JP2004055830A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2004055830A
JP2004055830A JP2002211377A JP2002211377A JP2004055830A JP 2004055830 A JP2004055830 A JP 2004055830A JP 2002211377 A JP2002211377 A JP 2002211377A JP 2002211377 A JP2002211377 A JP 2002211377A JP 2004055830 A JP2004055830 A JP 2004055830A
Authority
JP
Japan
Prior art keywords
metal plate
terminal
laminated
contact
contact terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002211377A
Other languages
Japanese (ja)
Other versions
JP4070531B2 (en
Inventor
Hidekazu Nishidai
西台 秀和
Yutaka Tajima
田島 豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Hitachi Unisia Automotive Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Unisia Automotive Ltd filed Critical Hitachi Unisia Automotive Ltd
Priority to JP2002211377A priority Critical patent/JP4070531B2/en
Publication of JP2004055830A publication Critical patent/JP2004055830A/en
Application granted granted Critical
Publication of JP4070531B2 publication Critical patent/JP4070531B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance

Abstract

<P>PROBLEM TO BE SOLVED: To prevent that the stress is applied to connection portions by arranging contact terminals at the connection portions between a semiconductor device and an external power supply. <P>SOLUTION: On a base metal plate 2 of an inverter device 1, laminated metal plates 5, 7 are laminated through an insulating material 6 so as to form an inverter circuit 11 mounting MOS FETs 8, 9 on these metal plates 5, 7. The base metal plate 2 is fastened to a mount member 23 through terminal metal plates 14, 17 connected to a power supply 12, and insulating material 4, 15 and 18. The contact terminals 16, 19 are separately made to elastically have contact with the base metal plate 2 and the laminated metal plate 5 in the state where the contact terminals 16, 19 are distorted and bent. Hence, even when an external force or the like is exerted to e.g., the mount member 23 side, it can be prevented that the stress is applied to the connection portions of the base metal plate 2, laminated metal plate 5, and contact terminals 16, 19, etc, thereby enhancing endurance and reliability. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、例えば大電流を出力するインバータ装置等として好適に用いられるの半導体装置に関する。
【0002】
【従来の技術】
一般に、半導体装置としては、基板に半導体素子を搭載し、これらを素子ケース内に収容する構成としたパッケージ部品が知られている(例えば、特開昭61−280644号公報等)。
【0003】
この種の従来技術によるパッケージ部品は、半導体素子の各電極と接続される複数のリード端子が素子ケースに設けられ、これらのリード端子は、素子ケースの外部に引出されると共に、例えば半田付け等の手段を用いて外部の回路基板等と接続されている。
【0004】
また、他の半導体装置として、例えば絶縁ゲート型バイポーラトランジスタ(IGBT)、MOSトランジスタ(MOSFET)等の半導体素子を金属板等に実装し、これらを素子ケース内に収容する構成としたインバータ装置がある。
【0005】
この場合、インバータ装置は、例えば電動モータ等を駆動するために電気機械のハウジング等に取付けられるものである。また、インバータ装置には、例えば細長い導体板等により形成されたバスバが設けられ、このバスバは、一端側が素子ケース内で各半導体素子や金属板等に接続されると共に、他端側が素子ケースの外部に突出している。
【0006】
そして、バスバの突出端側は、例えば電気機械のハウジング側に固定された導体板にねじ止め等の手段を用いて取付けられ、この導体板等を介して電源側に接続されている。
【0007】
【発明が解決しようとする課題】
ところで、上述した従来技術では、例えば半田付け等の手段によってパッケージ部品のリード端子と外部との間を接続したり、ねじ止め等の手段によってインバータ装置のバスバと外部との間を接続する構成としている。
【0008】
しかし、これらの半導体装置には、その使用環境等に応じて振動や衝撃等の外力が加わることがあり、例えばインバータ装置においては、外力によってバスバのねじ止め部位に大きな応力が加わり易い。
【0009】
このため、従来技術では、半導体装置を長期間にわたって使用するうちに、その半田付け部位やねじ止め部位等が応力集中によって損傷したり、これらの部位から装置内に応力が伝わることによって内部の回路等が接続不良となることがあり、信頼性が低下するという問題がある。
【0010】
この場合、例えば樹脂モールド等の手段により半導体装置のリード端子やバスバを素子ケースに固定し、その強度を高める方法も考えられる。しかし、この場合には、例えば素子ケースの肉厚等を必要な強度に応じて大きく形成しなければならず、装置が大型化し易いという問題がある。
【0011】
本発明は上述した従来技術の問題に鑑みなされたもので、本発明の目的は、半導体素子と外部との接続部位に振動、衝撃等によって応力が加わるのを防止でき、この応力から装置内の回路等を保護できると共に、装置全体を小型化しつつ、耐久性、信頼性を向上できるようにした半導体装置を提供することにある。
【0012】
【課題を解決するための手段】
上述した課題を解決するために請求項1の発明は、金属材料により板状に形成され表面と裏面とに開口する開口部が設けられると共に裏面側が取付部材に取付けられる第1の金属板と、該第1の金属板の表面側に前記開口部と面した位置で絶縁材を介して積層された第2の金属板と、該第2の金属板の表面側に実装され前記第1,第2の金属板間に接続された半導体素子と、該半導体素子を外部の電源に接続するため前記第1の金属板の裏面側に位置して前記取付部材に取付けられ前記第1の金属板と接触する第1の接触端子と、該第1の接触端子と絶縁した状態で前記取付部材に取付けられ前記第1の金属板の開口部を介して前記第2の金属板と接触する第2の接触端子とからなる構成を採用している。
【0013】
このように構成することにより、第1の金属板の表面側には、第2の金属板、絶縁材等を介して半導体素子を実装でき、第1の金属板の裏面側には、第1の接触端子を接続することができる。また、第2の金属板の裏面側には、第1の金属板の開口部を介して第2の接触端子を接続できるから、これら第1,第2の接触端子を介して電源から半導体素子に通電することができる。
【0014】
この場合、第1,第2の接触端子は、第1,第2の金属板に対して変位可能に接触した状態で接続できるから、例えば取付部材側の振動、衝撃等が接触端子に伝わる場合でも、第1,第2の金属板と接触端子との接続部位に応力が加わるのを防止でき、これらの部材を外力から保護することができる。
【0015】
また、請求項2の発明によると、第1の金属板は第1の接触端子を介して電源の低電圧側に接続し、第2の金属板は、第2の接触端子を介して前記電源の高電圧側に接続される高電圧側金属板と、半導体素子を介して前記第1の金属板と前記高電圧側金属板との間に接続され外部に電流を出力する出力側金属板とにより構成している。
【0016】
これにより、第1の金属板と高電圧側金属板とを第1,第2の接触端子によって電源に接続し、これらの金属板間に半導体素子を介して出力側金属板を接続できるから、例えば配線構造等を上部側に引出す必要がなくなり、薄型のインバータ回路等を容易に構成することができる。
【0017】
また、請求項3の発明では、金属材料により板状に形成され表面と裏面とに開口する開口部が設けられると共に裏面側が取付部材に取付けられる第1の金属板と、該第1の金属板の表面側に絶縁材を介して積層された第2の金属板と、前記第1の金属板の表面側に前記開口部と面した位置で絶縁材を介して積層され該第2の金属板と接続された第3の金属板と、前記第1の金属板の表面側に前記開口部と面した位置で絶縁材を介して積層され該第3の金属板と絶縁された第4の金属板と、前記第2の金属板の表面側に実装され前記第3,第4の金属板間に接続された半導体素子と、該半導体素子を外部の電源に接続するため前記第1の金属板の裏面側に位置して前記取付部材に取付けられ前記第1の金属板の開口部を介して前記第3の金属板と接触する第1の接触端子と、該第1の接触端子と絶縁した状態で前記取付部材に取付けられ前記第1の金属板の開口部を介して前記第4の金属板と接触する第2の接触端子とから構成している。
【0018】
これにより、第2の金属板は、例えば半導体素子や配線等を介して第3,第4の金属板間に接続でき、これら第3,第4の金属板の裏面側には、第1の金属板の開口部を介して第1,第2の接触端子を接続することができる。従って、これら第1,第2の接触端子を介して電源から半導体素子に通電でき、例えば取付部材側の振動、衝撃等が接触端子に伝わる場合でも、第3,第4の金属板と接触端子との接続部位に応力が加わるのを防止することができる。また、例えば半導体装置内に配置された複数の金属板を必要に応じて容易に外部へと引出すことができ、設計自由度を高めることができる。
【0019】
また、請求項4の発明によると、第3の金属板は第1の接触端子を介して電源の低電圧側に接続し、第4の金属板は第2の接触端子を介して電源の高電圧側に接続し、第2の金属板は、前記第4の金属板と接続される高電圧側金属板と、半導体素子を介して該高電圧側金属板と前記第3の金属板との間に接続され外部に電流を出力する出力側金属板とにより構成している。
【0020】
これにより、第3の金属板と高電圧側金属板とを第1,第2の接触端子等によって電源に接続し、これらの金属板間に半導体素子を介して出力側金属板を接続できるから、例えば薄型のインバータ回路等を容易に構成することができる。
【0021】
また、請求項5の発明では、第1の金属板の裏面側には、第1の接触端子が板厚方向に変位可能に設けられた第1の端子金属板と、第2の接触端子が板厚方向に変位可能に設けられた第2の端子金属板とを配置し、これら第1,第2の端子金属板を絶縁材を介して積層した状態で取付部材に取付ける構成としている。
【0022】
これにより、例えば第1,第2の金属板(または、第3,第4の金属板)と第1,第2の端子金属板とを絶縁状態で積層して取付部材に取付けることができる。従って、これらの部材による配線構造を幅広で短く形成でき、その形状を簡略化できるから、配線の寄生インダクタンスを低減させることができ、また半導体装置を薄型でコンパクトに形成することができる。また、これらの金属板を広い面積で接触させることができ、半導体素子の放熱性を高めることができる。
【0023】
また、請求項6の発明によると、第1,第2の接触端子は第1,第2の端子金属板となる板材の一部を折曲げることにより板厚方向に撓み変形可能に構成している。
【0024】
これにより、第1,第2の接触端子を端子金属板と一体化して容易に形成することができる。また、これらの接触端子は板厚方向に撓み変形することにより、第1,第2の金属板(または第3,第4の金属板)に対して弾性的に接触できるから、両者の接続状態を振動、衝撃等に対して安定的に保持することができる。
【0025】
また、請求項7の発明によると、半導体素子は、電源の高電圧側に接続される複数の高電圧側素子と、前記電源の低電圧側に接続され該各高電圧側素子と共にインバータ回路を形成する複数の低電圧側素子とにより構成し、前記複数の高電圧側素子と複数の低電圧側素子とを互いに並行な位置関係をもって並べる構成としている。
【0026】
これにより、例えば第2の金属板を構成する2個の金属板のうち一方の金属板に配置した複数の高電圧側素子と、他方の金属板に配置した複数の低電圧側素子とを並行に配置でき、これらの金属板を介した電流経路を幅広に形成することができる。これにより、電流経路の寄生インダクタンスを低減して素子がサージ電圧等により損傷するのを防止することができる。また、個々の素子に通電される電流量を均等に分散でき、各素子を電流の集中等から保護することができる。
【0027】
さらに、請求項8の発明によると、第2の金属板は絶縁材となるセラミックス層に固着された金属層によって形成し、前記セラミックス層と金属層とはセラミックス基板として構成している。これにより、汎用的なセラミックス基板を用いて半導体装置を構成できるから、絶縁材等の部品点数を削減して組立作業を効率よく行うことができる。
【0028】
【発明の実施の形態】
以下、本発明の実施の形態による半導体装置を、添付図面に従って詳細に説明する。
【0029】
ここで、図1ないし図5は第1の実施の形態を示し、本実施の形態では、半導体装置としてインバータ装置を例に挙げて述べる。
【0030】
1は後述の取付部材23に取付けられるインバータ装置で、該インバータ装置1は、後述のベース金属板2、積層金属板5,7、MOSFET8,9、端子金属板14,17、接触端子16,19等によって大略構成されている。
【0031】
2はインバータ装置1の本体部分を構成する第1の金属板としてのベース金属板で、該ベース金属板2は、図1ないし図4に示す如く、例えば金属材料等により四角形の平板状に形成され、表面2Aと裏面2Bとを有している。また、ベース金属板2の四隅には、後述の取付ねじ21が挿通されるねじ挿通孔2Cが穿設されている。
【0032】
また、ベース金属板2には、後述の接触端子19が挿通される四角形状の端子用開口部3が設けられ、該端子用開口部3は、後述する高電圧側の積層金属板5に面した位置でベース金属板2の表面2Aと裏面2Bとに開口している。また、ベース金属板2の裏面2B側には、例えば高い熱伝導性を有する絶縁性のフィルム材料等からなる絶縁材4が設けられ、該絶縁材4には、図3に示す如く、端子用開口部3に対応する部位と、後述の接触端子16等に対応する部位とを除去することにより、2個の開口部4A,4Bが設けられている。
【0033】
5は第2の金属板を構成する高電圧側金属板としての積層金属板で、該高電圧側の積層金属板5は、ベース金属板2の表面2A側に絶縁材6を介して積層され、図1中の左,右方向に伸長する細長い金属板として形成されている。この場合、絶縁材6には、端子用開口部3に対応する部位に開口部6Aが設けられ、積層金属板5は、その一部が端子用開口部3と絶縁材4,6の開口部4A,6Aとを介してベース金属板2の裏面2B側に露出している。
【0034】
7は第2の金属板を構成する出力側金属板としての例えば3個の積層金属板で、該各出力側の積層金属板7は、ベース金属板2の表面2A側に各絶縁材6を介して積層され、積層金属板5の伸長方向にほぼ一定の間隔で並べて配置されると共に、積層金属板5と隙間をもって絶縁されている。この場合、3個の積層金属板7は、後述の図5に示すインバータ回路11の3相(U相、V相、W相)に対応し、これらの各相の出力端子(図示せず)と個別に接続されるものである。
【0035】
8は積層金属板5の表面側に実装された例えば6個の高電圧側素子としてのMOSFETで、該各MOSFET8は、図1に示す如く、例えばベアチップ型の半導体素子等からなり、インバータ回路11の3相に対応して積層金属板5の左側,中央,右側に2個ずつ配置されている。そして、各MOSFET8は、その裏面側に位置するドレインDが積層金属板5に接続され、その表面側に位置するソースSは、例えばワイヤボンディング等の手段により金属線8Aを介して出力側の積層金属板7に接続されている。また、各MOSFET8のゲートGは、インバータ制御用の制御回路(図示せず)等に接続されている。
【0036】
9は各積層金属板7の表面側に実装された例えば6個の低電圧側素子としてのMOSFETで、該各MOSFET9は、MOSFET8とほぼ同様に、例えばベアチップ型の半導体素子等からなり、インバータ回路11の3相に対応して図1中の左側,中央,右側に位置する積層金属板7にそれぞれ2個ずつ配置されている。そして、各MOSFET9は、そのドレインDが積層金属板7に接続され、ソースSが金属線9Aを介して低電圧側のベース金属板2に接続されると共に、ゲートGが制御回路等に接続されている。
【0037】
また、高電圧側と低電圧側のMOSFET8,9には、図5に示す如く、複数のダイオード10がそれぞれ並列に接続され、これらは3相交流式のインバータ回路11を構成している。そして、インバータ回路11は、MOSFET8のドレインD側が後述する高電圧側の接触端子19等を介して電源12のプラス極側に接続され、MOSFET9のソースS側が低電圧側の接触端子16等を介して電源12のマイナス極側に接続されると共に、各積層金属板7に接続された出力端子から電動モータ等の負荷13に対して3相交流を出力するものである。
【0038】
ここで、高電圧側と低電圧側のMOSFET8,9は、例えば図1中の左,右方向に対して互いに並行な位置関係をもつように並べて配置されている。これにより、インバータ装置11は、ベース金属板2と積層金属板5,7とにわたって流れる大電流の電流経路を積層金属板5の伸長方向に対して均等に形成すると共に、この電流を個々のMOSFET8,9に分散する構成となっている。
【0039】
14はベース金属板2の裏面2B側に配置された第1の端子金属板で、該第1の端子金属板14は、図2、図3に示す如く、例えば四角形状の平板として形成され、例えば接着等の手段により絶縁材15を介して後述の取付部材23に取付けられている。また、端子金属板14は、ベース金属板2によって第2の端子金属板17と一緒に取付部材23に押付けられている。
【0040】
16は端子金属板14の周縁側に板厚方向に撓み変形可能に設けられた第1の接触端子で、該第1の接触端子16は、例えばばね性を有する細長い金属片として端子金属板14と一体に形成され、端子金属板14の幅方向(図1中の左,右方向)のほぼ中間部位から外向きに張出している。また、接触端子16は、端子金属板14となる板材の一部を板厚方向に折曲げることにより、例えば長さ方向の途中部位がベース金属板2に向けて山形状(逆V字状)に突出した折曲げ部16Aとなっている。
【0041】
そして、接触端子16は、図3に示す如く、端子金属板14を介して取付部材23に取付けられ、ベース金属板2が取付部材23に締着された状態では、ベース金属板2によって板厚方向に押圧されている。これにより、接触端子16は、端子金属板14に沿って延びた自由状態から取付部材23に向けて撓み変形し、折曲げ部16Aは、その復元力(ばね力)によって絶縁材4の開口部4B内でベース金属板2の裏面2Bに弾性的に接触した状態となっている。
【0042】
このため、インバータ装置1の使用時には、例えば取付部材23側に振動、衝撃等の外力が加わったとしても、接触端子16がベース金属板2に対して変位(摺動)可能に接続されているため、これらの接続部位に応力が加わるのを防止できる構成となっている。また、接触端子16は、図5に示す如く、端子金属板14を介して電源12のマイナス極側に接続され、インバータ装置1の低電圧側の接続端子を構成している。
【0043】
17はベース金属板2の裏面2B側に配置された第2の端子金属板で、該第2の端子金属板17は、端子金属板14とほぼ同様に、例えば四角形状の平板として形成され、例えば接着等の手段により絶縁材18を介して端子金属板14と積層された状態で取付部材23に取付けられている。
【0044】
19は端子金属板17に板厚方向に撓み変形可能に設けられた第2の接触端子で、該第2の接触端子19は、接触端子16とほぼ同様に、細長い金属片として端子金属板17と一体に形成され、端子金属板17の幅方向のほぼ中間部位から張出して延びると共に、接触端子16と重なり合わない位置に配置されている。また、接触端子19には、例えば積層金属板5に向けて板厚方向へと山形状に折曲げられた折曲げ部19Aが形成されている。
【0045】
そして、接触端子19は、ベース金属板2の裏面2B側から端子用開口部3と絶縁材4,6の開口部4A,6Aとを介して積層金属板5に当接し、この積層金属板5によって板厚方向に押圧されている。これにより、接触端子19は取付部材23に向けて撓み変形し、折曲げ部19Aは、その復元力によって積層金属板5の裏面側に弾性的に接触した状態で接続されている。また、接触端子19は、端子金属板17を介して電源12のプラス極側に接続され、インバータ装置1の高電圧側の接続端子を構成している。
【0046】
20は後述の取付ねじ21を用いてベース金属板2の表面2A側に取付けられた略箱形状の素子ケースで、該素子ケース20は、積層金属板5,7、MOSFET8,9等を覆うものである。
【0047】
21はインバータ装置1を取付部材23に締着する例えば4個の取付ねじで、該各取付ねじ21は、素子ケース20とベース金属板2のねじ挿通孔2C等を介して取付部材23のねじ穴23Aに螺着されている。
【0048】
これにより、ベース金属板2は、素子ケース20と一緒に取付部材23に固定されると共に、例えば端子金属板14,17を取付部材23に押付けた状態で固定している。この場合、各取付ねじ21の外周側には、ベース金属板2と取付部材23との間に所定の隙間を確保するスペーサ22が設けられている。
【0049】
23はインバータ装置1が取付けられる外部の取付部材で、該取付部材23は、例えば負荷13が搭載される電気機械のハウジング等からなり、金属材料等によって形成されると共に、その表面側にはねじ穴23Aが穿設されている。そして、取付部材23は、MOSFET8,9から発生する熱をベース金属板2、端子金属板14,17等を介して放熱する放熱器として機能するものである。
【0050】
本実施の形態によるインバータ装置1は上述の如き構成を有するもので、次にその作動について説明する。
【0051】
まず、インバータ装置1を取付部材23に搭載するときには、図4に示す如く、端子金属板14,17を取付部材23の表面側に配置した後に、積層金属板5,7、MOSFET8,9、素子ケース20等を組付けたベース金属板2を端子金属板14,17の上側から取付部材23にねじ止めする。また、端子金属板14,17を取付部材23側に配置された電源12と接続する。
【0052】
そして、インバータ装置1の作動時には、各MOSFET8,9が所定のタイミングでON,OFFされることにより、ベース金属板2と積層金属板5,7とにわたって大電流が流れ、各積層金属板7に接続された出力端子から負荷13に交流電流が出力される。
【0053】
この場合、取付部材23側の端子金属板14,17等には、例えば電気機械から振動、衝撃等の外力が伝わることがある。しかし、端子金属板14,17の接触端子16,19は、インバータ装置1のベース金属板2、積層金属板5に対して弾性的に接触した状態で変位可能に接続されているから、これらの間に大きな応力が加わるのを防止でき、また接触端子16,19のばね力により振動等に対して両者の接続状態を安定的に保持することができる。
【0054】
一方、ベース金属板2、積層金属板5,7、端子金属板14,17等は、高い熱伝導性を有する絶縁材4,6,15,18を介して積層され、互いに大きな面積で接触しているため、これらの積層構造を介してMOSFET8,9から発生する熱を取付部材23側に効率よく逃すことができる。
【0055】
かくして、本実施の形態では、ベース金属板2の表面2A側に積層金属板5,7を介してMOSFET8,9を実装し、ベース金属板2の裏面2B側に第1の接触端子16を接続し、積層金属板5の裏面側に第2の接触端子19を接続する構成としたので、例えば取付部材23側の振動、衝撃等が端子金属板14,17に伝わる場合でも、金属板2,5と接触端子16,19との接続部位に応力が加わるのを防止することができる。
【0056】
また、接触端子16,19を、そのばね力等により金属板2,5に対して安定的に押付けた状態で接続でき、両者の接続状態が振動等によって不安定となるのを確実に防止することができる。
【0057】
従って、本実施の形態によれば、例えば樹脂モールド等の手段により端子金属板14,17等を素子ケースに固定することなく、ベース金属板2、積層金属板5、接触端子16,19等の部材を応力集中による損傷等から保護でき、インバータ装置1を小型化しつつ、耐久性、信頼性を向上させることができる。
【0058】
この場合、接触端子16,19は、端子金属板14,17となる板材の一部を折曲げることにより該金属板14,17と一体に形成したので、これらを一体化して容易に形成でき、板厚方向に撓み変形する接触端子16,19を簡単に加工成形することができる。
【0059】
また、端子金属板14,17とを絶縁材4,15,18等を介して積層したので、ベース金属板2、積層金属板5,7及び端子金属板14,17を絶縁状態で積層して取付部材23に取付けることができ、この状態で接触端子16,19をベース金属板2、積層金属板5と容易に接続することができる。従って、これらの部材による配線構造を平坦、かつ幅広で短い寸法に形成でき、その形状を簡略化できる上に、例えば配線構造を素子ケースの上部側等に引出す必要がなくなり、配線の寄生インダクタンスを確実に低減させることができる。これにより、寄生インダクタンスによるサージ電圧等を低減してMOSFET8,9を保護でき、またインバータ装置1をより薄型でコンパクトに形成することができる。
【0060】
しかも、金属板2,5,7,14,17を積層することにより、これらの間に大きな接触面積を確保して熱抵抗を小さく抑えることができる。これにより、MOSFET8,9から取付部材23側への放熱効率を高めることができ、例えばMOSFET8,9の発熱量が過渡的に増大する場合でも、端子金属板14,17の熱容量によってMOSFET8,9の温度上昇を抑制することができる。
【0061】
さらに、積層金属板5に配置した複数のMOSFET8と、各積層金属板7に配置した複数のMOSFET9とが並行な位置関係をもつように配置したので、MOSFET8,9の通電時には、これらの積層金属板5,7を介した電流経路を電流と直交する方向(図1中の左,右方向)に対して幅広に形成することができる。これにより、電流経路の寄生インダクタンスをより低減でき、MOSFET8,9を安定的に作動させることができると共に、個々のMOSFET8,9に通電される電流量を均等に分散でき、各MOSFET8,9を電流の集中等から保護することができる。
【0062】
この場合、端子金属板14,17の幅方向(図1中の左,右方向)のほぼ中央に接触端子16,19を配置しているので、左,右方向に並んだ各MOSFET8,9に通電される電流量をより確実に均等化することができる。
【0063】
次に、図6は本発明による第2の実施の形態を示し、本実施の形態の特徴は、第1,第2の端子金属板と取付部材側の構造物との干渉を避ける構成としたことにある。なお、本実施の形態では、前記第1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。
【0064】
31はインバータ装置で、該インバータ装置31は、第1の実施の形態とほぼ同様に、ベース金属板2、積層金属板5,7、MOSFET8,9、端子金属板14′,17′、接触端子16,19等によって大略構成され、取付ねじ21を用いて取付部材23′のねじ穴23A′にねじ止めされている。
【0065】
しかし、取付部材23′には、その表面側に突出したねじ部材等の突起物23Bが設けられているため、端子金属板14′,17′と絶縁材15′,18′には、この突起物23B′との干渉を避ける干渉防止穴32が設けられている。
【0066】
かくして、このように構成される本実施の形態でも、前記第1の実施の形態とほぼ同様の作用効果を得ることができる。そして、特に本実施の形態では、端子金属板14′,17′と絶縁材15′,18′とに干渉防止穴32を設ける構成としたので、突起物23Bが設けられた取付部材23′に対しても、端子金属板14′,17′を面接触状態で配置でき、これらの間の熱伝導経路を容易に確保することができる。
【0067】
次に、図7及び図8は本発明による第3の実施の形態を示し、本実施の形態の特徴は、第1,第2の接触端子を両方とも半導体装置内に配置された金属板に接続する構成としたことにある。なお、本実施の形態では、前記第1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。
【0068】
41はインバータ装置で、該インバータ装置41は、後述のベース金属板42、積層金属板46,47,48,49,51、MOSFET52,53、端子金属板54,57、接触端子56,59等によって大略構成されている。
【0069】
42はインバータ装置41の本体部分を構成する第1の金属板としてのベース金属板で、該ベース金属板42は、図7、図8に示す如く、例えば金属材料、または絶縁性の樹脂材料、セラミックス材料等により四角形の平板状に形成され、表面42Aと裏面42Bとを有している。
【0070】
また、ベース金属板42には、積層金属板49,51に面した位置でベース金属板42の表面42Aと裏面42Bとに開口する2個の端子用開口部43が設けられている。また、ベース金属板42の裏面42B側には、各端子用開口部43に対応する位置に2個の開口部44Aが形成された絶縁材44が設けられている。そして、ベース金属板42は、各取付ねじ21を用いて素子ケース20と一緒に取付部材23に固定され、例えば端子金属板54,57を取付部材23に押付けた状態で固定している。
【0071】
45はベース金属板42の表面42A側に設けられた例えば3個のセラミックス基板で、該各セラミックス基板45は、例えば汎用的な積層基板等により構成され、絶縁材となるセラミックス層45Aの表面側に2個の金属層45B,45Cが積層されると共に、裏面側に金属層45Dが積層されている。この場合、3個のセラミックス基板45は、例えばインバータ回路のU相、V相、W相に対応しているものである。
【0072】
46は第2の金属板を構成する高電圧側金属板としての例えば3個の積層金属板で、該各高電圧側の積層金属板46は、各セラミックス基板45の金属層45Bにより構成され、金属線46Aを用いて後述する高電圧端子用の積層金属板51に互いに並列に接続されている。
【0073】
47は第2の金属板を構成する出力側金属板としての例えば3個の積層金属板で、該各出力側の積層金属板47は、各セラミックス基板45の金属層45Cにより構成され、金属線47Aを用いて他の出力側の積層金属板48と接続されている。
【0074】
49は第3の金属板としての低電圧端子用の積層金属板で、該低電圧端子用の積層金属板49は、ベース金属板42の表面42A側に絶縁材50を介して積層され、各セラミックス基板45に沿って延びる細長い板状に形成されている。そして、積層金属板49は、後述する低電圧側の接触端子56等を介して電源(図示せず)のマイナス極側に接続されるものである。また、絶縁材50には、端子用開口部43に対応する部位に開口部50Aが設けられている。
【0075】
51は第4の金属板としての高電圧端子用の積層金属板で、該高電圧端子用の積層金属板51は、ベース金属板42の表面42A側に絶縁材50を介して積層され、各セラミックス基板45を挟んで積層金属板49と並行に延びている。そして、積層金属板51は、後述する高電圧側の接触端子59等を介して電源のプラス極側に接続されるものである。
【0076】
52は高電圧側の各積層金属板46に2個ずつ実装された例えば6個の高電圧側素子としてのMOSFETで、該各MOSFET52は、第1の実施の形態とほぼ同様に、例えばベアチップ型の半導体素子等によって構成されている。そして、MOSFET52は、その裏面側に位置するドレインDが積層金属板46に接続され、その表面側に位置するソースSは、金属線52Aを介して出力側の積層金属板47に接続されている。また、MOSFET52のゲートGは制御回路(図示せず)等に接続されている。
【0077】
53は出力側の各積層金属板47に2個ずつ実装された例えば6個の低電圧側素子としてのMOSFETで、該各MOSFET53は、そのドレインDが積層金属板46に接続され、ソースSが金属線53Aを介して低電圧端子用の積層金属板49に接続されると共に、ゲートGが制御回路等に接続されている。
【0078】
そして、高電圧側と低電圧側のMOSFET52,53には、第1の実施の形態とほぼ同様に、複数のダイオード(図示せず)がそれぞれ並列に接続され、これらは3相交流式のインバータ回路を構成している。また、高電圧側と低電圧側のMOSFET52,53は、例えば図7中の左,右方向に対して互いに並行な位置関係をもつように並べて配置されている。
【0079】
54はベース金属板42の裏面42B側に配置された第1の端子金属板で、該第1の端子金属板54は、第1の実施の形態とほぼ同様に、例えば接着等の手段により絶縁材55を介して取付部材23に面接触状態で取付けられ、ベース金属板42によって端子金属板57と一緒に取付部材23に押付けられている。
【0080】
56は端子金属板54の周縁側に板厚方向に撓み変形可能に設けられた第1の接触端子で、該第1の接触端子56は、第1の実施の形態とほぼ同様に、ばね性を有する細長い金属片として端子金属板54と一体に形成され、端子金属板54の幅方向(図7中の左,右方向)のほぼ中間部位から外向きに張出している。また、接触端子56は、例えば長さ方向の途中部位が積層金属板49に向けて山形状に折曲げられた折曲げ部56Aとなっている。
【0081】
そして、接触端子56は、端子金属板54を介して取付部材23に取付けられ、ベース金属板42の裏面42B側から端子用開口部43と絶縁材44,50の開口部44A,50Aとを介して積層金属板49に当接すると共に、この積層金属板49によって板厚方向に押圧されている。これにより、接触端子56は、自由状態から取付部材23に向けて撓み変形し、折曲げ部56Aは、その復元力により積層金属板49の裏面側に弾性的に接触した状態となっている。
【0082】
57はベース金属板42の裏面42B側に配置された第2の端子金属板で、該第2の端子金属板57は、第1の実施の形態とほぼ同様に、例えば接着等の手段により絶縁材58を介して端子金属板54と積層された状態で取付部材23に取付けられている。
【0083】
59は端子金属板57に板厚方向に撓み変形可能に設けられた第2の接触端子で、該第2の接触端子59は、接触端子56とほぼ同様に、端子金属板57の幅方向のほぼ中間部位から張出した細長い金属片として形成され、積層金属板51に向けて山形状に折曲げられた折曲げ部59Aを有している。
【0084】
そして、接触端子59は、ベース金属板42の裏面42B側から端子用開口部43と絶縁材44,50の開口部44A,50Aとを介して積層金属板51に当接し、この積層金属板51によって板厚方向に押圧されている。これにより、接触端子59は取付部材23に向けて撓み変形し、折曲げ部59Aは、積層金属板51の裏面側に弾性的に接触した状態で接続されている。
【0085】
かくして、このように構成される本実施の形態でも、第1の実施の形態とほぼ同様の作用効果を得ることができる。そして、特に本実施の形態では、ベース金属板42に2個の端子用開口部43を設け、これらの端子用開口部43を介して接触端子56,59を積層金属板49,51に接触させる構成としたので、インバータ装置41内に配置された複数の積層金属板49,51等を必要に応じて容易に外部へと引出すことができ、設計自由度を高めることができる。また、汎用的なセラミックス基板45を用いてインバータ装置41を構成できるから、絶縁材等の部品点数を削減したり、コストダウンを図ることができる。
【0086】
なお、前記各実施の形態では、山形状に折曲げられた接触端子16,19,56,59を端子金属板14,17,54,57に設ける構成とした。しかし、本発明はこれに限らず、例えば第1,第2の接触端子を図9に示す第1の変形例のように構成してもよい。この場合、端子金属板61には、例えば山形状の折曲げ部62Aを有する2個の接触端子62が一体に形成されている。
【0087】
また、本発明による接触端子は、例えば図10に示す第2の変形例のように構成してもよい。この場合、端子金属板63には、例えば鋸歯状(蛇腹状)に折曲げられた複数の折曲げ部64Aを有する接触端子64が一体に形成されている。さらに、接触端子は、山形状の折曲げ形状に限るものではなく、例えばコ字状、U字状等に折曲げる構成としてしてもよい。
【0088】
また、第1の実施の形態では、第1の接触端子16,56を電源12のマイナス極側に接続し、第2の接触端子19,59をプラス極側に接続する構成とした。しかし、本発明はこれに限らず、例えば第1,第2の接触端子の極性を逆にして第1の接触端子を電源のプラス極側に接続し、第2の接触端子をマイナス極側に接続する構成としてもよい。
【0089】
また、実施の形態では、インバータ回路11のU相、相、W相となる各相の回路を、それぞれ2組のMOSFET8,9(MOSFET52,53)によって構成した。しかし、本発明はこれに限らず、例えばインバータ回路の各相を1組のMOSFETにより構成してもよく、3組以上のMOSFETにより構成してもよい。
【0090】
また、実施の形態では、インバータ回路の3相分の回路を構成する全てのMOSFET8,9,52,53をインバータ装置1,31,41に搭載する構成とした。しかし、本発明はこれに限らず、例えばインバータ回路を各相毎に分割して3個のインバータ装置として構成し、これらのインバータ装置を電源に対して互いに並列に接続することによりインバータ回路を構成してもよい。
【0091】
また、実施の形態では、高電圧側素子と低電圧側素子とをMOSFET8,9,52,53等により構成した。しかし、本発明はMOSFETに限らず、例えば高電圧側素子や低電圧側素子として絶縁ゲート型バイポーラトランジスタ(IGBT)や通常のバイポーラトランジスタ等を用いる構成としてもよい。
【0092】
さらに、実施の形態では、半導体装置としてインバータ装置1,31,41を例に挙げて述べた。しかし、本発明はこれに限らず、大電流を通電する各種の半導体装置に適用できるのは勿論である。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態によるインバータ装置を一部破断して示す正面図である。
【図2】図1中の矢示II−II方向からみたインバータ装置の断面図である。
【図3】図1中の矢示III−III方向からみたインバータ装置の断面図である。
【図4】インバータ装置を組立てる前の状態で示す分解斜視図である。
【図5】インバータ装置を示す回路図である。
【図6】本発明の第2の実施の形態によるインバータ装置を図2と同様位置からみた断面図である。
【図7】本発明の第3の実施の形態によるインバータ装置を一部破断して示す正面図である。
【図8】図7中の矢示VIII−VIII方向からみた断面図である。
【図9】第1の変形例によるインバータ装置の接触端子を示す部分拡大斜視図である。
【図10】第2の変形例によるインバータ装置の接触端子を示す部分拡大斜視図である。
【符号の説明】
1,31,41 インバータ装置(半導体装置)
2,42 ベース金属板(第1の金属板)
2A,42A 表面
2B,42B 裏面
3,43 端子用開口部
4,6,15,15′,18,18′,44,50,55,58 絶縁材
5,7,46,47 積層金属板(第2の金属板)
8,52 MOSFET(高電圧側素子)
9,53 MOSFET(低電圧側素子)
11 インバータ回路
12 電源
14,14′,17,17′,54,57,61,63 第1,第2の端子金属板
16,19,56,59,62,64 第1,第2の接触端子
23,23′ 取付部材
45 セラミックス基板
45A セラミックス層
45B,45C,45D 金属層
49,51 積層金属板(第3,第4の金属板)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor device suitably used as, for example, an inverter device that outputs a large current.
[0002]
[Prior art]
Generally, as a semiconductor device, a package component in which a semiconductor element is mounted on a substrate and accommodated in an element case is known (for example, Japanese Patent Application Laid-Open No. 61-280644).
[0003]
In a package component according to this type of related art, a plurality of lead terminals connected to each electrode of a semiconductor element are provided on an element case, and these lead terminals are drawn out of the element case and, for example, soldered. Is connected to an external circuit board or the like by using the above means.
[0004]
Further, as another semiconductor device, there is an inverter device in which semiconductor elements such as an insulated gate bipolar transistor (IGBT) and a MOS transistor (MOSFET) are mounted on a metal plate or the like and are housed in an element case. .
[0005]
In this case, the inverter device is attached to, for example, a housing of an electric machine to drive an electric motor or the like. In addition, the inverter device is provided with a bus bar formed of, for example, an elongated conductor plate or the like. One end of the bus bar is connected to each semiconductor element or a metal plate in the element case, and the other end is connected to the element case. It protrudes outside.
[0006]
The protruding end side of the bus bar is attached to a conductor plate fixed to the housing side of the electric machine, for example, by means of screws or the like, and is connected to the power supply via this conductor plate or the like.
[0007]
[Problems to be solved by the invention]
By the way, in the above-mentioned prior art, for example, the connection between the lead terminal of the package component and the outside is provided by means such as soldering, or the connection between the bus bar and the outside of the inverter device is provided by means such as screwing. I have.
[0008]
However, external force such as vibration or impact may be applied to these semiconductor devices depending on the use environment or the like. For example, in an inverter device, a large stress is likely to be applied to the screwed portion of the bus bar by the external force.
[0009]
For this reason, in the prior art, when the semiconductor device is used for a long period of time, the soldered portion, the screwed portion, and the like are damaged by stress concentration, and the internal circuit is transmitted by transmitting stress from these portions into the device. And the like may result in poor connection, and there is a problem that reliability is reduced.
[0010]
In this case, for example, a method of fixing a lead terminal or a bus bar of the semiconductor device to the element case by means of a resin mold or the like to increase the strength is also considered. However, in this case, for example, the thickness of the element case and the like must be increased according to the required strength, and there is a problem that the device is easily increased in size.
[0011]
The present invention has been made in view of the above-described problems of the related art, and an object of the present invention is to prevent stress from being applied to a connection portion between a semiconductor element and the outside due to vibration, impact, and the like. An object of the present invention is to provide a semiconductor device capable of protecting circuits and the like, and improving durability and reliability while reducing the size of the entire device.
[0012]
[Means for Solving the Problems]
In order to solve the above-described problems, the invention according to claim 1 includes a first metal plate formed in a plate shape of a metal material, provided with an opening that is opened on the front surface and the back surface, and having the back surface attached to the attachment member; A second metal plate laminated on the front side of the first metal plate via an insulating material at a position facing the opening, and the first metal plate mounted on the front side of the second metal plate; A semiconductor element connected between the two metal plates; and a first metal plate attached to the mounting member located on the back side of the first metal plate for connecting the semiconductor element to an external power supply. A first contact terminal that is in contact with the first contact terminal, and a second contact terminal that is attached to the attachment member in an insulated state from the first contact terminal and that contacts the second metal plate through an opening in the first metal plate. The structure which consists of a contact terminal is adopted.
[0013]
With this configuration, the semiconductor element can be mounted on the front surface side of the first metal plate via the second metal plate, the insulating material, and the like, and the first metal plate can be mounted on the back surface side of the first metal plate. Contact terminals can be connected. In addition, since the second contact terminal can be connected to the back side of the second metal plate through the opening of the first metal plate, the semiconductor element can be connected from the power supply through the first and second contact terminals. Can be energized.
[0014]
In this case, since the first and second contact terminals can be connected in a state where they can be displaceably contacted with the first and second metal plates, for example, when vibration or impact on the mounting member side is transmitted to the contact terminals However, it is possible to prevent stress from being applied to the connection portion between the first and second metal plates and the contact terminals, and it is possible to protect these members from external force.
[0015]
According to the invention of claim 2, the first metal plate is connected to the low voltage side of the power supply via the first contact terminal, and the second metal plate is connected to the power supply via the second contact terminal. A high-voltage-side metal plate connected to the high-voltage side, and an output-side metal plate connected between the first metal plate and the high-voltage side metal plate via a semiconductor element to output a current to the outside. It consists of.
[0016]
Thereby, the first metal plate and the high voltage side metal plate can be connected to the power supply by the first and second contact terminals, and the output side metal plate can be connected between these metal plates via the semiconductor element. For example, it is not necessary to draw out a wiring structure or the like to the upper side, and a thin inverter circuit or the like can be easily configured.
[0017]
According to the third aspect of the present invention, there is provided a first metal plate which is formed in a plate shape from a metal material and has openings provided on the front surface and the back surface, and the back surface is attached to an attachment member. A second metal plate laminated on the surface side of the first metal plate with an insulating material interposed therebetween, and the second metal plate laminated on the surface side of the first metal plate with the insulating material at a position facing the opening A third metal plate connected to the first metal plate and a fourth metal laminated on the surface of the first metal plate at a position facing the opening via an insulating material and insulated from the third metal plate Plate, a semiconductor element mounted on the front side of the second metal plate and connected between the third and fourth metal plates, and the first metal plate for connecting the semiconductor element to an external power supply The third metal plate is attached to the mounting member at a back side of the third metal plate through an opening of the first metal plate. A first contact terminal that is in contact with the first contact terminal, and a second contact terminal that is attached to the attachment member in a state insulated from the first contact terminal and that contacts the fourth metal plate through an opening in the first metal plate. And a contact terminal.
[0018]
Thereby, the second metal plate can be connected between the third and fourth metal plates via, for example, a semiconductor element or a wiring, and the first and third metal plates are provided with the first metal plate on the back side. The first and second contact terminals can be connected through the opening of the metal plate. Therefore, power can be supplied to the semiconductor element from the power supply via the first and second contact terminals. For example, even when vibrations, shocks, etc. on the mounting member are transmitted to the contact terminals, the third and fourth metal plates and the contact terminals can be connected. It is possible to prevent stress from being applied to the connection portion with the connection. In addition, for example, a plurality of metal plates disposed in a semiconductor device can be easily pulled out to the outside as needed, and the degree of freedom in design can be increased.
[0019]
According to the invention of claim 4, the third metal plate is connected to the low voltage side of the power supply via the first contact terminal, and the fourth metal plate is connected to the high voltage side of the power supply via the second contact terminal. Connected to the voltage side, the second metal plate is formed of a high voltage side metal plate connected to the fourth metal plate, and the high voltage side metal plate and the third metal plate via a semiconductor element. And an output-side metal plate connected between them and outputting a current to the outside.
[0020]
Thereby, the third metal plate and the high-voltage side metal plate can be connected to the power supply by the first and second contact terminals and the like, and the output side metal plate can be connected between these metal plates via the semiconductor element. For example, a thin inverter circuit or the like can be easily configured.
[0021]
In the invention according to claim 5, a first terminal metal plate provided with a first contact terminal displaceable in a plate thickness direction and a second contact terminal are provided on the back surface side of the first metal plate. A second terminal metal plate provided so as to be displaceable in the plate thickness direction is arranged, and the first and second terminal metal plates are mounted on the mounting member in a state of being laminated via an insulating material.
[0022]
Thus, for example, the first and second metal plates (or the third and fourth metal plates) and the first and second terminal metal plates can be laminated in an insulated state and attached to the attachment member. Therefore, the wiring structure formed by these members can be formed wide and short, and the shape can be simplified, so that the parasitic inductance of the wiring can be reduced and the semiconductor device can be formed thin and compact. In addition, these metal plates can be brought into contact over a wide area, and the heat dissipation of the semiconductor element can be improved.
[0023]
According to the invention of claim 6, the first and second contact terminals are configured to bend and deform in the thickness direction by bending a part of the plate material serving as the first and second terminal metal plates. I have.
[0024]
Thus, the first and second contact terminals can be easily formed integrally with the terminal metal plate. Further, these contact terminals can be elastically contacted with the first and second metal plates (or the third and fourth metal plates) by bending and deforming in the plate thickness direction. Can be stably held against vibration, impact, and the like.
[0025]
According to the invention of claim 7, the semiconductor element includes a plurality of high-voltage elements connected to the high voltage side of the power supply and an inverter circuit connected to the low voltage side of the power supply together with each of the high-voltage elements. A plurality of low voltage side elements are formed, and the plurality of high voltage side elements and the plurality of low voltage side elements are arranged in parallel with each other.
[0026]
Thereby, for example, a plurality of high-voltage elements arranged on one of the two metal plates constituting the second metal plate and a plurality of low-voltage elements arranged on the other metal plate are arranged in parallel. And the current path via these metal plates can be formed wide. This can reduce the parasitic inductance of the current path and prevent the element from being damaged by a surge voltage or the like. Further, the amount of current flowing through each element can be evenly distributed, and each element can be protected from current concentration.
[0027]
Further, according to the invention of claim 8, the second metal plate is formed by a metal layer fixed to a ceramic layer serving as an insulating material, and the ceramic layer and the metal layer are configured as a ceramic substrate. As a result, since the semiconductor device can be configured using a general-purpose ceramic substrate, the number of components such as an insulating material can be reduced and the assembly operation can be performed efficiently.
[0028]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a semiconductor device according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
[0029]
Here, FIGS. 1 to 5 show the first embodiment, and in this embodiment, an inverter device will be described as an example of a semiconductor device.
[0030]
Reference numeral 1 denotes an inverter device mounted on a mounting member 23 described later. The inverter device 1 includes a base metal plate 2, laminated metal plates 5 and 7, MOSFETs 8 and 9, terminal metal plates 14 and 17, and contact terminals 16 and 19. And the like.
[0031]
Reference numeral 2 denotes a base metal plate as a first metal plate constituting a main body portion of the inverter device 1, and the base metal plate 2 is formed in a rectangular flat plate shape using, for example, a metal material as shown in FIGS. And has a front surface 2A and a back surface 2B. At four corners of the base metal plate 2, screw insertion holes 2C into which mounting screws 21 to be described later are inserted are formed.
[0032]
The base metal plate 2 is provided with a rectangular terminal opening 3 through which a contact terminal 19 described later is inserted, and the terminal opening 3 faces the high-voltage laminated metal plate 5 described later. The opening is formed on the front surface 2A and the back surface 2B of the base metal plate 2 at the set position. Further, on the back surface 2B side of the base metal plate 2, an insulating material 4 made of, for example, an insulating film material having high thermal conductivity is provided, and the insulating material 4 is, as shown in FIG. By removing a portion corresponding to the opening 3 and a portion corresponding to a contact terminal 16 and the like described later, two openings 4A and 4B are provided.
[0033]
Reference numeral 5 denotes a laminated metal plate as a high-voltage-side metal plate constituting the second metal plate. The high-voltage-side laminated metal plate 5 is laminated on the surface 2A of the base metal plate 2 with an insulating material 6 interposed therebetween. 1 is formed as an elongated metal plate extending in the left and right directions in FIG. In this case, the insulating material 6 is provided with an opening 6 </ b> A at a position corresponding to the terminal opening 3, and a part of the laminated metal plate 5 is formed by the terminal opening 3 and the opening of the insulating materials 4 and 6. It is exposed on the back surface 2B side of the base metal plate 2 via 4A and 6A.
[0034]
Reference numeral 7 denotes, for example, three laminated metal plates as output-side metal plates constituting a second metal plate. Each of the output-side laminated metal plates 7 is provided with an insulating material 6 on the surface 2A side of the base metal plate 2. The laminated metal plates 5 are arranged side by side at substantially constant intervals in the direction in which the laminated metal plates 5 extend, and are insulated from the laminated metal plates 5 with a gap. In this case, the three laminated metal plates 7 correspond to three phases (U phase, V phase, W phase) of an inverter circuit 11 shown in FIG. 5 described later, and output terminals (not shown) of these phases. And are connected individually.
[0035]
Numeral 8 denotes, for example, six MOSFETs as high-voltage-side elements mounted on the surface side of the laminated metal plate 5. Each of the MOSFETs 8 is composed of, for example, a bare-chip type semiconductor element as shown in FIG. Two pieces are arranged on the left, center and right sides of the laminated metal plate 5 corresponding to the three phases. In each MOSFET 8, the drain D located on the back side is connected to the laminated metal plate 5, and the source S located on the front side is laminated on the output side via a metal wire 8A by means such as wire bonding. It is connected to the metal plate 7. The gate G of each MOSFET 8 is connected to a control circuit (not shown) for controlling the inverter.
[0036]
Reference numeral 9 denotes, for example, six MOSFETs as low-voltage-side elements mounted on the front surface side of each laminated metal plate 7. Each of the MOSFETs 9 is composed of, for example, a bare-chip type semiconductor element and the like in the same manner as the MOSFET 8, and includes an inverter circuit. The two laminated metal plates 7 are arranged on the left, center, and right sides in FIG. 1 corresponding to the three phases 11 respectively. In each MOSFET 9, the drain D is connected to the laminated metal plate 7, the source S is connected to the base metal plate 2 on the low voltage side via the metal line 9A, and the gate G is connected to a control circuit and the like. ing.
[0037]
As shown in FIG. 5, a plurality of diodes 10 are respectively connected in parallel to the high-voltage side and the low-voltage side MOSFETs 8 and 9, and these constitute a three-phase AC inverter circuit 11. In the inverter circuit 11, the drain D side of the MOSFET 8 is connected to the positive pole side of the power supply 12 via a high-voltage contact terminal 19 and the like described later, and the source S side of the MOSFET 9 is connected via the low-voltage contact terminal 16 and the like. The power supply 12 is connected to the negative pole side of the power source 12 and outputs a three-phase alternating current to a load 13 such as an electric motor from an output terminal connected to each laminated metal plate 7.
[0038]
Here, the MOSFETs 8 and 9 on the high voltage side and the low voltage side are, for example, arranged side by side so as to have a positional relationship parallel to each other in the left and right directions in FIG. Thus, the inverter device 11 forms a current path of a large current flowing through the base metal plate 2 and the laminated metal plates 5 and 7 evenly in the extending direction of the laminated metal plate 5 and transfers this current to each MOSFET 8. , 9.
[0039]
Reference numeral 14 denotes a first terminal metal plate disposed on the back surface 2B side of the base metal plate 2, and the first terminal metal plate 14 is formed as, for example, a rectangular flat plate as shown in FIGS. For example, it is attached to a later-described attachment member 23 via an insulating material 15 by means such as adhesion. The terminal metal plate 14 is pressed against the mounting member 23 together with the second terminal metal plate 17 by the base metal plate 2.
[0040]
Reference numeral 16 denotes a first contact terminal provided on the peripheral edge of the terminal metal plate 14 so as to be able to bend and deform in the thickness direction. The first contact terminal 16 is, for example, a terminal metal plate 14 as an elongated metal piece having spring properties. And protrudes outward from a substantially middle portion of the terminal metal plate 14 in the width direction (left and right directions in FIG. 1). Further, the contact terminal 16 is formed by bending a part of the plate material to be the terminal metal plate 14 in the plate thickness direction so that, for example, an intermediate portion in the length direction is mountain-shaped (reverse V-shaped) toward the base metal plate 2. The bent portion 16A protrudes from the opening.
[0041]
As shown in FIG. 3, the contact terminal 16 is attached to the mounting member 23 via the terminal metal plate 14. When the base metal plate 2 is fastened to the mounting member 23, the thickness of the contact terminal 16 is increased by the base metal plate 2. Direction. As a result, the contact terminal 16 is bent and deformed toward the mounting member 23 from the free state extending along the terminal metal plate 14, and the bent portion 16A causes the opening of the insulating material 4 to be opened by the restoring force (spring force). 4B, the back surface 2B of the base metal plate 2 is in elastic contact with the back surface 2B.
[0042]
Therefore, when the inverter device 1 is used, the contact terminal 16 is connected to the base metal plate 2 so as to be displaceable (slidable) even when an external force such as vibration or impact is applied to the mounting member 23 side. For this reason, the configuration is such that stress can be prevented from being applied to these connection portions. The contact terminal 16 is connected to the negative pole side of the power supply 12 via the terminal metal plate 14, as shown in FIG. 5, and constitutes a low voltage side connection terminal of the inverter device 1.
[0043]
Reference numeral 17 denotes a second terminal metal plate disposed on the back surface 2B side of the base metal plate 2, and the second terminal metal plate 17 is formed, for example, as a rectangular flat plate, almost similarly to the terminal metal plate 14. For example, it is attached to the attachment member 23 in a state of being laminated on the terminal metal plate 14 via the insulating material 18 by means such as adhesion.
[0044]
Reference numeral 19 denotes a second contact terminal provided on the terminal metal plate 17 so as to be able to bend and deform in the plate thickness direction. The second contact terminal 19 is substantially the same as the contact terminal 16 as an elongated metal piece. The terminal metal plate 17 is disposed so as to protrude from a substantially intermediate portion in the width direction of the terminal metal plate 17 and does not overlap with the contact terminal 16. Further, the contact terminal 19 is formed with a bent portion 19 </ b> A which is bent in the thickness direction toward the laminated metal plate 5, for example.
[0045]
The contact terminal 19 contacts the laminated metal plate 5 from the back surface 2B side of the base metal plate 2 via the terminal opening 3 and the openings 4A and 6A of the insulating materials 4 and 6, and the laminated metal plate 5 Is pressed in the thickness direction. As a result, the contact terminal 19 is bent and deformed toward the mounting member 23, and the bent portion 19A is connected to the back surface of the laminated metal plate 5 elastically by its restoring force. The contact terminal 19 is connected to the positive electrode side of the power supply 12 via the terminal metal plate 17, and forms a connection terminal on the high voltage side of the inverter device 1.
[0046]
Reference numeral 20 denotes a substantially box-shaped element case attached to the surface 2A side of the base metal plate 2 using an attachment screw 21 described later. The element case 20 covers the laminated metal plates 5, 7, MOSFETs 8, 9, and the like. It is.
[0047]
Reference numeral 21 denotes, for example, four mounting screws for fastening the inverter device 1 to the mounting member 23. Each of the mounting screws 21 is a screw of the mounting member 23 through the element case 20 and the screw insertion hole 2C of the base metal plate 2. It is screwed into the hole 23A.
[0048]
Thus, the base metal plate 2 is fixed to the mounting member 23 together with the element case 20, and for example, the terminal metal plates 14 and 17 are fixed in a state where the terminal metal plates 14 and 17 are pressed against the mounting member 23. In this case, a spacer 22 that secures a predetermined gap between the base metal plate 2 and the mounting member 23 is provided on the outer peripheral side of each mounting screw 21.
[0049]
Reference numeral 23 denotes an external mounting member to which the inverter device 1 is mounted. The mounting member 23 is formed of, for example, a housing of an electric machine on which the load 13 is mounted, and is formed of a metal material or the like. A hole 23A is formed. The mounting member 23 functions as a radiator that radiates heat generated from the MOSFETs 8 and 9 via the base metal plate 2, the terminal metal plates 14 and 17, and the like.
[0050]
The inverter device 1 according to the present embodiment has the above-described configuration, and its operation will be described next.
[0051]
First, when the inverter device 1 is mounted on the mounting member 23, as shown in FIG. 4, after the terminal metal plates 14, 17 are arranged on the front side of the mounting member 23, the laminated metal plates 5, 7, MOSFET 8, 9, The base metal plate 2 on which the case 20 and the like are assembled is screwed to the mounting member 23 from above the terminal metal plates 14 and 17. Further, the terminal metal plates 14 and 17 are connected to the power supply 12 arranged on the mounting member 23 side.
[0052]
When the inverter device 1 operates, a large current flows between the base metal plate 2 and the laminated metal plates 5 and 7 by turning on and off the MOSFETs 8 and 9 at a predetermined timing. An alternating current is output to the load 13 from the connected output terminal.
[0053]
In this case, external force such as vibration or impact may be transmitted from the electric machine to the terminal metal plates 14 and 17 on the mounting member 23 side. However, since the contact terminals 16 and 19 of the terminal metal plates 14 and 17 are displaceably connected to the base metal plate 2 and the laminated metal plate 5 of the inverter device 1 while being in elastic contact therewith. A large stress can be prevented from being applied therebetween, and the connection between the contact terminals 16 and 19 can be stably maintained against vibration and the like due to the spring force.
[0054]
On the other hand, the base metal plate 2, the laminated metal plates 5, 7, the terminal metal plates 14, 17 and the like are laminated via insulating materials 4, 6, 15, 18 having high thermal conductivity, and come into contact with each other in a large area. Therefore, heat generated from the MOSFETs 8 and 9 can be efficiently released to the mounting member 23 through the stacked structure.
[0055]
Thus, in the present embodiment, the MOSFETs 8 and 9 are mounted on the surface 2A side of the base metal plate 2 via the laminated metal plates 5 and 7, and the first contact terminals 16 are connected to the back surface 2B side of the base metal plate 2. Since the second contact terminals 19 are connected to the back side of the laminated metal plate 5, for example, even when vibrations and impacts on the mounting member 23 side are transmitted to the terminal metal plates 14 and 17, the metal plates 2 and 2 are connected. It is possible to prevent stress from being applied to a connection portion between the contact terminal 5 and the contact terminals 16 and 19.
[0056]
Further, the contact terminals 16 and 19 can be connected in a state where they are stably pressed against the metal plates 2 and 5 by the spring force or the like, so that the connection state between the two can be reliably prevented from becoming unstable due to vibration or the like. be able to.
[0057]
Therefore, according to the present embodiment, the terminal metal plates 14, 17 and the like are not fixed to the element case by means such as a resin mold, and the base metal plate 2, the laminated metal plate 5, the contact terminals 16, 19, and the like are formed. The members can be protected from damage due to stress concentration and the like, and the durability and reliability can be improved while the inverter device 1 is downsized.
[0058]
In this case, since the contact terminals 16 and 19 are formed integrally with the metal plates 14 and 17 by bending a part of the plate material to be the terminal metal plates 14 and 17, these can be easily formed integrally with each other. The contact terminals 16 and 19 that bend and deform in the thickness direction can be easily formed.
[0059]
In addition, since the terminal metal plates 14 and 17 are laminated via the insulating materials 4, 15 and 18, etc., the base metal plate 2, the laminated metal plates 5 and 7 and the terminal metal plates 14 and 17 are laminated in an insulated state. The contact terminals 16 and 19 can be easily connected to the base metal plate 2 and the laminated metal plate 5 in this state. Therefore, the wiring structure formed by these members can be formed to be flat, wide and short in size, and the shape can be simplified. In addition, for example, it is not necessary to draw the wiring structure to the upper side of the element case, and the parasitic inductance of the wiring is reduced. It can be surely reduced. As a result, it is possible to protect the MOSFETs 8 and 9 by reducing a surge voltage or the like due to parasitic inductance, and to make the inverter device 1 thinner and more compact.
[0060]
Moreover, by laminating the metal plates 2, 5, 7, 14, and 17, it is possible to secure a large contact area therebetween and to reduce the thermal resistance. As a result, the efficiency of heat dissipation from the MOSFETs 8 and 9 to the mounting member 23 can be increased. For example, even when the amount of heat generated by the MOSFETs 8 and 9 transiently increases, the heat capacity of the terminal metal plates 14 and 17 allows the MOSFETs 8 and 9 to be heated. Temperature rise can be suppressed.
[0061]
Further, the plurality of MOSFETs 8 arranged on the laminated metal plate 5 and the plurality of MOSFETs 9 arranged on each laminated metal plate 7 are arranged so as to have a parallel positional relationship. The current path through the plates 5 and 7 can be formed wider in a direction perpendicular to the current (left and right directions in FIG. 1). As a result, the parasitic inductance of the current path can be further reduced, the MOSFETs 8 and 9 can be operated stably, and the amount of current flowing through each of the MOSFETs 8 and 9 can be evenly distributed. Can be protected from concentration.
[0062]
In this case, since the contact terminals 16 and 19 are arranged substantially at the center of the terminal metal plates 14 and 17 in the width direction (left and right directions in FIG. 1), each of the MOSFETs 8 and 9 arranged in the left and right directions. It is possible to more reliably equalize the amount of current to be supplied.
[0063]
Next, FIG. 6 shows a second embodiment according to the present invention. The feature of this embodiment is that the first and second terminal metal plates and the structure on the mounting member side avoid interference. It is in. Note that, in the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
[0064]
Reference numeral 31 denotes an inverter device. The inverter device 31 includes a base metal plate 2, laminated metal plates 5, 7, MOSFETs 8, 9, terminal metal plates 14 ', 17', and contact terminals, substantially in the same manner as in the first embodiment. 16, 19, etc., and is screwed to a screw hole 23A 'of a mounting member 23' using a mounting screw 21.
[0065]
However, since the mounting member 23 'is provided with a projection 23B such as a screw member protruding on the surface side thereof, the terminal metal plates 14' and 17 'and the insulating members 15' and 18 'have the projections 23B. An interference prevention hole 32 for avoiding interference with the object 23B 'is provided.
[0066]
Thus, in the present embodiment configured as described above, substantially the same operation and effect as those in the first embodiment can be obtained. In particular, in the present embodiment, since the interference prevention holes 32 are provided in the terminal metal plates 14 ', 17' and the insulating materials 15 ', 18', the mounting member 23 'provided with the projection 23B is provided. On the other hand, the terminal metal plates 14 'and 17' can be arranged in a surface contact state, and a heat conduction path therebetween can be easily secured.
[0067]
Next, FIGS. 7 and 8 show a third embodiment according to the present invention. The feature of this embodiment is that both the first and second contact terminals are provided on a metal plate arranged in a semiconductor device. That is, it is configured to be connected. Note that, in the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
[0068]
Reference numeral 41 denotes an inverter device. The inverter device 41 includes a base metal plate 42, laminated metal plates 46, 47, 48, 49, 51, MOSFETs 52, 53, terminal metal plates 54, 57, contact terminals 56, 59, and the like. It is roughly configured.
[0069]
Reference numeral 42 denotes a base metal plate as a first metal plate constituting a main body of the inverter device 41. As shown in FIGS. 7 and 8, the base metal plate 42 is made of, for example, a metal material or an insulating resin material. It is formed in a rectangular flat plate shape by a ceramic material or the like, and has a front surface 42A and a back surface 42B.
[0070]
Further, the base metal plate 42 is provided with two terminal openings 43 that are open on the front surface 42A and the back surface 42B of the base metal plate 42 at positions facing the laminated metal plates 49 and 51. Further, on the back surface 42B side of the base metal plate 42, an insulating material 44 in which two openings 44A are formed at positions corresponding to the respective terminal openings 43 is provided. Then, the base metal plate 42 is fixed to the mounting member 23 together with the element case 20 by using the respective mounting screws 21. For example, the terminal metal plates 54 and 57 are fixed in a state of being pressed against the mounting member 23.
[0071]
Reference numeral 45 denotes, for example, three ceramic substrates provided on the surface 42A side of the base metal plate 42. Each of the ceramic substrates 45 is formed of, for example, a general-purpose laminated substrate or the like, and has a surface side of the ceramic layer 45A serving as an insulating material. And two metal layers 45B and 45C, and a metal layer 45D on the back side. In this case, the three ceramic substrates 45 correspond to, for example, the U phase, the V phase, and the W phase of the inverter circuit.
[0072]
Reference numeral 46 denotes, for example, three laminated metal plates as high-voltage-side metal plates constituting a second metal plate. Each of the high-voltage-side laminated metal plates 46 is constituted by a metal layer 45B of each ceramic substrate 45. The metal wires 46A are connected in parallel to a laminated metal plate 51 for a high-voltage terminal, which will be described later.
[0073]
Reference numeral 47 denotes, for example, three laminated metal plates as output-side metal plates constituting the second metal plate. Each of the output-side laminated metal plates 47 is constituted by a metal layer 45C of each ceramic substrate 45, It is connected to another output side laminated metal plate 48 by using 47A.
[0074]
Reference numeral 49 denotes a low-voltage terminal laminated metal plate as a third metal plate. The low-voltage terminal laminated metal plate 49 is laminated on the surface 42A side of the base metal plate 42 via an insulating material 50. It is formed in an elongated plate shape extending along the ceramic substrate 45. The laminated metal plate 49 is connected to the negative pole side of a power supply (not shown) via a low-voltage contact terminal 56 and the like described later. The insulating material 50 has an opening 50 </ b> A at a position corresponding to the terminal opening 43.
[0075]
Reference numeral 51 denotes a laminated metal plate for a high-voltage terminal as a fourth metal plate. The laminated metal plate 51 for the high-voltage terminal is laminated on the surface 42A side of the base metal plate 42 via an insulating material 50. It extends in parallel with the laminated metal plate 49 with the ceramic substrate 45 interposed therebetween. The laminated metal plate 51 is connected to the positive electrode side of the power supply via a contact terminal 59 on the high voltage side described later.
[0076]
Reference numeral 52 denotes, for example, six MOSFETs as high-voltage-side elements mounted two on each of the high-voltage-side laminated metal plates 46. Each of the MOSFETs 52 is, for example, a bare-chip type in substantially the same manner as in the first embodiment. And the like. In the MOSFET 52, the drain D located on the back surface side is connected to the laminated metal plate 46, and the source S located on the front surface side is connected to the laminated metal plate 47 on the output side via the metal wire 52A. . The gate G of the MOSFET 52 is connected to a control circuit (not shown) and the like.
[0077]
Reference numeral 53 denotes, for example, six MOSFETs as low-voltage-side elements mounted two on each of the output-side laminated metal plates 47, and each of the MOSFETs 53 has its drain D connected to the laminated metal plate 46 and its source S The gate G is connected to a control circuit and the like while being connected to the low-voltage terminal laminated metal plate 49 via the metal wire 53A.
[0078]
A plurality of diodes (not shown) are respectively connected in parallel to the high voltage side and low voltage side MOSFETs 52 and 53 in the same manner as in the first embodiment, and these are three-phase AC type inverters. Make up the circuit. The high-voltage side and low-voltage side MOSFETs 52 and 53 are arranged side by side so as to have a positional relationship parallel to each other, for example, in the left and right directions in FIG.
[0079]
Reference numeral 54 denotes a first terminal metal plate disposed on the back surface 42B side of the base metal plate 42. The first terminal metal plate 54 is insulated by, for example, bonding or the like in a manner similar to the first embodiment. It is attached to the attachment member 23 through a member 55 in a surface contact state, and is pressed against the attachment member 23 together with the terminal metal plate 57 by the base metal plate 42.
[0080]
Reference numeral 56 denotes a first contact terminal provided on the peripheral edge of the terminal metal plate 54 so as to be able to bend and deform in the plate thickness direction. The first contact terminal 56 has a spring property similar to the first embodiment. And is formed integrally with the terminal metal plate 54 as an elongated metal piece having a shape, and extends outward from a substantially middle portion of the terminal metal plate 54 in the width direction (left and right directions in FIG. 7). Further, the contact terminal 56 is a bent portion 56 </ b> A which is bent in a mountain shape toward the laminated metal plate 49, for example, at an intermediate position in the length direction.
[0081]
The contact terminal 56 is attached to the attachment member 23 via the terminal metal plate 54, and from the back surface 42 B side of the base metal plate 42 via the terminal opening 43 and the openings 44 A, 50 A of the insulating materials 44, 50. And is pressed by the laminated metal plate 49 in the plate thickness direction. As a result, the contact terminal 56 is flexed and deformed from the free state toward the mounting member 23, and the bent portion 56A is in a state of being elastically in contact with the back side of the laminated metal plate 49 due to its restoring force.
[0082]
Reference numeral 57 denotes a second terminal metal plate disposed on the back surface 42B side of the base metal plate 42. The second terminal metal plate 57 is insulated by, for example, bonding or the like in the same manner as in the first embodiment. It is attached to the attachment member 23 in a state of being stacked on the terminal metal plate 54 via the member 58.
[0083]
Reference numeral 59 denotes a second contact terminal provided on the terminal metal plate 57 so as to be able to bend and deform in the thickness direction. The second contact terminal 59 is substantially the same as the contact terminal 56 in the width direction of the terminal metal plate 57. It has a bent portion 59A which is formed as an elongated metal piece protruding substantially from an intermediate portion and bent in a mountain shape toward the laminated metal plate 51.
[0084]
Then, the contact terminal 59 contacts the laminated metal plate 51 from the back surface 42B side of the base metal plate 42 via the terminal opening 43 and the openings 44A, 50A of the insulating materials 44, 50. Is pressed in the thickness direction. As a result, the contact terminal 59 is bent and deformed toward the mounting member 23, and the bent portion 59A is connected to the laminated metal plate 51 in a state of being elastically in contact with the rear surface side.
[0085]
Thus, also in the present embodiment configured as described above, it is possible to obtain substantially the same operation and effect as in the first embodiment. In particular, in the present embodiment, two terminal openings 43 are provided in the base metal plate 42, and the contact terminals 56, 59 are brought into contact with the laminated metal plates 49, 51 via these terminal openings 43. With the configuration, the plurality of laminated metal plates 49, 51 and the like arranged in the inverter device 41 can be easily pulled out to the outside as needed, and the degree of freedom in design can be increased. In addition, since the inverter device 41 can be configured using the general-purpose ceramic substrate 45, the number of components such as an insulating material can be reduced, and the cost can be reduced.
[0086]
In each of the above embodiments, the contact terminals 16, 19, 56, 59 bent in a mountain shape are provided on the terminal metal plates 14, 17, 54, 57. However, the present invention is not limited to this. For example, the first and second contact terminals may be configured as in a first modified example shown in FIG. In this case, two contact terminals 62 having, for example, a mountain-shaped bent portion 62A are integrally formed on the terminal metal plate 61.
[0087]
Further, the contact terminal according to the present invention may be configured, for example, as in a second modification shown in FIG. In this case, the terminal metal plate 63 is integrally formed with a contact terminal 64 having a plurality of bent portions 64A bent in, for example, a sawtooth shape (bellows shape). Further, the contact terminal is not limited to the mountain-shaped bent shape, and may be configured to be bent into, for example, a U-shape or a U-shape.
[0088]
Further, in the first embodiment, the first contact terminals 16 and 56 are connected to the negative pole side of the power supply 12, and the second contact terminals 19 and 59 are connected to the positive pole side. However, the present invention is not limited to this. For example, the polarity of the first and second contact terminals is reversed, the first contact terminal is connected to the positive pole side of the power supply, and the second contact terminal is connected to the negative pole side. It may be configured to be connected.
[0089]
In the embodiment, the circuits of each phase of the U-phase, the W-phase, and the W-phase of the inverter circuit 11 are each configured by two sets of MOSFETs 8 and 9 (MOSFETs 52 and 53). However, the present invention is not limited to this. For example, each phase of the inverter circuit may be configured by one set of MOSFETs, or may be configured by three or more sets of MOSFETs.
[0090]
Further, in the embodiment, all the MOSFETs 8, 9, 52, and 53 constituting the circuit for three phases of the inverter circuit are mounted on the inverter devices 1, 31, and 41. However, the present invention is not limited to this. For example, the inverter circuit may be divided into three phases and configured as three inverters, and these inverters may be connected in parallel to a power supply to configure the inverter circuit. May be.
[0091]
Further, in the embodiment, the high-voltage side element and the low-voltage side element are configured by MOSFETs 8, 9, 52, 53 and the like. However, the present invention is not limited to MOSFETs. For example, an insulated gate bipolar transistor (IGBT), a normal bipolar transistor, or the like may be used as the high-voltage element or the low-voltage element.
[0092]
Further, in the embodiments, the inverter devices 1, 31, and 41 have been described as examples of the semiconductor devices. However, the present invention is not limited to this, and it is needless to say that the present invention can be applied to various semiconductor devices that conduct a large current.
[Brief description of the drawings]
FIG. 1 is a partially cutaway front view of an inverter device according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view of the inverter device as viewed from the direction of arrows II-II in FIG.
FIG. 3 is a cross-sectional view of the inverter device as viewed from a direction indicated by arrows III-III in FIG.
FIG. 4 is an exploded perspective view showing a state before the inverter device is assembled.
FIG. 5 is a circuit diagram showing an inverter device.
FIG. 6 is a sectional view of the inverter device according to the second embodiment of the present invention as viewed from the same position as in FIG. 2;
FIG. 7 is a partially cutaway front view showing an inverter device according to a third embodiment of the present invention.
8 is a cross-sectional view as seen from the direction of arrows VIII-VIII in FIG.
FIG. 9 is a partially enlarged perspective view showing a contact terminal of an inverter device according to a first modification.
FIG. 10 is a partially enlarged perspective view showing a contact terminal of an inverter device according to a second modification.
[Explanation of symbols]
1,31,41 Inverter device (semiconductor device)
2,42 base metal plate (first metal plate)
2A, 42A surface
2B, 42B back side
3,43 Terminal opening
4,6,15,15 ', 18,18', 44,50,55,58 Insulation
5, 7, 46, 47 laminated metal plate (second metal plate)
8,52 MOSFET (high voltage side element)
9,53 MOSFET (low voltage side element)
11 Inverter circuit
12 Power supply
14, 14 ', 17, 17', 54, 57, 61, 63 First and second terminal metal plates
16, 19, 56, 59, 62, 64 First and second contact terminals
23, 23 'mounting member
45 Ceramics substrate
45A ceramic layer
45B, 45C, 45D metal layer
49,51 laminated metal plate (third and fourth metal plate)

Claims (8)

金属材料により板状に形成され表面と裏面とに開口する開口部が設けられると共に裏面側が取付部材に取付けられる第1の金属板と、
該第1の金属板の表面側に前記開口部と面した位置で絶縁材を介して積層された第2の金属板と、
該第2の金属板の表面側に実装され前記第1,第2の金属板間に接続された半導体素子と、
該半導体素子を外部の電源に接続するため前記第1の金属板の裏面側に位置して前記取付部材に取付けられ前記第1の金属板と接触する第1の接触端子と、
該第1の接触端子と絶縁した状態で前記取付部材に取付けられ前記第1の金属板の開口部を介して前記第2の金属板と接触する第2の接触端子とから構成してなる半導体装置。
A first metal plate which is formed in a plate shape from a metal material and has an opening provided on the front surface and the back surface, and the back surface is attached to the attachment member;
A second metal plate laminated on the front side of the first metal plate via an insulating material at a position facing the opening;
A semiconductor element mounted on the front side of the second metal plate and connected between the first and second metal plates;
A first contact terminal which is attached to the attaching member and is in contact with the first metal plate, the first contact terminal being located on the back surface side of the first metal plate for connecting the semiconductor element to an external power source;
A semiconductor comprising a first contact terminal and a second contact terminal which is attached to the attachment member in an insulated state and which comes into contact with the second metal plate via an opening of the first metal plate. apparatus.
前記第1の金属板は前記第1の接触端子を介して電源の低電圧側に接続し、前記第2の金属板は、前記第2の接触端子を介して前記電源の高電圧側に接続される高電圧側金属板と、前記半導体素子を介して前記第1の金属板と前記高電圧側金属板との間に接続され外部に電流を出力する出力側金属板とにより構成してなる請求項1に記載の半導体装置。The first metal plate is connected to the low voltage side of the power supply via the first contact terminal, and the second metal plate is connected to the high voltage side of the power supply via the second contact terminal. A high-voltage-side metal plate, and an output-side metal plate connected between the first metal plate and the high-voltage-side metal plate via the semiconductor element to output a current to the outside. The semiconductor device according to claim 1. 金属材料により板状に形成され表面と裏面とに開口する開口部が設けられると共に裏面側が取付部材に取付けられる第1の金属板と、
該第1の金属板の表面側に絶縁材を介して積層された第2の金属板と、
前記第1の金属板の表面側に前記開口部と面した位置で絶縁材を介して積層され該第2の金属板と接続された第3の金属板と、
前記第1の金属板の表面側に前記開口部と面した位置で絶縁材を介して積層され該第3の金属板と絶縁された第4の金属板と、
前記第2の金属板の表面側に実装され前記第3,第4の金属板間に接続された半導体素子と、
該半導体素子を外部の電源に接続するため前記第1の金属板の裏面側に位置して前記取付部材に取付けられ前記第1の金属板の開口部を介して前記第3の金属板と接触する第1の接触端子と、
該第1の接触端子と絶縁した状態で前記取付部材に取付けられ前記第1の金属板の開口部を介して前記第4の金属板と接触する第2の接触端子とから構成してなる半導体装置。
A first metal plate which is formed in a plate shape from a metal material and has an opening provided on the front surface and the back surface, and the back surface is attached to the attachment member;
A second metal plate laminated on the surface side of the first metal plate via an insulating material;
A third metal plate laminated on the front surface side of the first metal plate at a position facing the opening via an insulating material and connected to the second metal plate;
A fourth metal plate laminated on the surface of the first metal plate at a position facing the opening with an insulating material interposed therebetween and insulated from the third metal plate;
A semiconductor element mounted on the front side of the second metal plate and connected between the third and fourth metal plates;
In order to connect the semiconductor element to an external power source, the semiconductor element is attached to the mounting member at the back side of the first metal plate and is in contact with the third metal plate through an opening of the first metal plate. A first contact terminal,
A second contact terminal which is attached to the attachment member in an insulated state from the first contact terminal and which is in contact with the fourth metal plate via an opening in the first metal plate; apparatus.
前記第3の金属板は前記第1の接触端子を介して電源の低電圧側に接続し、前記第4の金属板は前記第2の接触端子を介して前記電源の高電圧側に接続し、前記第2の金属板は、前記第4の金属板と接続される高電圧側金属板と、前記半導体素子を介して該高電圧側金属板と前記第3の金属板との間に接続され外部に電流を出力する出力側金属板とにより構成してなる請求項3に記載の半導体装置。The third metal plate is connected to the low voltage side of the power supply via the first contact terminal, and the fourth metal plate is connected to the high voltage side of the power supply via the second contact terminal. The second metal plate is connected between the high voltage side metal plate and the third metal plate via the semiconductor element, and the high voltage side metal plate connected to the fourth metal plate. 4. The semiconductor device according to claim 3, comprising an output-side metal plate that outputs a current to the outside. 前記第1の金属板の裏面側には、前記第1の接触端子が板厚方向に変位可能に設けられた第1の端子金属板と、前記第2の接触端子が板厚方向に変位可能に設けられた第2の端子金属板とを配置し、これら第1,第2の端子金属板を絶縁材を介して積層した状態で前記取付部材に取付ける構成としてなる請求項1,2,3または4に記載の半導体装置。On the back side of the first metal plate, a first terminal metal plate provided with the first contact terminal displaceable in the plate thickness direction, and the second contact terminal displaceable in the plate thickness direction. And a second terminal metal plate provided on the mounting member, and the first and second terminal metal plates are mounted on the mounting member in a state of being laminated via an insulating material. Or the semiconductor device according to 4. 前記第1,第2の接触端子は前記第1,第2の端子金属板となる板材の一部を折曲げることにより板厚方向に撓み変形可能に形成してなる請求項5に記載の半導体装置。6. The semiconductor according to claim 5, wherein the first and second contact terminals are formed so as to be bent and deformed in a thickness direction by bending a part of a plate material serving as the first and second terminal metal plates. apparatus. 前記半導体素子は、前記電源の高電圧側に接続される複数の高電圧側素子と、前記電源の低電圧側に接続され該各高電圧側素子と共にインバータ回路を形成する複数の低電圧側素子とにより構成し、前記複数の高電圧側素子と複数の低電圧側素子とを互いに並行な位置関係をもって並べる構成としてなる請求項1,2,3,4,5または6に記載の半導体装置。The semiconductor element includes a plurality of high-voltage elements connected to a high-voltage side of the power supply, and a plurality of low-voltage elements connected to a low-voltage side of the power supply to form an inverter circuit with each of the high-voltage elements. 7. The semiconductor device according to claim 1, wherein the plurality of high-voltage-side elements and the plurality of low-voltage-side elements are arranged in parallel with each other. 8. 前記第2の金属板は前記絶縁材となるセラミックス層に固着された金属層によって形成し、前記セラミックス層と金属層とはセラミックス基板として構成してなる請求項3,4,5,6または7に記載の半導体装置。8. The ceramic plate according to claim 3, wherein the second metal plate is formed of a metal layer fixed to a ceramic layer serving as the insulating material, and the ceramic layer and the metal layer are configured as a ceramic substrate. 3. The semiconductor device according to claim 1.
JP2002211377A 2002-07-19 2002-07-19 Semiconductor device Expired - Fee Related JP4070531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002211377A JP4070531B2 (en) 2002-07-19 2002-07-19 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002211377A JP4070531B2 (en) 2002-07-19 2002-07-19 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2004055830A true JP2004055830A (en) 2004-02-19
JP4070531B2 JP4070531B2 (en) 2008-04-02

Family

ID=31934633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002211377A Expired - Fee Related JP4070531B2 (en) 2002-07-19 2002-07-19 Semiconductor device

Country Status (1)

Country Link
JP (1) JP4070531B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103603A (en) * 2005-10-03 2007-04-19 Nissan Motor Co Ltd Power converter
JP2015216407A (en) * 2015-08-31 2015-12-03 三菱電機株式会社 Semiconductor device
US10128625B2 (en) 2014-11-18 2018-11-13 General Electric Company Bus bar and power electronic device with current shaping terminal connector and method of making a terminal connector
JP2020519029A (en) * 2017-05-02 2020-06-25 アーベーベー・シュバイツ・アーゲー Resin-sealed power semiconductor module having exposed terminal area

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103603A (en) * 2005-10-03 2007-04-19 Nissan Motor Co Ltd Power converter
JP4640089B2 (en) * 2005-10-03 2011-03-02 日産自動車株式会社 Power converter
US10128625B2 (en) 2014-11-18 2018-11-13 General Electric Company Bus bar and power electronic device with current shaping terminal connector and method of making a terminal connector
JP2015216407A (en) * 2015-08-31 2015-12-03 三菱電機株式会社 Semiconductor device
JP2020519029A (en) * 2017-05-02 2020-06-25 アーベーベー・シュバイツ・アーゲー Resin-sealed power semiconductor module having exposed terminal area
JP7030844B2 (en) 2017-05-02 2022-03-07 ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト Resin-sealed power semiconductor module with exposed terminal area

Also Published As

Publication number Publication date
JP4070531B2 (en) 2008-04-02

Similar Documents

Publication Publication Date Title
EP1195884B1 (en) Electric power conversion/inversion apparatus
WO2014002442A1 (en) Semiconductor device and semiconductor device connection structure
JP3958589B2 (en) Electrical junction box
JP2004319992A (en) Modular configuration-type power semiconductor module
US20090160044A1 (en) Semiconductor module mounting structure
JP2001211529A (en) Electricity-connection box
JP3780230B2 (en) Semiconductor module and power conversion device
JP6020379B2 (en) Semiconductor device
US11923278B2 (en) Semiconductor module
JP2004186504A (en) Semiconductor device
JP2002093995A (en) Semiconductor device
WO2001082376A1 (en) Semiconductor device
JP3673776B2 (en) Semiconductor module and power conversion device
JP4064741B2 (en) Semiconductor device
WO2018211935A1 (en) Circuit device
WO2021005915A1 (en) Semiconductor device
JP2003250278A (en) Semiconductor device
JP4070531B2 (en) Semiconductor device
JP2004303854A (en) Semiconductor device
EP3961704B1 (en) Semiconductor module
JP2004063681A (en) Semiconductor device
JP5040418B2 (en) Semiconductor device
JP2002353406A (en) Semiconductor device
WO2024070384A1 (en) Power unit
JP7135999B2 (en) wiring board

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080115

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees