JP2004060935A - Heat exchanger for high temperature - Google Patents

Heat exchanger for high temperature Download PDF

Info

Publication number
JP2004060935A
JP2004060935A JP2002217205A JP2002217205A JP2004060935A JP 2004060935 A JP2004060935 A JP 2004060935A JP 2002217205 A JP2002217205 A JP 2002217205A JP 2002217205 A JP2002217205 A JP 2002217205A JP 2004060935 A JP2004060935 A JP 2004060935A
Authority
JP
Japan
Prior art keywords
core
heat exchanger
tube
large number
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002217205A
Other languages
Japanese (ja)
Inventor
Tadamichi Aoyama
青山 忠道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Radiator Co Ltd
Original Assignee
Toyo Radiator Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Radiator Co Ltd filed Critical Toyo Radiator Co Ltd
Priority to JP2002217205A priority Critical patent/JP2004060935A/en
Publication of JP2004060935A publication Critical patent/JP2004060935A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1615Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits being inside a casing and extending at an angle to the longitudinal axis of the casing; the conduits crossing the conduit for the other heat exchange medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/082Heat exchange elements made from metals or metal alloys from steel or ferrous alloys
    • F28F21/083Heat exchange elements made from metals or metal alloys from steel or ferrous alloys from stainless steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0043Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To fully exchange heat even in the quality of a material where an element has a relatively low heat resistance against a high-temperature gas in a heat exchanger made of a laminate in the drawn cup type element having a pair of saucer-shaped plates 7a. <P>SOLUTION: A first core 3 having a number of tubes 6 with circular sections is provided at an upstream side. A second core 4 made of the laminate in a drawn cup type element 7 is arranged at a downstream side. The high-temperature gas 1 is passed through the first core 3, and then is passed through the second core 4. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池用改質器等の如く高温のガスで被加熱流体を加熱する熱交換器に係り、コアの少なくとも一部に多数の皿状プレートを重ね合わせたプレート型熱交換器(ドローンカップ型ともいう)を有するものに関する。
【0002】
【従来の技術】
両端部に一対の連通孔を有し夫々皿状に形成された一対のプレートの周縁を互いに接合し、内部に偏平な流路が形成されるエレメントを設け、そのエレメントを連通孔において多数連結したドロンカップ型の熱交換器が知られている。このドロンカップ型の熱交換器は、各エレメントの連通孔の孔縁部が互いにろう付け固定されると共に、エレメント内部及びエレメント外面側に夫々フィンが配置される。このようなドロンカップ型の熱交換器を温度650℃以上900℃程度の高温ガスに耐え得るようにするには、プレートの材料をハイニッケルステンレス鋼材やニッケル合金等を用いる必要があった。
【0003】
【発明が解決しようとする課題】
ドロンカップ型熱交換器を高温ガスに耐え得る耐熱性材料を使用する場合、熱交換器全体の材料コストが上昇する欠点があったた。
そこで本発明は、このようなドロンカップ型のエレメントを多数用いる熱交換器において、構造的に耐熱性の比較的高い熱交換器と組み合わせることにより、ドロンカップ型の熱交換器を保護し全体として熱効率の良いものを提供することを提案する。
【0004】
【課題を解決するための手段】
請求項1に記載の本発明は、高温ガス(1) が導かれるケーシング(2) 内の上流側に第1コア(3) が配置されると共に、下流側に第2コア(4) が配置され、
第1コア(3) は、横断面円形の多数のチューブ(6) が互いに離間して並列され、
第2コア(4) は、エレメントの集合体よりなり、そのエレメント(7) は互いに離間して一対の連通孔(8) が設けられ、少なくとも一方が皿状に形成された一対のプレート(7a)により構成され、多数のそのエレメント(7) がその厚み方向に重ね合わされると共に、夫々の前記連通孔(8) により隣接するエレメント(7) どうしが互いに気密に接続されてなり、
低温流体(5) が第1コア(3) の各チューブ(6) を流通した後に、夫々のエレメント(7) 内を流通し、高温ガス(1) が各チューブ(6) およびエレメント(7) の外面側を流通するように構成された高温用熱交換器である。
【0005】
請求項2に記載の本発明は、請求項1において、
第1コア(3) の前記チューブ(6) の金属材料は、第2コア(4) のそれより耐熱性の高い材料からなり、
前記エレメント(7) の内面側にインナーフィン(9) が設けられ、外面側にアウターフィン(10)が設けられた高温用熱交換器である。
【0006】
請求項3に記載の本発明は、請求項1または請求項2において、
前記第1コア(3) は、一対の第一ヘッダ(11)に多数の前記チューブ(6) の両端が連し、そのチューブ(6) の外面側に多数のプレートフィン(12)が配置された高温用熱交換器である。
【0007】
請求項4に記載の本発明は、請求項1〜請求項3のいずれかにおいて、
第1コア(3) の各チューブ(6) は耐熱性のハイニッケルステンレス鋼またはニッケル合金が用いられ、エレメント(7) の各プレート(7a)はオーステナイト系ステンレス鋼またはフェライト系ステンレス鋼が用いられた高温用熱交換器である。
【0008】
【発明の実施の形態】
次に、図面に基づいて本発明の高温用熱交換器の実施の形態につき説明する。図1は本発明の高温用熱交換器を示す全体的斜視略図であり、図2はその第1コア3の一部分解斜視図であり、図3はその第2コア4の要部縦断面図であって図4の III− III線上で切断したものである。また図4は第2コア4の側面図を示し、図5は図4のV−V矢視断面略図である。
この熱交換器は図1に示す如く、下側に位置する第1ケーシング2aとその上端に接続された第2ケーシング2bとによりケーシング2を形成し、第1ケーシング2aに図2に示す第1コア3が配置され、第2ケーシング2bに複数の第2コア4が配置されている。そして第1コア3は多数のチューブ6が互いに離間して定間隔に配置され、その両端が第1ケーシング2aを貫通し一対の第1ヘッダ11に連通する。
【0009】
次に、第2コア4は図3〜図5の如く形成され、いわゆるドロンカップ型のエレメント7の積層体からなる。即ち、エレメント7は一対の皿状のプレート7aを逆向きに重ね合わせ、その全周縁を気密にろう付け固定したものである。夫々のプレート7aは、その長手方向両端部に膨出部が形成さ、その膨出部に夫々連通孔8が設けられている。そしてエレメント7内にはインナーフィン9が内装され、エレメント7どうしの外面にはアウターフィン10が配置されている。
厚み方向に積層される多数のエレメント7は、その両端部の膨出部で互いに接触すると共に、夫々の連通孔8が整合され、連通孔8の孔縁部においてエレメントどうしが互いにろう付け固定される。そして、インナーフィン9とエレメント7内及びアウターフィン10とエレメント7の外面との間が一体にろう付け固定される。
【0010】
プレート7aの材質としては、オーステナイト系ステンレス鋼またはフェライト系ステンレス鋼を用いることができる。
なお、第1コア3のチューブ6としては耐熱性のハイニッケルステンレス鋼またはニッケル合金を用いることができる。
そしてこのようにしてなる第2コア4は、図1に示す如く、この例では6つ用いられ、それが3個づつ並列され、積層方向に各第2コア4が連結パイプ16を介して、その上下の連通孔8で接続されている。そして図において、右側の3つの第2コア4の連通孔8と上下一対の第2ヘッダ15とが夫々接続する。
【0011】
そしてこの例では、低温流体5が左側の第1ヘッダ11から図2の如く第1コア3の各チューブ6内を左から右に流通し、右側の第1ヘッダ11より、図1の如くヘッダ連結部17を介し上側の第2ヘッダ15から右側に位置する3つの第2コア4の各エレメント内に流入すると共に、連結パイプ16を介して左側の3つの第2コア4の上部から各エレメント内に流入する。そしてその低温流体5は各第2コア4のエレメント7内を下方に流下し、下側の第2ヘッダ15に流出する。
また、第1ケーシング2a内に高温ガス1が図1において下側から流入し、次いでそれが夫々の第2コア4のエレメント7の外面間を図3の如く上昇して、第2ケーシング2bの開口から外部に導かれる。そしてその高温ガス1と低温流体5との間に熱交換が行われるものである。
【0012】
このとき、高温ガス1は先ず第1コア3のチューブ6内の低温流体5を加熱し、その分だけ低温となって第2コア4の下方から上方に流通する。従って、第2コア4に流入する高温ガス1の温度はある程度低下しているため、第2コア4を構成するエレメント7の耐熱性は第1コア3よりも低くても良い。
一般に第1コア3のチューブ6を継目なしの引抜き管で形成すれば、それ自体構造的にエレメント7よりも耐熱性が高い。このことからチューブ6に引抜き管を用いるとすれば、第2コア4の構成部品と第1コア3の構成部品とを同一材料で用いることも可能である。しかしながら、第1コア3のチューブ6の材料を第2コア4のプレート7aよりも耐熱性の高いものを使用することが好ましい。
【0013】
次に、図6は本発明の高温用熱交換器の第1コア3の他の例を示し、この例が図2のそれと異なる点は、並列された多数のチューブ6が、小隙を有して並列された多数のプレートフィン12の各チューブ挿通孔に貫通し、その貫通部がろう付け固定されていることである。そのろう材としてはニッケルろうを用いることが好ましい。
【0014】
【発明の作用・効果】
本発明の高温用熱交換器は、高温ガス1が最初に流通する第1コア3を断面円形の多数のチューブ6の並列体から構成し、その円形チューブ6内に低温流体5が流通して高温ガス1との間に熱交換が行われる。それにより高温ガス1の温度が低下した後に、次いでその高温ガス1が第2コア4を通過するものである。この第2コア4は、多数のプレート7aのろう付け体からなり、構造的に円形チューブ6より耐熱性が劣る。しかしながら、高温ガス1の温度が低下した後に第2コア4の各エレメントをそれが通過するため、差し支えなく、全体として耐熱性の高い熱交換器を提供できる。
【0015】
また上記構成において、第1コア3のチューブ6の金属材料を第2コア4のそれより耐熱性の高い材料とすることができる。それと共に、エレメント7の内面側にインナーフィン9を設け、外面側にアウターフィン10を設けることができる。このように構成した場合には、さらに耐熱性が高く且つ全体として低コストで効率の良い高温用熱交換器となり得る。
さらに上記いずれかの構成において、第1コア3の一対の第1ヘッダ11に多数のチューブ6の両端を連通し、そのチューブ6の外面側に多数のプレートフィン12を配置することができる。このようにすることにより、第1コア3の熱効率を上げつつ、その分だけ高温ガス1の温度を低下させ第2コア4を保護することができる。
【0016】
上記いずれかの構成において、第1コア3のチューブ6を耐熱性のハイニッケルステンレス鋼またはニッケル合金を用いることができ、エレメント7の各プレート7aはオーステナイト系ステンレス鋼またはフェライト系ステンレス鋼を用いることができる。このようにした場合には、全体として低コストの高温用熱交換器を提供できる。
【図面の簡単な説明】
【図1】本発明の高温用熱交換器の全体を示す斜視図。
【図2】同熱交換器の第1コア3の説明的斜視図。
【図3】同熱交換器に用いられる第2コア4の要部縦断面図であって図4の III− III線上で切断したもの。
【図4】同熱交換器に用いられる第2コア4の側面図。
【図5】図4のV−V矢視断面略図。
【図6】同熱交換器に用いられる第1コア3の他の例を示す斜視略図。
【符号の説明】
1 高温ガス
2 ケーシング
2a 第1ケーシング
2b 第2ケーシング
3 第1コア
4 第2コア
5 低温流体
6 チューブ
7 エレメント
7a プレート
8 連通孔
9 インナーフィン
10 アウターフィン
11  第1ヘッダ
12  プレートフィン
15  第2ヘッダ
16  連結パイプ
17  ヘッダ連結部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat exchanger for heating a fluid to be heated with a high-temperature gas such as a reformer for a fuel cell, and more particularly to a plate-type heat exchanger in which a large number of dish-shaped plates are superposed on at least a part of a core. Drone cup type).
[0002]
[Prior art]
Peripheral edges of a pair of plates each having a pair of communication holes at both ends and formed in a dish shape are joined to each other, and an element in which a flat flow path is formed is provided therein, and a number of the elements are connected in the communication hole. Drone cup type heat exchangers are known. In this Drone cup type heat exchanger, the hole edges of the communication holes of the respective elements are brazed and fixed to each other, and fins are arranged inside the element and on the outer surface of the element. In order for such a drone cup type heat exchanger to be able to withstand a high-temperature gas of a temperature of 650 ° C. or more and about 900 ° C., it is necessary to use a high nickel stainless steel material, a nickel alloy, or the like as a material of the plate.
[0003]
[Problems to be solved by the invention]
When a heat-resistant material that can withstand high-temperature gas is used for the Dron cup heat exchanger, there is a disadvantage that the material cost of the entire heat exchanger increases.
Accordingly, the present invention provides a heat exchanger using a large number of such drone cup-type elements, which is structurally combined with a heat exchanger having a relatively high heat resistance to protect the drone cup-type heat exchanger as a whole. We propose to provide something with good thermal efficiency.
[0004]
[Means for Solving the Problems]
According to the present invention, the first core (3) is arranged on the upstream side in the casing (2) to which the high-temperature gas (1) is led, and the second core (4) is arranged on the downstream side. And
The first core (3) has a large number of tubes (6) having a circular cross section arranged in parallel at a distance from each other,
The second core (4) is composed of an aggregate of elements, and the elements (7) are provided with a pair of communication holes (8) spaced apart from each other, and at least one of the plates (7a) is formed in a dish shape. ), A large number of the elements (7) are superposed in the thickness direction, and the adjacent elements (7) are air-tightly connected to each other by the respective communication holes (8).
After the low temperature fluid (5) flows through each tube (6) of the first core (3), it flows through each element (7), and the high temperature gas (1) flows through each tube (6) and the element (7). Is a high-temperature heat exchanger configured to circulate on the outer surface side.
[0005]
The present invention described in claim 2 is based on claim 1,
The metal material of the tube (6) of the first core (3) is made of a material having higher heat resistance than that of the second core (4),
This is a high-temperature heat exchanger in which an inner fin (9) is provided on the inner surface of the element (7) and an outer fin (10) is provided on the outer surface.
[0006]
According to a third aspect of the present invention, in the first or second aspect,
In the first core (3), both ends of a large number of tubes (6) are connected to a pair of first headers (11), and a large number of plate fins (12) are arranged on the outer surface side of the tubes (6). It is a heat exchanger for high temperature.
[0007]
The present invention described in claim 4 is the invention according to any one of claims 1 to 3,
Each tube (6) of the first core (3) is made of heat-resistant high nickel stainless steel or nickel alloy, and each plate (7a) of the element (7) is made of austenitic stainless steel or ferritic stainless steel. It is a heat exchanger for high temperature.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of a high-temperature heat exchanger of the present invention will be described with reference to the drawings. FIG. 1 is an overall perspective schematic view showing a heat exchanger for high temperature of the present invention, FIG. 2 is a partially exploded perspective view of a first core 3, and FIG. And cut along the line III-III in FIG. FIG. 4 is a side view of the second core 4, and FIG. 5 is a schematic cross-sectional view taken along the line VV of FIG.
As shown in FIG. 1, this heat exchanger forms a casing 2 by a first casing 2a located on a lower side and a second casing 2b connected to an upper end thereof, and a first casing 2a shown in FIG. The core 3 is arranged, and a plurality of second cores 4 are arranged in the second casing 2b. The first core 3 has a large number of tubes 6 spaced apart from each other at regular intervals, and both ends thereof penetrate the first casing 2 a and communicate with the pair of first headers 11.
[0009]
Next, the second core 4 is formed as shown in FIGS. 3 to 5 and is made of a laminate of so-called Dron cup type elements 7. That is, the element 7 is formed by stacking a pair of dish-shaped plates 7a in opposite directions, and brazing and fixing the entire periphery thereof in an airtight manner. Each plate 7a has a bulging portion formed at both ends in the longitudinal direction, and a communication hole 8 is provided at each of the bulging portions. Inner fins 9 are provided inside the elements 7, and outer fins 10 are arranged on the outer surfaces of the elements 7.
A large number of elements 7 stacked in the thickness direction are in contact with each other at the bulging portions at both ends thereof, the respective communication holes 8 are aligned, and the elements are brazed and fixed to each other at the hole edges of the communication holes 8. You. Then, the inner fin 9 and the inside of the element 7 and the outer fin 10 and the outer surface of the element 7 are integrally brazed and fixed.
[0010]
As a material of the plate 7a, austenitic stainless steel or ferritic stainless steel can be used.
The tube 6 of the first core 3 can be made of heat-resistant high nickel stainless steel or nickel alloy.
As shown in FIG. 1, six second cores 4 are used in this example, and three of them are arranged in parallel. Each second core 4 is connected in the stacking direction via a connection pipe 16. They are connected by upper and lower communication holes 8. Then, in the figure, the communication holes 8 of the three second cores 4 on the right and the pair of upper and lower second headers 15 are respectively connected.
[0011]
In this example, the low-temperature fluid 5 flows from the left first header 11 through each tube 6 of the first core 3 from left to right as shown in FIG. 2, and the right header 11 flows from the right first header 11 as shown in FIG. Each element flows from the upper second header 15 through the connecting portion 17 into each of the three second cores 4 located on the right side, and each element from the upper part of the left three second cores 4 via the connecting pipe 16. Flows into. Then, the low-temperature fluid 5 flows down inside the elements 7 of the respective second cores 4 and flows out to the lower second header 15.
The hot gas 1 flows into the first casing 2a from below in FIG. 1, and then rises between the outer surfaces of the elements 7 of the respective second cores 4 as shown in FIG. It is guided outside through the opening. Then, heat exchange is performed between the high-temperature gas 1 and the low-temperature fluid 5.
[0012]
At this time, the high-temperature gas 1 first heats the low-temperature fluid 5 in the tube 6 of the first core 3 and becomes lower in temperature by that amount and flows upward from below the second core 4. Accordingly, since the temperature of the high-temperature gas 1 flowing into the second core 4 has decreased to some extent, the heat resistance of the element 7 constituting the second core 4 may be lower than that of the first core 3.
Generally, if the tube 6 of the first core 3 is formed by a seamless drawn tube, the heat resistance of the element 7 itself is higher than that of the element 7. For this reason, if a drawn tube is used for the tube 6, the components of the second core 4 and the components of the first core 3 can be made of the same material. However, it is preferable that the material of the tube 6 of the first core 3 be higher in heat resistance than the plate 7 a of the second core 4.
[0013]
Next, FIG. 6 shows another example of the first core 3 of the heat exchanger for high temperature of the present invention. This example is different from that of FIG. 2 in that a large number of tubes 6 arranged in parallel have small gaps. In this case, the plate fins 12 penetrate through the tube insertion holes of the many plate fins 12, and the penetrating portions are fixed by brazing. It is preferable to use nickel brazing as the brazing material.
[0014]
[Action and Effect of the Invention]
In the heat exchanger for high temperature of the present invention, the first core 3 through which the high-temperature gas 1 first flows is constituted by a parallel body of a large number of tubes 6 having a circular cross section, and the low-temperature fluid 5 flows through the circular tubes 6. Heat exchange is performed with the high-temperature gas 1. Thereby, after the temperature of the hot gas 1 is lowered, the hot gas 1 then passes through the second core 4. The second core 4 is made of a brazed body of a large number of plates 7a, and is structurally less heat-resistant than the circular tube 6. However, since it passes through each element of the second core 4 after the temperature of the high-temperature gas 1 has dropped, a heat exchanger having high heat resistance as a whole can be provided without any problem.
[0015]
In the above configuration, the metal material of the tube 6 of the first core 3 can be a material having higher heat resistance than that of the second core 4. At the same time, the inner fin 9 can be provided on the inner surface side of the element 7 and the outer fin 10 can be provided on the outer surface side. With this configuration, a high-temperature heat exchanger having higher heat resistance, lower cost and higher efficiency as a whole can be obtained.
Further, in any of the above configurations, both ends of a large number of tubes 6 can be communicated with a pair of first headers 11 of the first core 3, and a large number of plate fins 12 can be arranged on the outer surface side of the tubes 6. By doing so, it is possible to protect the second core 4 by lowering the temperature of the high-temperature gas 1 by that much while increasing the thermal efficiency of the first core 3.
[0016]
In any of the above configurations, the heat-resistant high nickel stainless steel or nickel alloy can be used for the tube 6 of the first core 3, and each plate 7 a of the element 7 uses austenitic stainless steel or ferritic stainless steel. Can be. In this case, a low-cost high-temperature heat exchanger can be provided as a whole.
[Brief description of the drawings]
FIG. 1 is a perspective view showing the entire high-temperature heat exchanger of the present invention.
FIG. 2 is an explanatory perspective view of a first core 3 of the heat exchanger.
FIG. 3 is a longitudinal sectional view of a main part of a second core 4 used in the heat exchanger, taken along the line III-III in FIG. 4;
FIG. 4 is a side view of a second core 4 used in the heat exchanger.
FIG. 5 is a schematic sectional view taken along the line VV of FIG. 4;
FIG. 6 is a schematic perspective view showing another example of the first core 3 used in the heat exchanger.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Hot gas 2 Casing 2a 1st casing 2b 2nd casing 3 1st core 4 2nd core 5 Low temperature fluid 6 Tube 7 Element 7a Plate 8 Communication hole 9 Inner fin 10 Outer fin 11 1st header 12 Plate fin 15 2nd header 16 Connection pipe 17 Header connection

Claims (4)

高温ガス(1) が導かれるケーシング(2) 内の上流側に第1コア(3) が配置されると共に、下流側に第2コア(4) が配置され、
第1コア(3) は、横断面円形の多数のチューブ(6) が互いに離間して並列され、
第2コア(4) は、エレメントの集合体よりなり、そのエレメント(7) は互いに離間して一対の連通孔(8) が設けられ、少なくとも一方が皿状に形成された一対のプレート(7a)により構成され、多数のそのエレメント(7) がその厚み方向に重ね合わされると共に、夫々の前記連通孔(8) により隣接するエレメント(7) どうしが互いに気密に接続されてなり、
低温流体(5) が第1コア(3) の各チューブ(6) を流通した後に、夫々のエレメント(7) 内を流通し、高温ガス(1) が各チューブ(6) およびエレメント(7) の外面側を流通するように構成された高温用熱交換器。
A first core (3) is arranged on the upstream side in the casing (2) into which the high-temperature gas (1) is led, and a second core (4) is arranged on the downstream side,
The first core (3) has a large number of tubes (6) having a circular cross section arranged in parallel at a distance from each other,
The second core (4) is composed of an aggregate of elements, and the elements (7) are provided with a pair of communication holes (8) spaced apart from each other, and at least one of the plates (7a) is formed in a dish shape. ), A large number of the elements (7) are superposed in the thickness direction, and the adjacent elements (7) are air-tightly connected to each other by the respective communication holes (8).
After the low temperature fluid (5) flows through each tube (6) of the first core (3), it flows through each element (7), and the high temperature gas (1) flows through each tube (6) and the element (7). A heat exchanger for high temperature configured to flow on the outer surface side of the heat exchanger.
請求項1において、
第1コア(3) の前記チューブ(6) の金属材料は、第2コア(4) のそれより耐熱性の高い材料からなり、
前記エレメント(7) の内面側にインナーフィン(9) が設けられ、外面側にアウターフィン(10)が設けられた高温用熱交換器。
In claim 1,
The metal material of the tube (6) of the first core (3) is made of a material having higher heat resistance than that of the second core (4),
A high-temperature heat exchanger in which an inner fin (9) is provided on the inner surface side of the element (7) and an outer fin (10) is provided on the outer surface side.
請求項1または請求項2において、
前記第1コア(3) は、一対の第一ヘッダ(11)に多数の前記チューブ(6) の両端が連し、そのチューブ(6) の外面側に多数のプレートフィン(12)が配置された高温用熱交換器。
In claim 1 or claim 2,
In the first core (3), both ends of a large number of tubes (6) are connected to a pair of first headers (11), and a large number of plate fins (12) are arranged on the outer surface side of the tubes (6). High temperature heat exchanger.
請求項1〜請求項3のいずれかにおいて、
第1コア(3) の各チューブ(6) は耐熱性のハイニッケルステンレス鋼またはニッケル合金が用いられ、エレメント(7) の各プレート(7a)はオーステナイト系ステンレス鋼またはフェライト系ステンレス鋼が用いられた高温用熱交換器。
In any one of claims 1 to 3,
Each tube (6) of the first core (3) is made of heat-resistant high nickel stainless steel or nickel alloy, and each plate (7a) of the element (7) is made of austenitic stainless steel or ferritic stainless steel. High temperature heat exchanger.
JP2002217205A 2002-07-25 2002-07-25 Heat exchanger for high temperature Pending JP2004060935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002217205A JP2004060935A (en) 2002-07-25 2002-07-25 Heat exchanger for high temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002217205A JP2004060935A (en) 2002-07-25 2002-07-25 Heat exchanger for high temperature

Publications (1)

Publication Number Publication Date
JP2004060935A true JP2004060935A (en) 2004-02-26

Family

ID=31938752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002217205A Pending JP2004060935A (en) 2002-07-25 2002-07-25 Heat exchanger for high temperature

Country Status (1)

Country Link
JP (1) JP2004060935A (en)

Similar Documents

Publication Publication Date Title
JP4462054B2 (en) Plate heat exchanger, hot water device and heating device provided with the same
JP5331701B2 (en) Plate stack heat exchanger
US4310960A (en) Method of fabrication of a formed plate, counterflow fluid heat exchanger and apparatus thereof
US20170205156A1 (en) Heat exchangers
US20070000652A1 (en) Heat exchanger with dimpled tube surfaces
KR20120042854A (en) Heat exchanger
JP2003336974A (en) Regenerative heat exchanger
US20110017428A1 (en) Plane type heat exchanger
JP2009103360A (en) Plate laminated heat exchanger
JP3956097B2 (en) Exhaust heat exchanger
JP5228215B2 (en) Primary heat transfer type heat exchanger
JP2010121925A (en) Heat exchanger
JP2003021486A (en) Heat exchanger
JP5005356B2 (en) Helicon type liquid cooling heat sink
JP2005274028A (en) Combustion device
JP2004060935A (en) Heat exchanger for high temperature
JP5226342B2 (en) Cold storage / heat storage type heat exchanger
JP2010276298A (en) Heat exchanger
JP4759367B2 (en) Laminate heat exchanger
JP2004044870A (en) Hybrid heat exchanger
JP2000146461A (en) Heat exchanger
JP2005351520A (en) Heat exchanger
JP4134520B2 (en) Heat exchanger
JP4082029B2 (en) Plate heat exchanger
JP6435487B2 (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080205