JP2004060058A - Fiber substrate for composite material - Google Patents

Fiber substrate for composite material Download PDF

Info

Publication number
JP2004060058A
JP2004060058A JP2002215357A JP2002215357A JP2004060058A JP 2004060058 A JP2004060058 A JP 2004060058A JP 2002215357 A JP2002215357 A JP 2002215357A JP 2002215357 A JP2002215357 A JP 2002215357A JP 2004060058 A JP2004060058 A JP 2004060058A
Authority
JP
Japan
Prior art keywords
fiber
composite material
strength
substrate
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002215357A
Other languages
Japanese (ja)
Inventor
Toshio Abe
阿部 俊夫
Shigeru Nishiyama
西山 茂
Masahiro Shinya
新屋 雅弘
Toshiyasu Fukuoka
福岡 俊康
Masayasu Ishibashi
石橋 正康
Koichi Hashimoto
橋本 宏一
Takeshi Tanamura
田那村 武司
Hideki Sakonjiyou
左近上 秀樹
Tetsuro Hirokawa
広川 哲朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikibo Ltd
Mitsubishi Heavy Industries Ltd
Original Assignee
Shikibo Ltd
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikibo Ltd, Mitsubishi Heavy Industries Ltd filed Critical Shikibo Ltd
Priority to JP2002215357A priority Critical patent/JP2004060058A/en
Priority to EP02755731A priority patent/EP1413415A4/en
Priority to US10/484,818 priority patent/US20040247845A1/en
Priority to PCT/JP2002/007825 priority patent/WO2003013817A1/en
Publication of JP2004060058A publication Critical patent/JP2004060058A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enhance interlaminar strength (peel strength, out-of-plane strength and strength after impact), raise the impregnation efficiency of a matrix during the compositing and further eliminate resin-rich parts to be weak points in strength in a fiber substrate for composite materials. <P>SOLUTION: A single substrate 4 knitted or woven from filaments and having a three-dimensional shape is used or the plurality of substrates 4 are superimposed to raise strength between layers or in joint surfaces. Permeability of the matrix is promoted near the surface and in the interior and a treatment of raising 5 is carried out in order to raise the smoothness of the surface. The treatment of raising is performed even on the fiber substrate for the composite materials prepared by superimposing a plurality of sheetlike substrates knitted or woven from the filaments or superimposing the plurality of the sheetlike substrates and substrates having the three-dimensional shape. The treatment of raising is carried out by needle punching. A fiber web, as necessary, is inserted between fiber constructions simultaneously with the treatment of raising. Thereby, the surface of the fiber substrate is subjected to a smoothing treatment. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ニードルパンチングなどを施すことによって発生する毛羽状の繊維により各基材間を補強し、強度特性を向上させたコンポジット(複合材)、航空機用構造部材、航空機サンドイッチ材、航空機スキンパネル、航空機胴体パネル、航空機の床板、航空宇宙用タンク構造、舵面構造、ウイングパネル、窓枠、穴または切り欠き部周りの構造部材、耐熱材、防音材、継ぎ手材その他の用途に用いられる複合材料用繊維基材に関する。
【0002】
【従来の技術】
上記用途に用いられている複合材料用繊維基材は、所定の形状や厚みを得るために、通常、繊維状基材、シート状基材あるいは立体形状を持つ基材が複数重ね合わせて用いられ、マトリックスを含浸させて乾燥硬化処理されたり、あるものは含浸焼成され、完成品となる。
【0003】
【発明が解決しようとする課題】
短繊維ウェブ、長繊維ウェブ又はその他様々な繊維基材をニードルパンチングして三次元パイル交絡を形成した繊維構造体は公知である。このような繊維構造体は、自動車、列車、船舶及び航空機などの各種輸送機関で内装材やカーペットといった主として装飾用途で使用される一方、土木用資材やオムツ、生理用品などで吸湿素材として使用されてきた。このような用途では、デザイン性、吸水性、吸音性などが重要な指標とされ、構造材として不可欠な応力性能については特に注目されなかった。また、航空機構造体などの高荷重が負荷される複雑な荷重伝播が必要な複合材料用の繊維基材としては、連続繊維を製織、製編、ステッチング、ニッティング又は編組したものが考案されていて、現在利用に向けて研究中である。それらの繊維構造体においての強化繊維は、連続繊維による三次元繊維構造体の中でバンドル(糸束)の交差したものとしてしか存在しておらず、バンドル間の界面の結合組織は何も存在しない。そこには繊維の存在しない、言わば空隙や層間があり、樹脂含浸を終えた状態では樹脂リッチな部分となる。何らかの荷重が加わったときにその樹脂リッチ部や層間からマイクロクラックが発生し、強度が落ち材料が破壊する原因になるという欠点があった。一般に複合材料においては、繊維の存在しない樹脂リッチ部では極端に強度が低下する事が知られている。そのため、設計段階において上記のような欠点によって設計や材料選択の自由度を狭められていた。
【0004】
また、現在使用されている複合材におけるサンドイッチ材と呼ばれるものの内側のコア材と外側のスキン材の間の界面は繊維強度に比べてはるかに弱い樹脂の接着強度だけでもっている(特開2000−238154)。もしくは米国特許第6187411、または米国特許第6027798のようにステッチまたはピンなどによって接合されているものも知られているがその層間においての結合組織は低密度でしか存在しないため、構造材としてはその層間強度において充分とはいえない。
【0005】また、従来は切り欠き構造もしくは穴構造を適用した複合材料用繊維構造体においては様々な方向からの大きな荷重がかかった場合に、その基材積層面における接合強度が不充分であったため、その切り欠き部、もしくは穴の周縁部からクラックが発生し、破壊の発生源となっていた。
【0006】また、従来の複合材においてのスキン材とスティフナーやストリンガーとの接合面は、いずれも繊維の破断強度に比べてはるかに弱い樹脂(熱可塑パウダーを含む)による接着や繊維による低密度のステッチで接合する方法などが研究されているが、その繊維間、もしくは層間には充分な層間強度は得られていない。
【0007】また、クロス材、ニット材、ブレーディング材などの繊維基材からなるI型、T型などの異形断面を有する桁材に代表されるような構造材は製造される工程上、通常、フランジ部とウェブ部の間に空隙ができるが、従来はこの部位に同じく繊維基材からなる空隙部と同じ断面形状を持ったフィラー材をプリプレグ化するなどしたものを挿入し、樹脂含浸、成形していた。もしくはステッチやニッテイングなどにより固定し、同じく樹脂含浸、成形していた。(米国特許第4331723、米国特許第4256790)その基材間の界面においては何ら結合の組織を持っていないか、もしくはステッチやニッティングによる繊維が低密度に点在する程度であるため航空機構造材料としての充分な層間強度は無く、ある程度の荷重や衝撃が加わった場合にクラックの発生源となっていた。航空機用構造材のように様々な方向からの大きな荷重に対する複雑な荷重伝播が必要とされるような材料には、特に基材間の層間強度及び衝撃後強度が要求されるが、従来の繊維構造体においては前述の如く繊維間または基材の層間における交絡繊維が無いかほとんど無いため強度的に不充分であった。
【0008】
また、低価格化のため単繊維径や引き揃え本数の多い太い繊維を使用する傾向が増えており、繊維基材表面の糸条交絡点での糸条のループによる凸部が高くなり、その分、表面や隣接する接合面にできる凹部も深くなり、複合化時点でマトリックスを含浸させた際、前記凹部へのマトリックスの溜り量が他の部分より多くなるという問題もあった。
【0009】
本発明の目的は、低コストで航空機構造材などにも使用できる充分な強度を持ち、複合化時点のマトリックスの含浸効率も良く、表面や接合面に強度的に弱点となるような樹脂溜りを持たない、平滑性を持った繊維構造体を提供することにある。
【課題を解決するための手段】
上記目的を達成するため、本発明の請求項1に記載の複合材料用繊維基材は、連続繊維で編織または積層された立体形状を持つ基材が単体または複数重ね合わされ、層間強度を高め、また、内部へのマトリックスの浸透性を促進し、面を平滑にし、レジンスポットを無くすための起毛処理が施されたものである。この構成により、複合化時、マトリックスが立体形状を持つ基材の各方向糸条の起毛処理部の毛細管現象によって内部空間に浸透する速度が高まり、含浸時間の短縮やカーボンカーボンコンポジット成形時の含浸回数の減少が図れ、含浸効率を向上させ、ボイドが減少する。そして、マトリックスの含浸硬化後には、起毛処理部のアンカー効果で層同士また接合面間の結合力を増大させることができる。従って、複合材料用繊維基材の層間強度(剥離強度、面外強度、衝撃後強度)を高めることができる。(請求項1)
【0010】
また、本発明の請求項2に記載の複合材料用繊維基材は、連続繊維で編織されたシート状基材またはシート状基材と立体形状を持つ基材が複数重ね合わされ層間強度を高め、また、内部へのマトリックスの浸透性を促進するための起毛処理が施されたものである。この構成により、複合化時、マトリックスが立体形状を持つ基材またはシート状基材の各方向糸条の起毛処理部の毛細管現象によって内部空間に浸透する速度が高まり、カーボンカーボンコンポジットを成形する場合においては含浸時間の短縮や含浸回数の減少が図れ、含浸効率を向上させ、ボイドが減少する。そして、マトリックスの含浸硬化後には、起毛処理部のアンカー効果で層同士また接合面間の結合力を増大させることができる。従って、複合材料用繊維基材の層間強度(剥離強度、面外強度、衝撃後強度)を高めることができる。(請求項2)
【0011】
上記起毛処理は、ニードルパンチングなどによって施される。この構成により、起毛処理の操作が簡単に実施でき、大幅なコスト低減が図れると共に、繊維束間の空隙部や層間に面内の基材繊維の一部が起毛化されて押し込まれ、複合化時、起毛処理部の毛細管現象によるマトリックスの引き込み作用とニードルの通過穴を侵入路とするマトリックスの流入速度の向上及び内部空気の置換排気の促進とによってマトリックスの浸透性が促進される。従って、安価な方法で内部空間へのマトリックスの充填率を向上させ、複合材料用繊維基材の層間強度(剥離強度、面外強度、衝撃後強度)を高めることができる。(請求項3)
【0012】
また、ニードルパンチング時、起毛処理と同時に、表面若しくは内部に配設された繊維ウェブ層が立体形状を持つ基材またはシート状基材の内部に挿入配設される。この構成により、繊維束間の空隙部や層間に面内の基材繊維の一部が起毛化されて押し込まれると同時に、繊維も押し込まれるため、複合化時、毛細管現象によるマトリックスの引き込み作用が一層向上し、内部空間へのマトリックスの充填率が高まる。また、マトリックスの含浸硬化後のアンカー効果も向上し、複合材料用繊維基材の層間強度(剥離強度、面外強度、衝撃後強度)を高めることができる。(請求項4)
【0013】
また本発明に係る複合材料用繊維基材は、樹脂を注入、硬化させてなる複合材部品における切り欠き部、または穴構造部の孔縁部にあたる部分に対してニードルパンチングを行うことにより、基材間を毛羽状の繊維にて界面補強したことを特徴とする(請求項5)
【0014】
また本発明に係る複合材料用繊維基材は、スキン繊維基材とコア基材とを重ね合わせてニードルパンチングすることによって、スキン繊維基材とコア基材との層間に繊維が打ち込まれ、その接合面が、補強されたことを特徴とする。(請求項6)
【0015】
また本発明に係る複合材料用繊維基材は、複合材料の継ぎ手構造において、ニードルパンチングを施すことによって生じる毛羽状の繊維により接合面を補強したことを特徴とする。(請求項7)
【0016】
また本発明に係る複合材料用繊維基材は、ニードルパンチングが、立体形状を持つ基材またはシート状基材の表面に対して垂直に、または角度をつけて施されて成ることを特徴とする。この構成によって、基材繊維の起毛部や繊維の押し込み方向が適宜に設定され、層間強度(剥離強度、面外強度、衝撃後強度)を高めることができる。(請求項8)
【0017】
また本発明に係る複合材料用繊維基材は、立体形状を持つ基材またはシート状基材の表面の糸条交絡点の凸部が平滑化処理されてなることを特徴とする。この構成によって、繊維基材表面の凹凸を少なくし、マトリックスの溜り量を平均化してレジンリッチ部をなくすことができる。(請求項9)
【0018】
また本発明に係る複合材料用繊維基材は、凸部の平滑化処理がニードルパンチングまたはグラインディングによって施されてなることを特徴とする。この構成によって、繊維基材表面の平滑化処理が容易となると共に、基材繊維の表面が起毛化され、マトリックスの含浸効率を高めることができる。(請求項10)
【0019】
また本発明に係る複合材料用繊維基材は、ウォータージェットもしくはエアージェットによって起毛処理がなされる(請求項11)
【0020】
【発明の実施の形態】
以下、本発明の実施の形態について図面に基づいて説明する。図1の(A)(B)は本発明に係る複合材料用繊維基材の第1実施形態の概略構造とその拡大説明図であり、図2の(A)(B)は本発明に係る複合材料用繊維基材の第2実施形態の概略構造とその拡大説明図である。また、図3の(A)(B)は本発明に係る複合材料用繊維基材の第3実施形態の概略構造とその拡大説明図である。
【0021】
図1の(A)(B)に示す第1実施形態は、XY平面(図1の紙面に直角な平面)にX方向糸条1とY方向糸条2とを直交させて所定間隔で所定本数配置した層をZ方向に複数積層し、これをZ方向糸条3で結束させて構成された立体形状を持つ基材4を2層分積層した構造であって、この場合、Z方向糸条3は立体形状を持つ基材4の表面側でチェーンステッチ3aを形成し、裏面側でバックステッチ3bを形成して連続したものとされている。この立体形状を持つ基材4を2層分積層したものに対し、フック状或いは二股状先端を有するニードル(図示省略)で垂直または角度を付けてニードルパンチングを行い、図1の(B)に示すように、起毛5を形成させる。この起毛5は、ニードルが刺し通された位置のX方向糸条1、Y方向糸条2、Z方向糸条3の全部または一部の糸条表面がニードルのフック状或いは二股状先端によって掻き削られて起毛化されることによって形成される。
【0022】
図2の(A)(B)に示す第2実施形態は、XY平面(図2の紙面に直角な平面)にX方向糸条1とY方向糸条2とを直交させて所定間隔で所定本数配置した層をXY平面に対して直行するZ方向に複数積層し、これをZ方向糸条3で結束させて構成された立体形状を持つ基材4を単体で使用した構造であって、この場合、Z方向糸条3は立体形状を持つ基材4の表面側及び裏面側でバックステッチ3bを形成して連続したものとされている。この立体形状を持つ基材4に対し、フック状或いは二股状先端を有するニードル(図示省略)で垂直または角度を付けてニードルパンチングを行い、図2の(B)に示すように、起毛5を形成させる。この起毛5は、ニードルが刺し通された位置のX方向糸条1、Y方向糸条2、Z方向糸条3の全部または一部の糸条表面がフック状或いは二股状先端によって掻き削られて起毛化されることによって形成される。
【0023】
図3の(A)(B)に示す第3実施形態は、第1実施形態または第2実施形態の立体形状を持つ基材4の表面に表れたZ方向糸条3の交絡点でのループの凸部6に対して、ニードルパンチングまたはグラインディングによって糸条表面を掻き削られて発生した起毛7によって凹部8を埋めて平滑化し、複合化時のマトリックス含浸工程において、上記凹部8にマトリックスが溜り、レジンリッチ部となることを防止したものである。
【0024】
上記第1〜第3実施形態において、立体形状を持つ基材4の内部、例えば、中間層や各層の間或いはニードル側となる表面または裏面等に繊維ウェブ層を配設し、この状態でニードルパンチングを行ってもよい。このようにすれば、立体形状を持つ基材4の糸条繊維に起毛化処理を施しながら内部空間に繊維を同時に挿入することができる。
【0025】
次に、図4〜図9は本発明の他の実施形態を示したものであって、図4の第4実施形態は樹脂材料や発泡体などのコア材として使用できる材料で構成されたシート状のコア材9の上下両面に補強用繊維シート10を重ねたもので、繊維シート10は厚み方向のニードルパンチングにてコア材9と一体化されている。このニードルパンチングによって繊維シート10の各繊維から起毛した毛羽状の繊維が三次元的にコア材9表面層に食込み、繊維シート10とコア材9間の剥離強度を高めている。なお、ニードルパンチングの際に二ードルマシンのストリッパで繊維シート10とコア材9を間欠プレスしながらニードルパンチングするとより基材が圧縮され、基材の繊維密度を低下させることなく毛羽状の繊維により高密度三次元繊維構造体を得ることができる。
【0026】
図4のような三次元繊維構造体は、特に航空機舵面、航空機外板、ヘリコプタのメインローターブレード、テールローターブレード、ガスタービンのローターブレードなどに好適に使用可能である。
【0027】
図5(A)(B)の第5実施形態は、板状繊維構造体11に形成した円孔12部位の補強構造を示したもので、図6のように円孔12の周縁部を所定幅で繊維構造体の厚み方向にニードルパンチングしたものである。このニードルパンチングによって繊維構造体の各繊維から起毛した毛羽状の繊維11同士が繊維間の界面を補強し、円孔周縁部の剥離強度、衝撃後強度を高める。
【0028】
図7の第6実施形態は、3枚の板状繊維構造体13〜15を面の伸びる方向に互いに継ぎ合わせたもので、2枚の板状繊維構造体13と14、及び板状繊維構造体14と15の重合部位を厚み方向にニードルパンチングして毛羽状の繊維10により板状繊維構造体相互間が界面補強されて剥離強度、層間強度を高めている。このような構造は板状繊維構造体の継手構造の強度対策として有効である。
【0029】
図8の第7実施形態は、図9のような繊維構造体で構成したI型ビーム16のウェブ部16aとフランジ部16bの連結部分の補強構造を示したものであって、このI型ビームはウェブ部16aがコ字状断面の2つの繊維構造体17、18を背中合わせに一体化してI字状断面とし、さらにこのI字状断面のフランジ部分に補強用の板状繊維構造体19を貼合わせたものである。そして、この板状繊維構造体19とI字状断面のフランジ部分との界面をニードルパンチングによって界面補強している。このニードルパンチングは、詳しくは、板状繊維構造体19の厚み方向のニードルパンチングと、I字状断面のフランジ部分のコーナー部内側から斜め方向にクロスさせて通したニードルパンチングで構成される。このように、厚み方向とクロス方向の2種のニードルパンチングにより層間クラックを防止してI型ビームの強度向上が図れる。上記のような手段を用いればI字状断面だけではなく、J字状断面、ハット状断面、逆T字状断面などの形状を持った繊維構造体が得られる。
【0030】
以上説明したように、本発明の実施形態によれば、ニードルパンチングで基材繊維がフィブリル化(起毛)され、起毛された面内の各方向糸条繊維や繊維ウェブが層間に押し込まれ、層同士が絡み合わされるため、層間強度、面外強度が向上する。また、交差する面内の各方向糸条繊維の空隙部に起毛された繊維や繊維ウェブが押し込まれ、複合化時点でマトリックスが呼び込まれ易くなり、空間が埋まり易く、含浸効率が向上する。また、テーパのついたニードルを用いることにより、針穴を形成し、この針穴がマトリックスの通り道となり、マトリックスの移動速度を上げ、強度上の弱点となるボイドを減少させることができる。また、マトリックスの含浸時間の短縮や含浸回数の減少も図れる。
【0031】
さらに、低価格化のため単繊維径や引き揃え本数の多い太い繊維を使用した場合、表面で凹凸の大きい立体形状を持つ基材ができるが、強度に影響の少ない表面の糸条交絡点のループ凸部を返りの付いた針ややすり状のもの(グラインダー)などで起毛することにより、表面をフラットにさせて複合材料にした場合に強度的に弱点となるレジンリッチ部をなくし表面性を向上させることができる。
【0032】
基材繊維の起毛化は、ニードルパンチングにより量産化して実施することができ、低コストに提供することが出来る。ニードルパンチングは、層間剪断強度を上げるために、結束糸条によるバンドル方向と異方向のニードルパンチングを行うのが好ましい。また、積層された複数のシート状基材(織物)間のニードルパンチングを行う場合や、立体形状を持つ基材(織物)間にシート状基材を配置してニードルパンチングを行うようにしてもよい。プリフォームとなる繊維基材の素材は炭素繊維、セラミック繊維、ガラス繊維や高強度有機繊維などがある。例えば、ガラス系、カーボン系、セラミック系などの無機繊維のほかアラミド繊維、ポリエステルなどの有機繊維も利用できる。マトリックスは、ポリマー、炭素、セラミックのほかアルミなどの金属も適用できる。コア基材については樹脂系統の基材などが使用できる。また、繊維基材は、三次元織物(単体または複数)、ステッチド(ニット)プリフォーム、連続繊維積層(二次元及び三次元の複数層を積層したものや一部にZ糸を挿入したものなど)のプリフォームなどにフック状あるいは二股状先端を有するニードルで垂直または角度を付けて適当な間隔密度、例えば、均等な密度でパンチングして繊維表面をフィブリル化して起毛する。
次に、ニードルパンチによる繊維基材の強度向上試験結果について説明する。試験は以下の5つについて行なった。
(1)剥離強度試験
この試験は、図10(a)(b)の寸法の高強度炭素繊維一方向材を擬似等方に積層した基材▲1▼▲2▼の基材▲2▼部分にニードルパンチを施したものに対して行ったもので、含浸樹脂は高強度エポキシ樹脂である。試験結果は図10(c)に示す通りである。
(2)面外強度試験
この試験は、図11(a)(b)の寸法の高強度炭素繊維一方向材を擬似等方に積層してなる基材▲1▼▲2▼の接合部分にニードルパンチを施したものに対して行ったもので、含浸樹脂は高強度エポキシ樹脂である。試験結果は図11(c)に示す通りである。
(3)衝撃後強度試験
この試験は、図12(a)(b)の寸法の高強度炭素繊維一方向材を擬似等方に積層してなる基材▲1▼にニードルパンチを施したものに対して行ったもので、含浸樹脂は高強度エポキシ樹脂である。所定部分に衝撃を付与した後に圧縮方向に荷重を加えた。試験結果は図12(c)に示す通りである。
(4)カットアウト部FEM解析
この解析は、図13(a)のようにニードルパンチの特性を考慮し、孔周りの有限幅に対しニードルパンチを実施した後、圧縮方向に荷重を加えた事を想定し、開口部周辺構造を強度解析したものである。解析結果は図13(b)に示す通りである。
(5)ニードリング継手試験
この試験は、図14(a)(b)の寸法の高強度炭素繊維一方向材を擬似等方に積層してなる基材▲1▼▲2▼▲3▼の重合部分にニードルパンチを施したものに対して行ったもので、含浸樹脂は高強度エポキシ樹脂である。成形後、引張方向に荷重を加えた。試験結果は図14(c)に示す通りである。
【0033】
【発明の効果】
請求項1の構成によれば、複合化時、マトリックスが立体形状を持つ基材の各方向糸条の起毛処理部の毛細管現象によって内部空間に浸透する速度が高まり、含浸時間の短縮や含浸回数の減少が図れ、含浸効率を向上させ、ボイドが減少する。そして、マトリックスの含浸硬化後には、起毛処理部のアンカー効果で層同士また接合面間の結合力を増大させることができる。従って、複合材料用繊維基材の層間強度(剥離強度、面外強度、衝撃後強度)を高めることができる。
【0034】
請求項2の構成によれば、複合化時、マトリックスが立体形状を持つ基材またはシート状基材の各方向糸条の起毛処理部の毛細管現象によって内部空間に浸透する速度が高まり、含浸時間の短縮やカーボンカーボンコンポジット成形の場合は含浸回数の減少が図れ、含浸効率を向上させ、ボイドが減少する。そして、マトリックスの含浸硬化後には、起毛処理部のアンカー効果で層同士また接合面間の結合力を増大させることができる。従って、複合材料用繊維基材の層間強度(剥離強度、面外強度、衝撃後強度)を高めることができる。
【0035】
請求項3の構成によれば、起毛処理の操作が簡単に実施でき、量産が可能であるから大幅なコスト低減が図れると共に、繊維束間の空隙部や層間に面内の基材繊維の一部が起毛化されて押し込まれ、複合化時、起毛処理部の毛細管現象によるマトリックスの引き込み作用とニードルの通過穴を侵入路とするマトリックスの流入速度の向上及び内部空気の置換排気の促進とによってマトリックスの浸透性が促進される。従って、安価な方法で内部空間へのマトリックスの充填率を向上させ、複合材料用繊維基材の層間強度(剥離強度、面外強度、衝撃後強度)を高めることができる。
【0036】
請求項4の構成によれば、繊維束間の空隙部や層間に面内の基材繊維の一部が起毛化されて押し込まれると同時に、繊維も押し込まれるため、複合化時、毛細管現象によるマトリックスの引き込み作用が一層向上し、内部空間へのマトリックスの充填率が高まる。また、マトリックスの含浸硬化後のアンカー効果も向上し、複合材料用繊維基材の層間強度(剥離強度、面外強度、衝撃後強度)を一層高めることができる。
【0037】
請求項5の構成によれば、単体または複数層構造の基材における切り欠き部、または穴構造部の孔縁部に対してニードルパンチングを行うことにより、積層してある基材間を毛羽状の繊維にて界面補強され、その接合面においての層間強度(剥離強度、面外強度、衝撃後強度)を高めることができる。
【0038】
請求項6の構成によれば、スキン繊維基材間とコア基材とを同時にニードルパンチングすることによって、スキン繊維基材とコア基材との層間に繊維が打ち込まれ、スキン繊維基材とコア基材が接合、界面補強され、界面の層間強度(剥離強度、面外強度、衝撃後強度)を高めることができる。
【0039】
請求項7の構成によれば、単体または複数層の繊維基材を交互に重ね合わせ、ニードルパンチングを施すことによって生じる毛羽状の繊維によって相互接合、層間を界面補強し、継ぎ手構造として充分利用できる強度を持たせることができる。
【0040】
請求項8の構成によれば、ニードルパンチングが、立体形状を持つ基材またはシート状基材の表面に対して垂直に、または角度をつけて施される事により、基材繊維の起毛部や繊維の押し込み方向が適宜に設定され、層間強度(剥離強度、面外強度、衝撃後強度)を高めることができる。
【0041】
請求項9の構成によれば、前記立体形状を持つ基材またはシート状基材の表面の糸条交絡点の凸部が平滑化処理される。この構成によって、繊維基材表面の凹凸を少なくし、マトリックスの溜り量を平均化してレジンリッチ部をなくすことができる。
【0042】
請求項10の構成によれば、基材繊維の表面が起毛化され、繊維基材表面の平滑化処理が容易となる。
【図面の簡単な説明】
【図1】(A)(B)は本発明に係る複合材料用繊維基材の第1実施形態の概略構造とその拡大説明図。
【図2】(A)(B)は本発明に係る複合材料用繊維基材の第2実施形態の概略構造とその拡大説明図。
【図3】(A)(B)は本発明に係る複合材料用繊維基材の第3実施形態の概略構造とその拡大説明図。
【図4】本発明の第4実施形態に係る三次元繊維構造体の断面図。
【図5】本発明の第5実施形態に係る三次元繊維構造体の平面図。
【図6】図2の円孔の断面図。
【図7】本発明の第6実施形態に係る三次元繊維構造体の断面図。
【図8】本発明の第7実施形態に係る三次元繊維構造体の断面図。
【図9】図5の構造を有するI型ビームの断面図。
【図10】(a)(b)(c)は本発明に係る複合材料用繊維基材の強度試験結果を示す図。
【図11】(a)(b)(c)は本発明に係る複合材料用繊維基材の強度試験結果を示す図。
【図12】(a)(b)(c)は本発明に係る複合材料用繊維基材の強度試験結果を示す図。
【図13】(a)(b)は本発明に係る複合材料用繊維基材の強度試験結果を示す図。
【図14】(a)(b)(c)は本発明に係る複合材料用繊維基材の強度試験結果を示す図。
【符号の説明】
1  X方向糸条
2  Y方向糸条
3  Z方向糸条
3a チェーンステッチ
3b バックステッチ
4  立体形状を持つ基材
5  起毛
6  凸部
7  起毛
8  凹部
9  コア材(基材)
10  補強用繊維シート
11  毛羽状の繊維
12  板状繊維構造体
13  円孔
14  板状繊維構造体
15  板状繊維構造体
16  I型ビーム
17  繊維構造体
18  繊維構造体
19  板状繊維構造体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a composite (composite material), a structural member for aircraft, an aircraft sandwich material, an aircraft skin panel, in which each substrate is reinforced with fluffy fibers generated by performing needle punching and the like, and has improved strength characteristics. , Aircraft fuselage panels, aircraft floor panels, aerospace tank structures, control surfaces, wing panels, window frames, structural members around holes or cutouts, heat-resistant materials, sound-insulating materials, joint materials and other composites The present invention relates to a fiber base material.
[0002]
[Prior art]
In order to obtain a predetermined shape and thickness, a fiber substrate for a composite material used for the above-mentioned applications is usually used by laminating a plurality of fibrous substrates, sheet substrates or substrates having a three-dimensional shape. The matrix is impregnated and dried and cured, and some are impregnated and fired to obtain a finished product.
[0003]
[Problems to be solved by the invention]
Fiber structures in which a three-dimensional pile entanglement is formed by needle-punching a short fiber web, a long fiber web or various other fiber substrates are known. Such a fiber structure is used mainly for decorative purposes such as interior materials and carpets in various transportation means such as automobiles, trains, ships, and aircrafts, and is also used as a hygroscopic material in civil engineering materials, diapers, and sanitary products. Have been. In such applications, designability, water absorption, sound absorption and the like are important indexes, and no particular attention has been paid to stress performance indispensable as a structural material. In addition, as a fiber base material for a composite material requiring a high load, such as an aircraft structure, which requires complex load propagation, weaving, knitting, stitching, knitting, or braiding continuous fibers has been devised. And is currently researching its use. The reinforcing fibers in these fiber structures exist only as crossing of bundles (yarn bundles) in a three-dimensional fiber structure of continuous fibers, and there is no connective tissue at the interface between the bundles. do not do. There are no fibers, so-called voids and interlayers, and the resin-impregnated state becomes a resin-rich portion. When a certain load is applied, microcracks are generated between the resin-rich portions and between layers, resulting in a disadvantage that strength is reduced and the material is broken. In general, in a composite material, it is known that the strength is extremely reduced in a resin-rich portion where no fiber is present. Therefore, at the design stage, the above-mentioned drawbacks have reduced the degree of freedom in design and material selection.
[0004]
Further, the interface between the inner core material and the outer skin material of what is called a sandwich material in a composite material currently used has only a resin adhesive strength which is far weaker than fiber strength (Japanese Patent Laid-Open No. 2000-2000). 238154). Alternatively, as in US Pat. No. 6,187,411 or US Pat. No. 6,027,798, it is also known that they are joined by stitches or pins, but since the connective tissue between the layers exists only at a low density, the structural material is The interlayer strength is not sufficient.
Further, conventionally, in the case of a fiber structure for a composite material to which a notch structure or a hole structure is applied, when a large load is applied from various directions, the bonding strength at the base material lamination surface is insufficient. As a result, cracks were generated from the notch or the periphery of the hole, which was a source of destruction.
Further, in the conventional composite material, the joint surface between the skin material and the stiffener or the stringer is bonded with a resin (including thermoplastic powder) which is much weaker than the breaking strength of the fiber, or has a low density due to the fiber. Research has been conducted on a method of bonding with such stitches, but no sufficient interlayer strength has been obtained between the fibers or between the layers.
Also, structural materials such as I-shaped and T-shaped girder materials having irregular cross sections, such as cloth materials, knit materials, and braiding materials, are usually used in the manufacturing process. A gap is formed between the flange portion and the web portion, but conventionally, a material such as a prepreg made of a filler material having the same cross-sectional shape as the gap portion made of the fiber base material is inserted into this portion, and the resin is impregnated. Had been molded. Alternatively, they are fixed by stitching or nitriding, and are similarly impregnated with resin and molded. (U.S. Pat. No. 4,331,723, U.S. Pat. No. 4,256,790) Structural materials for aircraft because the interface between the substrates does not have any bonding structure or the stitching or knitting fibers are scattered at low density. Has no sufficient interlayer strength, and has been a source of cracks when a certain load or impact is applied. Materials that require complex load propagation for large loads from various directions, such as structural materials for aircraft, require interlaminar strength between substrates and post-impact strength. As described above, the structure was insufficient in strength because there was no or almost no entangled fiber between fibers or between layers of the substrate.
[0008]
In addition, there is an increasing tendency to use single fibers with a large diameter and a large number of aligned fibers for low price, and the convex portion due to the loop of the yarn at the yarn entanglement point on the surface of the fiber base material is increased. There is also a problem that the concave portions formed on the surface and the adjacent bonding surface become deeper, and when the matrix is impregnated at the time of compounding, the amount of the matrix accumulated in the concave portions becomes larger than other portions.
[0009]
An object of the present invention is to provide a resin pool that has sufficient strength that can be used for aircraft structural materials at low cost, has good matrix impregnation efficiency at the time of compounding, and has a weak point in strength on the surface and the joint surface. An object of the present invention is to provide a fibrous structure having no smoothness.
[Means for Solving the Problems]
In order to achieve the above object, the fiber substrate for a composite material according to claim 1 of the present invention is a substrate having a three-dimensional shape knitted or laminated with continuous fibers, which is singly or plurally laminated to increase the interlayer strength, In addition, it has been subjected to a raising treatment for promoting the permeability of the matrix into the inside, smoothing the surface and eliminating resin spots. With this configuration, during compounding, the rate at which the matrix penetrates into the internal space due to the capillary action of the raised portion of each direction yarn of the base material having a three-dimensional shape is increased, shortening the impregnation time and impregnating during carbon carbon composite molding The number of times can be reduced, the impregnation efficiency is improved, and voids are reduced. After the matrix is impregnated and cured, the bonding force between the layers or between the bonding surfaces can be increased by the anchor effect of the raised portion. Therefore, the interlayer strength (peel strength, out-of-plane strength, strength after impact) of the fiber base material for composite material can be increased. (Claim 1)
[0010]
Further, the fiber substrate for a composite material according to claim 2 of the present invention, a sheet-like substrate knitted with continuous fibers or a plurality of substrates having a three-dimensional shape with a sheet-like substrate is superimposed to increase the interlayer strength, Also, a brush raising treatment for promoting the permeability of the matrix into the inside is performed. With this configuration, when the composite is formed, the speed at which the matrix penetrates into the internal space due to the capillary action of the raised portion of the yarn in each direction of the base material having a three-dimensional shape or the sheet-shaped base material is increased, and the carbon carbon composite is formed. In, the impregnation time can be shortened and the number of times of impregnation can be reduced, the impregnation efficiency can be improved, and voids can be reduced. After the matrix is impregnated and cured, the bonding force between the layers or between the bonding surfaces can be increased by the anchor effect of the raised portion. Therefore, the interlayer strength (peel strength, out-of-plane strength, strength after impact) of the fiber base material for composite material can be increased. (Claim 2)
[0011]
The raising process is performed by needle punching or the like. With this configuration, the operation of the raising process can be easily performed, and the cost can be greatly reduced. In addition, a part of the in-plane base fiber is raised and pushed into the space between the fiber bundles and between the layers, thereby forming a composite. At this time, the matrix is drawn in by the capillary action of the raised portion, the inflow speed of the matrix through the passage hole of the needle is improved, and the displacement of the internal air is promoted, thereby promoting the permeability of the matrix. Therefore, the filling rate of the matrix into the internal space can be improved by an inexpensive method, and the interlayer strength (peel strength, out-of-plane strength, strength after impact) of the fiber base material for composite material can be increased. (Claim 3)
[0012]
In addition, at the time of needle punching, the fibrous web layer disposed on the surface or inside is inserted and disposed inside the three-dimensional base material or the sheet-like base material simultaneously with the raising treatment. With this configuration, a part of the in-plane base fiber is raised and pushed between the voids and the layers between the fiber bundles, and at the same time, the fiber is also pushed. This further improves the filling rate of the matrix into the internal space. Further, the anchor effect after impregnation and curing of the matrix is also improved, and the interlayer strength (peel strength, out-of-plane strength, strength after impact) of the fiber base material for composite material can be increased. (Claim 4)
[0013]
Further, the fiber base material for a composite material according to the present invention is obtained by performing needle punching on a notch portion or a portion corresponding to a hole edge of a hole structure portion in a composite material component obtained by injecting and curing a resin. The interface between the materials is reinforced with fluffy fibers (claim 5).
[0014]
Further, the fiber base material for composite material according to the present invention, by superimposing the skin fiber base material and the core base material and performing needle punching, fibers are driven between the layers of the skin fiber base material and the core base material. The joint surface is reinforced. (Claim 6)
[0015]
Further, the fiber base material for composite material according to the present invention is characterized in that, in the joint structure of the composite material, the joining surface is reinforced by fluffy fibers generated by performing needle punching. (Claim 7)
[0016]
The fiber substrate for a composite material according to the present invention is characterized in that needle punching is performed perpendicularly or at an angle to the surface of a substrate having a three-dimensional shape or a sheet-like substrate. . With this configuration, the raised portion of the base fiber and the direction in which the fiber is pushed in are appropriately set, and the interlayer strength (peel strength, out-of-plane strength, strength after impact) can be increased. (Claim 8)
[0017]
Further, the fiber substrate for a composite material according to the present invention is characterized in that a convex portion of a thread entanglement point on the surface of a substrate having a three-dimensional shape or a sheet-like substrate is subjected to a smoothing treatment. With this configuration, unevenness on the surface of the fiber base material can be reduced, and the amount of pooling of the matrix can be averaged to eliminate the resin-rich portion. (Claim 9)
[0018]
Further, the fiber base material for a composite material according to the present invention is characterized in that the smoothing treatment of the projections is performed by needle punching or grinding. With this configuration, the smoothing treatment of the surface of the fiber base material is facilitated, and the surface of the base fiber is raised, so that the impregnation efficiency of the matrix can be increased. (Claim 10)
[0019]
Further, the fiber substrate for a composite material according to the present invention is subjected to a raising treatment by a water jet or an air jet (claim 11).
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 (A) and 1 (B) are a schematic structure of a first embodiment of a fiber base material for a composite material according to the present invention and its enlarged explanatory view, and FIGS. 2 (A) and 2 (B) relate to the present invention. It is the schematic structure of 2nd Embodiment of the fiber base material for composite materials, and its expansion explanatory view. FIGS. 3A and 3B are a schematic structure of a fiber substrate for a composite material according to a third embodiment of the present invention and an enlarged explanatory diagram thereof.
[0021]
In the first embodiment shown in FIGS. 1 (A) and 1 (B), the X-direction yarn 1 and the Y-direction yarn 2 are perpendicular to the XY plane (a plane perpendicular to the paper surface of FIG. 1) at predetermined intervals. This is a structure in which a plurality of layers arranged in a number are laminated in the Z direction, and a base material 4 having a three-dimensional shape constituted by binding these with a Z direction thread 3 is laminated by two layers. The ridge 3 is formed by forming a chain stitch 3a on the front side of the base material 4 having a three-dimensional shape and forming a back stitch 3b on the back side thereof. The base material 4 having a three-dimensional shape is laminated by two layers, and needle punching is performed vertically or at an angle with a needle (not shown) having a hook-shaped or bifurcated tip, as shown in FIG. As shown, a nap 5 is formed. The raised 5 is formed by scraping the whole or a part of the surface of the X-direction yarn 1, the Y-direction yarn 2, and the Z-direction yarn 3 at the position where the needle is pierced by the hook-like or bifurcated tip of the needle. It is formed by shaving and raising.
[0022]
In the second embodiment shown in FIGS. 2A and 2B, the X-direction thread 1 and the Y-direction thread 2 are orthogonal to each other on an XY plane (a plane perpendicular to the paper surface of FIG. 2) at predetermined intervals. A structure in which a plurality of the arranged layers are stacked in the Z direction perpendicular to the XY plane, and the base material 4 having a three-dimensional shape formed by binding these with the Z-direction thread 3 is used alone, In this case, the Z-direction thread 3 is formed by forming a back stitch 3b on the front side and the back side of the base material 4 having a three-dimensional shape, and is continuous. Needle punching is performed on the base material 4 having the three-dimensional shape with a needle (not shown) having a hook-like or bifurcated tip so as to be vertical or at an angle, and as shown in FIG. Let it form. In the raised 5, all or a part of the surface of the X-direction thread 1, the Y-direction thread 2, and the Z-direction thread 3 at the position where the needle is pierced is scraped off by a hook-like or bifurcated tip. It is formed by being raised.
[0023]
The third embodiment shown in FIGS. 3A and 3B is a loop at the entanglement point of the Z-direction yarn 3 appearing on the surface of the base material 4 having the three-dimensional shape of the first embodiment or the second embodiment. The convex portion 6 is smoothed by filling the concave portion 8 with a brush 7 generated by scraping the yarn surface by needle punching or grinding, and smoothing the matrix. This is to prevent accumulation and resin-rich portions.
[0024]
In the first to third embodiments, the fibrous web layer is disposed inside the base material 4 having a three-dimensional shape, for example, between the intermediate layers and the respective layers, or on the front surface or the back surface on the needle side. Punching may be performed. By doing so, it is possible to simultaneously insert the fibers into the internal space while performing the raising treatment on the yarn fibers of the base material 4 having the three-dimensional shape.
[0025]
Next, FIGS. 4 to 9 show another embodiment of the present invention, and the fourth embodiment of FIG. 4 is a sheet made of a material that can be used as a core material such as a resin material or a foam. The reinforcing fiber sheet 10 is overlapped on both the upper and lower surfaces of a core material 9 having a shape like that. The fiber sheet 10 is integrated with the core material 9 by needle punching in the thickness direction. By this needle punching, fluffy fibers raised from each fiber of the fiber sheet 10 bite into the surface layer of the core material 9 three-dimensionally, thereby increasing the peel strength between the fiber sheet 10 and the core material 9. When the needle sheet is needle-punched while intermittently pressing the fiber sheet 10 and the core material 9 with a stripper of a needle machine at the time of needle punching, the base material is more compressed, and the fluffy fibers are formed without lowering the fiber density of the base material. A three-dimensional fiber structure with high density can be obtained.
[0026]
The three-dimensional fiber structure as shown in FIG. 4 can be suitably used particularly for an aircraft control surface, an aircraft skin, a main rotor blade of a helicopter, a tail rotor blade, a rotor blade of a gas turbine, and the like.
[0027]
The fifth embodiment shown in FIGS. 5A and 5B shows a reinforcing structure of the circular holes 12 formed in the plate-like fibrous structure 11, and as shown in FIG. Needle punching in the thickness direction of the fiber structure by width. By this needle punching, the fluffy fibers 11 raised from each fiber of the fiber structure reinforce the interface between the fibers, thereby increasing the peel strength at the peripheral portion of the hole and the strength after impact.
[0028]
In the sixth embodiment shown in FIG. 7, three plate-like fiber structures 13 to 15 are joined to each other in the direction in which the surface extends, and two plate-like fiber structures 13 and 14 and a plate-like fiber structure are provided. The polymerized portion of the bodies 14 and 15 is needle-punched in the thickness direction, and the fluffy fibers 10 reinforce the interface between the plate-like fiber structures to increase the peel strength and interlayer strength. Such a structure is effective as a measure against the strength of the joint structure of the plate-like fiber structure.
[0029]
The seventh embodiment shown in FIG. 8 shows a reinforcing structure of a connecting portion between a web portion 16a and a flange portion 16b of an I-shaped beam 16 composed of a fiber structure as shown in FIG. The web portion 16a is formed by integrating two fiber structures 17 and 18 having a U-shaped cross section back to back to form an I-shaped cross section, and further, a reinforcing plate-shaped fiber structure 19 is provided on a flange portion of the I-shaped cross section. It is the one that was pasted. The interface between the plate-like fiber structure 19 and the flange portion having the I-shaped cross section is reinforced by needle punching. More specifically, the needle punching is constituted by needle punching in the thickness direction of the plate-like fiber structure 19 and needle punching which crosses obliquely from inside the corner of the flange portion of the I-shaped cross section. As described above, cracks between layers are prevented by two types of needle punching in the thickness direction and the cross direction, and the intensity of the I-beam can be improved. By using the above means, a fiber structure having not only an I-shaped cross section but also a J-shaped cross section, a hat-shaped cross section, and an inverted T-shaped cross section can be obtained.
[0030]
As described above, according to the embodiment of the present invention, the base fibers are fibrillated (raised) by needle punching, and the directional yarn fibers and fibrous webs in the raised surface are pushed between the layers to form a layer. Since they are entangled with each other, the interlayer strength and the out-of-plane strength are improved. Also, the raised fiber or fiber web is pushed into the voids of the yarn fibers in each direction in the intersecting plane, and the matrix is easily attracted at the time of compounding, the space is easily filled, and the impregnation efficiency is improved. In addition, by using a tapered needle, a needle hole is formed, and this needle hole becomes a path of the matrix, so that the moving speed of the matrix can be increased and voids, which are weak points in strength, can be reduced. Further, the time for impregnation of the matrix can be shortened and the number of times of impregnation can be reduced.
[0031]
Furthermore, when using a single fiber diameter or a thick fiber with a large number of aligned fibers to reduce the price, a substrate with a three-dimensional shape with large irregularities on the surface can be formed, but the yarn entanglement point on the surface with little effect on the strength By raising the loop convex part with a needle or file (grinder) with a return, the resin rich part which is a weak point in strength when flattening the surface to make a composite material is eliminated, and the surface property is improved. Can be improved.
[0032]
The raising of the base fiber can be mass-produced by needle punching, and can be provided at low cost. In the needle punching, in order to increase the interlaminar shear strength, it is preferable to perform the needle punching in a direction different from the bundle direction by the binding yarn. Also, needle punching may be performed between a plurality of stacked sheet-like substrates (woven fabrics), or needle-punching may be performed by disposing a sheet-like substrate between three-dimensionally shaped substrates (woven fabrics). Good. The material of the fiber base material to be the preform includes carbon fiber, ceramic fiber, glass fiber and high-strength organic fiber. For example, organic fibers such as aramid fibers and polyester can be used in addition to inorganic fibers such as glass, carbon, and ceramic. The matrix can be a polymer, carbon, ceramic, or a metal such as aluminum. As the core substrate, a resin-based substrate or the like can be used. In addition, the fiber base material is a three-dimensional woven fabric (single or plural), a stitched (knit) preform, a continuous fiber laminate (a laminate of a plurality of two-dimensional and three-dimensional layers, a partially inserted Z yarn, and the like) The preform or the like is vertically or angled with a needle having a hook-like or bifurcated tip and punched at an appropriate spacing density, for example, an even density, to fibrillate the fiber surface and raise the hair.
Next, the results of a test for improving the strength of a fiber base material using a needle punch will be described. The test was performed on the following five items.
(1) Peel strength test
In this test, a needle punch was applied to the base material (2) portion of the base materials (1) and (2) in which high-strength carbon fiber unidirectional materials having the dimensions shown in FIGS. 10 (a) and (b) were laminated in a pseudo isotropic manner. The impregnation resin was a high-strength epoxy resin. The test results are as shown in FIG.
(2) Out-of-plane strength test
In this test, a high-strength carbon fiber unidirectional material having the dimensions shown in FIGS. 11 (a) and 11 (b) was quasi-isotropically laminated and subjected to needle punching at the joints of substrates (1) and (2). The impregnation resin is a high-strength epoxy resin. The test results are as shown in FIG.
(3) Strength test after impact
This test was performed on a substrate (1) obtained by laminating a high-strength carbon fiber unidirectional material having the dimensions shown in FIGS. The impregnating resin is a high-strength epoxy resin. After applying an impact to a predetermined portion, a load was applied in the compression direction. The test results are as shown in FIG.
(4) FEM analysis of cutout part
This analysis considers the characteristics of the needle punch as shown in FIG. 13 (a), and assumes that a load is applied in the compression direction after performing the needle punch on a finite width around the hole. Is the result of the strength analysis. The analysis result is as shown in FIG.
(5) Needling joint test
In this test, a needle punch was applied to the polymerized portion of the base material (1), (2), and (3) obtained by quasi-isotropically laminating a high-strength carbon fiber unidirectional material having the dimensions shown in FIGS. The impregnated resin is a high-strength epoxy resin. After molding, a load was applied in the tensile direction. The test results are as shown in FIG.
[0033]
【The invention's effect】
According to the configuration of the first aspect, at the time of compounding, the speed of permeation into the internal space is increased by the capillary action of the raised portion of each direction yarn of the base material having a three-dimensional matrix, thereby shortening the impregnation time and the number of times of impregnation. Is reduced, the impregnation efficiency is improved, and voids are reduced. After the matrix is impregnated and cured, the bonding force between the layers or between the bonding surfaces can be increased by the anchor effect of the raised portion. Therefore, the interlayer strength (peel strength, out-of-plane strength, strength after impact) of the fiber base material for composite material can be increased.
[0034]
According to the structure of the second aspect, at the time of compounding, the matrix penetrates into the internal space by capillary action of the raised portion of each direction yarn of the base material or the sheet-shaped base material having a three-dimensional shape, and the impregnation time is increased. In the case of carbon composite molding, the number of times of impregnation can be reduced, the impregnation efficiency can be improved, and voids can be reduced. After the matrix is impregnated and cured, the bonding force between the layers or between the bonding surfaces can be increased by the anchor effect of the raised portion. Therefore, the interlayer strength (peel strength, out-of-plane strength, strength after impact) of the fiber base material for composite material can be increased.
[0035]
According to the configuration of the third aspect, the operation of the raising process can be easily performed, and mass production is possible, so that the cost can be greatly reduced. The part is raised and pushed in, and at the time of compounding, by the action of drawing in the matrix due to the capillary action of the raised part, the improvement of the inflow speed of the matrix through the penetration hole of the needle and the promotion of the displacement and exhaust of the internal air. Matrix permeability is promoted. Therefore, the filling rate of the matrix into the internal space can be improved by an inexpensive method, and the interlayer strength (peel strength, out-of-plane strength, strength after impact) of the fiber base material for composite material can be increased.
[0036]
According to the configuration of claim 4, a part of the in-plane base fiber is raised and pushed between the voids and the layers between the fiber bundles, and at the same time, the fiber is also pushed. The retraction effect of the matrix is further improved, and the filling rate of the matrix into the internal space is increased. Further, the anchor effect after impregnation and curing of the matrix is also improved, and the interlayer strength (peel strength, out-of-plane strength, strength after impact) of the fiber base material for composite material can be further increased.
[0037]
According to the configuration of the fifth aspect, by performing needle punching on the cutout portion in the base material having a single or multi-layer structure or the hole edge portion of the hole structure portion, the gap between the stacked base materials is fluffy. And the interlaminar strength (peel strength, out-of-plane strength, strength after impact) at the joint surface can be increased.
[0038]
According to the configuration of claim 6, the fibers are driven between the skin fiber base and the core base by simultaneously needle-punching between the skin fiber base and the core base. The substrate is joined and reinforced at the interface, and the interlayer strength (peel strength, out-of-plane strength, strength after impact) at the interface can be increased.
[0039]
According to the configuration of the seventh aspect, a single or a plurality of layers of the fiber base materials are alternately overlapped, and the fibers are joined together by the fluffy fibers generated by needle punching, and the layers are reinforced at the interface, and can be sufficiently used as a joint structure. It can have strength.
[0040]
According to the configuration of claim 8, the needle punching is performed perpendicularly or at an angle to the surface of the substrate or sheet-like substrate having a three-dimensional shape, so that the raised portion of the substrate fiber or The pushing direction of the fiber is appropriately set, and the interlayer strength (peeling strength, out-of-plane strength, strength after impact) can be increased.
[0041]
According to the configuration of the ninth aspect, the convex portion of the thread entanglement point on the surface of the substrate having the three-dimensional shape or the sheet-shaped substrate is subjected to the smoothing process. With this configuration, unevenness on the surface of the fiber base material can be reduced, and the amount of pooling of the matrix can be averaged to eliminate the resin-rich portion.
[0042]
According to the configuration of the tenth aspect, the surface of the base fiber is raised, and the smoothing treatment of the fiber base surface is facilitated.
[Brief description of the drawings]
FIGS. 1A and 1B are a schematic structure of a fiber substrate for a composite material according to a first embodiment of the present invention and an enlarged explanatory view thereof.
FIGS. 2A and 2B are a schematic structure of a fiber substrate for a composite material according to a second embodiment of the present invention and an enlarged explanatory diagram thereof.
FIGS. 3 (A) and 3 (B) are schematic views of a third embodiment of a fiber base material for a composite material according to the present invention, and an enlarged explanatory view thereof.
FIG. 4 is a sectional view of a three-dimensional fiber structure according to a fourth embodiment of the present invention.
FIG. 5 is a plan view of a three-dimensional fiber structure according to a fifth embodiment of the present invention.
FIG. 6 is a sectional view of the circular hole in FIG. 2;
FIG. 7 is a sectional view of a three-dimensional fiber structure according to a sixth embodiment of the present invention.
FIG. 8 is a sectional view of a three-dimensional fiber structure according to a seventh embodiment of the present invention.
FIG. 9 is a sectional view of an I-beam having the structure of FIG. 5;
FIGS. 10 (a), (b) and (c) show the results of a strength test of the fiber base material for a composite material according to the present invention.
FIGS. 11 (a), (b) and (c) show the results of a strength test of a fiber base material for a composite material according to the present invention.
FIGS. 12 (a), (b) and (c) show the results of a strength test of the fiber base material for a composite material according to the present invention.
13 (a) and (b) are diagrams showing the results of a strength test of the fiber base material for a composite material according to the present invention.
FIGS. 14 (a), (b) and (c) show the results of a strength test of the fiber base material for a composite material according to the present invention.
[Explanation of symbols]
1 X direction yarn
2 Y direction yarn
3 Z direction thread
3a Chain stitch
3b backstitch
4 Base material with three-dimensional shape
5 Brushed
6 convex
7 Brushed
8 recess
9 Core material (base material)
10 Fiber sheet for reinforcement
11 Fluffy fibers
12 plate-like fiber structure
13 circular hole
14 Plate-like fiber structure
15 Plate-like fiber structure
16 I-beam
17 Fiber structure
18 Fiber structure
19 Plate-like fiber structure

Claims (11)

連続繊維で編織または積層された立体形状を持つ基材が単体または複数重ね合わされ、層間強度を高め、また、内部にマトリックスの浸透性を促進し、面の平滑性を高めるための起毛処理が施された複合材料用繊維基材。A base material having a three-dimensional shape woven or laminated with continuous fibers is singly or plurally laminated, and a brushing treatment is applied to increase the interlayer strength, promote the matrix permeability inside, and improve the surface smoothness. Fiber substrate for composite materials. 連続繊維で編織されたシート状基材が複数重ね合わされ、またはシート状基材と立体形状を持つ基材が複数重ね合わされ、層間強度を高め、また、内部にマトリックスの浸透性を促進し、面の平滑性を高めるための起毛処理が施された複合材料用繊維基材。A plurality of sheet-like substrates woven with continuous fibers are superposed, or a plurality of sheet-like substrates and a plurality of substrates having a three-dimensional shape are superimposed to increase interlayer strength, and also to promote matrix permeability inside, A fibrous base material for a composite material, which has been subjected to a raising treatment for improving the smoothness of the composite material. 起毛処理がニードルパンチングで施されてなる請求項1または2に記載の複合材料用繊維基材。The fiber substrate for a composite material according to claim 1 or 2, wherein the raising treatment is performed by needle punching. ニードルパンチングによって、起毛処理が施されると共に、表面若しくは内部に配設された短繊維ウェブ層が立体形状を持つ基材またはシート状基材の内部空間に挿入配設されてなる請求項1または2に記載の複合材料用繊維基材。Claim 1 or Claim 2, wherein a brushing treatment is performed by needle punching, and a short fiber web layer disposed on the surface or inside is inserted and disposed in an internal space of a substrate having a three-dimensional shape or a sheet-like substrate. 3. The fiber substrate for a composite material according to 2. 複合材料用繊維基材を適用した構造体において切り欠き部、または穴構造部の孔縁部に対してニードルパンチングを行うことにより、基材間を繊維を絡ませることによって界面補強したことを特徴とする請求項1または2記載の複合材料用繊維基材。By performing needle punching on the notch or hole edge of the hole structure in the structure to which the fiber base material for composite material is applied, the interface is reinforced by entanglement of the fibers between the base materials. The fiber substrate for a composite material according to claim 1 or 2, wherein スキン繊維基材とコア基材とを重ね合わせてニードルパンチングすることによって、スキン繊維基材とコア基材との層間に繊維が打ち込まれ、その層間が補強されたことを特徴とする請求項1または2に記載の複合材料用繊維基材。2. A fiber is driven between layers of the skin fiber base material and the core base material by needle punching the skin fiber base material and the core base material, and the layers are reinforced. Or the fiber base material for composite material according to 2. 複合材料の継ぎ手構造において、ニードルパンチングを施すことによって生じる毛羽状の繊維により接合面を補強したことを特徴とする請求項1または2記載の複合材料用繊維基材。The fiber substrate for composite material according to claim 1 or 2, wherein the joint surface of the composite material joint structure is reinforced by fluffy fibers generated by performing needle punching. ニードルパンチングが、立体形状を持つ基材またはシート状基材の表面に対して垂直に、または角度をつけて施されて成る請求項3、4、5、6、または7に記載の複合材料用繊維基材。The composite material according to claim 3, 4, 5, 6, or 7, wherein the needle punching is performed perpendicularly or at an angle to the surface of the substrate or sheet-like substrate having a three-dimensional shape. Fiber substrate. 立体形状を持つ基材またはシート状基材の表面の糸条交絡点の凸部が平滑化処理されてなる請求項1または2に記載の複合材料用繊維基材。The fiber substrate for a composite material according to claim 1 or 2, wherein a convex portion of a thread entanglement point on the surface of the substrate having a three-dimensional shape or the sheet-shaped substrate is subjected to a smoothing treatment. 凸部の平滑化処理がニードルパンチングまたはグラインデイングによって施されてなる請求項9に記載の複合材料用繊維基材。The fibrous base material for a composite material according to claim 9, wherein the convex portion is subjected to smoothing treatment by needle punching or grinding. ウォータージェットもしくはエアージェットによって起毛処理がなされる請求項1または2に記載の複合材料用繊維基材。The fiber substrate for a composite material according to claim 1 or 2, wherein the raising treatment is performed by a water jet or an air jet.
JP2002215357A 2001-08-02 2002-07-24 Fiber substrate for composite material Pending JP2004060058A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002215357A JP2004060058A (en) 2002-07-24 2002-07-24 Fiber substrate for composite material
EP02755731A EP1413415A4 (en) 2001-08-02 2002-07-31 Composite material-use fiber base material
US10/484,818 US20040247845A1 (en) 2001-08-02 2002-07-31 Composite material-use fiber base material
PCT/JP2002/007825 WO2003013817A1 (en) 2001-08-02 2002-07-31 Composite material-use fiber base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002215357A JP2004060058A (en) 2002-07-24 2002-07-24 Fiber substrate for composite material

Publications (1)

Publication Number Publication Date
JP2004060058A true JP2004060058A (en) 2004-02-26

Family

ID=31937410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002215357A Pending JP2004060058A (en) 2001-08-02 2002-07-24 Fiber substrate for composite material

Country Status (1)

Country Link
JP (1) JP2004060058A (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006013623A1 (en) * 2004-08-03 2006-02-09 Mitsubishi Heavy Industries, Ltd. Shock absorbing compound material structure, process for producing the structure and traveling body or sailing body employing the structure
JP2006142819A (en) * 2004-10-22 2006-06-08 Toray Ind Inc Fiber reinforced laminated body, preform, frp, manufacturing method of fiber reinforced laminated body and its manufacturing device
JP2006306057A (en) * 2005-03-28 2006-11-09 Toray Ind Inc Manufacturing method of frp structure
WO2008089849A1 (en) * 2007-01-25 2008-07-31 Knauf Insulation Limited Hydroponics growing medium
JP2009046777A (en) * 2007-08-21 2009-03-05 Hitachi Chem Co Ltd Fiber base material for reinforcing resin molded article and resin molded article
JP2011025626A (en) * 2009-07-29 2011-02-10 Nikkiso Co Ltd Method for producing fiber-reinforced resin composite material
US7947765B2 (en) 2005-07-26 2011-05-24 Knauf Insulation Gmbh Binder and wood board product from maillard reactants
JP2011516294A (en) * 2008-02-11 2011-05-26 アルバニー エンジニアード コンポジッツ インコーポレイテッド Multi-directional reinforced shape woven preform for composite structures
JP2012106461A (en) * 2010-11-19 2012-06-07 Tsudakoma Corp Carbon fiber base material and carbon fiber-reinforced plastic
JP2012186241A (en) * 2011-03-04 2012-09-27 Railway Technical Research Institute Heat conductive sheet
JP2013500181A (en) * 2009-07-28 2013-01-07 サエルテックス フランス Method for producing core material incorporating cross-linked fiber for composite panel, obtained panel and apparatus
US8691934B2 (en) 2004-03-11 2014-04-08 Knauf Insulation Gmbh Binder compositions and associated methods
US8900495B2 (en) 2009-08-07 2014-12-02 Knauf Insulation Molasses binder
US8901208B2 (en) 2007-01-25 2014-12-02 Knauf Insulation Sprl Composite wood board
US8940089B2 (en) 2007-08-03 2015-01-27 Knauf Insulation Sprl Binders
JP2015164229A (en) * 2015-06-02 2015-09-10 公益財団法人鉄道総合技術研究所 heat conductive sheet
US9309436B2 (en) 2007-04-13 2016-04-12 Knauf Insulation, Inc. Composite maillard-resole binders
US9493603B2 (en) 2010-05-07 2016-11-15 Knauf Insulation Sprl Carbohydrate binders and materials made therewith
US9492943B2 (en) 2012-08-17 2016-11-15 Knauf Insulation Sprl Wood board and process for its production
US9505883B2 (en) 2010-05-07 2016-11-29 Knauf Insulation Sprl Carbohydrate polyamine binders and materials made therewith
US9828287B2 (en) 2007-01-25 2017-11-28 Knauf Insulation, Inc. Binders and materials made therewith
US10227464B2 (en) 2014-03-20 2019-03-12 Teijin Limited Fiber-reinforced plastic shaped product
US10287462B2 (en) 2012-04-05 2019-05-14 Knauf Insulation, Inc. Binders and associated products
US10767050B2 (en) 2011-05-07 2020-09-08 Knauf Insulation, Inc. Liquid high solids binder composition
US10864653B2 (en) 2015-10-09 2020-12-15 Knauf Insulation Sprl Wood particle boards
US10968629B2 (en) 2007-01-25 2021-04-06 Knauf Insulation, Inc. Mineral fibre board
US11060276B2 (en) 2016-06-09 2021-07-13 Knauf Insulation Sprl Binders
CN113882090A (en) * 2021-11-02 2022-01-04 天津工业大学 Three-dimensional composite material preform preparation method and device based on unilateral sewing process
CN114030205A (en) * 2021-11-16 2022-02-11 航天特种材料及工艺技术研究所 Packing box and manufacturing method thereof
US11248108B2 (en) 2017-01-31 2022-02-15 Knauf Insulation Sprl Binder compositions and uses thereof
US11332577B2 (en) 2014-05-20 2022-05-17 Knauf Insulation Sprl Binders
US11401204B2 (en) 2014-02-07 2022-08-02 Knauf Insulation, Inc. Uncured articles with improved shelf-life
JP2023515052A (en) * 2020-02-20 2023-04-12 エアロジェット ロケットダイン インコーポレイテッド Articles with bidirectional and tridirectional fiber structures
US11846097B2 (en) 2010-06-07 2023-12-19 Knauf Insulation, Inc. Fiber products having temperature control additives
US11939460B2 (en) 2018-03-27 2024-03-26 Knauf Insulation, Inc. Binder compositions and uses thereof
US11945979B2 (en) 2018-03-27 2024-04-02 Knauf Insulation, Inc. Composite products
JP7471434B2 (en) 2020-02-20 2024-04-19 エアロジェット ロケットダイン インコーポレイテッド Articles with bidirectional and tridirectional fiber structures

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55163132U (en) * 1979-05-11 1980-11-22
US4622254A (en) * 1981-08-31 1986-11-11 Toray Industries, Inc. Fiber material for reinforcing plastics
GB2177345A (en) * 1985-06-27 1987-01-21 Europ Propulsion Process for manufacturing three-dimensional structures of fibrous material, and fibrous material for use therein
GB2230491A (en) * 1989-03-04 1990-10-24 Scapa Group Plc Homogeneously needled three dimensional structures of fibrous material
JPH05220861A (en) * 1992-02-07 1993-08-31 Mitsubishi Gas Chem Co Inc Production of copper clad laminated sheet
WO2000056539A1 (en) * 1999-03-23 2000-09-28 Toray Industries, Inc. Composite reinforcing fiber base material, preform and production method for fiber reinforced plastic
JP2001096653A (en) * 1999-09-29 2001-04-10 Kawasaki Heavy Ind Ltd Composite material and manufacturing method for the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55163132U (en) * 1979-05-11 1980-11-22
US4622254A (en) * 1981-08-31 1986-11-11 Toray Industries, Inc. Fiber material for reinforcing plastics
GB2177345A (en) * 1985-06-27 1987-01-21 Europ Propulsion Process for manufacturing three-dimensional structures of fibrous material, and fibrous material for use therein
GB2230491A (en) * 1989-03-04 1990-10-24 Scapa Group Plc Homogeneously needled three dimensional structures of fibrous material
JPH05220861A (en) * 1992-02-07 1993-08-31 Mitsubishi Gas Chem Co Inc Production of copper clad laminated sheet
WO2000056539A1 (en) * 1999-03-23 2000-09-28 Toray Industries, Inc. Composite reinforcing fiber base material, preform and production method for fiber reinforced plastic
JP2001096653A (en) * 1999-09-29 2001-04-10 Kawasaki Heavy Ind Ltd Composite material and manufacturing method for the same

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8691934B2 (en) 2004-03-11 2014-04-08 Knauf Insulation Gmbh Binder compositions and associated methods
US7846540B2 (en) 2004-08-03 2010-12-07 Mitsubishi Heavy Industries, Ltd. Impact-absorbing composite structure
WO2006013623A1 (en) * 2004-08-03 2006-02-09 Mitsubishi Heavy Industries, Ltd. Shock absorbing compound material structure, process for producing the structure and traveling body or sailing body employing the structure
JP2006142819A (en) * 2004-10-22 2006-06-08 Toray Ind Inc Fiber reinforced laminated body, preform, frp, manufacturing method of fiber reinforced laminated body and its manufacturing device
JP2006306057A (en) * 2005-03-28 2006-11-09 Toray Ind Inc Manufacturing method of frp structure
US9260627B2 (en) 2005-07-26 2016-02-16 Knauf Insulation, Inc. Binders and materials made therewith
US9464207B2 (en) 2005-07-26 2016-10-11 Knauf Insulation, Inc. Binders and materials made therewith
US7947765B2 (en) 2005-07-26 2011-05-24 Knauf Insulation Gmbh Binder and wood board product from maillard reactants
US9745489B2 (en) 2005-07-26 2017-08-29 Knauf Insulation, Inc. Binders and materials made therewith
US8182648B2 (en) 2005-07-26 2012-05-22 Knauf Insulation Gmbh Binders and materials made therewith
US9040652B2 (en) 2005-07-26 2015-05-26 Knauf Insulation, Llc Binders and materials made therewith
US9926464B2 (en) 2005-07-26 2018-03-27 Knauf Insulation, Inc. Binders and materials made therewith
US9434854B2 (en) 2005-07-26 2016-09-06 Knauf Insulation, Inc. Binders and materials made therewith
US11459754B2 (en) 2007-01-25 2022-10-04 Knauf Insulation, Inc. Mineral fibre board
US10000639B2 (en) 2007-01-25 2018-06-19 Knauf Insulation Sprl Composite wood board
US8901208B2 (en) 2007-01-25 2014-12-02 Knauf Insulation Sprl Composite wood board
US10759695B2 (en) 2007-01-25 2020-09-01 Knauf Insulation, Inc. Binders and materials made therewith
US10968629B2 (en) 2007-01-25 2021-04-06 Knauf Insulation, Inc. Mineral fibre board
US11401209B2 (en) 2007-01-25 2022-08-02 Knauf Insulation, Inc. Binders and materials made therewith
US9828287B2 (en) 2007-01-25 2017-11-28 Knauf Insulation, Inc. Binders and materials made therewith
US11453780B2 (en) 2007-01-25 2022-09-27 Knauf Insulation, Inc. Composite wood board
US9447281B2 (en) 2007-01-25 2016-09-20 Knauf Insulation Sprl Composite wood board
US11905206B2 (en) 2007-01-25 2024-02-20 Knauf Insulation, Inc. Binders and materials made therewith
WO2008089849A1 (en) * 2007-01-25 2008-07-31 Knauf Insulation Limited Hydroponics growing medium
US9309436B2 (en) 2007-04-13 2016-04-12 Knauf Insulation, Inc. Composite maillard-resole binders
US8940089B2 (en) 2007-08-03 2015-01-27 Knauf Insulation Sprl Binders
US9469747B2 (en) 2007-08-03 2016-10-18 Knauf Insulation Sprl Mineral wool insulation
US11946582B2 (en) 2007-08-03 2024-04-02 Knauf Insulation, Inc. Binders
US9039827B2 (en) 2007-08-03 2015-05-26 Knauf Insulation, Llc Binders
US8979994B2 (en) 2007-08-03 2015-03-17 Knauf Insulation Sprl Binders
JP2009046777A (en) * 2007-08-21 2009-03-05 Hitachi Chem Co Ltd Fiber base material for reinforcing resin molded article and resin molded article
JP2011516294A (en) * 2008-02-11 2011-05-26 アルバニー エンジニアード コンポジッツ インコーポレイテッド Multi-directional reinforced shape woven preform for composite structures
JP2013500181A (en) * 2009-07-28 2013-01-07 サエルテックス フランス Method for producing core material incorporating cross-linked fiber for composite panel, obtained panel and apparatus
JP2011025626A (en) * 2009-07-29 2011-02-10 Nikkiso Co Ltd Method for producing fiber-reinforced resin composite material
US8900495B2 (en) 2009-08-07 2014-12-02 Knauf Insulation Molasses binder
US10053558B2 (en) 2009-08-07 2018-08-21 Knauf Insulation, Inc. Molasses binder
US9416248B2 (en) 2009-08-07 2016-08-16 Knauf Insulation, Inc. Molasses binder
US11078332B2 (en) 2010-05-07 2021-08-03 Knauf Insulation, Inc. Carbohydrate polyamine binders and materials made therewith
US9493603B2 (en) 2010-05-07 2016-11-15 Knauf Insulation Sprl Carbohydrate binders and materials made therewith
US10738160B2 (en) 2010-05-07 2020-08-11 Knauf Insulation Sprl Carbohydrate polyamine binders and materials made therewith
US11814481B2 (en) 2010-05-07 2023-11-14 Knauf Insulation, Inc. Carbohydrate polyamine binders and materials made therewith
US9505883B2 (en) 2010-05-07 2016-11-29 Knauf Insulation Sprl Carbohydrate polyamine binders and materials made therewith
US10913760B2 (en) 2010-05-07 2021-02-09 Knauf Insulation, Inc. Carbohydrate binders and materials made therewith
US11846097B2 (en) 2010-06-07 2023-12-19 Knauf Insulation, Inc. Fiber products having temperature control additives
JP2012106461A (en) * 2010-11-19 2012-06-07 Tsudakoma Corp Carbon fiber base material and carbon fiber-reinforced plastic
JP2012186241A (en) * 2011-03-04 2012-09-27 Railway Technical Research Institute Heat conductive sheet
US10767050B2 (en) 2011-05-07 2020-09-08 Knauf Insulation, Inc. Liquid high solids binder composition
US10287462B2 (en) 2012-04-05 2019-05-14 Knauf Insulation, Inc. Binders and associated products
US11453807B2 (en) 2012-04-05 2022-09-27 Knauf Insulation, Inc. Binders and associated products
US11725124B2 (en) 2012-04-05 2023-08-15 Knauf Insulation, Inc. Binders and associated products
US10183416B2 (en) 2012-08-17 2019-01-22 Knauf Insulation, Inc. Wood board and process for its production
US9492943B2 (en) 2012-08-17 2016-11-15 Knauf Insulation Sprl Wood board and process for its production
US11401204B2 (en) 2014-02-07 2022-08-02 Knauf Insulation, Inc. Uncured articles with improved shelf-life
US10227464B2 (en) 2014-03-20 2019-03-12 Teijin Limited Fiber-reinforced plastic shaped product
US11332577B2 (en) 2014-05-20 2022-05-17 Knauf Insulation Sprl Binders
JP2015164229A (en) * 2015-06-02 2015-09-10 公益財団法人鉄道総合技術研究所 heat conductive sheet
US11230031B2 (en) 2015-10-09 2022-01-25 Knauf Insulation Sprl Wood particle boards
US10864653B2 (en) 2015-10-09 2020-12-15 Knauf Insulation Sprl Wood particle boards
US11060276B2 (en) 2016-06-09 2021-07-13 Knauf Insulation Sprl Binders
US11248108B2 (en) 2017-01-31 2022-02-15 Knauf Insulation Sprl Binder compositions and uses thereof
US11939460B2 (en) 2018-03-27 2024-03-26 Knauf Insulation, Inc. Binder compositions and uses thereof
US11945979B2 (en) 2018-03-27 2024-04-02 Knauf Insulation, Inc. Composite products
JP2023515052A (en) * 2020-02-20 2023-04-12 エアロジェット ロケットダイン インコーポレイテッド Articles with bidirectional and tridirectional fiber structures
JP7471434B2 (en) 2020-02-20 2024-04-19 エアロジェット ロケットダイン インコーポレイテッド Articles with bidirectional and tridirectional fiber structures
CN113882090B (en) * 2021-11-02 2023-01-06 天津工业大学 Three-dimensional composite material preform preparation method and device based on unilateral suture process
CN113882090A (en) * 2021-11-02 2022-01-04 天津工业大学 Three-dimensional composite material preform preparation method and device based on unilateral sewing process
CN114030205B (en) * 2021-11-16 2023-05-12 航天特种材料及工艺技术研究所 Packing box and manufacturing method thereof
CN114030205A (en) * 2021-11-16 2022-02-11 航天特种材料及工艺技术研究所 Packing box and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2004060058A (en) Fiber substrate for composite material
RU2119872C1 (en) Method for manufacture of part from composite material and method for manufacture of sandwich-type panel from composite material
CA2489335C (en) Tufted composite laminate
US20040247845A1 (en) Composite material-use fiber base material
US8214981B2 (en) Method and apparatus for Z-direction reinforcement of composite laminates
JP5718462B2 (en) Reinforced nonwoven fabric
US20080289743A1 (en) Highly porous interlayers to toughen liquid-molded fabric-based composites
JPS626956A (en) Method for producing three-dimensional structure by puncturing laminate of flat layers of fibrous material and fiber material used therein
JP2003019763A (en) Preform, molding method, carbon fiber-reinforced plastic and aircraft structural member
EP2919972A1 (en) Manufacturing plastic composite articles
KR20100133456A (en) Perforated-core composite panel, device and method for manufacturing such a panel
KR101318312B1 (en) Fibre reinforced composite
US3996084A (en) Lock core panel
US10047465B2 (en) Method for manufacturing a fiber composite component
Ogale et al. Tailoring of textile preforms for fibre-reinforced polymer composites
JP7339961B2 (en) 3D printed fibrous bonding interlayer
CA2780574C (en) Layered composite component
KR101394466B1 (en) Non-woven fabric complex sheet for waterproofing using mesh and its manufacturing method
JP2003039429A (en) Fiber base for composite material
WO2010034755A2 (en) Use of a composite article as spar component
JPH0465566A (en) Deformed preform substrate for composite material
JPH0348022B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080501

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080901