JP2004061049A - Air inlet device - Google Patents

Air inlet device Download PDF

Info

Publication number
JP2004061049A
JP2004061049A JP2002222853A JP2002222853A JP2004061049A JP 2004061049 A JP2004061049 A JP 2004061049A JP 2002222853 A JP2002222853 A JP 2002222853A JP 2002222853 A JP2002222853 A JP 2002222853A JP 2004061049 A JP2004061049 A JP 2004061049A
Authority
JP
Japan
Prior art keywords
air
air supply
supply port
room
sphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002222853A
Other languages
Japanese (ja)
Other versions
JP3899299B2 (en
Inventor
Hideto Iwasaki
岩崎 秀人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Emoto Kogyo KK
Original Assignee
Emoto Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emoto Kogyo KK filed Critical Emoto Kogyo KK
Priority to JP2002222853A priority Critical patent/JP3899299B2/en
Publication of JP2004061049A publication Critical patent/JP2004061049A/en
Application granted granted Critical
Publication of JP3899299B2 publication Critical patent/JP3899299B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air inlet device for naturally supplying outside air into a room, preventing blowing in of the outside air into the room to constantly maintain a constant air supply amount into the room, and capable of effectively preventing a reverse flow of indoor air to the outside. <P>SOLUTION: The air inlet device is provided with a ventilation passage body 1 inserted in a through hole of a partition wall 8, an air inlet 2 and an air supply port 3 provided in each end part of the ventilation passage body 1, and a sphere 4 suspended by a suspending member 41 in an interior of the ventilation passage body 1. An approaching position of the sphere 4 with respect to the air supply port 3 is defined by a stopper 5, and a diameter of the sphere 4 is set larger than a diameter of a circular inner side opening part of the air inlet 2. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、給気口装置に関するものであり、詳しくは、屋外の空気を室内へ自然給気するための給気口装置に関するものである。
【0002】
【従来の技術】
建物における第三種換気は、室内の空気を屋外へ強制的に排出し、屋外の空気を室内へ自然給気する方式の換気である。第三種換気を行う建物においては、例えば、各部屋へ伸長された換気ダクトを通じ、部屋の空気を吸気して屋外へ排出する共通の排気装置が天井裏などに設置され、そして、各部屋へ屋外の空気を導入する給気口装置(給気グリル)が屋外との仕切壁に取り付けられる(江本工業株式会社発行,「住宅機器・資材総合カタログ」,2002.1改訂版,第16〜17頁参照)。
【0003】
【発明が解決しようとする課題】
ところで、従来の給気口装置は、雨除けの覆いや風向を変更するルーバーが付設された単なる開口装置であるため、室内の空調効果を損ない且つ大きな熱損失を生じると言う問題がある。例えば、夏季などは、排気装置による室内の空気の排出と共に室内の冷房により室内の圧力が外気圧よりも低くなるため、給気口装置を通じて必要以上に多量の外気が流れ込み、冷房効果を損なう場合がある。他方、冬季などは、排気装置によって室内の空気を排出しているにも拘わらず、実際、暖房により室内の圧力が外気圧よりも高くなるため、給気口装置を通じて室内の暖かな空気が屋外へ直接流出する場合がある。また、冬季などは、外気の吹込みによって冷風感が喚起されるばかりか、特に、強風による大量の外気の吹込みによって室内の暖房効果が著しく損なわれ、しかも、室内側の壁面で結露を生じる場合もある。
【0004】
本発明は、上記の実情に鑑みなされたものであり、その目的は、屋外の空気を室内へ自然給気するための給気口装置であって、室内への外気の吹込みを防止して室内への給気量を常に一定範囲内に維持でき、しかも、冬季などにおける室内と屋外の圧力差による室内空気の屋外への逆流を有効に防止できる給気口装置を提供することにある。
【0005】
【課題を解決するための手段】
本発明は、屋外と室内との僅かな圧力差、すなわち、僅かな空気流によって揺動する球体を給気口装置の通気流路本体内部に配置し、屋外から室内への多量の空気の移動(流入)に対しては、空気流による球体の移動によって室内側の空気供給口の開口面積を減少させることにより、室内への給気量を一定範囲内に維持し、また、室内から屋外への空気の逆流に対しては、空気流による球体の移動によって屋外側の空気導入口を閉止することにより、室内空気の屋外への逆流を防止する。
【0006】
すなわち、本発明の要旨は、屋外の空気を室内へ自然給気するために屋外と室内との仕切壁に取り付けられる給気口装置であって、仕切壁の貫通孔に挿入される筒状の通気流路本体と、屋外側に向けられる前記通気流路本体の端部に設けられた空気導入口と、室内側に向けられる前記通気流路本体の端部に設けられた空気供給口と、前記通気流路本体の内部に吊下部材によって吊持され且つ前記空気導入口と前記空気供給口の間を空気流によって揺動する球体とを備え、前記空気供給口に対する前記球体の接近位置がストッパーによって規定され、かつ、前記球体の直径が前記空気導入口の円形の内側開口部の直径よりも大きく設定されていることを特徴とする給気口装置に存する。
【0007】
【発明の実施の形態】
本発明に係る給気口装置の実施形態を図面に基づいて説明する。図1は、本発明に係る給気口装置の構造例を中心線に沿って破断して示す縦断面図である。図2は、図1の給気口装置の構成部材を示す側面から視た展開図である。図3は、本発明に係る給気口装置の他の構造例を中心線に沿って破断して示す縦断面図である。
【0008】
本発明の給気口装置は、図1に示す様に、屋外(9A)の空気を室内(9B)へ自然給気するためのいわゆる第三種換気システムに好適な装置であり、屋外(9A)と室内(9B)とを仕切る仕切壁(8)に取り付けられる。本発明の給気口装置は、主に、仕切壁(8)の貫通孔に挿入される筒状の通気流路本体(1)と、屋外(9A)側に向けられる通気流路本体(1)の端部に設けられた空気導入口(2)と、室内(9B)側に向けられる通気流路本体(1)の端部に設けられた空気供給口(3)と、通気流路本体(1)の内部に吊下部材(41)によって吊持され且つ空気導入口(2)と空気供給口(3)の間を空気流によって揺動する球体(4)とから構成される。なお、図面上、仕切壁(8)は、外壁材、断熱材、通気層、内装材などを省略して示されている。
【0009】
通気流路本体(1)は、図1及び図2に示す様に、例えば短軸円筒状に形成され、その屋外(9A)側の端部には、上記の仕切壁(8)の貫通孔に挿入する場合に壁面を利用して固定するためのフランジ(11)が張出されている。また、図1に示す様に、通気流路本体(1)の内面には、発泡樹脂、グラスウール等の多孔質材料から成るシート状の吸音材(12)が貼設される。通気流路本体(1)の内面に吸音材(12)を貼設することにより、通気流路本体(1)自体の断熱性を高め得ると共に、屋外からの騒音を低減することが出来る。通気流路本体(1)の内部空間は、上記の吸音材(12)を含めて球体(4)を収容し得る十分な大きさとされる。例えば、通気流路本体(1)の内径は75〜125mm程度である。
【0010】
空気導入口(2)は、図1に示す様に、室内(9B)側に向かうに従い漸次縮径された短軸のホーン状(中心線に沿った外形断面が短軸の略円錘台状になされた環状体)に形成され、その外周部に設けられたフランジ部を利用して通気流路本体(1)の端部へ取り付けられる。上記の様に、空気導入口(2)をホーン状に形成することにより、屋外(9A)と室内(9B)との差圧が微少な場合でも導入する空気の流速を増幅することが出来、より敏感に球体(4)を作動させることが出来る。また、図1及び図2に示す様に、空気導入口(2)の開口の屋外(9A)側には、昆虫や鳥の進入を防止するため、略半球状に成形された網(21)が付設される。
【0011】
室内(9B)側の通気流路本体(1)の端部に設けられる空気供給口(3)は、空気導入口(2)と同様に、室内(9B)側に向かうに従い漸次縮径された短軸のホーン状(中心線に沿った外形断面が短軸の略円錘台状になされた環状体)に形成され、かつ、室内(9B)側の端部には、吹き出し口としての短軸円筒状の筒部(31)が設けられる。上記の様に、空気導入口(2)と共に空気供給口(3)をホーン状に形成することにより、通気流路本体(1)の内部における空気の流れを層流に近づけることが出来、屋外(9A)と室内(9B)との差圧が微少な場合でもより敏感に且つ円滑に球体(4)を作動させることが出来る。
【0012】
また、屋外(9A)から取り入れる空気中の塵埃を除去するため、室内(9B)側の空気供給口(3)の端部、具体的には上記の筒部(31)の先端部には、メッシュフィルター、不織布フィルター等のフィルター(6)が着脱可能に設けられる。斯かるフィルター(6)は、筒部(31)の内周部に嵌合する直径の円盤状に形成され、後述のグリル(7)を取り外して室内(9B)側から着脱する様になされている。
【0013】
本発明においては、室内(9B)への給気量を一定範囲内に保ち且つ屋外(9A)への逆流を防止するため、通気流路本体(1)の内部に空気流によって揺動する球体(4)が配置される。球体(4)としては、通気流路本体(1)における空気の流れ(屋外(9A)と室内(9B)の圧力差)が僅かであっても確実に作動し得る様に、より軽量のものが使用される。具体的には、球体(4)は、発泡スチロール等の軽量の樹脂材料を球状に成形して構成され、その比重は0.8g/cm以下とされる。また、球体(4)は、空気や軽量のガスを封入した風船体、中空体であってもよい。球体(4)の直径は、通気流路本体(1)の内径が上記の範囲の場合で50〜80mm程度である。
【0014】
球体(4)を吊持する吊下部材(41)としては、球体(4)の動きを規制しないものであれば種々のものを使用できる。例えば、吊下部材(41)は、通気流路本体(1)の内周部に回動自在に取り付けられた針金などの金属細線、通気流路本体(1)の内周部に一端が固定された柔軟な細紐などによって構成される。図1に例示した球体(4)は、発泡スチロール製の球体であり、金属細線によって吊持されている。図3に例示した球体(4)は、同様に発泡スチロール製の球体であり、細紐によって吊持されている。
【0015】
本発明においては、室内(9B)への外気の吹込みを防止すると共に、室内(9B)への給気量を常に一定範囲内に維持するため、空気供給口(3)に対する球体(4)の接近位置がストッパー(5)によって規定される様に構成される。すなわち、球体(4)は、屋外(9A)から室内(9B)へ向けて通気流路本体(1)に空気が流れた場合、ストッパー(5)により、空気供給口(3)を閉塞することなく、空気供給口(3)に所定の隙間を明けた状態で近接する様になされている。
【0016】
ストッパー(5)の構造としては、例えば、図1及び図2に符号(5a)で示す様なストッパーの構造、図3に符号(5b)で示す様なストッパーの構造が挙げられる。図1及び図2に示すストッパー(5a)は、薄板状のリング体(51)の端面に複数の脚(52)を突設して成り、斯かるストッパー(5a)は、空気供給口(3)に設けられた穴(35)を介し、通気流路本体(1)の内部に各脚(52)を突出させ、脚(52)に球体(4)を直接接触させて当該球体の室内(9B)側の移動端を規定するものである。
【0017】
一方、図3に示すストッパー(5b)は、細長の薄板片から成り、斯かるストッパー(5b)は、空気供給口(3)に設けられた穴を介し、通気流路本体(1)の内部に薄板片の先端部を突出させ、当該先端部に球体(4)の吊下部材(細紐)(41)を接触させて球体(4)の室内(9B)側の移動端を規定するものである。上記の何れの形態のストッパー(5)も通気流路本体(1)の内部への突出量(挿入長さ)を調節可能になされており、空気供給口(3)に対する球体(4)の接近位置、すなわち、空気供給口(3)の開口量を調節し得る様になされている。なお、球体(4)の移動端を規定するストッパーは、通気流路本体(1)の内周部に付設されていてもよい。
【0018】
更に、本発明においては、冬季などにおける室内(9B)と屋外(9A)の圧力差による室内空気の屋外(9A)への逆流を防止するため、球体(4)の直径が空気導入口(2)の円形の内側開口部の直径よりも大きく設定されている必要がある。すなわち、ホーン状に形成された空気導入口(2)の内側開口部(通気流路本体(1)の内部に向けられた空気導入口(2)の端部)は球体(4)の直径よりも小径に設定される。上記の構成により、室内(9B)から屋外(9A)へ向けて通気流路本体(1)を空気が逆流した場合、空気導入口(2)の内側開口部に球体(4)が当接するため、空気導入口(2)を閉止することが出来る。
【0019】
また、図1〜図3に示す様に、本発明の給気口装置において、空気供給口(3)の室内(9B)側には、室内(9B)の上方に向けて空気流を偏向するグリル(7)が付設される。すなわち、グリル(7)は、空気供給口(3)から流入する空気の流れを上向に偏向するため、上方に傾斜したルーバー(71)を備えている。そして、グリル(7)は、通気流路本体(1)のフランジ(11)の外周部に嵌合させて取り付ける様になされている。上記の様なグリル(7)を付設することにより、冬季などは仕切壁(8)の室内(9B)側の壁面に沿った冷気の流下がなく、壁面における結露を防止できる。
【0020】
本発明の給気口装置において、上記の各部材は、球体(4)、吊下部材(41)、フィルター(6)等を除き、通常、樹脂材料、金属材料またはこれらの組み合わせによって作製される。そして、樹脂材料で作製する場合、通気流路本体(1)と空気供給口(3)とは一体に成形することが出来る。
【0021】
上記の様に、本発明の給気口装置においては、空気流によって揺動する球体(4)が通気流路本体(1)の内部に吊持され、そして、空気供給口(3)に対する球体(4)の接近位置がストッパー(5)によって規定される様に構成されているため、屋外(9A)から室内(9B)へ多量の空気が流入した場合、すなわち、屋外(9A)から室内(9B)へ吹込みがあった場合、ストッパー(5)によって制限される位置まで球体(4)が空気供給口(3)側へ移動し、空気供給口(3)の開口面積が減少する。その結果、室内(9B)への給気量が一定範囲内に維持される。
【0022】
他方、本発明の給気口装置においては、球体(4)の直径が空気導入口(2)の円形の内側開口部の直径よりも大きく設定されているため、暖房などによって室内(9B)の圧力が外気圧よりも高くなり、室内(9B)から屋外(9A)へ空気が逆流した場合、球体(4)が空気導入口(2)側へ移動して空気導入口(2)を閉止する。その結果、室内(9B)の空気の屋外(9A)への流出が防止される。
【0023】
すなわち、本発明の給気口装置によれば、夏季などは必要以上に多量の外気が室内(9B)へ流れ込むことがないため、冷房効果を損なうことがなく、また、冬季などは室内(9B)の暖かな空気が屋外(9A)へ流出することがなく、しかも、強風などによる外気の吹込みを防止できるため、暖房効果を損うことがない。換言すれば、室内(9B)に対して常に一定範囲内の流量で外気を給気でき、かつ、室内(9B)の空気の屋外(9A)への逆流を防止できるため、室内(9B)の空調効果を維持でき且つ熱損失を一層低減することが出来る。
【0024】
【実施例】
実施例:
図3に示す構造の給気口装置を作製した。通気流路本体(1)の内径(吸音材(12)を含まない内径)を94mm、通気流路本体(1)の長さを102mmに設計した。空気導入口(2)の内側開口径は54mm、空気供給口(3)の室内(9B)側の開口径は54mmであった。球体(4)は、直径が60mm、比重が0.02g/cmの発泡スチロール製のものを使用し、吊下部材(41)としての細紐により通気流路本体(1)の略中央に吊下げた。
【0025】
次に、0.125mの直方体の2個の箱(A)及び(B)を側壁同士繋ぎ合わせることにより、これらの箱の内部をそれぞれ屋外(9A)と室内(9B)に見立て、2つの箱(A),(B)の仕切となる側壁に貫通孔を設けて当該貫通孔に上記の給気口装置を設置した。給気口装置は、箱(A)側に空気導入口(2)が開口し、箱(B)側に空気供給口(3)が開口する状態に配置した。そして、一方の箱(A)には穴を設けて箱内部を大気に開放し、他方の箱(B)には風量調節可能なブロワーを連結して箱内部を減圧する様にした。更に、減圧する他方の箱(B)の内部には気圧測定用のデジタルマノメータを設置し、他方の箱(B)とブロワーを連結するダクトには風速測定用の熱線式風速センサーを設置した。
【0026】
続いて、ブロワーを作動させて箱(B)の内部を減圧することにより、箱(A)と箱(B)に気圧差を設け、気圧差(差圧)によって給気口装置を流れる空気量について測定した。測定においては、ブロワーの風量調節(吸引力の調節)により変化する箱(B)の内部の気圧をデジタルマノメータによって測定し、箱(A)と箱(B)の気圧差を求めると共に、箱(B)の内部の気圧変化に応じたダクト中の風量変化を熱線式風速センサーによって測定し、ダクト中の実際の風量を求めた。また、上記の測定は、球体(4)が空気供給口(3)に接近した場合の空気供給口(3)の開口面積をストッパー(5)の調節により3通りに設定し、各設定ごとに気圧差を変動させて行った(実施例1〜3)。
【0027】
上記の様に、箱(A)よりも箱(B)の気圧が低いと言う上記の状況は、夏季などに室内(9B)を冷房し、室内(9B)の気圧が屋外(9A)の気圧よりも低下した場合、または、屋外(9A)から室内(9B)に吹込みがあった場合に相当する。実験の結果は図4のグラフに示す通りである。図4のグラフは、箱(A)と箱(B)における気圧差(縦軸)と、ダクト中の実際の風量(横軸)との関係を示すグラフであり、斯かるグラフの縦軸と横軸の各プラス側に実線で示す様に、ブロワーの吸引力を増加させて箱(A)と箱(B)の差圧を高めた場合、気圧差が大きくなるに従い風量は漸次上昇するが、ある一定の風量以上には至らなかった。得られた最大風量は、ストッパー(5)の調節による空気供給口(3)の開口面積の設定の相違により、凡そ16m/hr、22m/hr、26m/hrであった。上記の結果から、本発明の給気口装置は、屋外(9A)と室内(9B)との気圧差が変動しても、一定範囲内に給気量を制御し得ることが確認された。
【0028】
次に、箱(A)と箱(B)の環境を逆転させ、箱(B)には穴を設けて箱内部を大気に開放し、箱(A)には上記のブロワーを連結して箱内部を減圧する様にした。そして、減圧する箱(A)の内部にはデジタルマノメータを設置し、箱(A)とブロワーを連結するダクトには熱線式風速センサーを設置した。
【0029】
続いて、ブロワーを作動させて箱(A)の内部を減圧することにより、箱(B)と箱(A)に気圧差を設け、気圧差によって給気口装置を流れる空気量について測定した。測定においては、上記と同様に、ブロワーの風量調節(吸引力の調節)により箱(A)の内部の気圧を変化させ、デジタルマノメータを使用して箱(B)と箱(A)の気圧差を求めると共に、ダクト中の風量変化を熱線式風速センサーによって測定し、ダクト中の実際の風量を求めた。
【0030】
上記の様に、箱(B)よりも箱(A)の気圧が低いと言う上記の状況は、冬季などに室内(9B)を暖房し、室内(9B)の気圧が屋外(9A)の気圧よりも高くなった場合に相当する。図4のグラフにおいて、気圧差(縦軸)の負の値は箱(B)よりも箱(A)の気圧が低いことを示し、風量(横軸)の負の値は箱(B)を吸引ていることを示しており、実験の結果、グラフの縦軸と横軸の各マイナス側に実線で示す様に、ブロワーの吸引力を増加させて箱(B)と箱(A)の気圧差を高めても、僅かな風量(5m/hr程度)の空気流は見られたが、気圧差の増加による風量の増加は見られなかった。すなわち、上記の結果から、本発明の給気口装置は、室内(9B)から屋外(9A)への空気の逆流を防止できることが確認された。
【0031】
比較例:
通気流路本体(1)内部の球体(4)及びストッパー(5)が設けられていない点を除き、図3に示すのと同様の給気口装置を作製し、上記の実験と同様に、箱(A),(B)の仕切となる側壁の貫通孔に設置した。そして、上記の実験と同様に、箱(B)の内部を減圧することにより、箱(A)と箱(B)に気圧差を設け、気圧差との実際の風量との関係を求めた。また、上記の実験と同様に、箱(A)の内部を減圧することにより、箱(B)と箱(A)の気圧差と、実際の風量との関係を求めた。その結果、図4のグラフに破線で示す様に、箱(A),(B)の気圧差に応じた風量の変化が見られた。すなわち、比較例の給気口装置においては、屋外(9A)と室内(9B)との気圧差に従って給気量が変動し、また、室内(9B)から屋外(9A)への多量の空気の逆流を生じることが確認された。
【0032】
【発明の効果】
以上説明した様に、本発明の給気口装置によれば、通気流路本体の内部に吊持された球体が空気の流入量に応じて空気供給口の開口面積を増減させ、また、逆流した場合には空気導入口を閉止するため、室内に対して常に一定範囲内の流量で外気を給気でき、かつ、室内の空気の屋外への逆流を防止でき、その結果、室内の空調効果を維持でき且つ熱損失を一層低減することが出来る。
【図面の簡単な説明】
【図1】本発明に係る給気口装置の構造例を中心線に沿って破断して示す縦断面図
【図2】図1の給気口装置の構成部材を示す側面から視た展開図
【図3】本発明に係る給気口装置の他の構造例を中心線に沿って破断して示す縦断面図
【図4】実施例および比較例における気圧差と実際の風量との関係を示すグラフ
【符号の説明】
1 :通気流路本体
11:フランジ
12:吸音材
2 :空気導入口
21:網
3 :空気供給口
31:筒部
4 :球体
41:吊下部材
5 :ストッパー
6 :フィルター
7 :グリル
71:ルーバー
8 :仕切壁
9A:屋外
9B:室内
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an air supply device, and more particularly, to an air supply device for naturally supplying outdoor air to a room.
[0002]
[Prior art]
The third type ventilation in a building is a type of ventilation that forcibly discharges indoor air to the outside and naturally supplies outdoor air to the room. In a building that performs type 3 ventilation, for example, a common exhaust device that draws in air from the room and discharges it to the outside through a ventilation duct that extends to each room is installed in the ceiling, etc. An air supply device (air supply grill) that introduces outdoor air is attached to a partition wall with the outside (Emoto Kogyo Co., Ltd., “General Catalog of Housing Equipment and Materials”, Revised edition of 2.12.1, 16-17) Page).
[0003]
[Problems to be solved by the invention]
By the way, the conventional air supply device is a mere opening device provided with a rain cover or a louver for changing the wind direction, and thus has a problem that the indoor air conditioning effect is impaired and a large heat loss occurs. For example, in summer, when the indoor air is exhausted by the exhaust device and the indoor air pressure is lower than the outside air pressure due to the indoor air cooling, an unnecessarily large amount of external air flows through the air supply device to impair the cooling effect. There is. On the other hand, in winter, etc., although the indoor air is exhausted by the exhaust device, the indoor pressure is actually higher than the outside air pressure due to the heating. May flow directly to In addition, in the winter season, the blowing of outside air not only provokes a sense of cool wind, but also in particular, the blowing of a large amount of outside air due to strong winds significantly impairs the indoor heating effect, and also causes dew condensation on the indoor side wall In some cases.
[0004]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an air supply device for naturally supplying outdoor air to a room, and to prevent outside air from being blown into the room. It is an object of the present invention to provide an air supply port device that can always maintain the amount of air supplied to a room within a certain range, and can effectively prevent backflow of room air to the outside due to a pressure difference between the room and the outside in winter or the like.
[0005]
[Means for Solving the Problems]
According to the present invention, a small pressure difference between the outside and the room, that is, a sphere that swings due to a small air flow is disposed inside the ventilation flow passage main body of the air supply device, and a large amount of air moves from the outside to the room. For (inflow), the amount of air supplied to the room is maintained within a certain range by reducing the opening area of the air supply port on the indoor side by moving the sphere by the air flow, and from indoor to outdoor. With respect to the backflow of the air, the outdoor air inlet is closed by closing the outdoor air inlet by the movement of the sphere by the airflow, thereby preventing the backflow of the indoor air to the outside.
[0006]
That is, the gist of the present invention is an air supply port device attached to a partition wall between an outdoor and an indoor in order to naturally supply outdoor air to a room, and has a cylindrical shape inserted into a through hole of the partition wall. Ventilation channel body, an air inlet provided at an end of the ventilation channel main body facing the outdoor side, an air supply port provided at an end of the ventilation channel main body facing the indoor side, A sphere suspended by a suspension member inside the ventilation flow passage main body and swinging between the air introduction port and the air supply port by an air flow, and an approach position of the sphere to the air supply port is provided. The air supply port device is characterized by being defined by a stopper, wherein the diameter of the sphere is set to be larger than the diameter of the circular inner opening of the air inlet.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of an air supply port device according to the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view showing a structural example of an air supply port device according to the present invention by cutting along a center line. FIG. 2 is a development view viewed from a side showing components of the air supply port device of FIG. FIG. 3 is a vertical cross-sectional view showing another example of the structure of the air supply port device according to the present invention along a center line.
[0008]
As shown in FIG. 1, the air supply port device of the present invention is a device suitable for a so-called third type ventilation system for naturally supplying outdoor (9A) air to a room (9B). ) And the room (9B) are attached to a partition wall (8). The air supply port device according to the present invention mainly includes a tubular ventilation flow path main body (1) inserted into a through hole of a partition wall (8), and a ventilation flow path main body (1) directed to the outdoor (9A) side. ), An air supply port (3) provided at an end of the ventilation flow path main body (1) directed toward the room (9B), and a ventilation flow path main body. It comprises a sphere (4) suspended inside a (1) by a hanging member (41) and swinging between an air inlet (2) and an air supply port (3) by an air flow. Note that, in the drawings, the partition wall (8) does not show an outer wall material, a heat insulating material, a ventilation layer, an interior material, and the like.
[0009]
As shown in FIGS. 1 and 2, the ventilation flow path main body (1) is formed, for example, in a short-axis cylindrical shape, and has a through hole formed in the partition wall (8) at an end on the outdoor side (9 A) side. A flange (11) for fixing by using a wall surface when inserting into the space is protruded. As shown in FIG. 1, a sheet-shaped sound absorbing material (12) made of a porous material such as a foamed resin or glass wool is attached to the inner surface of the ventilation flow path main body (1). By affixing the sound absorbing material (12) to the inner surface of the ventilation flow path main body (1), the heat insulation of the ventilation flow path main body (1) itself can be improved, and noise from outside can be reduced. The internal space of the ventilation flow path main body (1) is made large enough to accommodate the sphere (4) including the sound absorbing material (12). For example, the inside diameter of the ventilation flow path main body (1) is about 75 to 125 mm.
[0010]
As shown in FIG. 1, the air inlet (2) has a short-axis horn shape whose diameter is gradually reduced toward the room (9B) side (an outer cross-section along the center line is substantially a truncated cone with a short axis). And a flange is provided on the outer periphery thereof, and is attached to the end of the ventilation flow passage main body (1). As described above, by forming the air inlet (2) in a horn shape, the flow velocity of the air to be introduced can be amplified even when the differential pressure between the outdoor (9A) and the indoor (9B) is small. The sphere (4) can be operated more sensitively. As shown in FIGS. 1 and 2, a net (21) formed in a substantially hemispherical shape is provided on the outdoor (9A) side of the opening of the air inlet (2) in order to prevent insects and birds from entering. Is attached.
[0011]
The air supply port (3) provided at the end of the ventilation flow path main body (1) on the indoor (9B) side is gradually reduced in diameter toward the indoor (9B) side, like the air introduction port (2). A short-axis horn (an annular body whose outer cross section along the center line is formed in a substantially frustoconical shape with a short axis) is formed at the end on the indoor (9B) side as a short-side outlet. An axial cylindrical tubular part (31) is provided. As described above, by forming the air supply port (3) together with the air introduction port (2) in a horn shape, the flow of air inside the ventilation flow path main body (1) can be made closer to laminar flow, and The sphere (4) can be operated more sensitively and smoothly even when the pressure difference between the room (9A) and the room (9B) is very small.
[0012]
Further, in order to remove dust in the air taken in from the outside (9A), the end of the air supply port (3) on the indoor (9B) side, specifically, the tip of the above-mentioned tubular portion (31), A filter (6) such as a mesh filter or a nonwoven fabric filter is detachably provided. Such a filter (6) is formed in a disk shape having a diameter that fits into the inner peripheral portion of the cylindrical portion (31), and is detachable from the indoor (9B) side by removing a grill (7) described later. I have.
[0013]
In the present invention, in order to keep the amount of air supplied to the room (9B) within a certain range and to prevent backflow to the outside (9A), a sphere oscillating by air flow inside the ventilation flow path main body (1). (4) is arranged. The sphere (4) is of a lighter weight so that it can operate reliably even if the air flow (pressure difference between the outdoor (9A) and the indoor (9B)) in the ventilation flow path main body (1) is slight. Is used. Specifically, the sphere (4) is formed by molding a lightweight resin material such as styrene foam into a sphere, and has a specific gravity of 0.8 g / cm 3 or less. Further, the sphere (4) may be a balloon body or a hollow body in which air or lightweight gas is filled. The diameter of the sphere (4) is about 50 to 80 mm when the inner diameter of the ventilation flow path main body (1) is in the above range.
[0014]
As the suspension member (41) for suspending the sphere (4), various members can be used as long as they do not restrict the movement of the sphere (4). For example, the suspension member (41) has one end fixed to a thin metal wire such as a wire rotatably attached to the inner peripheral portion of the ventilation flow passage main body (1), and one end to the inner peripheral portion of the ventilation flow passage main body (1). It is composed of a flexible thin string and the like. The sphere (4) illustrated in FIG. 1 is a sphere made of styrene foam, and is suspended by a thin metal wire. The sphere (4) illustrated in FIG. 3 is also a sphere made of styrene foam, and is suspended by a thin string.
[0015]
In the present invention, the sphere (4) to the air supply port (3) is used to prevent the outside air from being blown into the room (9B) and to always maintain the amount of air supplied to the room (9B) within a certain range. Is configured such that the approaching position is defined by the stopper (5). That is, the sphere (4) closes the air supply port (3) by the stopper (5) when air flows from the outdoor (9A) to the indoor (9B) into the ventilation flow path main body (1). Instead, it is arranged to approach the air supply port (3) with a predetermined gap.
[0016]
Examples of the structure of the stopper (5) include a stopper structure as shown by reference numeral (5a) in FIGS. 1 and 2 and a stopper structure as shown by reference numeral (5b) in FIG. The stopper (5a) shown in FIGS. 1 and 2 is formed by projecting a plurality of legs (52) from the end surface of a thin ring-shaped body (51), and the stopper (5a) is provided with an air supply port (3). ), Each leg (52) is protruded into the ventilation flow path main body (1) through a hole (35) provided therein, and the sphere (4) is brought into direct contact with the leg (52) so that the room ( 9B) defines the moving end.
[0017]
On the other hand, the stopper (5b) shown in FIG. 3 is formed of an elongated thin plate, and the stopper (5b) is connected to the inside of the ventilation flow passage main body (1) through a hole provided in the air supply port (3). To define the moving end of the spherical body (4) on the indoor (9B) side by contacting the hanging member (thin string) (41) of the spherical body (4) with the distal end of the thin plate piece. It is. The stopper (5) of any of the above-mentioned forms can adjust the amount of protrusion (insertion length) into the inside of the ventilation flow path main body (1), and the approach of the sphere (4) to the air supply port (3). The position, that is, the opening amount of the air supply port (3) can be adjusted. In addition, the stopper which defines the moving end of the sphere (4) may be attached to the inner periphery of the ventilation flow path main body (1).
[0018]
Further, in the present invention, the diameter of the sphere (4) is set to be smaller than that of the air inlet (2) in order to prevent indoor air from flowing back to the outdoor (9A) due to a pressure difference between the indoor (9B) and the outdoor (9A) in winter or the like. ) Must be set larger than the diameter of the circular inner opening. That is, the inner opening of the horn-shaped air inlet (2) (the end of the air inlet (2) directed toward the inside of the ventilation flow path main body (1)) is larger than the diameter of the sphere (4). Is also set to a small diameter. With the above configuration, when air flows backward in the ventilation flow path main body (1) from the room (9B) to the outside (9A), the sphere (4) comes into contact with the inner opening of the air inlet (2). The air inlet (2) can be closed.
[0019]
As shown in FIGS. 1 to 3, in the air supply device of the present invention, the air flow is deflected toward the upper side of the room (9B) on the room (9B) side of the air supply port (3). A grill (7) is provided. That is, the grill (7) is provided with a louver (71) inclined upward to deflect the flow of the air flowing from the air supply port (3) upward. The grill (7) is fitted and attached to the outer peripheral portion of the flange (11) of the ventilation flow path main body (1). By providing the grill (7) as described above, there is no flow of cool air along the wall surface on the indoor (9B) side of the partition wall (8) in winter or the like, so that dew condensation on the wall surface can be prevented.
[0020]
In the air supply port device of the present invention, each of the above members, except for the sphere (4), the suspension member (41), the filter (6), and the like, is usually made of a resin material, a metal material, or a combination thereof. . Then, when made of a resin material, the air flow path main body (1) and the air supply port (3) can be integrally formed.
[0021]
As described above, in the air supply port device of the present invention, the sphere (4) swinging by the air flow is suspended inside the ventilation flow path main body (1), and the sphere to the air supply port (3) is provided. Since the approach position of (4) is defined by the stopper (5), when a large amount of air flows from the outdoor (9A) to the indoor (9B), that is, from the outdoor (9A) to the indoor (9A). 9B), the sphere (4) moves toward the air supply port (3) to the position restricted by the stopper (5), and the opening area of the air supply port (3) decreases. As a result, the amount of air supplied to the room (9B) is maintained within a certain range.
[0022]
On the other hand, in the air supply device of the present invention, since the diameter of the sphere (4) is set to be larger than the diameter of the circular inner opening of the air inlet (2), the room (9B) is heated or the like. When the pressure becomes higher than the outside air pressure and air flows backward from the room (9B) to the outside (9A), the sphere (4) moves toward the air inlet (2) and closes the air inlet (2). . As a result, the outflow of the air in the room (9B) to the outside (9A) is prevented.
[0023]
That is, according to the air supply device of the present invention, an unnecessarily large amount of outside air does not flow into the room (9B) in the summer or the like, so that the cooling effect is not impaired. ) Does not flow out to the outside (9A), and the blowing of outside air due to strong winds or the like can be prevented, so that the heating effect is not impaired. In other words, the outside air can always be supplied to the room (9B) at a flow rate within a certain range, and the backflow of the air in the room (9B) to the outside (9A) can be prevented. The air-conditioning effect can be maintained and the heat loss can be further reduced.
[0024]
【Example】
Example:
An air supply port device having the structure shown in FIG. 3 was manufactured. The inside diameter (the inside diameter not including the sound absorbing material (12)) of the ventilation passage main body (1) was designed to be 94 mm, and the length of the ventilation passage main body (1) was designed to be 102 mm. The inside diameter of the air inlet (2) was 54 mm, and the diameter of the air supply port (3) on the room (9B) side was 54 mm. The sphere (4) is made of polystyrene foam having a diameter of 60 mm and a specific gravity of 0.02 g / cm 3 , and is suspended at a substantially center of the ventilation flow channel main body (1) by a thin string as a suspension member (41). Lowered.
[0025]
Next, two boxes (A) and (B) of a rectangular parallelepiped of 0.125 m 3 are connected to each other by side walls, so that the insides of these boxes are regarded as outdoor (9A) and indoor (9B), respectively. A through hole was provided in a side wall serving as a partition between the boxes (A) and (B), and the above-described air supply device was installed in the through hole. The air supply port device was arranged such that the air inlet (2) opened on the box (A) side and the air supply port (3) opened on the box (B) side. Then, one box (A) was provided with a hole to open the inside of the box to the atmosphere, and the other box (B) was connected to a blower capable of adjusting the air flow to reduce the pressure inside the box. Further, a digital manometer for measuring atmospheric pressure was installed inside the other box (B) for depressurizing, and a hot wire type wind speed sensor for measuring wind speed was installed in a duct connecting the other box (B) and the blower.
[0026]
Subsequently, by operating the blower to reduce the pressure inside the box (B), a pressure difference is provided between the boxes (A) and (B), and the amount of air flowing through the air supply port device is determined by the pressure difference (differential pressure). Was measured. In the measurement, the air pressure inside the box (B), which is changed by adjusting the air volume of the blower (adjusting the suction force), is measured by a digital manometer, and the pressure difference between the boxes (A) and (B) is obtained. The change in air volume in the duct according to the change in air pressure inside B) was measured by a hot wire type wind speed sensor, and the actual air volume in the duct was obtained. In the above measurement, the opening area of the air supply port (3) when the sphere (4) approaches the air supply port (3) is set in three ways by adjusting the stopper (5). The test was performed with the pressure difference varied (Examples 1 to 3).
[0027]
As described above, the above-mentioned situation that the air pressure of the box (B) is lower than that of the box (A) is that the indoor (9B) is cooled in summer or the like, and the air pressure of the indoor (9B) becomes the atmospheric pressure of the outdoor (9A). This corresponds to a case where the air pressure is lower than the above, or a case where air is blown from the outside (9A) to the room (9B). The results of the experiment are as shown in the graph of FIG. The graph of FIG. 4 is a graph showing the relationship between the pressure difference (vertical axis) between the boxes (A) and (B) and the actual air volume in the duct (horizontal axis). As shown by the solid line on each positive side of the horizontal axis, when the suction pressure of the blower is increased to increase the pressure difference between the boxes (A) and (B), the air volume gradually increases as the pressure difference increases. However, the airflow did not exceed a certain level. Maximum air amount obtained is due to the difference of the setting of the opening area of the air supply port (3) by adjustment of the stopper (5) was about 16m 3 / hr, 22m 3 / hr, 26m 3 / hr. From the above results, it was confirmed that the air supply port device of the present invention can control the air supply amount within a certain range even if the pressure difference between the outdoor (9A) and the indoor (9B) fluctuates.
[0028]
Next, the environments of the box (A) and the box (B) are reversed, a hole is provided in the box (B) to open the inside of the box to the atmosphere, and the box (A) is connected to the blower described above. The internal pressure was reduced. Then, a digital manometer was installed inside the box (A) for depressurizing, and a hot wire wind speed sensor was installed on a duct connecting the box (A) and the blower.
[0029]
Subsequently, the inside of the box (A) was depressurized by operating the blower to provide a pressure difference between the box (B) and the box (A), and the amount of air flowing through the air supply port device was measured by the pressure difference. In the measurement, the air pressure inside the box (A) is changed by adjusting the air volume of the blower (adjusting the suction force), and the pressure difference between the boxes (B) and (A) is measured using a digital manometer, as described above. And the change in airflow in the duct was measured by a hot-wire type wind speed sensor to obtain the actual airflow in the duct.
[0030]
As described above, the above-mentioned situation in which the pressure of the box (A) is lower than that of the box (B) is that the room (9B) is heated in winter or the like and the pressure of the room (9B) is lower than the pressure of the outdoor (9A). It corresponds to the case where it becomes higher than the above. In the graph of FIG. 4, a negative value of the pressure difference (vertical axis) indicates that the pressure of the box (A) is lower than that of the box (B), and a negative value of the air volume (horizontal axis) indicates the value of the box (B). As a result of the experiment, the suction power of the blower was increased to increase the air pressure in the boxes (B) and (A) as indicated by the solid lines on the minus side of the vertical and horizontal axes of the graph. Even if the difference was increased, an airflow with a slight airflow (about 5 m 3 / hr) was observed, but no increase in the airflow due to an increase in the pressure difference was observed. That is, from the above results, it was confirmed that the air supply port device of the present invention can prevent the backflow of air from the room (9B) to the outdoor (9A).
[0031]
Comparative example:
An air supply device similar to that shown in FIG. 3 was prepared except that the sphere (4) and the stopper (5) inside the ventilation flow passage main body (1) were not provided. It was installed in a through hole in a side wall serving as a partition between the boxes (A) and (B). Then, similarly to the above experiment, the inside of the box (B) was decompressed to provide a pressure difference between the boxes (A) and (B), and the relationship between the pressure difference and the actual air volume was obtained. Further, similarly to the above experiment, by reducing the pressure inside the box (A), the relationship between the pressure difference between the box (B) and the box (A) and the actual air volume was obtained. As a result, as shown by the broken line in the graph of FIG. 4, a change in the air flow according to the pressure difference between the boxes (A) and (B) was observed. That is, in the air supply port device of the comparative example, the air supply amount fluctuates according to the pressure difference between the outdoor (9A) and the indoor (9B), and a large amount of air from the indoor (9B) to the outdoor (9A). It was confirmed that reflux occurred.
[0032]
【The invention's effect】
As described above, according to the air supply port device of the present invention, the sphere suspended inside the ventilation flow passage main body increases or decreases the opening area of the air supply port in accordance with the amount of inflow of air. In this case, since the air inlet is closed, outside air can always be supplied to the room at a constant flow rate and the backflow of room air to the outside can be prevented. Can be maintained, and the heat loss can be further reduced.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a structural example of an air supply port device according to the present invention along a center line, which is cut along a center line. FIG. FIG. 3 is a vertical sectional view showing another example of the structure of the air supply port device according to the present invention, which is cut along a center line. FIG. 4 shows the relationship between the air pressure difference and the actual air volume in Examples and Comparative Examples. Graph to be shown [Explanation of symbols]
1: Ventilation channel body 11: Flange 12: Sound absorbing material 2: Air inlet 21: Net 3: Air supply port 31: Cylindrical part 4: Sphere 41: Hanging member 5: Stopper 6: Filter 7: Grill 71: Louver 8: Partition wall 9A: Outdoor 9B: Indoor

Claims (6)

屋外(9A)の空気を室内(9B)へ自然給気するために屋外(9A)と室内(9B)との仕切壁(8)に取り付けられる給気口装置であって、仕切壁(8)の貫通孔に挿入される筒状の通気流路本体(1)と、屋外(9A)側に向けられる通気流路本体(1)の端部に設けられた空気導入口(2)と、室内(9B)側に向けられる通気流路本体(1)の端部に設けられた空気供給口(3)と、通気流路本体(1)の内部に吊下部材(41)によって吊持され且つ空気導入口(2)と空気供給口(3)の間を空気流によって揺動する球体(4)とを備え、空気供給口(3)に対する球体(4)の接近位置がストッパー(5)によって規定され、かつ、球体(4)の直径が空気導入口(2)の円形の内側開口部の直径よりも大きく設定されていることを特徴とする給気口装置。An air supply port device attached to a partition (8) between the outdoor (9A) and the room (9B) for naturally supplying outdoor (9A) air to the room (9B), wherein the partition (8) A cylindrical ventilation flow path main body (1) inserted into the through hole, an air introduction port (2) provided at an end of the ventilation flow path main body (1) directed to the outdoor (9A) side, and an indoor air flow opening (2). An air supply port (3) provided at an end of the ventilation flow path main body (1) directed to the (9B) side, and a suspension member (41) suspended inside the ventilation flow path main body (1); A sphere (4) swinging between the air inlet (2) and the air supply port (3) by an air flow is provided, and an approach position of the sphere (4) to the air supply port (3) is determined by a stopper (5). The diameter of the sphere (4) is set larger than the diameter of the circular inner opening of the air inlet (2). Air supply port and wherein the. 球体(4)の比重が0.8g/cm以下である請求項1に記載の給気口装置。Air inlet device according to claim 1 specific gravity of 0.8 g / cm 3 or less spherical (4). 空気導入口(2)及び空気供給口(3)は、各々、室内(9B)側に向かうに従い漸次縮径された短軸のホーン状に形成されている請求項1又は2に記載の給気口装置。The air supply according to claim 1 or 2, wherein the air inlet (2) and the air supply port (3) are each formed in a short-axis horn shape whose diameter is gradually reduced toward the room (9B). Mouth device. 室内(9B)側の空気供給口(3)の端部にはフィルター(6)が着脱可能に設けられている請求項1〜3の何れかに記載の給気口装置。The air supply port device according to any one of claims 1 to 3, wherein a filter (6) is detachably provided at an end of the air supply port (3) on the indoor (9B) side. 空気供給口の室内(9B)側には室内(9B)の上方に向けて空気流を偏向するグリル(7)が付設されている請求項1〜4の何れかに記載の給気口装置。The air supply device according to any one of claims 1 to 4, wherein a grill (7) for deflecting the air flow upward in the room (9B) is provided on the room (9B) side of the air supply port. 通気流路本体(1)の内面には吸音材(12)が貼設されている請求項1〜5の何れかに記載の給気口装置。The air supply opening device according to any one of claims 1 to 5, wherein a sound absorbing material (12) is attached to an inner surface of the ventilation flow passage main body (1).
JP2002222853A 2002-07-31 2002-07-31 Air supply device Expired - Fee Related JP3899299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002222853A JP3899299B2 (en) 2002-07-31 2002-07-31 Air supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002222853A JP3899299B2 (en) 2002-07-31 2002-07-31 Air supply device

Publications (2)

Publication Number Publication Date
JP2004061049A true JP2004061049A (en) 2004-02-26
JP3899299B2 JP3899299B2 (en) 2007-03-28

Family

ID=31942773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002222853A Expired - Fee Related JP3899299B2 (en) 2002-07-31 2002-07-31 Air supply device

Country Status (1)

Country Link
JP (1) JP3899299B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102322670A (en) * 2011-09-20 2012-01-18 张本飞 Air-intaker
KR101194721B1 (en) 2012-04-12 2012-10-25 주식회사 그렉스전자 Back flow prevention device of air supply diffuser
CN114777196A (en) * 2022-03-10 2022-07-22 中国建筑标准设计研究院有限公司 Rain-proof air inlet tripe for ventilation air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102322670A (en) * 2011-09-20 2012-01-18 张本飞 Air-intaker
KR101194721B1 (en) 2012-04-12 2012-10-25 주식회사 그렉스전자 Back flow prevention device of air supply diffuser
CN114777196A (en) * 2022-03-10 2022-07-22 中国建筑标准设计研究院有限公司 Rain-proof air inlet tripe for ventilation air conditioner

Also Published As

Publication number Publication date
JP3899299B2 (en) 2007-03-28

Similar Documents

Publication Publication Date Title
US7497774B2 (en) Whole house fan system and methods of installation
KR100270787B1 (en) Ventilation fan device and ventilation fan system
US10753627B1 (en) Air cooling system for a building structure
JP2012145308A (en) Blowoff device for air-conditioning/ventilation
WO2017166935A1 (en) Indoor air conditioning unit
JP2008275192A (en) Ventilation device
JP3899299B2 (en) Air supply device
JP7228469B2 (en) Wind direction adjustment device for air conditioning outlet
JP2007225149A (en) Air supply opening capable of adjusting inflow, and adjusting method of inflow from air supply opening
JPH05264081A (en) Exhaust air hood
JP3775980B2 (en) Ventilation equipment
JP3141914U (en) Air curtain device
JP2520132B2 (en) Indoor ventilation
KR101662288B1 (en) Air conditioning and ventilating device
JPH03175223A (en) Automatic adjusting sound insulator and ventlator
JP2008190781A (en) Ventilating device
JPH0618084A (en) Air supplying and/or discharging grille for air conditioning
JP6421324B2 (en) Air purifier
JP2006145117A (en) Blowout opening for air conditioning
JP4497398B2 (en) Air conditioner plug fan room
JP3557328B2 (en) Conical chamber
JP2005134026A (en) Air conditioner with ventilator
JP3547642B2 (en) Self-powered differential pressure holding damper
JP4118643B2 (en) Ventilation structure
JP2002372294A (en) Air outlet port for air-conditioning

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees