnitude of the applied current was made different depending on whether the heat insulating member was provided or not. FIG. 16 is a graph showing the temperature indicated by the temperature sensor with respect to the elapsed time from the start of current application. When the heat insulating member was not provided, an inflection point was observed in the temperature indicated by the temperature sensor when the cooling fan was operated. However, when the heat insulating member was provided, the inflection point was observed even when the cooling fan was operated. I couldn't. This is because, when the cooling fan operates when the heat insulating member is not provided, the cold air hits the temperature sensor and the detected temperature error increases, but when the heat insulating member is provided, the temperature indicated by the temperature sensor is not affected by the cold air, This indicates that the temperature of the loading pan is effectively detected.
[0043]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the electromagnetic cooker which concerns on this invention, the temperature of a load pan can be detected effectively, even when the bottom part of a load pan warps or deviates from a mounting position.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view showing Embodiment 1 of an electromagnetic cooker according to the present invention.
FIG. 2 is a schematic sectional view taken along the line II-II in FIG.
FIG. 3A is a detailed sectional view of a peripheral portion of a heating coil of FIG. 1; (B) Top view of the heating coil of FIG.
FIG. 4 is a schematic sectional view showing an electromagnetic cooker model for obtaining a heat distribution of a load pan.
FIG. 5 is a graph showing a heat generation distribution of a load pan obtained by using the electromagnetic cooker model of FIG. 4;
FIG. 6 is a view showing a load pan with a warped bottom.
FIG. 7 is a diagram showing a positional relationship between a heating coil and two temperature sensors in the first embodiment.
FIG. 8 is a schematic sectional view similar to FIG. 2, showing a second embodiment of the electromagnetic cooker according to the present invention.
FIG. 9 is a diagram showing a state in which the load pan is shifted from the mounting position in the electromagnetic cooker according to the first embodiment.
FIG. 10 is a diagram showing a state in which the load pan is placed shifted from the placement position in the electromagnetic cooker according to the second embodiment.
FIG. 11 is a diagram showing a state in which the load pan is shifted from the mounting position in the electromagnetic cooker according to the third embodiment.
FIG. 12 is a view showing a state in which the load pan is shifted from the mounting position in the electromagnetic cooker according to the fourth embodiment.
FIG. 13 is a cross-sectional view specifically showing a peripheral portion of a temperature sensor in the fifth embodiment.
FIG. 14 is a perspective view showing a heat insulating member for covering a temperature sensor and a support base for supporting the member in the fifth embodiment.
FIG. 15 is a top view showing a positional relationship between a temperature sensor and a heating coil in the fifth embodiment, in which the temperature sensor and the heat insulating member are shown in a see-through manner.
FIG. 16 is a graph showing the temperature indicated by the temperature sensor when a current is applied to the heating coil in each of the case where a heat insulating member is provided around the temperature sensor and the case where no heat insulating member is provided.
[Explanation of symbols]
2: electromagnetic cooker, 4: top plate, 10: heating coil, 12: power supply, 14: control device, 16: load pan, 20a: temperature sensor, 20b: temperature sensor.

Claims (6)

負荷鍋を載置するためのトッププレートと、
トッププレートの下方に配設され、負荷鍋を誘導加熱するための加熱コイルと、
加熱コイルに電流を印加する手段と、
トッププレートと加熱コイルとの間に配設された第1及び第2の温度センサとを備えた電磁調理器において、
トッププレートに略垂直な方向から見て、第1の温度センサを加熱コイルの最外半径に対し半径約15〜約50%の領域に配置するとともに、第2の温度センサを加熱コイルの最外半径に対し半径約50〜約90%の領域に配置することを特徴とする電磁調理器。
A top plate for placing the loading pan,
A heating coil disposed below the top plate for induction heating the load pan,
Means for applying a current to the heating coil;
An electromagnetic cooker including first and second temperature sensors disposed between a top plate and a heating coil,
When viewed from a direction substantially perpendicular to the top plate, the first temperature sensor is disposed in a region having a radius of about 15 to about 50% of the outermost radius of the heating coil, and the second temperature sensor is disposed at the outermost position of the heating coil. An electromagnetic cooker, wherein the electromagnetic cooker is arranged in an area having a radius of about 50 to about 90% of the radius.
第1及び第2の温度センサを、トッププレートに略垂直な方向から見て、加熱コイルの周方向に関して互いに約180度ずらした配置することを特徴とする請求項1の電磁調理器。The electromagnetic cooker according to claim 1, wherein the first and second temperature sensors are arranged to be shifted from each other by about 180 degrees with respect to a circumferential direction of the heating coil when viewed from a direction substantially perpendicular to the top plate. 負荷鍋を載置するためのトッププレートと、
トッププレートの下方に配設され、負荷鍋を誘導加熱するための加熱コイルと、
加熱コイルに電流を印加する手段と、
トッププレートと加熱コイルとの間に配設されたn個(n:3以上の整数)の温度センサとを備えた電磁調理器において、
n個の温度センサは、トッププレートに略垂直な方向から見て、加熱コイルの最外半径に対し半径約15〜約90%の領域に、加熱コイルの周方向に関して略等ピッチで配置されることを特徴とする電磁調理器。
A top plate for placing the loading pan,
A heating coil disposed below the top plate for induction heating the load pan,
Means for applying a current to the heating coil;
In an electromagnetic cooker provided with n (n: an integer of 3 or more) temperature sensors disposed between a top plate and a heating coil,
The n temperature sensors are arranged in a region having a radius of about 15 to about 90% with respect to the outermost radius of the heating coil when viewed from a direction substantially perpendicular to the top plate, at a substantially equal pitch in the circumferential direction of the heating coil. An electromagnetic cooker characterized by that:
負荷鍋を載置するためのトッププレートと、
トッププレートの下方に配設され、負荷鍋を誘導加熱するための加熱コイルと、
加熱コイルに電流を印加する手段と、
トッププレートと加熱コイルとの間に配設された第1〜第5の温度センサとを備えた電磁調理器において、
トッププレートに略垂直な方向から見て、第1〜第3の温度センサは、加熱コイルの最外半径に対し半径約15〜約90%の領域に、加熱コイルの周方向に関して略等ピッチで配置され、第4の温度センサは、加熱コイルの最外半径に対し半径約15〜約50%の領域に配置され、第5の温度センサは、加熱コイルの最外半径に対し半径約50〜約90%の領域に配置されることを特徴とする電磁調理器。
A top plate for placing the loading pan,
A heating coil disposed below the top plate for induction heating the load pan,
Means for applying a current to the heating coil;
In an electromagnetic cooker including first to fifth temperature sensors disposed between a top plate and a heating coil,
When viewed from a direction substantially perpendicular to the top plate, the first to third temperature sensors are arranged in a region having a radius of about 15 to about 90% with respect to the outermost radius of the heating coil at a substantially equal pitch in the circumferential direction of the heating coil. The fourth temperature sensor is disposed in a region having a radius of about 15 to about 50% with respect to the outermost radius of the heating coil, and the fifth temperature sensor is disposed with a radius of about 50 to about 50% with respect to the outermost radius of the heating coil. An electromagnetic cooker, which is arranged in an area of about 90%.
前記温度センサはトッププレート下面の温度を検出することを特徴とする請求項1〜4のいずれかに記載の電磁調理器。The electromagnetic cooker according to any one of claims 1 to 4, wherein the temperature sensor detects a temperature of a lower surface of the top plate. 前記温度センサはトッププレート下面に接して配置され、
各温度センサに対し、該センサの周囲を囲むように断熱部材が設けられることを特徴とする請求項1〜5のいずれかに記載の電磁調理器。
The temperature sensor is disposed in contact with the lower surface of the top plate,
The electromagnetic cooker according to any one of claims 1 to 5, wherein a heat insulating member is provided for each temperature sensor so as to surround the periphery of the sensor.
JP2002218096A 2002-07-26 2002-07-26 Electromagnetic cooker Expired - Lifetime JP3962646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002218096A JP3962646B2 (en) 2002-07-26 2002-07-26 Electromagnetic cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002218096A JP3962646B2 (en) 2002-07-26 2002-07-26 Electromagnetic cooker

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2006166342A Division JP3962757B2 (en) 2006-06-15 2006-06-15 Electromagnetic cooker
JP2006306851A Division JP4092359B2 (en) 2006-11-13 2006-11-13 Electromagnetic cooker

Publications (3)

Publication Number Publication Date
JP2004063196A true JP2004063196A (en) 2004-02-26
JP2004063196A5 JP2004063196A5 (en) 2006-08-03
JP3962646B2 JP3962646B2 (en) 2007-08-22

Family

ID=31939385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002218096A Expired - Lifetime JP3962646B2 (en) 2002-07-26 2002-07-26 Electromagnetic cooker

Country Status (1)

Country Link
JP (1) JP3962646B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134258A (en) * 2005-11-14 2007-05-31 Matsushita Electric Ind Co Ltd Induction heating device
JP2007180054A (en) * 2007-03-30 2007-07-12 Mitsubishi Electric Corp Induction heating cooker
JP2007522427A (en) * 2004-02-04 2007-08-09 セラマスピード・リミテッド Electric heating device
JP2007324145A (en) * 2007-09-05 2007-12-13 Mitsubishi Electric Corp Electromagnetic cooker

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273590A (en) * 1985-09-26 1987-04-04 三洋電機株式会社 Electromagnetic cooking device
JPH03122992A (en) * 1989-10-04 1991-05-24 Matsushita Electric Ind Co Ltd Induction heting cooking apparatus
JPH0467590A (en) * 1990-07-06 1992-03-03 Matsushita Electric Ind Co Ltd Induction-heated cooking device
JPH04137388A (en) * 1990-09-27 1992-05-12 Matsushita Electric Ind Co Ltd Temperature control device for heating cooker
JPH07142160A (en) * 1993-11-17 1995-06-02 Matsushita Electric Ind Co Ltd Electromagnetic induction heating device
JPH07307196A (en) * 1994-05-13 1995-11-21 Fuji Electric Co Ltd Temperature detector for microwave oven
JPH1069975A (en) * 1996-08-28 1998-03-10 Matsushita Electric Ind Co Ltd Induction heating cooker
JPH1126146A (en) * 1997-06-30 1999-01-29 Zojirushi Corp Temperature detecting device of electromagnetic cooker
JP2003317919A (en) * 2002-04-26 2003-11-07 Matsushita Electric Ind Co Ltd Induction heating cooking device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273590A (en) * 1985-09-26 1987-04-04 三洋電機株式会社 Electromagnetic cooking device
JPH03122992A (en) * 1989-10-04 1991-05-24 Matsushita Electric Ind Co Ltd Induction heting cooking apparatus
JPH0467590A (en) * 1990-07-06 1992-03-03 Matsushita Electric Ind Co Ltd Induction-heated cooking device
JPH04137388A (en) * 1990-09-27 1992-05-12 Matsushita Electric Ind Co Ltd Temperature control device for heating cooker
JPH07142160A (en) * 1993-11-17 1995-06-02 Matsushita Electric Ind Co Ltd Electromagnetic induction heating device
JPH07307196A (en) * 1994-05-13 1995-11-21 Fuji Electric Co Ltd Temperature detector for microwave oven
JPH1069975A (en) * 1996-08-28 1998-03-10 Matsushita Electric Ind Co Ltd Induction heating cooker
JPH1126146A (en) * 1997-06-30 1999-01-29 Zojirushi Corp Temperature detecting device of electromagnetic cooker
JP2003317919A (en) * 2002-04-26 2003-11-07 Matsushita Electric Ind Co Ltd Induction heating cooking device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007522427A (en) * 2004-02-04 2007-08-09 セラマスピード・リミテッド Electric heating device
JP2007134258A (en) * 2005-11-14 2007-05-31 Matsushita Electric Ind Co Ltd Induction heating device
US8426782B2 (en) 2005-11-14 2013-04-23 Panasonic Corporation Induction heating device
JP2007180054A (en) * 2007-03-30 2007-07-12 Mitsubishi Electric Corp Induction heating cooker
JP2007324145A (en) * 2007-09-05 2007-12-13 Mitsubishi Electric Corp Electromagnetic cooker

Also Published As

Publication number Publication date
JP3962646B2 (en) 2007-08-22

Similar Documents

Publication Publication Date Title
JP2003100435A (en) Induction-heating cooker
JP3962646B2 (en) Electromagnetic cooker
JP2007324145A (en) Electromagnetic cooker
JP5033728B2 (en) Induction heating cooker
JP4092363B2 (en) Electromagnetic cooker
JP3962757B2 (en) Electromagnetic cooker
JP4092359B2 (en) Electromagnetic cooker
JP5808202B2 (en) Electromagnetic induction heating cooker
JP2009123603A (en) Induction heating cooker
JP2007335235A (en) Induction heating cooker
JP3925460B2 (en) Induction heating cooker
JP2003317919A (en) Induction heating cooking device
JP5550491B2 (en) Electromagnetic cooker
JP2003325323A (en) Cooking container and cooker
JP4356652B2 (en) Induction heating cooker
JP2004273303A (en) Induction heating cooking device
JP4848792B2 (en) Induction heating device
JPH0783732B2 (en) Induction heating rice cooker
JP2006031947A (en) Electromagnetic induction heating cooker
CN221227775U (en) Coil panel and cooking device
JP3785569B2 (en) Induction heating cooker
JPH11261A (en) Rice cooker
JP3849493B2 (en) rice cooker
JP2008259557A (en) Electric rice cooker
JP2003144310A (en) Rice cooker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060615

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060615

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070521

R150 Certificate of patent or registration of utility model

Ref document number: 3962646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term