JP2004061128A - Leak inspecting method of heat pipe and its inspecting apparatus - Google Patents

Leak inspecting method of heat pipe and its inspecting apparatus Download PDF

Info

Publication number
JP2004061128A
JP2004061128A JP2002215609A JP2002215609A JP2004061128A JP 2004061128 A JP2004061128 A JP 2004061128A JP 2002215609 A JP2002215609 A JP 2002215609A JP 2002215609 A JP2002215609 A JP 2002215609A JP 2004061128 A JP2004061128 A JP 2004061128A
Authority
JP
Japan
Prior art keywords
inspection
heat pipe
room
leak
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002215609A
Other languages
Japanese (ja)
Other versions
JP4002148B2 (en
Inventor
Keiji Mashita
真下 啓治
Takahiro Suzuki
鈴木 貴裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2002215609A priority Critical patent/JP4002148B2/en
Publication of JP2004061128A publication Critical patent/JP2004061128A/en
Application granted granted Critical
Publication of JP4002148B2 publication Critical patent/JP4002148B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for quickly and reliably inspecting leak in a heat pipe regardless of the shape of the heat pipe and the type of hydraulic fluid, and also to provide an inspecting apparatus for the method. <P>SOLUTION: The heat pipe 1 is put into an inspection chamber 2, the inside of the inspecting chamber 2 is evacuated, the gas of the hydraulic fluid leaking out of the heat pipe 1 into the inspection chamber 2 is analyzed by a mass spectrometer 4, and the leak in the heat pipe 1 is inspected, thus analyzing and inspecting the hydraulic fluid gas leaking out of the leaked place of the heat pipe 1 by the mass spectrometer, and hence quickly, reliably performing inspection without depending on the type of hydraulic fluid. Additionally, the difference between internal and external pressures of the heat pipe in inspection is small, thus preventing the deformation of the heat pipe during the inspection. A reserve chamber is arranged in contact with the inspection chamber 2, and water on the surface of the heat pipe is removed in the reserve chamber, thus shortening evacuation time in the inspection chamber 2. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ヒートパイプのリークを、ヒートパイプの形状や作動液の種類に関係なく、迅速かつ高い信頼性で検査する方法およびその検査装置に関する。
【0002】
【従来の技術】
ヒートパイプはコンテナに作動液を真空封入したものであり、その性能を維持するにはコンテナの気密性が重要である。そして前記気密性の検査は、気泡検出法、ボンビング法、ハロゲン法などにより行われている。
前記気泡検出法は、ヒートパイプの表面に石鹸水を塗り、ヒートパイプを加熱して内圧を高め、リーク箇所に生じる石鹸水の泡を目視観察して検査する方法である。
前記ボンビング法は、ヒートパイプを非凝縮性ガスが充満する加圧室内に所定時間放置したのち、このヒートパイプの発熱部を高温に保持しつつ、断熱部と凝縮部の温度を測定し、リーク箇所から非凝縮性ガスが侵入していると両部間に温度差が生じる現象を利用して検査する方法である。
前記ハロゲン法は、ハロゲンを含有する物質を作動液とするヒートパイプを加熱して内圧を高め、リーク箇所から漏出するガス状のハロゲン元素を、加熱した白金面に吸着させ、白金面から放射される陽イオンを検知して検査する方法である。
【0003】
【発明が解決しようとする課題】
しかし、前記気泡検出法は、表面の僅かな汚れでも泡が発生することがあり、また目視観察のため検査員によって判定に差があるなど、信頼性に欠けるという問題がある。
前記ボンビング法は、変形し易い板型ヒートパイプを検査する場合は非凝縮性気体の圧力を低くする必要があるため、非凝縮性気体をリーク箇所から侵入させるのに時間が掛かるという問題がある。
前記ハロゲン法は、作動液にハロゲン元素を含む場合にしか適用できないという問題がある。
本発明は、ヒートパイプのリークを、ヒートパイプの形状や作動液の種類に関係なく、迅速かつ高い信頼性で検査する方法およびその検査装置を提供することを目的とする。
【0004】
【課題を解決するための手段】
請求項1記載発明は、検査室にヒートパイプを入れ、前記検査室内を真空排気して前記ヒートパイプから前記検査室内に漏出する作動液のガスを質量分析計により分析してリーク検査することを特徴とするヒートパイプのリーク検査方法である。
【0005】
請求項2記載発明は、検査室に接して開閉自在に予備室を配し、前記予備室にヒートパイプを入れ、前記予備室内を真空排気し、次いで前記ヒートパイプを、予め真空排気した前記検査室に移動し、次いで両室間を密閉したのち、前記ヒートパイプから検査室内に漏出する作動液のガスを質量分析計により分析してリーク検査することを特徴とするヒートパイプのリーク検査方法である。
【0006】
請求項3記載発明は、検査室に接して開閉自在に取出室を配し、前記検査室内の検査終了後のヒートパイプを、予め真空排気した前記取出室へ移動し、両室間を密閉後、前記ヒートパイプを前記取出室から取出すことを特徴とする請求項2記載のヒートパイプのリーク検査方法である。
【0007】
請求項4記載発明は、予備室内の真空排気を、予備室内の水分量が40ppm以下になるまで行うことを特徴とする請求項2または3記載のヒートパイプのリーク検査方法である。
【0008】
請求項5記載発明は、請求項1記載のリーク検査方法を実施するための検査装置であって、ヒートパイプのリークを検査するための検査室、前記検査室を真空排気するための真空ポンプ、前記検査室内に漏出する作動液ガスを分析するための質量分析計を主要部とすることを特徴とするヒートパイプのリーク検査装置である。
【0009】
請求項6記載発明は、請求項2記載のリーク検査方法を実施するための検査装置であって、ヒートパイプのリークを検査するための検査室、前記検査室に接して配された予備室、前記検査室に連結された質量分析計、前記各室を真空排気するための真空ポンプを主要部とし、前記検査室と前記予備室間は、前記両室の真空状態が保持された状態で開閉自在であり、前記両室間にはヒートパイプを移動する機能が具備されていることを特徴とするヒートパイプのリーク検査装置である。
【0010】
請求項7記載発明は、請求項3記載のリーク検査方法を実施するための検査装置であって、ヒートパイプのリークを検査するための検査室、前記検査室に接して配された予備室と取出室、前記検査室に連結された質量分析計、前記各室を真空排気するための真空ポンプを主要部とし、前記検査室と予備室間、および前記検査室と取出室間は、各両室の真空状態が保持された状態で開閉自在であり、前記各両室間にはヒートパイプを移動する機能が具備されていることを特徴とするヒートパイプのリーク検査装置である。
【0011】
【発明の実施の形態】
請求項1記載発明は、ヒートパイプを検査室に入れ、前記検査室内を真空排気すると、ヒートパイプにリーク箇所がある場合、ヒートパイプの内圧は作動液の飽和蒸気圧となり、外圧は0に近いため、ヒートパイプ内の作動液ガスが検査室内に漏出するが、この漏出ガスを検査室に連結した質量分析計により分析してリークを検査する方法である。
【0012】
この発明では、検査室内に漏出する作動液ガスを質量分析計で分析してリーク検査するので、作動液の種類によらず、迅速に、高い信頼性で検査できる。また検査時のヒートパイプの内外圧差は小さいので検査中にヒートパイプが変形したりしない。
【0013】
前記質量分析計には、極微量の元素を分析することができる四重極質量分析計(QMS)が推奨される。四重極質量分析計では、物質により分析感度が異なるため、予め作動液の構成元素の分析出力(ピーク高さ)を求めておき、これを基に、計測される分析出力を校正して作動液ガスを正確に分析(同定)する。
【0014】
一般に、質量分析計では、検査室内は高真空度に排気する必要があるが、ヒートパイプ表面に洗浄水が付着していたり、大気中の水分が吸着していたりすると排気時間が長くなる。
請求項2記載発明は、この問題を解決した検査方法である。
即ち、請求項2記載発明は、検査室に接して配した予備室にヒートパイプを入れ、前記予備室内を真空排気して前記ヒートパイプ表面の付着水分や吸着水分を除去し、その後、前記ヒートパイプを検査室に移動してリーク検査する方法であり、検査室内の水分量が少なくなり、検査室での排気時間が短縮される。
【0015】
予備室6内の真空排気は、予備室6の排気ガス中に含まれる水分量が40ppm以下になるまで行うのが良く、前記水分量が40ppm以下であればヒートパイプ表面の付着水分や吸着水分はほぼ完全に除去され、検査室での排気時間が短縮される。水分量は露点計を用いるなどの常法により容易に測定できる。
【0016】
請求項3記載発明は、前記予備室によりヒートパイプの除湿を行うとともに、検査室に接して取出室を配し、検査後のヒートパイプを検査室から、真空排気した取出室に移動し、両室間を密閉してから、ヒートパイプを取出室から取出す検査方法で、検査室が常時真空に保持され、ヒートパイプを連続的に検査する場合は、検査室の排気時間が一層短縮される。
【0017】
以下に、本発明の検査装置を図を参照して具体的に説明する。
図1は請求項1記載発明を実施する検査装置の実施形態を示す説明図である。
この検査装置は、リークを検査するための検査室2、検査室2を真空排気するための真空ポンプ3、検査室2内に漏出する作動液ガスを分析するための四重極質量分析計4を主要部とする。
図1で5は分析ガスのピーク高さを校正するための標準リークである。
【0018】
この検査装置では、ヒートパイプ1を検査室2内に入れ、検査室2内を真空ポンプ3により排気し、この排気ガスを四重極質量分析計4に通し、分析出力を標準リーク5により校正し、その結果、作動液ガスが分析されれば、ヒートパイプにリーク箇所があると判定する。なお、検査室2内ではヒートパイプ1は作動液のガス化温度以上の温度に保持する。
【0019】
図2は請求項2記載発明を実施する検査装置の実施形態を示す説明図である。
この検査装置は、リークを検査するための検査室2、検査室2に接して配された予備室6、検査室2に連結された質量分析計4、各室をそれぞれ真空排気するための真空ポンプ3を主要部とし、検査室2と予備室6間は、両室2、6の真空状態が保持された状態で開閉自在であり、両室2、6間にはヒートパイプ1を移動する機能が具備されている。
【0020】
この検査装置では、ヒートパイプ1を予備室6に入れ、予備室6内を真空ポンプ3により真空排気してヒートパイプ1表面に付着或いは吸着した水分を除去し、その後、ヒートパイプ1を、予め真空排気した検査室2に、両室の真空を保持した状態で移動してリーク検査を行う。
検査中、予備室6には次の検査用ヒートパイプ1を入れて真空排気しておく。
【0021】
図3は請求項3記載発明を実施する検査装置の実施形態を示す説明図である。
この検査装置は、リークを検査するための検査室2、検査室2に接して配された予備室6と取出室7、検査室2に連結された質量分析計4、各室をそれぞれ真空排気するための真空ポンプ3を主要部とし、検査室2と予備室6間、および検査室2と取出室7間は、各両室の真空状態が保持された状態で開閉自在であり、前記各両室間にはヒートパイプ1を移動する機能が具備されている。
【0022】
この検査装置では、ヒートパイプ1を予備室6に入れ、予備室6内を真空排気してヒートパイプ1表面の付着水分や吸着水分を除去し、その後、ヒートパイプ1を真空排気した検査室2に、両室2、6の真空を保持した状態で移動し、両室2、6間を密閉したのち、リーク検査を行い、検査後、ヒートパイプ1は、予め真空排気した取出室7に、両室2、7間の真空を保持した状態で移動し、移動後両室2、7間を密閉し、次いでヒートパイプ1を取出室7から取出す。このため、検査室2内が常時真空に保持され、検査室2の排気時間が大幅に短縮される。
検査中、予備室には次の検査用ヒートパイプを入れて真空排気しておくとともに、取出室も真空排気しておく。
【0023】
図4は本発明のリーク検査装置の他の例を示す説明図である。
この検査装置は、予備室6、検査室2、取出室7の3室の排気を1個の真空ポンプ3で行うようにしたものである。
この装置は、図3に示した装置に較べて真空ポンプ3の個数が少なく、また検査室2は2個の真空ポンプ3で真空排気することが可能であり、検査室2の真空排気が迅速になされる。図3で、8は切換バルブである。
【0024】
本発明装置において、予備室6と検査室2間および検査室2と取出室7間のヒートパイプ1の移動はコンベヤ式が簡便で推奨される。予備室6と取出室7を検査室2の前後に直線状に配すると、ヒートパイプ1を1本のコンベヤに乗せて容易に移動できる。前記各両室間の開閉はシャッター式が簡便で推奨される。
【0025】
本発明は、筒状ヒートパイプを始め、外圧で変形し易い板型ヒートパイプなど任意の形状のヒートパイプにも、またヘリウム、メタン、アンモニア、アセトン、ナフタレン、ナトリウム、水銀、代替フロン、炭化水素など通常の作動液が封入された任意のヒートパイプにも、さらにはウィックやグルーブを具備するヒートパイプにも問題なく適用できる。
【0026】
【実施例】
以下に、本発明を実施例により詳細に説明する。
(実施例1)
アセトンが封入された板型ヒートパイプ(以下、ヒートパイプと略記する)について、図1に示した検査装置を用いてリーク検査を行った。
即ち、ヒートパイプ1を検査室2に入れ、検査室2内を真空排気し、その排気ガスを四重極質量分析計4により分析した。アセトン(C H O)の構成元素の各ピークを標準リーク5により校正し、アセトンが分析されればヒートパイプはリークしており、検出されなければリークなしと判定した。
検査後、検査室2からヒートパイプ1を取出し、次のヒートパイプ1を検査室2に入れて同様のリーク検査を行った。
このようにして、ヒートパイプ1を20個検査し、ヒートパイプ1個あたりの平均検査時間および検査後のヒートパイプ1の変形有無を調べた。
【0027】
(実施例2)
実施例1で用いたのと同じ種類のヒートパイプについて、図2に示した検査装置を用いてリーク検査を行った。
即ち、予備室6にヒートパイプ1を入れ、前記予備室6内の水分量が40ppm以下になるまで真空排気し、次いで、予め真空排気した検査室2との間を開放して、ヒートパイプ1を、検査室2に移動し、両室2、6間を密閉したのち、検査室2内を真空排気し、排気ガスを四重極質量分析計4により分析し、実施例1と同様にしてリーク検査を行った。
検査中に、予備室6に次の検査用ヒートパイプ1を入れ、予備室6内を真空排気してヒートパイプ1表面の付着水分や吸着水分を除去して次の検査に備えた。
検査後、検査室2からヒートパイプ1を取り出し、検査室2内を真空脱気したのち、予備室6内のヒートパイプを検査室2へ、両室2、6の真空を保持した状態で移動し、その後両室2、6間を密閉し、リーク検査を行った。
検査後のヒートパイプについて、実施例1と同じ調査を行った。
【0028】
(実施例3)
実施例1で用いたのと同じ種類のヒートパイプについて、図3に示した検査装置を用いてリーク検査を行った。
ここでは、実施例2と同じ方法でリーク検査を行ったのち、検査室2と、予め真空排気した取出室7との間を開放して、検査室2内のヒートパイプ1を取出室7に移動し、次いで、両室2、7間を密閉し、取出室7からヒートパイプ1を取出した。
検査中に、予備室6に次の検査用ヒートパイプ1を入れ、予備室6内を真空排気して次の検査に備えるともに、取出室7を真空排気した。
検査後のヒートパイプについて、実施例1と同じ調査を行った。
【0029】
(比較例1)
実施例1で用いたのと同じ種類のヒートパイプについて、従来のボンビング法によりリーク検査を行い、実施例1と同じ方法によりヒートパイプ1個あたりの平均検査時間および検査後のヒートパイプの変形有無を調べた。
実施例1〜3および比較例1の調査結果を表1に示す。
【0030】
【表1】

Figure 2004061128
【0031】
表1から明らかなように、本発明例のNo.1〜3はいずれも検査時間が短かった。中でもNo.2はヒートパイプを、予備室に入れ、ヒートパイプ表面の付着水分や吸着水分を除去してから検査室に移動したので、検査室での排気時間が短縮された。またNo.3はヒートパイプを、その付着水分や吸着水分を予備室で除去してから検査室へ移動し、検査後のヒートパイプは真空排気した取出室へ移動してから取出したので、検査室は常時真空が保たれ、検査室での排気時間が短縮された。
これに対し、従来のボンビング法により検査した比較例1のNo.4は非凝縮性気体の圧力を高くしたためヒートパイプの外面に凹みが生じ、No.5は非凝縮性気体の圧力を低くしたため検査時間が長くなった。
【0032】
【発明の効果】
以上に述べたように、本発明のリーク検査方法は、作動液を封入したヒートパイプを検査室に入れ、検査室内を真空排気し、リーク箇所から漏出する作動液ガスを質量分析計で分析して検査するので、作動液の種類によらず、迅速に、高い信頼性で検査できる。また検査時のヒートパイプの内外圧差が小さいので検査中にヒートパイプが変形したりしない。前記検査室に接して予備室を配し、前記予備室内でヒートパイプ表面の付着水分や吸着水分を除去しておくと検査室での排気時間が短縮される。また前記検査室に接して取出室を配し、検査後のヒートパイプを、予め真空排気した前記取出室へ移動してから取出すことにより、検査室を常時真空に保持することができ、検査室での排気時間がさらに短縮される。
【0033】
本発明の検査装置は、ヒートパイプのリークを検査するための検査室、検査室を真空排気するための真空ポンプ、検査室内に漏出する作動液ガスを分析するための質量分析計、前記検査室を真空排気するための真空ポンプを主要部とするもの、或いは前記検査装置の検査室に接して予備室を配したもの、或いは前記検査装置の検査室に接して予備室と取出室を配したものであり、いずれも装置が簡便である。
依って、工業上顕著な効果を奏する。
【図面の簡単な説明】
【図1】本発明の検査装置の第1の実施形態を示す平面説明図である。
【図2】本発明の検査装置の第2の実施形態を示す平面説明図である。
【図3】本発明の検査装置の第3の実施形態を示す平面説明図である。
【図4】本発明の検査装置の第4の実施形態を示す平面説明図である。
【符号の説明】
1 ヒートパイプ
2 検査室
3 真空ポンプ
4 四重極質量分析計
5 標準リーク
6 予備室
7 取出室
8 切換バルブ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and a device for inspecting a leak in a heat pipe quickly and with high reliability regardless of the shape of the heat pipe and the type of hydraulic fluid.
[0002]
[Prior art]
The heat pipe is a container in which a working fluid is vacuum-sealed in a container, and the airtightness of the container is important to maintain its performance. The inspection of the airtightness is performed by a bubble detection method, a bombing method, a halogen method, or the like.
The air bubble detection method is a method in which soap water is applied to the surface of a heat pipe, the internal pressure is increased by heating the heat pipe, and the soap water bubbles generated at the leak location are visually observed and inspected.
In the bombing method, after leaving a heat pipe in a pressurized chamber filled with a non-condensable gas for a predetermined time, the temperature of the heat insulating part and the condensing part is measured while maintaining the heat generating part of the heat pipe at a high temperature, and the leak is measured. This is an inspection method using a phenomenon in which a temperature difference occurs between the two portions when a non-condensable gas has entered from a location.
In the halogen method, a heat pipe using a substance containing a halogen as a working fluid is heated to increase the internal pressure, and a gaseous halogen element leaking from a leak location is adsorbed on the heated platinum surface, and radiated from the platinum surface. This is a method of detecting and inspecting positive ions.
[0003]
[Problems to be solved by the invention]
However, the above-described bubble detection method has a problem of lack of reliability, for example, bubbles may be generated even if the surface is slightly stained, and there is a difference in judgment between inspectors for visual observation.
The bombing method has a problem that when inspecting a plate-shaped heat pipe that is easily deformed, it is necessary to lower the pressure of the non-condensable gas, so that it takes time to inject the non-condensable gas from the leak location. .
The halogen method has a problem that it can be applied only when the working fluid contains a halogen element.
SUMMARY OF THE INVENTION An object of the present invention is to provide a method and a device for inspecting a leak in a heat pipe quickly and with high reliability regardless of the shape of the heat pipe and the type of hydraulic fluid.
[0004]
[Means for Solving the Problems]
The invention described in claim 1 is to perform a leak test by putting a heat pipe into an inspection room, evacuating the inspection room, and analyzing a gas of a hydraulic fluid leaking from the heat pipe into the inspection room by a mass spectrometer. This is a characteristic method of inspecting heat pipe leaks.
[0005]
The invention according to claim 2, wherein the preliminary chamber is arranged to be openable and closable in contact with an inspection chamber, a heat pipe is put into the preliminary chamber, the preliminary chamber is evacuated, and then the heat pipe is evacuated in advance. After moving to the chamber, and then sealing between the two chambers, a heat pipe leak inspection method characterized in that the working fluid gas leaking from the heat pipe into the inspection chamber is analyzed by a mass spectrometer to perform a leak inspection. is there.
[0006]
According to a third aspect of the present invention, a take-out chamber is disposed so as to be openable and closable in contact with an examination room, and a heat pipe after the inspection in the examination room is moved to the take-out room which has been evacuated in advance, and the space between the two chambers is sealed. The heat pipe leak inspection method according to claim 2, wherein the heat pipe is taken out of the take-out chamber.
[0007]
The invention according to claim 4 is the heat pipe leak inspection method according to claim 2 or 3, wherein the evacuation of the preparatory chamber is performed until the water content in the preparatory chamber becomes 40 ppm or less.
[0008]
According to a fifth aspect of the present invention, there is provided an inspection apparatus for performing the leak inspection method according to the first aspect, wherein an inspection room for inspecting a leak of a heat pipe, a vacuum pump for evacuating the inspection room, A heat pipe leak inspection apparatus characterized in that a main part is a mass spectrometer for analyzing a hydraulic fluid gas leaking into the inspection chamber.
[0009]
According to a sixth aspect of the present invention, there is provided an inspection apparatus for performing the leak inspection method according to the second aspect, wherein an inspection room for inspecting a leak of a heat pipe, a spare room arranged in contact with the inspection room, The main part is a mass spectrometer connected to the inspection room and a vacuum pump for evacuating each of the chambers, and the opening and closing between the inspection room and the spare room is performed while the vacuum state of both the rooms is maintained. A heat pipe leak inspection device, which is free and has a function of moving the heat pipe between the two chambers.
[0010]
According to a seventh aspect of the present invention, there is provided an inspection apparatus for performing the leak inspection method according to the third aspect, wherein an inspection room for inspecting a heat pipe leak, and a spare room arranged in contact with the inspection room. An extraction room, a mass spectrometer connected to the inspection room, and a vacuum pump for evacuating each room as a main part, between the inspection room and the preliminary room, and between the inspection room and the extraction room, A leak inspection device for a heat pipe, characterized in that it is openable and closable in a state where a vacuum state of the chamber is maintained, and has a function of moving the heat pipe between the two chambers.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
According to the first aspect of the present invention, when the heat pipe is placed in an inspection room and the inspection room is evacuated, if there is a leak in the heat pipe, the internal pressure of the heat pipe becomes the saturated vapor pressure of the working fluid, and the external pressure is close to zero. Therefore, the working fluid gas in the heat pipe leaks into the test room, and the leak gas is analyzed by a mass spectrometer connected to the test room to check for leaks.
[0012]
According to the present invention, since the working fluid gas leaking into the inspection chamber is analyzed by the mass spectrometer to perform the leak test, the testing can be performed quickly and with high reliability regardless of the type of the working fluid. Further, since the pressure difference between the inside and outside of the heat pipe at the time of the inspection is small, the heat pipe does not deform during the inspection.
[0013]
As the mass spectrometer, a quadrupole mass spectrometer (QMS) capable of analyzing a trace amount of element is recommended. In quadrupole mass spectrometers, the analytical sensitivity differs depending on the substance. Therefore, the analytical output (peak height) of the constituent elements of the working fluid is determined in advance, and the analytical output measured is calibrated based on this to operate. Analyze (identify) liquid gas accurately.
[0014]
Generally, in a mass spectrometer, it is necessary to evacuate the inspection chamber to a high vacuum. However, if cleaning water adheres to the surface of the heat pipe or moisture in the air is adsorbed, the evacuation time becomes longer.
The invention described in claim 2 is an inspection method that solves this problem.
That is, the invention according to claim 2 is that a heat pipe is put into a spare room arranged in contact with an inspection room, and the spare room is evacuated to remove attached moisture and adsorbed moisture on the surface of the heat pipe. In this method, a pipe is moved to an inspection room to perform a leak inspection. The amount of water in the inspection room is reduced, and the exhaust time in the inspection room is reduced.
[0015]
The evacuation of the pre-chamber 6 is preferably performed until the amount of water contained in the exhaust gas of the pre-chamber 6 becomes 40 ppm or less. Is almost completely removed and the exhaust time in the laboratory is reduced. The water content can be easily measured by a conventional method such as using a dew point meter.
[0016]
According to the third aspect of the present invention, the heat pipe is dehumidified by the spare chamber, an extraction chamber is arranged in contact with the inspection chamber, and the heat pipe after the inspection is moved from the inspection chamber to the extraction chamber evacuated. In the inspection method in which the heat pipe is taken out of the extraction chamber after the chambers are closed, the inspection chamber is constantly kept in a vacuum, and when the heat pipe is inspected continuously, the exhaust time of the inspection chamber is further reduced.
[0017]
Hereinafter, the inspection apparatus of the present invention will be specifically described with reference to the drawings.
FIG. 1 is an explanatory view showing an embodiment of an inspection apparatus for carrying out the invention described in claim 1.
The inspection apparatus includes an inspection room 2 for inspecting a leak, a vacuum pump 3 for evacuating the inspection room 2, and a quadrupole mass spectrometer 4 for analyzing a working fluid gas leaking into the inspection room 2. Is the main part.
In FIG. 1, reference numeral 5 denotes a standard leak for calibrating the peak height of the analysis gas.
[0018]
In this inspection apparatus, the heat pipe 1 is put into an inspection room 2, the inside of the inspection room 2 is evacuated by a vacuum pump 3, the exhaust gas is passed through a quadrupole mass spectrometer 4, and the analysis output is calibrated by a standard leak 5. As a result, if the working fluid gas is analyzed, it is determined that there is a leak in the heat pipe. In the inspection room 2, the heat pipe 1 is maintained at a temperature equal to or higher than the gasification temperature of the working fluid.
[0019]
FIG. 2 is an explanatory view showing an embodiment of an inspection apparatus for carrying out the invention described in claim 2.
The inspection apparatus includes an inspection room 2 for inspecting a leak, a preliminary room 6 arranged in contact with the inspection room 2, a mass spectrometer 4 connected to the inspection room 2, and a vacuum for evacuating each room. The pump 3 is a main part, and the space between the inspection room 2 and the spare room 6 can be opened and closed freely while the vacuum state of both the rooms 2 and 6 is maintained, and the heat pipe 1 is moved between the two rooms 2 and 6. Functions are provided.
[0020]
In this inspection apparatus, the heat pipe 1 is put into the preparatory chamber 6, the inside of the preparatory chamber 6 is evacuated by the vacuum pump 3 to remove moisture adhering or adsorbed on the surface of the heat pipe 1, and thereafter, the heat pipe 1 is removed in advance. The leak inspection is performed by moving to the evacuated inspection chamber 2 while maintaining the vacuum in both chambers.
During the inspection, the next test heat pipe 1 is put in the preliminary chamber 6 and evacuated.
[0021]
FIG. 3 is an explanatory view showing an embodiment of an inspection apparatus for carrying out the invention described in claim 3.
The inspection apparatus includes an inspection room 2 for inspecting a leak, a preliminary room 6 and an extraction room 7 arranged in contact with the inspection room 2, a mass spectrometer 4 connected to the inspection room 2, and each chamber is evacuated. The main part is a vacuum pump 3 for performing the above-mentioned operations, and between the inspection room 2 and the preparatory room 6 and between the inspection room 2 and the take-out room 7 can be freely opened and closed while maintaining the vacuum state of each of the two rooms. A function of moving the heat pipe 1 is provided between the two chambers.
[0022]
In this inspection apparatus, the heat pipe 1 is put into a preliminary chamber 6, the interior of the preliminary chamber 6 is evacuated to remove the adhering moisture and adsorbed moisture on the surface of the heat pipe 1, and then the inspection chamber 2 is evacuated and evacuated. Then, the chambers 2 and 6 are moved while maintaining the vacuum, and after the chambers 2 and 6 are sealed, a leak inspection is performed. After the inspection, the heat pipe 1 is moved to the extraction chamber 7 which has been evacuated in advance. The chamber is moved while maintaining the vacuum between the two chambers 2 and 7, and after the movement, the space between the two chambers 2 and 7 is sealed. Then, the heat pipe 1 is taken out from the extraction chamber 7. For this reason, the inside of the inspection room 2 is always kept in a vacuum, and the evacuation time of the inspection room 2 is greatly reduced.
During the inspection, a heat pipe for the next inspection is put in the preliminary chamber and the chamber is evacuated, and the extraction chamber is also evacuated.
[0023]
FIG. 4 is an explanatory view showing another example of the leak inspection device of the present invention.
In this inspection apparatus, three chambers, ie, a preliminary chamber 6, an inspection chamber 2, and an extraction chamber 7, are evacuated by one vacuum pump 3.
In this apparatus, the number of vacuum pumps 3 is smaller than that of the apparatus shown in FIG. 3, and the inspection room 2 can be evacuated by two vacuum pumps 3. Is made. In FIG. 3, reference numeral 8 denotes a switching valve.
[0024]
In the apparatus of the present invention, the movement of the heat pipe 1 between the preliminary room 6 and the inspection room 2 and between the inspection room 2 and the unloading room 7 is simply and preferably recommended by a conveyor system. If the preliminary chamber 6 and the take-out chamber 7 are linearly arranged before and after the inspection room 2, the heat pipe 1 can be easily moved on a single conveyor. For opening and closing between the two chambers, a shutter type is simple and recommended.
[0025]
The present invention is applicable to heat pipes of any shape, including cylindrical heat pipes, plate heat pipes that are easily deformed by external pressure, helium, methane, ammonia, acetone, naphthalene, sodium, mercury, alternative chlorofluorocarbons, and hydrocarbons. For example, the present invention can be applied to any heat pipe in which a normal working fluid is sealed, and further to a heat pipe having a wick or a groove.
[0026]
【Example】
Hereinafter, the present invention will be described in detail with reference to Examples.
(Example 1)
The plate type heat pipe (hereinafter, abbreviated as heat pipe) in which acetone was sealed was subjected to a leak test using the test apparatus shown in FIG.
That is, the heat pipe 1 was put into the inspection room 2, the inside of the inspection room 2 was evacuated, and the exhaust gas was analyzed by the quadrupole mass spectrometer 4. Each peak of the constituent elements of acetone (C 3 H 6 O) was calibrated by the standard leak 5, and if acetone was analyzed, the heat pipe was leaked, and if not detected, it was determined that there was no leak.
After the inspection, the heat pipe 1 was taken out of the inspection room 2, the next heat pipe 1 was put into the inspection room 2, and the same leak inspection was performed.
Thus, 20 heat pipes 1 were inspected, and the average inspection time per heat pipe 1 and the presence or absence of deformation of the heat pipe 1 after the inspection were examined.
[0027]
(Example 2)
For the same type of heat pipe used in Example 1, a leak test was performed using the test apparatus shown in FIG.
That is, the heat pipe 1 is put into the preparatory chamber 6 and evacuated until the water content in the preparatory chamber 6 becomes 40 ppm or less. Is moved to the inspection room 2, the space between the two chambers 2 and 6 is sealed, the inside of the inspection room 2 is evacuated, and the exhaust gas is analyzed by the quadrupole mass spectrometer 4. A leak test was performed.
During the inspection, the next heat pipe 1 for inspection was put into the preliminary chamber 6, and the inside of the preliminary chamber 6 was evacuated to remove the adhering and adsorbed water on the surface of the heat pipe 1 to prepare for the next inspection.
After the inspection, the heat pipe 1 is taken out of the inspection room 2 and the inside of the inspection room 2 is evacuated to vacuum. Then, the heat pipe in the preliminary room 6 is moved to the inspection room 2 while maintaining the vacuum of both the rooms 2 and 6. Thereafter, the space between the two chambers 2 and 6 was sealed, and a leak test was performed.
The same investigation as in Example 1 was conducted on the heat pipe after the inspection.
[0028]
(Example 3)
For the same type of heat pipe used in Example 1, a leak test was performed using the test apparatus shown in FIG.
Here, after a leak test is performed in the same manner as in the second embodiment, the space between the test room 2 and the take-out room 7 that has been evacuated in advance is opened, and the heat pipe 1 in the test room 2 is taken out to the take-out room 7. Then, the space between the two chambers 2 and 7 was sealed, and the heat pipe 1 was taken out of the take-out chamber 7.
During the inspection, the next inspection heat pipe 1 was put in the preliminary chamber 6, the interior of the preliminary chamber 6 was evacuated to prepare for the next inspection, and the extraction chamber 7 was evacuated.
The same investigation as in Example 1 was conducted on the heat pipe after the inspection.
[0029]
(Comparative Example 1)
The same type of heat pipe as used in Example 1 was subjected to a leak test by the conventional bombing method, and the same method as in Example 1 was used to determine the average inspection time per heat pipe and the presence or absence of deformation of the heat pipe after inspection. Was examined.
Table 1 shows the investigation results of Examples 1 to 3 and Comparative Example 1.
[0030]
[Table 1]
Figure 2004061128
[0031]
As is clear from Table 1, No. 1 of the present invention example. In each of the samples 1 to 3, the inspection time was short. No. In No. 2, since the heat pipe was put into the preparatory chamber, and the adhering or adsorbed water on the surface of the heat pipe was removed, and the heat pipe was moved to the inspection room, the exhaust time in the inspection room was shortened. No. 3 moves the heat pipe to the inspection room after removing the adhering and adsorbed water in the preparatory room, and moves the heat pipe after the inspection to the evacuated extraction room and then removes it. The vacuum was maintained, reducing the evacuation time in the laboratory.
On the other hand, No. 1 of Comparative Example 1 inspected by the conventional bombing method. In No. 4, the pressure of the non-condensable gas was increased, so that the outer surface of the heat pipe was dented. In No. 5, the inspection time was prolonged because the pressure of the non-condensable gas was lowered.
[0032]
【The invention's effect】
As described above, in the leak inspection method of the present invention, the heat pipe filled with the working fluid is put into the testing room, the testing room is evacuated, and the working fluid gas leaking from the leak location is analyzed by the mass spectrometer. Inspection can be performed quickly and with high reliability regardless of the type of hydraulic fluid. Further, since the pressure difference between the inside and outside of the heat pipe at the time of inspection is small, the heat pipe does not deform during the inspection. By arranging a preliminary chamber in contact with the inspection room and removing moisture adsorbed or adsorbed on the surface of the heat pipe in the preliminary room, the exhaust time in the inspection room is reduced. In addition, an extraction chamber is arranged in contact with the inspection room, and the heat pipe after inspection is moved to the extraction room that has been evacuated beforehand and then taken out, so that the inspection room can be constantly maintained in a vacuum. Evacuation time is further reduced.
[0033]
The inspection device of the present invention includes an inspection room for inspecting a heat pipe leak, a vacuum pump for evacuating the inspection room, a mass spectrometer for analyzing a working fluid gas leaking into the inspection room, and the inspection room. The main part of which is a vacuum pump for evacuating, or a spare room in contact with the inspection room of the inspection device, or a spare room and an extraction room in contact with the inspection room of the inspection device In each case, the apparatus is simple.
Therefore, a remarkable industrial effect is achieved.
[Brief description of the drawings]
FIG. 1 is an explanatory plan view showing a first embodiment of an inspection apparatus of the present invention.
FIG. 2 is an explanatory plan view showing a second embodiment of the inspection apparatus of the present invention.
FIG. 3 is an explanatory plan view showing a third embodiment of the inspection apparatus of the present invention.
FIG. 4 is an explanatory plan view showing a fourth embodiment of the inspection apparatus of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Heat pipe 2 Inspection room 3 Vacuum pump 4 Quadrupole mass spectrometer 5 Standard leak 6 Preparatory room 7 Extraction room 8 Switching valve

Claims (7)

検査室にヒートパイプを入れ、前記検査室内を真空排気して前記ヒートパイプから前記検査室内に漏出する作動液のガスを質量分析計により分析してリーク検査することを特徴とするヒートパイプのリーク検査方法。Inserting a heat pipe into an inspection room, evacuating the inspection room, analyzing a gas of a working fluid leaking from the heat pipe into the inspection room by a mass spectrometer, and performing a leak inspection. Inspection methods. 検査室に接して開閉自在に予備室を配し、前記予備室にヒートパイプを入れ、前記予備室内を真空排気し、次いで前記ヒートパイプを、予め真空排気した前記検査室に移動し、次いで両室間を密閉したのち、前記ヒートパイプから検査室内に漏出する作動液のガスを質量分析計により分析してリーク検査することを特徴とするヒートパイプのリーク検査方法。A spare chamber is arranged to be openable and closable in contact with the examination room, a heat pipe is put into the spare room, the spare room is evacuated, and then the heat pipe is moved to the previously evacuated examination room. A method for inspecting a heat pipe leak, comprising sealing a space between the chambers and then analyzing a gas of a hydraulic fluid leaking from the heat pipe into the inspection chamber by a mass spectrometer to perform a leak inspection. 検査室に接して開閉自在に取出室を配し、前記検査室内の検査終了後のヒートパイプを、予め真空排気した前記取出室へ移動し、両室間を密閉後、前記ヒートパイプを前記取出室から取出すことを特徴とする請求項2記載のヒートパイプのリーク検査方法。An extraction chamber is arranged to be freely openable and closable in contact with the inspection room, and the heat pipe after the inspection in the inspection room is moved to the extraction chamber evacuated in advance, and after closing both chambers, the heat pipe is extracted. 3. The method according to claim 2, wherein the heat pipe is taken out of the chamber. 予備室内の真空排気を、予備室内の水分量が40ppm以下になるまで行うことを特徴とする請求項2または3記載のヒートパイプのリーク検査方法。4. The method according to claim 2, wherein the evacuation of the pre-chamber is performed until the amount of water in the pre-chamber becomes 40 ppm or less. 請求項1記載のリーク検査方法を実施するための検査装置であって、ヒートパイプのリークを検査するための検査室、前記検査室を真空排気するための真空ポンプ、前記検査室内に漏出する作動液ガスを分析するための質量分析計を主要部とすることを特徴とするヒートパイプのリーク検査装置。An inspection apparatus for performing the leak inspection method according to claim 1, wherein an inspection room for inspecting a leak of the heat pipe, a vacuum pump for evacuating the inspection room, and an operation of leaking into the inspection room. A heat pipe leak inspection device comprising a mass spectrometer for analyzing liquid gas as a main part. 請求項2記載のリーク検査方法を実施するための検査装置であって、ヒートパイプのリークを検査するための検査室、前記検査室に接して配された予備室、前記検査室に連結された質量分析計、前記各室を真空排気するための真空ポンプを主要部とし、前記検査室と前記予備室間は、前記両室の真空状態が保持された状態で開閉自在であり、前記両室間にはヒートパイプを移動する機能が具備されていることを特徴とするヒートパイプのリーク検査装置。An inspection apparatus for performing the leak inspection method according to claim 2, wherein the inspection room is configured to inspect a leak of a heat pipe, a spare room disposed in contact with the inspection room, and connected to the inspection room. The mass spectrometer has a vacuum pump for evacuating each chamber as a main part, and the inspection chamber and the spare chamber can be opened and closed freely while the vacuum state of both chambers is maintained. A heat pipe leak inspection device having a function of moving a heat pipe between the heat pipes. 請求項3記載のリーク検査方法を実施するための検査装置であって、ヒートパイプのリークを検査するための検査室、前記検査室に接して配された予備室と取出室、前記検査室に連結された質量分析計、前記各室を真空排気するための真空ポンプを主要部とし、前記検査室と予備室間、および前記検査室と取出室間は、各両室の真空状態が保持された状態で開閉自在であり、前記各両室間にはヒートパイプを移動する機能が具備されていることを特徴とするヒートパイプのリーク検査装置。An inspection apparatus for performing the leak inspection method according to claim 3, wherein an inspection room for inspecting a leak of the heat pipe, a spare room and an extraction room arranged in contact with the inspection room, and the inspection room. The connected mass spectrometer and a vacuum pump for evacuating each of the chambers are main parts, and the vacuum state of each of the two chambers is maintained between the inspection room and the preliminary room and between the inspection room and the extraction room. A leak inspection device for a heat pipe, characterized in that it is openable and closable in a closed state, and has a function of moving the heat pipe between the two chambers.
JP2002215609A 2002-07-24 2002-07-24 Heat pipe leak inspection method and inspection apparatus therefor Expired - Fee Related JP4002148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002215609A JP4002148B2 (en) 2002-07-24 2002-07-24 Heat pipe leak inspection method and inspection apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002215609A JP4002148B2 (en) 2002-07-24 2002-07-24 Heat pipe leak inspection method and inspection apparatus therefor

Publications (2)

Publication Number Publication Date
JP2004061128A true JP2004061128A (en) 2004-02-26
JP4002148B2 JP4002148B2 (en) 2007-10-31

Family

ID=31937594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002215609A Expired - Fee Related JP4002148B2 (en) 2002-07-24 2002-07-24 Heat pipe leak inspection method and inspection apparatus therefor

Country Status (1)

Country Link
JP (1) JP4002148B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015519580A (en) * 2012-06-14 2015-07-09 インフィコン ゲゼルシャフト ミット ベシュレンクテル ハフツングInficon GmbH Inspection device having a gas container for inspection
WO2019138918A1 (en) * 2018-01-11 2019-07-18 ヤマハファインテック株式会社 Gas leak detection device, workpiece inspection device and leak inspection method
CN112268924A (en) * 2020-10-19 2021-01-26 郑州轻冶科技股份有限公司 Detection method and detection system for heat pipe exchanger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015519580A (en) * 2012-06-14 2015-07-09 インフィコン ゲゼルシャフト ミット ベシュレンクテル ハフツングInficon GmbH Inspection device having a gas container for inspection
WO2019138918A1 (en) * 2018-01-11 2019-07-18 ヤマハファインテック株式会社 Gas leak detection device, workpiece inspection device and leak inspection method
CN111566464A (en) * 2018-01-11 2020-08-21 雅马哈精密科技株式会社 Gas leak detection device, workpiece inspection device, and leak inspection method
CN112268924A (en) * 2020-10-19 2021-01-26 郑州轻冶科技股份有限公司 Detection method and detection system for heat pipe exchanger

Also Published As

Publication number Publication date
JP4002148B2 (en) 2007-10-31

Similar Documents

Publication Publication Date Title
JP6275134B2 (en) Detection method and detection apparatus for inspecting leakage resistance of sealed products
JP5778278B2 (en) Method and apparatus for leak testing containers
CN107850508B (en) Method for checking the tightness of a sealed product and device for detecting leaks
KR101821696B1 (en) Method and device for determining leakage
JPH0618355A (en) Detecting medium and usage to hermetic seal test
JP6556226B2 (en) Apparatus and method for calibrating a leak detection film chamber
CN112146818B (en) Double-station ultrasensitive leak detection method and system applied to packaging of electronic components
CN104568336A (en) Helium mass spectrometer leak detection method for sealing workpiece
CN107543664A (en) More sealing system leakage rate measurement method and apparatus
JP2007147327A (en) Air leakage inspection device
Rottländer et al. Fundamentals of leak detection
JP2014134513A (en) Leak test method and device
CN107219652A (en) A kind of liquid crystal panel bubble detection system
JP4002148B2 (en) Heat pipe leak inspection method and inspection apparatus therefor
JP2000275134A (en) Method and apparatus for leak test
JP4091367B2 (en) Leak inspection method
Nelson The Hydrogen Gauge—An Ultra‐Sensitive Device for Location of Air Leaks in Vacuum‐Device Envelopes
CN202008470U (en) X-ray spectral measurement device with air isolation function
JP2002098611A (en) Measuring method and device for leakage gas and evaluation device of the leakage gas measuring device
JPH01182731A (en) Testing airtight performance of sealed container
US20230314267A1 (en) Method for leak testing
Zheleznikova et al. Soldered Joints of Piezoelectric Products
JP2002277342A (en) Leakage testing device
JPS6336128A (en) Leak inspecting device for gas filled equipment
KR20230044728A (en) Leak test method for multi pipe part u

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070518

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4002148

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees