JP2004061347A - Piezo-electric vibration energy sensor - Google Patents
Piezo-electric vibration energy sensor Download PDFInfo
- Publication number
- JP2004061347A JP2004061347A JP2002221142A JP2002221142A JP2004061347A JP 2004061347 A JP2004061347 A JP 2004061347A JP 2002221142 A JP2002221142 A JP 2002221142A JP 2002221142 A JP2002221142 A JP 2002221142A JP 2004061347 A JP2004061347 A JP 2004061347A
- Authority
- JP
- Japan
- Prior art keywords
- vibration energy
- vibration
- piezoelectric
- energy
- ferroelectric memory
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000010287 polarization Effects 0.000 claims abstract description 23
- 230000007423 decrease Effects 0.000 claims description 5
- 239000010409 thin film Substances 0.000 abstract description 8
- 239000000463 material Substances 0.000 abstract description 5
- 238000003745 diagnosis Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 239000010408 film Substances 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 230000006399 behavior Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Images
Landscapes
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は建築物、自動車、船舶、航空機などの構造物の振動による疲労破壊の予測、余寿命診断による長寿命化、及びメンテナンスコストの軽減に関するものである。
【0002】
【従来の技術】
これまで建築物や自動車、船舶、航空機などの余寿命を診断することは困難であった。従来の技術として定期的にX線や超音波診断を用いて内部の疲労による損傷個所の診断を行なう手段がある。また、近年開発された技術として疲労による損傷が起こると思われる個所に光ファイバーや歪ゲージなどのセンサを埋め込みモニタリングする手段がある
【0003】
【発明が解決しようとしている課題】
上記従来X線や超音波診断を用いて内部の疲労による損傷個所の診断を行なう手段では、メンテナンスコストが上がるため原子力や航空機などの特殊な構造体にしか利用されていない。また、光ファイバーや歪ゲージなどのセンサを埋め込みモニタリングする手段は、モニタリングのためには外部からエネルギーを供給する必要があり、センサ単体では利用できないため測定した情報を記録や評価するデバイス等のシステムも必要となる。そのため製作コストが上がり特殊な構造物にしか利用することができない。
【0004】
本発明は、上記従来の問題点を解決することを目的とするものであり、具体的には次の点を課題とする。
(1)特に外部から電力の供給を必要とせず、半永久的に作動させる。
(2)数万回から数百万回の振動回数の記録を、数十年という長期にわたって記録することを可能とする。
(3)センサの構造を簡単として、大きさも名刺サイズ程度、またはそれ以下に小型も可能とし、しかも従来のものに比べ低価格とし、特殊な構造物のみでなく、一般の民生用にも供する。
【0005】
【課題を解決するための手段】
本発明は上記課題を解決するために、振動エネルギーを電気エネルギーに変換する電荷発生用圧電体と、上記発生した電荷により分極反転を繰り返す強誘電体メモリとを備え、上記分極反転の繰り返しによる疲労により残留分極の値が低下し、振動の回数をカウント可能とすることを特徴とする圧電振動エネルギーセンサを提供する。
【0006】
本発明は上記課題を解決するために、振動エネルギーを電気エネルギーに変換する電荷発生用圧電体と、上記発生した電荷により分極反転を繰り返す強誘電体メモリと、RFアンテナと、該RFアンテナのコントロール回路とを備え、上記強誘電体メモリは、上記分極反転の繰り返しによる疲労により残留分極の値が低下し、振動の回数をカウント可能とし、上記RFアンテナは、該強誘電体メモリが記録したデータを外部から非接触で読み取るものであることを特徴とする圧電振動エネルギーセンサを提供する。
【0007】
【発明の実施の形態】
本発明に係る圧電振動エネルギーセンサの実施の形態を、実施例に基づいて図面を参照して説明する。本発明は、外部からのエネルギーの供給なしに半永久的に駆動し、構造体に加わった振動歪みエネルギー信号をデジタル化し記録することの出来る振動エネルギーセンサであり、その特徴的な構成をまずその原理で説明する。
【0008】
(原理)
通常、不揮発性メモリとして利用されている強誘電体薄膜は、電圧を加えたときに起こる分極反転を利用してデータを記録している。しかし分極反転を繰り返すと、疲労により膜の残留分極の値が低下してくる。本発明は、この点に着目し圧電振動エネルギーセンサに利用するものである。
【0009】
即ち、圧電体センサを取り付けた場所に振動が加わると、圧電効果により、振動エネルギーは電気エネルギーに変換されるが、電気エネルギーは時間の経過と共に消失してしまうため、長期間電気エネルギーとして記憶することは困難である。この電気エネルギーを長期間記録するために、本発明では、電気エネルギーを強誘電体薄膜の残留分極の疲労に変換して記録するものである。
【0010】
(実施例)
図1は、本発明に係る振動エネルギーセンサの構成を示す図である。この図1に示すように、振動エネルギーセンサは、振動エネルギーを電気エネルギーに変換するチャージ発生用圧電体1、発生した電荷を用いて振動のエネルギーや回数をカウントする強誘電体メモリ2、記録したデータを外部から非接触で読み取るためのRFアンテナ4及びそのコントロール回路3からなる。
【0011】
この振動エネルギーセンサの使用に際しては、建築物、自動車、船舶、航空機などの構造物に対して、振動による疲労破壊が起こると思われる場所に貼着して取り付ける。
【0012】
振動エネルギーセンサを取り付けた場所に、図2(a)のような振動が加わるとチャージ発生用圧電体1の圧電効果により、振動エネルギーは図2(b)のような電気エネルギーに変換される。この電気エネルギーにより、強誘電体メモリ2電圧が加えられる。
【0013】
振動による電気エネルギーによって、強誘電体メモリ2に電圧を加えると、分極反転により振動回数が記録される。しかし分極反転を繰り返すと図3に示すように疲労により膜の残留分極の値が低下してくる。この疲労による低下の程度は、振動の回数、強誘電体薄膜の材料特性、加える電圧等により異なる。
【0014】
従って、本発明の振動エネルギーセンサは、振動回数が、数万から数百万回のオーダーで疲労による低下が予め決めたしきい値を超えるように意図的に作製することにより、振動発生箇所に適用することにより疲労の状態を把握するすることが可能である。
【0015】
特に、このような疲労特性の異なる強誘電体薄膜をまとめ一つのセルとして用いることにより、それぞれの疲労状況から分極反転の回数を正確に求めることが可能となる。
【0016】
図2(b)の例では、L1、L2、L3のしきい値電圧で分極反転するセルに記録を書き込んでいる。この振動ではそれぞれL1のセルには1回、L2のセルには2回、L3のセルには3回の分極反転が起こりセルを疲労させる。このように分極反転する電圧の違うセルを多数準備することにより、正確な振動エネルギー大きさも記録をことができる。
【0017】
そして、その後、外部からRFアンテナ等を用いて一時的にエネルギーを供給しコントロール回路を動かし、比較用の強誘電体薄膜セルと比較した正確な疲労情報として外部へ発信される。この結果、この構造体にこれまで加わった歪エネルギーの総和を知ることができ、構造体の材料特性から余寿命診断を行なうことが可能である。
【0018】
以上、実施例により本発明を説明したが、このような実施例に限定されることなく、特許請求の範囲記載の技術事項の範囲内でいろいろ実施例があることは言うまでもない。
【0019】
【発明の効果】
以上の通りの構成の本発明を利用すれば建築物、自動車、船舶、航空機などの構造にこのセンサを貼り付けることにより、この構造体に加わる歪みの大きさ、回数をカウントすることができる。これにより構造物の疲労破壊を予測することが可能になり、構造体の信頼性の向上とメンテナンスコストの軽減が可能である。
【0020】
即ち、本発明によれば、圧電振動エネルギーセンサは圧電効果を利用することにより、外部から電力を供給なしに、半永久的に作動することが可能である。また記録媒体として、強誘電性薄膜の分極反転による疲労を利用することにより、数万回から数百万回の振動回数の記録を、数十年という長期にわたって記録することが可能である。
【0021】
そして、センサの構造は簡単であり、大きさは名刺サイズ程度、またはそれ以下に小型も可能であり、センサは従来のシステムに比べ低価格で作成できる。そのため特殊な構造物のみでなく、一般の民生用として用いることができる。
【図面の簡単な説明】
【図1】本発明に係る振動エネルギーセンサの全体構成を説明する図である。
【図2】本発明に係る振動エネルギーセンサのおける振動エネルギーを電気エネルギーへの変換を説明する図である。
【図3】本発明に係る振動エネルギーセンサのおける強誘電体薄膜キャパシタの疲労挙動を説明する図である。
【符号の説明】
1 チャージ発生用圧電体
2 強誘電体メモリ
3 コントロール回路
4 RFアンテナ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to prediction of fatigue failure due to vibration of a structure such as a building, an automobile, a ship, and an aircraft, extension of life by diagnosis of remaining life, and reduction of maintenance cost.
[0002]
[Prior art]
Until now, it was difficult to diagnose the remaining life of buildings, automobiles, ships, aircraft, and the like. As a conventional technique, there is a means for periodically diagnosing a damaged portion due to internal fatigue using X-ray or ultrasonic diagnosis. In addition, as a technique developed in recent years, there is a means for monitoring by embedding a sensor such as an optical fiber or a strain gauge in a place where damage due to fatigue is likely to occur.
[Problems to be solved by the invention]
The conventional means for diagnosing a damaged portion due to internal fatigue using X-ray or ultrasonic diagnosis is used only for a special structure such as a nuclear power plant or an aircraft due to an increase in maintenance cost. In addition, the means for monitoring embedded sensors such as optical fibers and strain gauges requires an external energy supply for monitoring, and cannot be used by the sensor alone. Required. For this reason, the production cost is increased and it can be used only for special structures.
[0004]
An object of the present invention is to solve the above-mentioned conventional problems, and specifically, has the following problems.
(1) Operate semi-permanently without requiring external power supply.
(2) It is possible to record tens of thousands to millions of vibrations over a long period of several decades.
(3) The structure of the sensor is simplified, the size can be reduced to about the size of a business card or smaller, and the price is lower than the conventional one, and it is used not only for special structures but also for general consumer use. .
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention includes a charge-generating piezoelectric material that converts vibrational energy into electric energy, and a ferroelectric memory that repeats polarization inversion by the generated charge, and is characterized by fatigue caused by repetition of the polarization inversion. Thereby reducing the value of remanent polarization and enabling the number of vibrations to be counted.
[0006]
In order to solve the above-mentioned problems, the present invention provides a charge-generating piezoelectric material that converts vibration energy into electric energy, a ferroelectric memory that repeats polarization reversal by the generated charge, an RF antenna, and control of the RF antenna. Circuit, wherein the ferroelectric memory reduces the value of remanent polarization due to fatigue caused by the repetition of the polarization inversion, enables the number of vibrations to be counted, and the RF antenna stores data recorded by the ferroelectric memory. A piezoelectric vibration energy sensor characterized in that the piezoelectric vibration energy sensor reads the data from outside without contact.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of a piezoelectric vibration energy sensor according to the present invention will be described based on examples with reference to the drawings. The present invention is a vibration energy sensor which can be driven semi-permanently without supplying energy from the outside and digitize and record a vibration distortion energy signal applied to a structure. It will be explained.
[0008]
(principle)
Normally, a ferroelectric thin film used as a nonvolatile memory records data using polarization inversion that occurs when a voltage is applied. However, when the polarization reversal is repeated, the value of the remanent polarization of the film decreases due to fatigue. The present invention pays attention to this point and utilizes the piezoelectric vibration energy sensor.
[0009]
That is, when vibration is applied to the place where the piezoelectric sensor is attached, the vibration energy is converted into electric energy by the piezoelectric effect, but the electric energy is lost with the passage of time, and is stored as electric energy for a long time. It is difficult. In order to record this electric energy for a long time, in the present invention, the electric energy is converted into fatigue of remanent polarization of the ferroelectric thin film and recorded.
[0010]
(Example)
FIG. 1 is a diagram showing a configuration of a vibration energy sensor according to the present invention. As shown in FIG. 1, the vibration energy sensor includes a charge generation piezoelectric body 1 that converts vibration energy into electric energy, a ferroelectric memory 2 that counts vibration energy and the number of times using generated charges, and records. It comprises an RF antenna 4 for reading data from outside in a non-contact manner and a control circuit 3 for the RF antenna.
[0011]
When using this vibration energy sensor, it is attached to a structure such as a building, an automobile, a ship, or an aircraft by sticking it to a place where fatigue failure due to vibration is likely to occur.
[0012]
When vibration as shown in FIG. 2A is applied to the place where the vibration energy sensor is attached, the vibration energy is converted into electric energy as shown in FIG. 2B by the piezoelectric effect of the piezoelectric body 1 for charge generation. With this electric energy, the ferroelectric memory 2 voltage is applied.
[0013]
When a voltage is applied to the ferroelectric memory 2 by electric energy due to vibration, the number of vibrations is recorded by polarization reversal. However, when the polarization reversal is repeated, the value of the remanent polarization of the film decreases due to fatigue as shown in FIG. The degree of the decrease due to fatigue depends on the number of vibrations, the material characteristics of the ferroelectric thin film, the applied voltage, and the like.
[0014]
Therefore, the vibration energy sensor of the present invention is designed such that the number of vibrations is intentionally manufactured so that the decrease due to fatigue exceeds a predetermined threshold value in the order of tens of thousands to millions of times. By applying, it is possible to grasp the state of fatigue.
[0015]
In particular, by using such ferroelectric thin films having different fatigue characteristics collectively as one cell, the number of times of polarization inversion can be accurately obtained from each fatigue state.
[0016]
In the example of FIG. 2B, data is written in a cell whose polarization is inverted at threshold voltages L1, L2, and L3. In this vibration, polarization reversal occurs once in the cell L1, twice in the cell L2, and three times in the cell L3, and the cell is fatigued. By preparing a large number of cells having different voltages for polarization reversal, it is possible to record the exact magnitude of the vibration energy.
[0017]
After that, energy is temporarily supplied from the outside using an RF antenna or the like to operate the control circuit, and the information is transmitted to the outside as accurate fatigue information compared with the ferroelectric thin film cell for comparison. As a result, it is possible to know the sum of the strain energies applied so far to this structure, and to perform a remaining life diagnosis from the material characteristics of the structure.
[0018]
As described above, the present invention has been described with reference to the embodiments. However, it is needless to say that the present invention is not limited to such embodiments, and there are various embodiments within the scope of technical matters described in the claims.
[0019]
【The invention's effect】
If the present invention having the above-described configuration is used, by attaching this sensor to a structure such as a building, an automobile, a ship, and an aircraft, the magnitude and the number of strains applied to the structure can be counted. This makes it possible to predict the fatigue fracture of the structure, thereby improving the reliability of the structure and reducing the maintenance cost.
[0020]
That is, according to the present invention, the piezoelectric vibration energy sensor can operate semi-permanently without supplying electric power from the outside by utilizing the piezoelectric effect. Further, by utilizing fatigue due to polarization reversal of the ferroelectric thin film as a recording medium, it is possible to record tens of thousands to millions of vibrations over a long period of several decades.
[0021]
The structure of the sensor is simple, the size can be as small as the size of a business card or smaller, and the sensor can be manufactured at a lower price than a conventional system. Therefore, it can be used not only for special structures but also for general consumer use.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating an overall configuration of a vibration energy sensor according to the present invention.
FIG. 2 is a diagram illustrating conversion of vibration energy into electric energy in a vibration energy sensor according to the present invention.
FIG. 3 is a diagram illustrating the fatigue behavior of a ferroelectric thin film capacitor in the vibration energy sensor according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Piezoelectric for charge generation 2 Ferroelectric memory 3 Control circuit 4 RF antenna
Claims (2)
上記強誘電体メモリは、上記分極反転の繰り返しによる疲労により残留分極の値が低下し、振動の回数をカウント可能とし、
上記RFアンテナは、該強誘電体メモリが記録したデータを外部から非接触で読み取るものであることを特徴とする圧電振動エネルギーセンサ。A charge generation piezoelectric body that converts vibration energy into electric energy, a ferroelectric memory that repeats polarization inversion by the generated charge, an RF antenna, and a control circuit for the RF antenna,
In the ferroelectric memory, the value of the remanent polarization decreases due to fatigue caused by the repetition of the polarization inversion, and the number of vibrations can be counted.
A piezoelectric vibration energy sensor, wherein the RF antenna is configured to read data recorded by the ferroelectric memory from outside without contact.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002221142A JP3731049B2 (en) | 2002-07-30 | 2002-07-30 | Piezoelectric vibration energy sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002221142A JP3731049B2 (en) | 2002-07-30 | 2002-07-30 | Piezoelectric vibration energy sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004061347A true JP2004061347A (en) | 2004-02-26 |
JP3731049B2 JP3731049B2 (en) | 2006-01-05 |
Family
ID=31941545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002221142A Expired - Lifetime JP3731049B2 (en) | 2002-07-30 | 2002-07-30 | Piezoelectric vibration energy sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3731049B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7377179B2 (en) | 2005-11-14 | 2008-05-27 | General Electric Company | System, method, and apparatus for wireless non-powered stress history and fatigue monitoring of a structure |
US9435704B2 (en) | 2014-02-25 | 2016-09-06 | Panasonic Intellectual Property Management Co., Ltd. | Shock recording device |
US9939314B2 (en) | 2014-02-25 | 2018-04-10 | Panasonic Intellectual Property Management Co., Ltd. | Shock recording device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07107752A (en) * | 1993-09-30 | 1995-04-21 | Mitsuteru Kimura | Piezoelectric generating device |
JPH07335772A (en) * | 1994-06-09 | 1995-12-22 | Hitachi Ltd | Nonvolatile memory device using surface acoustic wave, and system using the device |
-
2002
- 2002-07-30 JP JP2002221142A patent/JP3731049B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07107752A (en) * | 1993-09-30 | 1995-04-21 | Mitsuteru Kimura | Piezoelectric generating device |
JPH07335772A (en) * | 1994-06-09 | 1995-12-22 | Hitachi Ltd | Nonvolatile memory device using surface acoustic wave, and system using the device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7377179B2 (en) | 2005-11-14 | 2008-05-27 | General Electric Company | System, method, and apparatus for wireless non-powered stress history and fatigue monitoring of a structure |
US9435704B2 (en) | 2014-02-25 | 2016-09-06 | Panasonic Intellectual Property Management Co., Ltd. | Shock recording device |
US9500547B1 (en) | 2014-02-25 | 2016-11-22 | Panasonic Intellectual Property Management Co., Ltd. | Shock recording device |
US9939314B2 (en) | 2014-02-25 | 2018-04-10 | Panasonic Intellectual Property Management Co., Ltd. | Shock recording device |
Also Published As
Publication number | Publication date |
---|---|
JP3731049B2 (en) | 2006-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200264056A1 (en) | Micro electro-mechanical strain displacement sensor and usage monitoring system | |
US7917311B2 (en) | Method for structural health monitoring using a smart sensor system | |
US20080252174A1 (en) | Energy harvesting from multiple piezoelectric sources | |
US4905107A (en) | Torsion transducer for magnetic storage disk drives | |
JP2006029931A (en) | Construction structure defect sensor | |
JP4984943B2 (en) | Piezoelectric sensor device and recording device | |
JP3731049B2 (en) | Piezoelectric vibration energy sensor | |
JP2006052742A (en) | Bearing with built-in tag for rfid with self-power generation function | |
CN108334159A (en) | Circuit device, real-time clock device, electronic equipment and moving body | |
Aono et al. | Quasi-self-powered infrastructural internet of things: The mackinac bridge case study | |
CN205484408U (en) | Wireless radio frequency acceleration sensor based on surface acoustic wave technique | |
PFEIFER et al. | Embedded self-powered microsensors for monitoring the surety of critical buildings and infrastructures | |
JP2007101278A (en) | Stress-strain detection system | |
Brunner et al. | Evaluation of experience from long-term AE monitoring | |
Chakrabartty et al. | Infrasonic power-harvesting and nanowatt self-powered sensors | |
CN101174415A (en) | System and method for recognizing problems of micro-actuator piezoelectric elements | |
Al-Najati et al. | Development and Optimization of a New End-Cap Tire-Strain Piezoelectric Energy Harvester (TSPEH) | |
JP4235499B2 (en) | Structure residual deformation measuring device and structure residual deformation measuring method | |
US20080318086A1 (en) | Surface-treated ferroelectric media for use in systems for storing information | |
Pochettino et al. | Infrastructural Internet-of-things Using Quasi-self-powered Structural Health Monitoring Sensors | |
Xu et al. | Flextensional piezoelectric energy harvesting technologies | |
Moss et al. | Bi-axial Vibration Energy Harvesting. | |
Germer et al. | Strain Based Tire Pressure Monitoring Systems (TPMS) With Synchronous Electric Charge Extraction (SECE) | |
KR20050039011A (en) | Method and apparatus for measuring structure using piezoelectric element | |
JP2001201511A (en) | Acceleration recording device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20031031 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050131 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050531 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050729 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050913 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3731049 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050729 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |