【0001】
【発明の属する技術分野】
本発明は、波長200nm以下の紫外光を用いるフォトリソグラフィ用のペリクルに使用する露光方法に関する。
【0002】
【従来の技術】
ペリクルとは、半導体装置または液晶表示板を製造する際の一工程であるフォトリソグラフィにおいて、フォトマスクやレチクル(以下これらをマスクという)上に異物が乗り、露光時にパターン欠陥となることを防ぐためにマスクのパターン上に装着される保護具であって、ペリクル膜とフレームとからなる。通常は接着剤を介してフレームに取り付けられたペリクル膜が、マスク上にある距離マスク面から離して設置される構造を有している。
これらが使用される半導体装置や液晶表示板の製造分野では、配線や配線間隔の微細化進展にともない、フォトリソグラフィにおいても、用いられる光源の波長が急速に短波長化している。最小パターン寸法0.3μmを超えるの従来の露光技術では、i線光源(365nm)を用いたプロセスが主流であり、ペリクル膜の材料としてはニトロセルロース系材料が使用されてきた。
近年、最小パターン寸法0.3μm以下の配線加工のために、KrFエキシマレーザーが導入されつつあるが、その発振波長は248nmであり、ニトロセルロース系の膜材料では耐久性が不充分である。さらに、エキシマレーザーなどの短波長のレーザー光を用いる場合には非結晶性のペルフルオロポリマーがペリクル膜の材料として有用であることが見出されている(特許第2951337号明細書や特許第2952962号明細書参照)。
【0003】
一方、近年開発中の最小パターン寸法0.2μm以下の配線加工のためには、200nm以下の短波長紫外光のレーザー光源として、波長193nmのフッ化アルゴンエキシマレーザー(以下、「ArFエキシマレーザー」という)、波長157nmのフッ素ガスエキシマレーザー(以下、「F2エキシマレーザー」という)などの使用が提案されている。
【0004】
しかし、光源の短波長化が進むと、その光子エネルギーが大きくなり、例えば、ArFエキシマレーザー光では6.4eV(=147kcal/mol)ものエネルギーを持ち、このエネルギーは、有機ポリマーにおけるC−C結合の解離エネルギー(104kcal/mol)より十分大きいため、フッ素系のペリクル膜でも露光による分解に起因する劣化によりペリクル膜の膜厚の減少が生じることになる。一方、露光照射の雰囲気については、通常の空気若しくは窒素雰囲気下でおこなうことが検討されていた。また、有機化合物や無機化合物の濃度を減らした窒素及び酸素の混合気体の雰囲気下でおこなうことで、空気程度の組成(N2:O2=4:1)でも、通常の空気よりもペリクル膜の劣化が顕著に防止され、特に含フッ素ポリマーから成るペリクル膜の紫外光による劣化を有効に防止することが可能となることが報告されている(特開2002−124449)。しかし、近年の200nm以下の短波長レーザー光を使用した場合、このような窒素と酸素の混合気体を用いた場合でも有機質ポリマーにおけるC−C結合の分解に起因する劣化によりペリクル膜の膜厚の減少が大きな問題となっていた。
【0005】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、200nm以下の紫外光を用いた露光処理において、ペリクル膜の劣化が少ない露光方法を提供することである。
【0006】
【課題を解決するための手段】
上記課題を解決するため鋭意検討したところ、発明者らは、露光する際の混合ガスの雰囲気によりペリクル膜の耐光性が左右されることを見出し、本発明を完成させた。すなわち200nm以下の紫外光にてペリクルを通して露光する際に、ペリクルの耐光性を改善する混合ガスの雰囲気を見出した。本発明は、波長200nm以下の紫外光を用いるフォトリソグラフィ工程において、ペリクル膜とフレームとからなるペリクルを通して露光する際、99.5%以上の純度を有する不活性ガス成分と、99.5%以上の純度を有する炭素数3以下のフッ素化炭化水素ガス成分を混合して成る混合ガスの雰囲気下で露光することを特徴とする露光方法を提供する。
本発明の露光方法は、特に200nm以下の紫外光による露光処理方法として適している。具体的には、波長193nmのArFエキシマレーザー光、157nmのF2エキシマレーザー光によるフォトリソグラフィーにおける露光方法として適している。
【0007】
【発明の実施の形態】
本発明の露光方法において、使用する不活性ガスは純度99.5%以上であれば特に制限はないが、99.9%以上の純度を有することが好ましい。純度が99.5%未満の場合は、ガス中に含まれる有機、無機不純物がペリクル膜に吸着され、その部分より膜の分解が誘発されることがあるので好ましくない。好ましい不活性ガスとしては、窒素、ヘリウム、ネオン、アルゴン等が例示される。これら不活性ガスは、数種類を併用してもよいが、コストおよび管理の観点からいずれか一種類を用いることが好ましい。一方、不活性ガスとともに用いられるガスとしては99.5%以上の純度を有する炭素数3以下の常温下でガス状のフッ素化炭化水素(以下、「低分子含フッ素ガス」という。)が好ましく、かつ波長200nmにおいて1cmの光路長における透過率が10%以上あるものが好ましい。フッ素化炭化水素の炭素数が4以上では、化合物が常温下でガス状でなかったり、200nm以下の紫外光の透過率が低くなり露光に悪影響があるばかりでなく、凝縮により露光光を散乱させたり、ペリクル膜へ吸着し膜の張力を低下させ、露光光を散乱させるため、フォトマスクの転写精度を低下させることがあるので好ましくない。
また、フッ素化炭化水素は、不飽和結合やフッ素以外のハロゲン元素を含まないものが好ましい。より好ましいフッ素化炭化水素は、フッ素原子の数が炭素数をnとしたとき、n以上2n+1以下のものである。
【0008】
これらを満足するフッ素化炭化水素のうち特に好ましいものは、CF3H、CF2H2又はCFH3のいずれかのガスである。これらは単独で用いても、併用して用いても良い。
【0009】
不活性ガスと低分子含フッ素ガスは、不活性ガス:低分子含フッ素ガスを、99.995:0.005〜99:1の容積比で混合して用いることが好ましく、99.99:0.01〜99.9:0.1の容積比で混合して用いることが最も好ましい。低分子含フッ素ガスが1%よりも多い場合はペリクルの長期使用時に膜の膨潤が原因と考えられる露光光のゆがみが発生し、一方0.005%よりも少ない場合は、低分子含フッ素ガスの効果が十分でない。
また、上記の低分子含フッ素ガスと不活性ガスの混合ガスに500ppm以下の濃度で純度99.5%以上の酸素を添加しても良い。酸素量が多い場合には、酸素が紫外線を吸収し、また紫外線の透過度の低下が顕著になって、光線減衰率が大きくなり、効率的な露光ができなくなる。
これらの低分子含フッ素ガスがペリクル膜の耐光性を改善するメカニズムは定かではないが、200nm以下の紫外光を照射されたときにペリクル膜に生成する微量なラジカルをトラップし、それ以上の分解を抑制する方向に作用するためと考えられる。
【0010】
また、低分子含フッ素ガスと同様な効果を発現するものとしては、フッ素ガスも例示される。フッ素ガスはその反応性が非常に高いため、上記低分子含フッ素ガスのような量を添加すると、レチクル設置部やフレーム、露光室内部に多大な腐食を発生させるため、非常に少量添加することでその効果が確認できる。使用するフッ素ガスは99.5%以上の純度を有するものが好ましい。また、純度99.5%以上の不活性ガスと混合することによりその反応性の制御が可能である。
ここでフッ素ガスと同時に用いる不活性ガスは前記と同様に99.9%以上の純度を有することが好ましい。純度が低い場合は、ガス中に含まれる有機、無機不純物とフッ素ガスの反応により好ましくない複反応が誘発されたり、微粒子などの汚染物がレチクル上に導入されたりして好ましくない。好ましい不活性ガスとしては、窒素、ヘリウム、ネオン、アルゴン等が例示される。
【0011】
不活性ガスとフッ素ガスは、不活性ガス:フッ素ガスを99.99999:0.00001〜99.999:0.001の容積比で混合して用いることが好ましく、99.99999:0.00001〜99.9999:0.0001の容積比で用いることが最も好ましい。フッ素ガスを用いる場合は、酸素の添加はペリクル膜の分解を加速させるため好ましくない。
また、本発明の露光方法は、波長200nm以下の紫外光を用いた露光処理に有効であり、例えばフッ化アルゴンエキシマレーザー光(波長:193nm)、またはフッ素ガスエキシマレーザー光(波長:157nm)を光源とする露光方法に好適に用いることができる。
【0012】
本発明の露光方法に用いられるペリクルは、従来公知のペリクルが使用される。例えば、アルミニウム等から成るフレームの一方の端部にペリクル膜を張架し、他方の端部に粘着剤を塗布してマスクに固定して使用するものが挙げられる。ペリクル膜の厚みとしては、0.1〜10μm、特に0.2〜5μmの範囲にあることが好ましい。
本発明におけるペリクルに使用される材料としては、ペリクルとして使用できる透明な有機質ポリマーであればよいが、エキシマレーザー光などのエネルギーの高い露光光に対する耐久性が高いことが必要であることより、これらの光に対して透明な含フッ素ポリマーが好ましい。ここで「透明な」とは、これらのエキシマレーザー光に対する透過率が膜厚1μmのフィルムにて95%以上、好ましくは96%以上であることをいう。エネルギーの高い露光光に対する耐久性が高い含フッ素ポリマーとしては、特許第2951337号明細書、特許第2952962号明細書、特開2001−330943号公報などにペリクル膜材料として記載されている含フッ素ポリマーが好ましい。このペリクル膜材料として公知の含フッ素ポリマーは、炭素原子の主鎖を有する含フッ素ポリマーであり、主鎖に含フッ素脂肪族環構造を有する、透明性の高い含フッ素ポリマーである。
【0013】
本発明におけるペリクルに使用される膜材料としては、特に波長200nm以下の紫外光に対して耐久性の高い含フッ素ポリマーが好ましいことより、そのような紫外光に対して耐久性の高い含フッ素ポリマーとして提案されている上記特開2001−330943号公報に記載の含フッ素ポリマーが好ましい。その含フッ素ポリマーは、炭素原子の主鎖を有するポリマーであって、主鎖の炭素原子として1個または2個の水素原子が結合した炭素原子と水素原子が結合せずかつフッ素原子または含フッ素有機基が結合した炭素原子とを含む含フッ素ポリマーである。含フッ素有機基としては、ペルフルオロアルキル基、ペルフルオロアルコキシ基などの1価の基、ペルフルオロアルキレン基、末端の少なくとも一方または炭素原子間にエーテル性酸素原子を有するペルフルオロアルキレン基などの2価の基がある。なお、2価の基は主鎖の1つの炭素原子または主鎖の異なる炭素原子に結合して、主鎖の炭素原子とともに含フッ素脂肪族環構造を形成するものであることが好ましい。
【0014】
特開2001−330943号公報には、そこに記載のペリクル膜用含フッ素ポリマーとして主鎖に含フッ素脂肪族環構造を有する含フッ素ポリマー以外の含フッ素ポリマーも記載されている。しかし、本発明におけるペリクル膜用の含フッ素ポリマーとしては、特開2001−330943号公報記載の含フッ素ポリマーのうち主鎖に含フッ素脂肪族環構造を有する含フッ素ポリマーが好ましい。さらに、特開2001−330943号公報には、そこに記載の含フッ素ポリマーはまたペリクル膜をフレームに接着するための接着剤としても使用し得ることが記載されている。本発明においてもこの含フッ素ポリマーがペリクル膜をフレームに接着するための接着剤として使用されることが好ましい。
【0015】
本発明において、ペリクル膜をフレームに接着するための接着剤としては特に高い透明性は要求されないことより、上記特開2001−330943号公報記載の含フッ素ポリマーのうち主鎖に含フッ素脂肪族環構造を有しない含フッ素ポリマーも使用できる。主鎖に含フッ素脂肪族環構造を有する含フッ素ポリマーを用いることも何ら差し支えない。また、接着剤としての含フッ素ポリマーは、ペリクル膜やフレームに対する接着性を高めるために官能基を有する含フッ素ポリマーを用いることができる。たとえば、上記のような含フッ素ポリマーは通常主鎖末端に重合開始剤に由来する残基を有することより、この残基を官能基に変換して含フッ素ポリマーに官能基を導入できる。具体的には、たとえばペルオキシド系重合開始剤を使用して得られた含フッ素ポリマーを熱処理した後水と反応させて、重合開始剤由来の末端基をカルボキシル基に変換できる。また、含フッ素ポリマー製造の際に、官能基や官能基に変換し得る基を有するモノマーを共重合させて含フッ素ポリマーに官能基を導入することもできる。
上記のように、本発明においては、ペリクル膜を構成する材料および該ペリクル膜をフレームに接着するための接着剤の少なくとも一方は、上記特開2001−330943号公報記載の含フッ素ポリマーからなることが好ましく、特にいずれもこの含フッ素ポリマーからなることが好ましい。
以下、本発明を具体的に例示するが、本発明は何らこれらに限定されるものではない。
【0016】
【実施例】
(例1)[含フッ素ポリマー(A)の合成例]
1,1,2,4,4,5−ヘキサフルオロ−3−オキサ−5−トリフルオロメチル−1,6−ヘプタジエン[ CH2=CHCF(CF3)CF2OCF=CF2]30gおよび1H−ペルフルオロヘキサン[CF3CF2CF2CF2CF2CF2H]70gを窒素置換した内容積100mlの耐圧ガラス製オートクレーブに入れた。
重合開始剤としてビス(ヘプタフルオロブチリル)ペルオキシド17mgを加え、系内を再度窒素で置換した後、5℃で72時間重合を行った。その結果、主鎖に含フッ素環構造を有する非結晶性ポリマー(以下重合体Aという)を24g得た。
重合体Aの固有粘度[η]は、ペルフルオロ(2―ブチルテトラヒドロフラン)中30℃で0.60dl/gであった。重合体Aのガラス転移温度は108℃であり、室温ではタフで透明ガラス状の重合体であり、屈折率は1.34と低かった。
重合体A7gと1,3−ビス(トリフルオロメチル)ベンゼン93gをガラス製フラスコ中に入れて40℃にて24時間加熱撹拌した。その結果、無色透明で濁りのない均一な溶液を得た。この溶液を研磨したガラス板上にスピン速度500rpmにて10秒、その後2000rpmにて20秒スピンコートを実施した後、80℃にて1時間、さらに180℃にて1時間加熱処理することにより、ガラス板上に均一で透明な膜が得られた。
【0017】
(例2)[含フッ素ポリマー(B)の合成例]
1,1,2,4,4,5,5−ヘプタフルオロ−3−オキサ−1,6−ヘプタジエン[CH2=CHCF2CF2OCF=CF2]20gおよびトリクロロトリフルオロエタン40gを内容積200mlの耐圧ガラス製オートクレーブに入れた。重合開始剤としてビス(ヘプタフルオロブチリル)ペルオキシド20mgを加え、系内を再度窒素で置換した後、18℃で10時間重合を行った。その結果、主鎖に含フッ素環構造を有する非結晶性ポリマー(以下、重合体Bという)を10g得た。
重合体Bの固有粘度[η]は、1,3−ビス(トリフルオロメチル)ベンゼン中30℃で0.96dl/gであった。重合体Bのガラス転移点は90℃であり、室温ではタフで透明なガラス状の重合体であり、屈折率は1.36と低かった。
この重合体Bを空気中320℃で3時間熱処理した後に水中に浸漬して変性させた。変性された重合体BのIRスペクトル測定によりカルボキシル基のピークが確認され、その量は0.005ミリモル/gであった。この変性された重合体Bを以下接着剤Bという。
一方、接着剤B7gを1,3−ビス(トリフルオロメチル)ベンゼン93gに溶解して得た溶液をアルミニウムフレーム上に塗布し、室温で2時間乾燥した。その後、120℃のホットプレート上に接着面を上にしてアルミニウムフレームを載せて10分間加熱し、上記重合体Aの膜が形成されたガラス板を膜面をフレーム側にして圧着した。その状態で120℃で10分間保持して接着を完結させた。その後、膜をガラス板から剥離して、アルミニウムフレームに重合体Aからなる膜厚約1μmの均一な自立膜がついたペリクルを得た。
この膜の157nmの光の透過率は95%以上であった。
重合体Aの膜を有する各ペリクルについてフォトリソグラフィに用いられる157nmを発振するフッ素ガスエキシマレーザー光の照射試験を行った。
【0018】
(実施例1)
容積0.02m3の露光室に、上記ペリクル膜(膜厚1μm)をセットし、ガス導入口から純度99.999%以上の窒素(高純度窒素:大洋東洋酸素株式会社製)99.99容量%、純度99.9%以上のCF3Hガス0.01容量%を混合してなる混合ガス(混合ガスA)を導入し露光室内の気体を置換した。その後、混合ガスAを0.2L/分の速度でフローさせた状態でフッ素ガスエキシマレーザー光(波長:157nm、パルスエネルギー密度:0.1(mJ/cm2)/pulse、周波数200Hz、照射面積1cm2)をペリクルに照射した。13000pulse照射後に上記ペリクル膜を取り出し、ペリクル膜の157nmの光の透過率を測定した。ペリクル膜の寿命を157nmの紫外光の透過率が1%まで減少した時点とすると、上記ペリクル膜の透過率の減少はほとんどなく、重合体Aの膜は極めて良好な耐性を示した。また、膜の剥離はなく、接着剤Bも良好な耐久性を示した。
【0019】
(実施例2)
混合ガスの組成を、実施例1と同じ高純度窒素99.99容量%、純度99.9%以上のCF2H2ガス0.01容量%を混合してなる混合ガス(混合ガスB)とした以外は実施例1と同様にして耐光性試験を行った。20000pulse照射後に上記ペリクル膜を取り出し、ペリクル膜の157nmの光の透過率を測定した。上記ペリクル膜の透過率の減少はほとんどなく、重合体Aの膜は極めて良好な耐性を示した。また、膜の剥離はなく、接着剤Bも良好な耐久性を示した。
【0020】
(比較例1)
混合ガスとして実施例1と同じ高純度窒素99容量%、純度99.9%以上の酸素1容量%を混合してなる混合ガスを用いた以外は実施例1と同様にして耐光性試験を行った。13000pulse照射後に上記ペリクル膜を取り出したところ、重合体Aの膜は著しい膜減りや膜の破れが発生し、使用に耐えないものであった。
【0021】
(比較例2)
混合ガスとして実施例1と同じ高純度窒素98容量%、純度99.9%以上のCF3Hガス2容量%を混合してなる混合ガスを用いた以外は実施例1と同様にして耐光性試験を行ったところ、光が通らず、ペリクル面へうまく照射できなかった。
【0022】
【発明の効果】
本発明の露光方法によれば、ペリクル膜の光の透過率が経時によりほとんど減少せず、ペリクル膜の劣化を防止することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exposure method used for a pellicle for photolithography using ultraviolet light having a wavelength of 200 nm or less.
[0002]
[Prior art]
A pellicle is a photolithographic process that is a process for manufacturing a semiconductor device or a liquid crystal display panel, in order to prevent foreign matter from getting on a photomask or reticle (hereinafter referred to as a mask) and causing pattern defects during exposure. A protector mounted on a mask pattern, which includes a pellicle film and a frame. Usually, the pellicle film attached to the frame via an adhesive has a structure in which the pellicle film is placed away from the distance mask surface on the mask.
In the field of manufacturing semiconductor devices and liquid crystal display panels in which these are used, the wavelength of the light source used in photolithography is rapidly shortening as the wiring and wiring spacing become finer. In a conventional exposure technique with a minimum pattern size exceeding 0.3 μm, a process using an i-line light source (365 nm) is the mainstream, and a nitrocellulose-based material has been used as a material for the pellicle film.
In recent years, a KrF excimer laser is being introduced for wiring processing with a minimum pattern dimension of 0.3 μm or less, but its oscillation wavelength is 248 nm, and a nitrocellulose-based film material has insufficient durability. Furthermore, it has been found that an amorphous perfluoropolymer is useful as a material for a pellicle film when a short-wavelength laser beam such as an excimer laser is used (Japanese Patent Nos. 2,951,337 and 2,952,962). See the description).
[0003]
On the other hand, an argon fluoride excimer laser (hereinafter referred to as “ArF excimer laser”) having a wavelength of 193 nm is used as a laser light source for short-wavelength ultraviolet light of 200 nm or less for wiring processing having a minimum pattern size of 0.2 μm or less that is being developed in recent years. ), A fluorine gas excimer laser having a wavelength of 157 nm (hereinafter referred to as “F 2 excimer laser”) has been proposed.
[0004]
However, as the wavelength of the light source becomes shorter, the photon energy increases. For example, ArF excimer laser light has an energy of 6.4 eV (= 147 kcal / mol), and this energy is a C—C bond in an organic polymer. Since the dissociation energy (104 kcal / mol) is sufficiently larger, even in the case of a fluorine-based pellicle film, the film thickness of the pellicle film is reduced due to degradation caused by decomposition due to exposure. On the other hand, it has been studied that the exposure atmosphere is performed in a normal air or nitrogen atmosphere. In addition, by carrying out in an atmosphere of a mixed gas of nitrogen and oxygen with reduced concentrations of organic compounds and inorganic compounds, the pellicle film has a composition equivalent to that of air (N 2 : O 2 = 4: 1) rather than normal air. It has been reported that the deterioration of the pellicle film made of a fluorine-containing polymer can be effectively prevented, and the deterioration due to ultraviolet light can be effectively prevented (Japanese Patent Laid-Open No. 2002-124449). However, when a short wavelength laser beam of 200 nm or less in recent years is used, even when such a mixed gas of nitrogen and oxygen is used, the film thickness of the pellicle film is deteriorated due to degradation caused by the decomposition of the C—C bond in the organic polymer. Decrease was a big problem.
[0005]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to provide an exposure method in which the pellicle film is less deteriorated in the exposure process using ultraviolet light of 200 nm or less.
[0006]
[Means for Solving the Problems]
As a result of diligent studies to solve the above problems, the inventors have found that the light resistance of the pellicle film depends on the atmosphere of the mixed gas at the time of exposure, and have completed the present invention. That is, the present inventors have found an atmosphere of a mixed gas that improves the light resistance of a pellicle when exposure is performed through the pellicle with ultraviolet light of 200 nm or less. The present invention provides an inert gas component having a purity of 99.5% or more and 99.5% or more when exposed through a pellicle composed of a pellicle film and a frame in a photolithography process using ultraviolet light having a wavelength of 200 nm or less. The exposure method is characterized in that the exposure is performed in an atmosphere of a mixed gas obtained by mixing fluorinated hydrocarbon gas components having a purity of 3 or less and having 3 carbon atoms.
The exposure method of the present invention is particularly suitable as an exposure processing method using ultraviolet light of 200 nm or less. Specifically, it is suitable as an exposure method in photolithography using ArF excimer laser light having a wavelength of 193 nm and F 2 excimer laser light having a wavelength of 157 nm.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the exposure method of the present invention, the inert gas used is not particularly limited as long as the purity is 99.5% or more, but preferably has a purity of 99.9% or more. A purity of less than 99.5% is not preferable because organic and inorganic impurities contained in the gas are adsorbed on the pellicle film and the film may be decomposed from that portion. Preferred inert gases include nitrogen, helium, neon, argon and the like. Several kinds of these inert gases may be used in combination, but it is preferable to use any one kind from the viewpoint of cost and management. On the other hand, the gas used together with the inert gas is preferably a gaseous fluorinated hydrocarbon having a purity of 99.5% or more and a room temperature of 3 or less carbon atoms (hereinafter referred to as “low molecular fluorine-containing gas”). In addition, a material having a transmittance of 10% or more at an optical path length of 1 cm at a wavelength of 200 nm is preferable. When the number of carbon atoms of the fluorinated hydrocarbon is 4 or more, the compound is not in a gaseous state at room temperature, or the transmittance of ultraviolet light of 200 nm or less is lowered, which adversely affects exposure, and also condenses exposure light by condensation. It is not preferable because the photomask transfer accuracy may be lowered because the film is adsorbed to the pellicle film to reduce the tension of the film and scatter the exposure light.
Further, the fluorinated hydrocarbon is preferably one containing no unsaturated bond or halogen element other than fluorine. More preferred fluorinated hydrocarbons are those having n or more and 2n + 1 or less when the number of fluorine atoms is n.
[0008]
Particularly preferred among the fluorinated hydrocarbons satisfying these requirements is any gas of CF 3 H, CF 2 H 2 or CFH 3 . These may be used alone or in combination.
[0009]
As the inert gas and the low-molecular fluorine-containing gas, it is preferable to use a mixture of an inert gas and a low-molecular fluorine-containing gas in a volume ratio of 99.995: 0.005 to 99: 1, and 99.99: 0. It is most preferable to use a mixture in a volume ratio of 0.01 to 99.9: 0.1. When the amount of the low molecular fluorine-containing gas is more than 1%, exposure light distortion, which is considered to be caused by the swelling of the film during long-term use of the pellicle, is generated. On the other hand, when it is less than 0.005%, the low molecular fluorine-containing gas is used. The effect is not enough.
Further, oxygen having a purity of 99.5% or more at a concentration of 500 ppm or less may be added to the mixed gas of the low molecular fluorine-containing gas and the inert gas. When the amount of oxygen is large, oxygen absorbs ultraviolet rays, and the decrease in the transmittance of ultraviolet rays becomes remarkable, the light attenuation rate increases, and efficient exposure cannot be performed.
The mechanism by which these low-molecular fluorine-containing gases improve the light resistance of the pellicle film is not clear, but it traps a small amount of radicals generated in the pellicle film when irradiated with ultraviolet light of 200 nm or less, and further decomposes it. This is considered to act in the direction of suppressing the above.
[0010]
Moreover, fluorine gas is also exemplified as one that exhibits the same effect as the low-molecular fluorine-containing gas. Fluorine gas has a very high reactivity, so adding an amount such as the above low-molecular fluorine-containing gas will cause a great deal of corrosion in the reticle installation area, frame, and exposure chamber, so add a very small amount. The effect can be confirmed. The fluorine gas used preferably has a purity of 99.5% or more. Further, the reactivity can be controlled by mixing with an inert gas having a purity of 99.5% or more.
Here, the inert gas used simultaneously with the fluorine gas preferably has a purity of 99.9% or more as described above. When the purity is low, undesirable double reactions are induced by the reaction of organic and inorganic impurities contained in the gas and fluorine gas, or contaminants such as fine particles are introduced onto the reticle, which is not preferable. Preferred inert gases include nitrogen, helium, neon, argon and the like.
[0011]
As the inert gas and the fluorine gas, it is preferable to use an inert gas: fluorine gas mixed in a volume ratio of 99.99999: 0.00001 to 99.999: 0.001, and 99.999999: 0.00001 to Most preferred is a volume ratio of 99.9999: 0.0001. When fluorine gas is used, addition of oxygen is not preferable because it accelerates decomposition of the pellicle film.
The exposure method of the present invention is effective for exposure processing using ultraviolet light having a wavelength of 200 nm or less. For example, an argon fluoride excimer laser beam (wavelength: 193 nm) or a fluorine gas excimer laser beam (wavelength: 157 nm) is used. It can be suitably used for an exposure method using a light source.
[0012]
As the pellicle used in the exposure method of the present invention, a conventionally known pellicle is used. For example, a pellicle film is stretched over one end of a frame made of aluminum or the like, and an adhesive is applied to the other end to fix it to a mask. The thickness of the pellicle film is preferably in the range of 0.1 to 10 μm, particularly 0.2 to 5 μm.
The material used for the pellicle in the present invention may be a transparent organic polymer that can be used as a pellicle, but it is necessary to have high durability against high-energy exposure light such as excimer laser light. A fluorine-containing polymer that is transparent to the light is preferred. Here, “transparent” means that the transmittance for the excimer laser light is 95% or more, preferably 96% or more in a film having a thickness of 1 μm. Examples of the fluorine-containing polymer having high durability against exposure light having high energy include fluorine-containing polymers described as a pellicle film material in Japanese Patent No. 2951337, Japanese Patent No. 2952962, Japanese Patent Application Laid-Open No. 2001-330943, etc. Is preferred. The fluorine-containing polymer known as the pellicle film material is a fluorine-containing polymer having a main chain of carbon atoms, and is a highly transparent fluorine-containing polymer having a fluorine-containing aliphatic ring structure in the main chain.
[0013]
As the film material used for the pellicle in the present invention, a fluorine-containing polymer having high durability particularly against ultraviolet light having a wavelength of 200 nm or less is preferable. The fluorine-containing polymer described in JP-A-2001-330943 proposed as above is preferable. The fluorine-containing polymer is a polymer having a main chain of carbon atoms, in which one or two hydrogen atoms bonded as carbon atoms in the main chain are not bonded to hydrogen atoms, and fluorine atoms or fluorine-containing polymers It is a fluorine-containing polymer containing a carbon atom to which an organic group is bonded. Examples of the fluorine-containing organic group include a monovalent group such as a perfluoroalkyl group and a perfluoroalkoxy group, a perfluoroalkylene group, a divalent group such as a perfluoroalkylene group having an etheric oxygen atom between at least one of the terminals or a carbon atom. is there. In addition, it is preferable that a bivalent group is couple | bonded with one carbon atom of a main chain, or a different carbon atom of a main chain, and forms a fluorine-containing aliphatic ring structure with the carbon atom of a main chain.
[0014]
Japanese Patent Application Laid-Open No. 2001-330943 also describes a fluorine-containing polymer other than the fluorine-containing polymer having a fluorine-containing aliphatic ring structure in the main chain as the fluorine-containing polymer for a pellicle film described therein. However, the fluorine-containing polymer for the pellicle membrane in the present invention is preferably a fluorine-containing polymer having a fluorine-containing aliphatic ring structure in the main chain among the fluorine-containing polymers described in JP-A No. 2001-330943. Further, JP-A-2001-330943 describes that the fluorine-containing polymer described therein can also be used as an adhesive for bonding the pellicle membrane to the frame. Also in the present invention, this fluorine-containing polymer is preferably used as an adhesive for bonding the pellicle membrane to the frame.
[0015]
In the present invention, since the adhesive for bonding the pellicle film to the frame is not particularly required to have high transparency, a fluorine-containing aliphatic ring is included in the main chain among the fluorine-containing polymers described in JP-A-2001-330943. A fluorine-containing polymer having no structure can also be used. It is possible to use a fluorine-containing polymer having a fluorine-containing aliphatic ring structure in the main chain. In addition, as the fluorine-containing polymer as the adhesive, a fluorine-containing polymer having a functional group can be used in order to improve the adhesion to the pellicle film or the frame. For example, the fluorine-containing polymer as described above usually has a residue derived from a polymerization initiator at the end of the main chain, so that this residue can be converted into a functional group to introduce a functional group into the fluorine-containing polymer. Specifically, for example, a fluorine-containing polymer obtained using a peroxide-based polymerization initiator can be heat-treated and then reacted with water to convert a terminal group derived from the polymerization initiator into a carboxyl group. Further, when the fluoropolymer is produced, a functional group can be introduced into the fluoropolymer by copolymerizing a monomer having a functional group or a group that can be converted into a functional group.
As described above, in the present invention, at least one of the material constituting the pellicle film and the adhesive for bonding the pellicle film to the frame is made of the fluorine-containing polymer described in JP-A-2001-330943. In particular, it is preferable that both are made of this fluorine-containing polymer.
Hereinafter, although this invention is illustrated concretely, this invention is not limited to these at all.
[0016]
【Example】
(Example 1) [Synthesis example of fluoropolymer (A)]
1,1,2,4,4,5- hexafluoro-3-oxa-5-trifluoromethyl-1,6-heptadiene [CH 2 = CHCF (CF 3 ) CF 2 OCF = CF 2] 30g and 1H- perfluorohexane [CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 H] 70g were put in a pressure glass autoclave 100ml purged with nitrogen.
As a polymerization initiator, 17 mg of bis (heptafluorobutyryl) peroxide was added, the inside of the system was again replaced with nitrogen, and polymerization was performed at 5 ° C. for 72 hours. As a result, 24 g of an amorphous polymer having a fluorine-containing ring structure in the main chain (hereinafter referred to as polymer A) was obtained.
The intrinsic viscosity [η] of the polymer A was 0.60 dl / g at 30 ° C. in perfluoro (2-butyltetrahydrofuran). The glass transition temperature of the polymer A was 108 ° C., and it was a tough and transparent glassy polymer at room temperature. The refractive index was as low as 1.34.
7 g of polymer A and 93 g of 1,3-bis (trifluoromethyl) benzene were placed in a glass flask and heated and stirred at 40 ° C. for 24 hours. As a result, a colorless and transparent uniform solution without turbidity was obtained. By performing spin coating on a glass plate polished with this solution for 10 seconds at a spin speed of 500 rpm, and then for 20 seconds at 2000 rpm, heat treatment was performed at 80 ° C. for 1 hour, and further at 180 ° C. for 1 hour, A uniform and transparent film was obtained on the glass plate.
[0017]
(Example 2) [Synthesis example of fluoropolymer (B)]
1,1,2,4,4,5,5-heptafluoro-3-oxa-1,6-heptadiene [CH 2 ═CHCF 2 CF 2 OCF═CF 2 ] 20 g and trichlorotrifluoroethane 40 g in an internal volume of 200 ml In a pressure-resistant glass autoclave. As a polymerization initiator, 20 mg of bis (heptafluorobutyryl) peroxide was added, the inside of the system was replaced with nitrogen again, and polymerization was performed at 18 ° C. for 10 hours. As a result, 10 g of an amorphous polymer having a fluorine-containing ring structure in the main chain (hereinafter referred to as polymer B) was obtained.
The intrinsic viscosity [η] of the polymer B was 0.96 dl / g at 30 ° C. in 1,3-bis (trifluoromethyl) benzene. The glass transition point of the polymer B was 90 ° C., a tough and transparent glassy polymer at room temperature, and the refractive index was as low as 1.36.
The polymer B was heat treated in air at 320 ° C. for 3 hours and then immersed in water for modification. The peak of the carboxyl group was confirmed by IR spectrum measurement of the modified polymer B, and the amount thereof was 0.005 mmol / g. This modified polymer B is hereinafter referred to as adhesive B.
On the other hand, a solution obtained by dissolving 7 g of adhesive B in 93 g of 1,3-bis (trifluoromethyl) benzene was applied on an aluminum frame and dried at room temperature for 2 hours. Thereafter, the aluminum frame was placed on a 120 ° C. hot plate with the adhesive surface facing upward and heated for 10 minutes, and the glass plate on which the polymer A film was formed was pressure-bonded with the film surface facing the frame. In this state, it was held at 120 ° C. for 10 minutes to complete the adhesion. Thereafter, the film was peeled off from the glass plate to obtain a pellicle in which an aluminum frame was provided with a uniform free-standing film made of polymer A and having a thickness of about 1 μm.
The transmittance of light at 157 nm of this film was 95% or more.
Each pellicle having the polymer A film was subjected to an irradiation test of a fluorine gas excimer laser beam oscillating at 157 nm used for photolithography.
[0018]
Example 1
The pellicle film (film thickness: 1 μm) is set in an exposure chamber having a volume of 0.02 m 3 , and nitrogen having a purity of 99.999% or more (high purity nitrogen: manufactured by Taiyo Toyo Oxygen Co., Ltd.) is 99.99 volumes from the gas inlet. %, A mixed gas (mixed gas A) formed by mixing 0.01% by volume of CF 3 H gas having a purity of 99.9% or more was introduced to replace the gas in the exposure chamber. Thereafter, a fluorine gas excimer laser beam (wavelength: 157 nm, pulse energy density: 0.1 (mJ / cm 2 ) / pulse, frequency 200 Hz, irradiation area) with the mixed gas A flowing at a rate of 0.2 L / min. 1 cm 2 ) was irradiated to the pellicle. The pellicle film was taken out after 13000 pulse irradiation, and the light transmittance of 157 nm of the pellicle film was measured. When the lifetime of the pellicle film was reduced to 1% when the transmittance of ultraviolet light at 157 nm was reduced to 1%, the transmittance of the pellicle film was hardly reduced, and the polymer A film showed extremely good resistance. Further, there was no peeling of the film, and the adhesive B also showed good durability.
[0019]
(Example 2)
A mixed gas (mixed gas B) obtained by mixing the same composition of the mixed gas with 99.99% by volume of high-purity nitrogen as in Example 1 and 0.01% by volume of CF 2 H 2 gas having a purity of 99.9% or more; A light resistance test was conducted in the same manner as in Example 1 except that. The pellicle film was taken out after 20000 pulse irradiation, and the light transmittance of 157 nm of the pellicle film was measured. There was almost no decrease in the transmittance of the pellicle membrane, and the polymer A membrane showed very good resistance. Further, there was no peeling of the film, and the adhesive B also showed good durability.
[0020]
(Comparative Example 1)
The light resistance test was carried out in the same manner as in Example 1 except that the same mixed gas of 99% by volume of high purity nitrogen as in Example 1 and 1% by volume of oxygen having a purity of 99.9% or more was used as the mixed gas. It was. When the pellicle film was taken out after 13000 pulse irradiation, the film of polymer A was not able to be used due to significant film loss and film breakage.
[0021]
(Comparative Example 2)
Light resistance in the same manner as in Example 1 except that a mixed gas composed of 98% by volume of high-purity nitrogen and 2% by volume of CF 3 H gas having a purity of 99.9% or higher was used as the mixed gas. As a result of the test, light could not pass and the pellicle surface could not be irradiated well.
[0022]
【The invention's effect】
According to the exposure method of the present invention, the light transmittance of the pellicle film hardly decreases with time, and the pellicle film can be prevented from being deteriorated.