JP2004058109A - Bonding method - Google Patents

Bonding method Download PDF

Info

Publication number
JP2004058109A
JP2004058109A JP2002221874A JP2002221874A JP2004058109A JP 2004058109 A JP2004058109 A JP 2004058109A JP 2002221874 A JP2002221874 A JP 2002221874A JP 2002221874 A JP2002221874 A JP 2002221874A JP 2004058109 A JP2004058109 A JP 2004058109A
Authority
JP
Japan
Prior art keywords
linear member
joining
side edge
thin film
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002221874A
Other languages
Japanese (ja)
Inventor
Kiyoshi Koyama
甲山 喜代志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiwa Manufacturing Co Ltd
Original Assignee
Seiwa Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiwa Manufacturing Co Ltd filed Critical Seiwa Manufacturing Co Ltd
Priority to JP2002221874A priority Critical patent/JP2004058109A/en
Publication of JP2004058109A publication Critical patent/JP2004058109A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bonding method for bonding a wire-like member to a bonding surface with high accuracy without affecting other parts than the bonding surface of a workpiece by the melting heat. <P>SOLUTION: A conductive wire 16 is placed on a thin film electrode 14, and an end part 18 of the conductive wire 16 is protruded by a predetermined quantity from a side edge part 14a of the thin film electrode 14. The end part 18 of the conductive wire 16 is irradiated with laser beams 20, and when the temperature of the conductive wire 16 exceeds the conductor melting temperature of the conductive wire 16, the end part 18 is melted, and the molten end part 18 forms a spherical conductor by the surface tension. The spherical conductor is moved in a direction of an arrow toward an electronic component 10, and when it reaches the side edge part 14a, the thin film electrode 14 is melted by the heat of the spherical conductor. As a result, the side edge part 14a of the thin film electrode 14 is bonded to the conductive wire 16, and the spherical conductor is cooled and solidified to form a bonded part. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ワークの接合面に対して線状部材を溶融して接合する接合方法に関する。
【0002】
【従来の技術】
従来、ワークの接合面に対して線状部材を溶融して接合する接合方法として、前記接合面に当接させた前記線状部材に加熱したヒータを押し当て、前記接合面と前記線状部材とを熱圧接又はろう付けする接合方法や、図4に示すように、ワーク100の接合面102に当接させた線状部材104の一部106に、レーザビームのスポット108、アーク又はトーチを投射し、線状部材104の一部106に溶融熱を与え、接合面102と線状部材104とを接合する接合方法がある。
【0003】
【発明が解決しようとする課題】
しかしながら、加熱したヒータを押し当てる接合方法では、ワークの接合面に対し圧力をかけるので、前記接合面にクラック等の表面形状の変化を発生させるおそれがある。また、この接合方法ではヒータが消耗しやすいので、前記ヒータを頻繁に交換する必要があり、ワークと線状部材との接合に要するコストの増大につながるおそれがある。
【0004】
一方、レーザビーム、アーク又はトーチを用いた接合方法では、例えば、微小な線状部材104の接合を行う場合、線状部材104に合わせて前記レーザビームのスポット108を小さくすることが極めて困難である。従って、接合面102を必要以上に溶融させてしまい、クラック等の表面形状の変化を発生させるおそれがある。また、線状部材104に投射されるスポット108の位置決め精度が悪いと、線状部材104に近接して接合面102上に設けられている電子素子等にレーザビームが投射され、前記電子素子等の機能を低下させてしまうおそれもある。
【0005】
本発明は、このような課題を解決するためになされたものであって、接合面以外の部位に溶融熱による影響を与えることなく、ワークの接合面に対して線状部材を高精度に接合することができる接合方法を提供することを目的としている。
【0006】
【課題を解決するための手段】
本発明に係る接合方法は、ワークの接合面に対して線状部材を溶融して接合する接合方法において、前記接合面の側縁部から前記線状部材の一部を突出させた状態で、前記側縁部に前記線状部材を接触させ、前記側縁部から突出する前記線状部材の所定部位に溶融熱を付与して、前記所定部位を溶融させ、溶融した前記所定部位に連続する前記線状部材を、前記所定部位に付与された熱により溶融することで前記側縁部に指向して移動させ、前記線状部材を前記側縁部に接合することを特徴とする。
【0007】
この場合、接合面の側縁部から突出する前記線状部材の所定部位に溶融熱が付与されると、その部分の線状部材が溶融する。溶融状態となった線状部材は、表面張力によって球状となり、連続する線状部材を溶融しながら肥大化しつつ移動した後、最終的に前記側縁部に接合する。この結果、線状部材がワークの接合面に接合される。
【0008】
線状部材を溶融させる際、前記側縁部から突出した前記所定部位を溶融するので、ワークに直接溶融熱が投射されることがなく、前記ワークの接合面におけるクラック等の表面形状の変化が発生するという問題を回避することができる。また、前記線状部材の所定部位に溶融熱を付与して線状部材を溶融すればよいため、溶融手段には高い位置決め精度やスポットの形状精度が要求されることがなく、微小なワークの接合面に対しても線状部材を正確に接合させることができる。
【0009】
前記線状部材の所定部位に付与される前記溶融熱は、レーザビーム溶接、アーク溶接又はガス溶接から選択される非接触状態による溶融手段によって付与することが望ましい。この場合、ヒータの交換等といった接合装置におけるメンテナンスの頻度が減少し、前記ワークと前記線状部材との接合に要するコストの低減を図ることができる。
【0010】
なお、線状部材が溶着するワークを、クラック等の問題が発生しない程度に予め加熱する、あるいは、所定の広がりを有するレーザビームの一部を利用してワークを加熱すれば、ワークに対して線状部材を一層確実に接合することができる。
【0011】
【発明の実施の形態】
以下に、本発明の実施の形態に係る接合方法(以下、第1又は第2の実施の形態に係る接合方法と記す)について、図1〜図3Cを参照しながら説明する。
【0012】
第1の実施の形態に係る接合方法が適用される電子部品10(ワーク)は、図1に示すように、例えば、セラミックス等の電気絶縁材料又はフェライト等の磁性材料からなる基板12上に、Au、Ag等の導電体からなる薄膜電極14(接合面)を成膜したものである。なお、電子部品10には、薄膜電極14以外に、抵抗、インダクタ、コンデンサ、半導体素子等を搭載することができる。
【0013】
電子部品10の薄膜電極14には、線状部材である導線16が載置される。そして、導線16の端部18は、薄膜電極14の側縁部14aから所定量突出するように配置される。なお、導線16としては、表面に酸化膜等の絶縁被膜が施されたものを用いることができる。例えば、半導体部品のボンディングに使用されるアルミニウム線、タングステン線等のボンディングワイヤ等を用いることができる。
【0014】
次に、薄膜電極14と導線16との接合方法について、図1及び図2A〜図2Cを参照しながら説明する。
【0015】
まず、図示しないレーザビーム溶接装置を、薄膜電極14の側縁部14aから所定量突出する導線16の端部18に対して位置決めする。次いで、レーザビーム20をレンズ22によって集光し、端部18に照射する。
【0016】
この場合、レーザビーム20の光軸上には、電子部品10が配置されていないため、該電子部品10はレーザビーム20によって所定以上に加熱されるおそれはない。従って、端部18に照射されるレーザビーム20のレーザビームスポット24の大きさは、図2Aに示すように、端部18に対して所望の溶融熱を付与できるものであれば、導線16の直径より大きくてもよく、また、レーザビーム20が端部18に照射される範囲の位置決め精度を有していればよい。
【0017】
レーザビーム20が端部18に照射され、導線16の温度が、例えば、Ag等の導体の溶融温度を超えると端部18が溶融し、その溶融した端部18が、図2Bに示すように、表面張力によって球状導体26となる。球状導体26は、導線16の溶融温度以上であり、それに連続する導線16を溶融しながら肥大化し、電子部品10を指向して矢印方向に移動する。なお、レーザビーム20の端部18への照射は、球状導体26がレーザビームスポット24から外れた時点で停止させる。
【0018】
球状導体26が薄膜電極14の側縁部14aに到達すると、薄膜電極14は球状導体26の有する熱によって溶融する。この結果、図2Cに示すように、薄膜電極14の側縁部14aと導線16とが接合し、球状導体26が冷却固化して接合部28が形成される。
【0019】
なお、レーザビーム20により導線16の端部18に付与する熱量と、端部18に対するレーザビーム20の照射位置は、溶融した端部18によって形成される球状導体26が自身の熱によって導線16を溶融して移動することで薄膜電極14に到達できるように設定する必要がある。
【0020】
更に、上述した第1の実施の形態に係る接合方法では、レーザビーム20を用いて導線16の端部18を溶融させているが、導線16の端部18の溶融手段は、電子部品10に所定以上の溶融熱が付与されない溶融手段であればよく、例えば、イナートガスタングステンアーク溶接(TIG溶接)等のアーク溶接又はガス溶接を用いてもよい。また、これらの溶融手段では、導線16の端部18に非接触状態でなく、薄膜電極14に導線16を接合することができる。前記TIG溶接では、プローブの先端からアークを導線16の端部18に投射するので、前記プローブの消耗が少なく、溶接手段のメンテナンスの頻度を低減することが可能である。従って、前記接合に要するコストを低減することができる。
【0021】
なお、上述した第1の実施の形態においては、薄膜電極14を、クラック等の表面形状の変化が発生しない程度に予め加熱する、あるいは、所定の広がりを有するレーザビーム20の一部を利用して薄膜電極14を加熱するようにしてもよい。そのようにすることで、薄膜電極14に対して導線16を一層確実に接合することができる。
【0022】
次に、第2の実施の形態に係る接合方法を、図3A〜図3Cに示す。
【0023】
この接合方法は、図3A〜図3Cに示すように、フェライトコア30に導線16を巻回させて構成されるインダクタ32における電極の接合に適用されるものである。
【0024】
フェライトコア30は、両端に第1及び第2の電極部34及び36を有する。第1及び第2の電極部34及び36は、コーナー部38及び40を有し、表面にはAu、Ag等からなる薄膜が成膜されている。そして、フェライトコア30に巻回された導線16と第1及び第2の電極部34及び36とを接合することでインダクタ32を構成する。
【0025】
次に、第1及び第2の電極部34及び36と導線16との接合方法について説明する。
【0026】
まず、図3Aに示すように、コーナー部38及び40に対して導線16の一部を接触させた状態で、コーナー部38及び40から所定距離離間した導線16に対してレーザビーム20を照射する。レーザビーム20が照射された導線16は、溶融することにより切断されるとともに、図3Bに示すように、溶融することにより第1及び第2の球状導体42及び44が形成される。
【0027】
次いで、第1及び第2の球状導体42及び44は、付与された溶融熱によって導線16を溶融しながら、第1及び第2の電極部34及び36のコーナー部38及び40に向かって移動する。
【0028】
図3Cに示すように、第1及び第2の球状導体42及び44がコーナー部38及び40に到達すると、第1及び第2の電極部34及び36と接合する。次いで、第1及び第2の球状導体42及び44が冷却固化することにより、第1及び第2の接合部46及び48が形成される。
【0029】
上述したように、第2の実施の形態では、導線16の切断作業と、導線16の第1及び第2の電極部34及び36に対する接合作業とを同時に遂行することができる。
【0030】
また、上述した第2の実施の形態においては、第1及び第2の電極部34及び36を、クラック等の表面形状の変化が発生しない程度に予め加熱する、あるいは、所定の広がりを有するレーザビーム20の一部を利用して第1及び第2の電極部34及び36を加熱するようにしてもよい。そのようにすることで、第1及び第2の電極部34及び36に対して導線16を一層確実に接合することができる。
【0031】
なお、本発明に係る接合方法は、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることは勿論である。
【0032】
【発明の効果】
以上、説明したように、本発明に係る接合方法によれば、ワークの接合面から突出した線状部材の一部を溶融し、前記線状部材の一部が有する溶融熱を利用して前記接合面と前記線状部材とを接合させるため、前記接合面に過剰な溶融熱が付与されることがなく、ワークに無用な熱によるクラック等の表面形状の変化が発生することを回避することができる。
【0033】
また、線状部材に対して溶融熱を付与する際、高精度な位置決めが不要となるため、例えば、微小な部品同士の接合作業を容易且つ高精度に行うことができる。
【図面の簡単な説明】
【図1】第1の実施の形態に係る接合方法が適用される電子部品を示す断面図である。
【図2】図2A〜図2Cは、第1の実施の形態に係る接合方法の説明図である。
【図3】図3A〜図3Cは、第2の実施の形態に係る接合方法の説明図である。
【図4】従来技術に係る接合方法の説明図である。
【符号の説明】
10…電子部品        12…基板
14…薄膜電極        14a…側縁部
16…導線          18…端部
20…レーザビーム      22…レンズ
24…レーザビームスポット  26、42、44…球状導体
28、46、48…接合部   30…フェライトコア
32…インダクタ       34、36…電極部
38、40…コーナー部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a joining method in which a linear member is melted and joined to a joining surface of a workpiece.
[0002]
[Prior art]
Conventionally, as a joining method for melting and joining a linear member to a joining surface of a workpiece, a heated heater is pressed against the linear member brought into contact with the joining surface, and the joining surface and the linear member As shown in FIG. 4, a laser beam spot 108, an arc or a torch is applied to a part 106 of the linear member 104 brought into contact with the joining surface 102 of the workpiece 100, as shown in FIG. There is a joining method in which the joining surface 102 and the linear member 104 are joined by projecting and applying heat of fusion to a part 106 of the linear member 104.
[0003]
[Problems to be solved by the invention]
However, in the joining method in which the heated heater is pressed, pressure is applied to the joint surface of the workpiece, and thus there is a risk of causing a change in surface shape such as a crack on the joint surface. Moreover, since the heater is easily consumed in this joining method, the heater needs to be frequently replaced, which may lead to an increase in cost required for joining the workpiece and the linear member.
[0004]
On the other hand, in the joining method using a laser beam, an arc, or a torch, for example, when joining a minute linear member 104, it is extremely difficult to reduce the laser beam spot 108 in accordance with the linear member 104. is there. Therefore, the bonding surface 102 may be melted more than necessary, and a change in surface shape such as a crack may occur. Further, if the positioning accuracy of the spot 108 projected on the linear member 104 is poor, a laser beam is projected onto an electronic element or the like provided on the bonding surface 102 in the vicinity of the linear member 104, and the electronic element or the like is projected. There is also a risk of degrading the function.
[0005]
The present invention has been made to solve such a problem, and joins a linear member to a joint surface of a workpiece with high accuracy without affecting the part other than the joint surface due to heat of fusion. It aims at providing the joining method which can be done.
[0006]
[Means for Solving the Problems]
In the joining method according to the present invention, in the joining method in which the linear member is melted and joined to the joining surface of the workpiece, a part of the linear member protrudes from the side edge portion of the joining surface. The linear member is brought into contact with the side edge portion, a heat of fusion is applied to a predetermined portion of the linear member protruding from the side edge portion, the predetermined portion is melted, and the molten predetermined portion is continued. The linear member is melted by heat applied to the predetermined portion and moved toward the side edge portion, and the linear member is joined to the side edge portion.
[0007]
In this case, when melting heat is applied to a predetermined portion of the linear member protruding from the side edge portion of the joint surface, the linear member in that portion is melted. The linear member in a molten state becomes spherical due to surface tension, and moves while enlarging while melting the continuous linear member, and is finally joined to the side edge portion. As a result, the linear member is joined to the joining surface of the workpiece.
[0008]
When the linear member is melted, the predetermined portion protruding from the side edge portion is melted, so that the heat of fusion is not directly projected onto the workpiece, and the surface shape changes such as cracks on the joint surface of the workpiece. The problem of occurrence can be avoided. Further, since it is only necessary to melt the linear member by applying melting heat to a predetermined portion of the linear member, the melting means does not require high positioning accuracy and spot shape accuracy, The linear member can be accurately bonded also to the bonding surface.
[0009]
It is desirable that the melting heat applied to a predetermined part of the linear member is applied by a melting means in a non-contact state selected from laser beam welding, arc welding, or gas welding. In this case, the frequency of maintenance in the joining apparatus such as replacement of the heater is reduced, and the cost required for joining the workpiece and the linear member can be reduced.
[0010]
If the work to which the linear member is welded is preheated to such an extent that problems such as cracks do not occur, or if the work is heated using a part of a laser beam having a predetermined spread, The linear members can be more reliably joined.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a bonding method according to an embodiment of the present invention (hereinafter referred to as a bonding method according to the first or second embodiment) will be described with reference to FIGS. 1 to 3C.
[0012]
As shown in FIG. 1, an electronic component 10 (work) to which the joining method according to the first embodiment is applied, for example, on a substrate 12 made of an electrically insulating material such as ceramics or a magnetic material such as ferrite, A thin film electrode 14 (bonding surface) made of a conductor such as Au or Ag is formed. In addition to the thin film electrode 14, a resistor, an inductor, a capacitor, a semiconductor element, and the like can be mounted on the electronic component 10.
[0013]
A conducting wire 16 that is a linear member is placed on the thin film electrode 14 of the electronic component 10. The end 18 of the conducting wire 16 is disposed so as to protrude from the side edge 14a of the thin film electrode 14 by a predetermined amount. In addition, as the conducting wire 16, a conductor whose surface is coated with an insulating film such as an oxide film can be used. For example, bonding wires such as aluminum wires and tungsten wires used for bonding semiconductor components can be used.
[0014]
Next, a method of joining the thin film electrode 14 and the conductive wire 16 will be described with reference to FIGS. 1 and 2A to 2C.
[0015]
First, a laser beam welding apparatus (not shown) is positioned with respect to the end portion 18 of the conducting wire 16 protruding a predetermined amount from the side edge portion 14 a of the thin film electrode 14. Next, the laser beam 20 is condensed by the lens 22 and irradiated to the end 18.
[0016]
In this case, since the electronic component 10 is not disposed on the optical axis of the laser beam 20, the electronic component 10 is not likely to be heated by the laser beam 20 beyond a predetermined level. Therefore, as shown in FIG. 2A, the size of the laser beam spot 24 of the laser beam 20 applied to the end 18 is such that the desired heat of fusion can be imparted to the end 18, as shown in FIG. It may be larger than the diameter, and it is sufficient that the laser beam 20 has a positioning accuracy within a range in which the end portion 18 is irradiated.
[0017]
When the end portion 18 is irradiated with the laser beam 20 and the temperature of the conducting wire 16 exceeds the melting temperature of a conductor such as Ag, the end portion 18 is melted. As shown in FIG. 2B, the end portion 18 is melted. The spherical conductor 26 is formed by the surface tension. The spherical conductor 26 has a temperature equal to or higher than the melting temperature of the conductive wire 16, and is enlarged while melting the continuous conductive wire 16, and moves in the direction of the arrow toward the electronic component 10. The irradiation of the end 18 of the laser beam 20 is stopped when the spherical conductor 26 is removed from the laser beam spot 24.
[0018]
When the spherical conductor 26 reaches the side edge 14 a of the thin film electrode 14, the thin film electrode 14 is melted by the heat of the spherical conductor 26. As a result, as shown in FIG. 2C, the side edge portion 14 a of the thin film electrode 14 and the conducting wire 16 are joined, and the spherical conductor 26 is cooled and solidified to form a joined portion 28.
[0019]
The amount of heat applied to the end 18 of the conductor 16 by the laser beam 20 and the irradiation position of the laser beam 20 on the end 18 are determined by the spherical conductor 26 formed by the melted end 18 causing the conductor 16 to be heated by its own heat. It is necessary to set so that the thin film electrode 14 can be reached by melting and moving.
[0020]
Furthermore, in the joining method according to the first embodiment described above, the end portion 18 of the conducting wire 16 is melted by using the laser beam 20, but the melting means of the end portion 18 of the conducting wire 16 is applied to the electronic component 10. Any melting means may be used as long as it does not give a predetermined or higher melting heat. For example, arc welding such as inert gas tungsten arc welding (TIG welding) or gas welding may be used. Moreover, in these melting means, the conducting wire 16 can be joined to the thin film electrode 14 without being in contact with the end portion 18 of the conducting wire 16. In the TIG welding, since an arc is projected from the tip of the probe onto the end 18 of the conducting wire 16, the probe is less consumed and the maintenance frequency of the welding means can be reduced. Therefore, the cost required for the joining can be reduced.
[0021]
In the first embodiment described above, the thin film electrode 14 is preheated to such an extent that a change in surface shape such as cracks does not occur, or a part of the laser beam 20 having a predetermined spread is used. The thin film electrode 14 may be heated. By doing so, the conducting wire 16 can be more reliably joined to the thin film electrode 14.
[0022]
Next, the joining method according to the second embodiment is shown in FIGS. 3A to 3C.
[0023]
As shown in FIGS. 3A to 3C, this joining method is applied to joining electrodes in an inductor 32 configured by winding a conducting wire 16 around a ferrite core 30.
[0024]
The ferrite core 30 has first and second electrode portions 34 and 36 at both ends. The first and second electrode portions 34 and 36 have corner portions 38 and 40, and a thin film made of Au, Ag or the like is formed on the surface. And the inductor 32 is comprised by joining the conducting wire 16 wound by the ferrite core 30, and the 1st and 2nd electrode parts 34 and 36. As shown in FIG.
[0025]
Next, a method for joining the first and second electrode portions 34 and 36 and the conductive wire 16 will be described.
[0026]
First, as shown in FIG. 3A, the laser beam 20 is irradiated to the conducting wire 16 spaced apart from the corner portions 38 and 40 by a predetermined distance in a state where a part of the conducting wire 16 is in contact with the corner portions 38 and 40. . The conducting wire 16 irradiated with the laser beam 20 is cut by melting, and as shown in FIG. 3B, the first and second spherical conductors 42 and 44 are formed by melting.
[0027]
Next, the first and second spherical conductors 42 and 44 move toward the corner portions 38 and 40 of the first and second electrode portions 34 and 36 while melting the conducting wire 16 by the applied heat of fusion. .
[0028]
As shown in FIG. 3C, when the first and second spherical conductors 42 and 44 reach the corner portions 38 and 40, they are joined to the first and second electrode portions 34 and 36. Next, the first and second spherical conductors 42 and 44 are cooled and solidified, whereby the first and second joint portions 46 and 48 are formed.
[0029]
As described above, in the second embodiment, the cutting operation of the conducting wire 16 and the joining operation of the conducting wire 16 to the first and second electrode portions 34 and 36 can be performed simultaneously.
[0030]
In the second embodiment described above, the first and second electrode portions 34 and 36 are preheated to such an extent that changes in the surface shape such as cracks do not occur, or have a predetermined spread. The first and second electrode portions 34 and 36 may be heated using a part of the beam 20. By doing so, the conducting wire 16 can be more reliably bonded to the first and second electrode portions 34 and 36.
[0031]
In addition, the joining method according to the present invention is not limited to the above-described embodiment, and it is needless to say that various configurations can be adopted without departing from the gist of the present invention.
[0032]
【The invention's effect】
As described above, according to the joining method according to the present invention, a part of the linear member protruding from the joining surface of the workpiece is melted, and the melting heat of the part of the linear member is used to In order to join the joining surface and the linear member, excessive melting heat is not applied to the joining surface, and it is possible to avoid the occurrence of a change in surface shape such as a crack due to unnecessary heat on the workpiece. Can do.
[0033]
In addition, since high-precision positioning is not required when applying heat of fusion to the linear member, for example, a joining operation between minute components can be easily and highly accurately performed.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an electronic component to which a bonding method according to a first embodiment is applied.
FIG. 2A to FIG. 2C are explanatory diagrams of a bonding method according to the first embodiment.
FIG. 3A to FIG. 3C are explanatory diagrams of a joining method according to a second embodiment.
FIG. 4 is an explanatory diagram of a joining method according to a conventional technique.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Electronic component 12 ... Board | substrate 14 ... Thin film electrode 14a ... Side edge part 16 ... Conductor 18 ... End part 20 ... Laser beam 22 ... Lens 24 ... Laser beam spot 26, 42, 44 ... Spherical conductor 28, 46, 48 ... Joining Part 30 ... Ferrite core 32 ... Inductor 34, 36 ... Electrode part 38, 40 ... Corner part

Claims (2)

ワークの接合面に対して線状部材を溶融して接合する接合方法において、
前記接合面の側縁部から前記線状部材の一部を突出させた状態で、前記側縁部に前記線状部材を接触させ、
前記側縁部から突出する前記線状部材の所定部位に溶融熱を付与して、前記所定部位を溶融させ、
溶融した前記所定部位に連続する前記線状部材を、前記所定部位に付与された熱により溶融することで前記側縁部に指向して移動させ、
前記線状部材を前記側縁部に接合することを特徴とする接合方法。
In the joining method of melting and joining the linear member to the joining surface of the workpiece,
In a state where a part of the linear member protrudes from the side edge of the joint surface, the linear member is brought into contact with the side edge,
Applying a heat of fusion to a predetermined portion of the linear member protruding from the side edge portion to melt the predetermined portion;
The linear member continuous to the melted predetermined portion is moved toward the side edge portion by melting by heat applied to the predetermined portion,
The joining method characterized by joining the said linear member to the said side edge part.
請求項1記載の接合方法において、
前記線状部材の所定部位に付与される前記溶融熱は、レーザビーム溶接、アーク溶接又はガス溶接から選択される非接触状態による溶融手段によって付与されることを特徴とする接合方法。
The joining method according to claim 1,
The joining method, wherein the heat of fusion applied to a predetermined part of the linear member is applied by a melting means in a non-contact state selected from laser beam welding, arc welding or gas welding.
JP2002221874A 2002-07-30 2002-07-30 Bonding method Pending JP2004058109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002221874A JP2004058109A (en) 2002-07-30 2002-07-30 Bonding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002221874A JP2004058109A (en) 2002-07-30 2002-07-30 Bonding method

Publications (1)

Publication Number Publication Date
JP2004058109A true JP2004058109A (en) 2004-02-26

Family

ID=31942066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002221874A Pending JP2004058109A (en) 2002-07-30 2002-07-30 Bonding method

Country Status (1)

Country Link
JP (1) JP2004058109A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004609A1 (en) * 2005-07-05 2007-01-11 Phoeton Corp. Method of forming spherical body, method of joining fine lines and laser processing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004609A1 (en) * 2005-07-05 2007-01-11 Phoeton Corp. Method of forming spherical body, method of joining fine lines and laser processing device

Similar Documents

Publication Publication Date Title
US5298715A (en) Lasersonic soldering of fine insulated wires to heat-sensitive substrates
US7411478B2 (en) Coil component
US3610874A (en) Laser welding technique
CN111992833B (en) Laser tin soldering method for preset tin
JPS59119844A (en) Method of brazing by laser flexible wire
JP2004283911A (en) Method for mounting magnetic head parts, magnetic head device and method for manufacturing magnetic head device
EP1275461A1 (en) Brazing method and device, relay coil and method for the coil by the brazing method and device
JP4275120B2 (en) Coil parts manufacturing method and manufacturing apparatus
JP2004179551A (en) Coil apparatus and method of manufacturing the same
US20210082868A1 (en) Method of joining a surface-mount component to a substrate with solder that has been temporarily secured
CN106425103A (en) Infrared laser welding method for nonferrous metals
JP5406608B2 (en) Resistance welding machine and resistance welding method
JPH04306817A (en) Automatic manufacturing method for coil-shaped electric part
JPH11320154A (en) Laser welding method for pin joining on printed circuit board
JP2004058109A (en) Bonding method
JP2010253493A (en) Method and apparatus for parallel seam welding
JP5332511B2 (en) Resistance welding machine
JP2006026692A (en) Method for removing unleaded solder from slider pad and magnetic disk device
JP2000101229A (en) Thermall pressure-contact device for covered wire
JP4281960B2 (en) Joining method and joining apparatus using solder
CN108453337B (en) Welding jig and welding method thereof
JPS59107786A (en) Joining method of fine wire
JP4235168B2 (en) Bonding structure and bonding method of bus bar for electronic device and connection terminal
JP4325550B2 (en) Bonding structure and bonding method of bus bar for electronic device and connection terminal
JP2002050018A (en) Method for manufacturing magnetic head device, solder ball supply element, and its manufacturing method